[go: up one dir, main page]

KR100900092B1 - Manufacturing method of oxygen sensor - Google Patents

Manufacturing method of oxygen sensor Download PDF

Info

Publication number
KR100900092B1
KR100900092B1 KR1020070065757A KR20070065757A KR100900092B1 KR 100900092 B1 KR100900092 B1 KR 100900092B1 KR 1020070065757 A KR1020070065757 A KR 1020070065757A KR 20070065757 A KR20070065757 A KR 20070065757A KR 100900092 B1 KR100900092 B1 KR 100900092B1
Authority
KR
South Korea
Prior art keywords
solid electrolyte
ink
oxygen sensor
oxygen
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020070065757A
Other languages
Korean (ko)
Other versions
KR20090001399A (en
Inventor
이진휘
Original Assignee
서울산업대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울산업대학교 산학협력단 filed Critical 서울산업대학교 산학협력단
Priority to KR1020070065757A priority Critical patent/KR100900092B1/en
Publication of KR20090001399A publication Critical patent/KR20090001399A/en
Application granted granted Critical
Publication of KR100900092B1 publication Critical patent/KR100900092B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

본 발명은 고체전해질 분말을 잉크형태로 제조하고 볼밀하는 단계; 상기 준비된 고체전해질을 기판의 일면에 도포하는 단계; 및 상기 고체전해질 도포층 상에 Pt 잉크를 도포하고, 백금선을 연결하는 단계를 포함하여 구성되는 산소센서의 제조방법에 관한 것으로, 고체전해질을 이용하여 넓은 범위의 산소농도 범위에서 감응능력이 우수하고, 혼합 연소가스 분위기에서도 사용할 수 있는 반도체식 저항 형태의 산소센서를 제조할 수 있다.The present invention comprises the steps of preparing a solid electrolyte powder in the form of an ink and ball mill; Applying the prepared solid electrolyte to one surface of a substrate; And applying a Pt ink on the solid electrolyte coating layer, and connecting a platinum wire to the method of manufacturing an oxygen sensor, wherein the electrolyte has excellent sensitivity in a wide range of oxygen concentration using a solid electrolyte. In addition, it is possible to manufacture a semiconductor resistance type oxygen sensor that can be used in mixed combustion gas atmosphere.

고체전해질, 볼밀, 산소센서 Solid electrolyte, ball mill, oxygen sensor

Description

산소센서의 제조방법{Preparation method of oxygen sensor}Preparation method of oxygen sensor {Preparation method of oxygen sensor}

도 1은 자동-점화법을 이용한 La2CuO4 제조에 관한 흐름도이고,1 is a flow chart for the production of La 2 CuO 4 using the auto-ignition method,

도 2는 본 발명에 따른 산소센서 제조에 관한 전체적인 공정도이고,2 is an overall process diagram for manufacturing an oxygen sensor according to the present invention,

도 3은 본 발명에 따른 산소센서의 모식도이고,3 is a schematic diagram of an oxygen sensor according to the present invention,

도 4는 본 발명에 따른 산소센서의 성능을 측정하는 장비의 사진이고,Figure 4 is a photograph of the equipment for measuring the performance of the oxygen sensor according to the present invention,

도 5는 본 발명의 일실시예에 따라 제조된 산소센서를 이용한 온도변화에 대 한 산소농도 측정시 산소농도 변화에 의한 저항변화값, 시간변화를 하나의 그래프로 나타낸 것이고,5 is a graph showing a resistance change value and a time change due to an oxygen concentration change when measuring an oxygen concentration against a temperature change using an oxygen sensor manufactured according to an embodiment of the present invention.

도 6은 본 발명의 일실시예에 따라 제조된 산소센서를 이용한 온도변화에 대한 산소농도 측정시 산소농도 변화에 의한 감응시간을 반복하여 도시한 것이다.Figure 6 shows the repeated response time by the change in oxygen concentration when measuring the oxygen concentration with respect to the temperature change using an oxygen sensor prepared according to an embodiment of the present invention.

본 발명은 고체전해질을 이용하여 넓은 범위의 산소농도 범위에서 감응능력이 우수하고, 혼합 연소가스 분위기에서도 사용할 수 있는 반도체식 저항 형태의 산소센서를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a semiconductor resistance type oxygen sensor having a high sensitivity in a wide range of oxygen concentration range using a solid electrolyte, which can be used in a mixed combustion gas atmosphere.

반도체식 산소센서는 주로 가스의 흡착 및 탈착을 이용한 반도체식 가스센서와 가스의 반응성을 이용한 접촉연소식 가스센서가 있다.Semiconductor oxygen sensor mainly includes semiconductor gas sensor using gas adsorption and desorption and contact combustion gas sensor using gas reactivity.

반도체 표면에 기체분자가 흡착되면 반도체의 유형과 기체분자의 종류에 따라 반도체의 전기전도도가 변화한다. 이것은 가스센서를 적당한 회로에 연결하여 피검가스를 접촉시켰을 때의 저항변화를 이용하여 가스의 종류와 양을 감지하는 것이다.When gas molecules are adsorbed on the surface of the semiconductor, the electrical conductivity of the semiconductor changes depending on the type of semiconductor and the type of gas molecules. This is to detect the type and amount of gas by using the resistance change when the gas sensor is contacted by connecting the gas sensor to an appropriate circuit.

이와 같은 반도체식 산소센서는 비화학양론 반도체로써 표면에서 형성되는 이중층은 표면 결함과 흡착층이며, 결핍층 또는 축적층을 형성한다는 원리를 이용한다. Such a semiconductor oxygen sensor is a non-stoichiometric semiconductor, and the dual layer formed on the surface is a surface defect and an adsorption layer, and uses the principle that a deficiency layer or an accumulation layer is formed.

이에, 본 발명의 목적은 고체전해질을 이용하여 넓은 범위의 산소농도 범위에서 감응능력이 우수하고, 혼합 연소가스 분위기에서도 사용할 수 있는 반도체식 저항 형태의 산소센서 제조방법을 제공하는 데에 있다.Accordingly, it is an object of the present invention to provide a method for producing a semiconductor resistance type oxygen sensor which has excellent sensitivity in a wide range of oxygen concentration range using a solid electrolyte and can be used in a mixed combustion gas atmosphere.

상기 목적을 달성하기 위하여, In order to achieve the above object,

본 발명은 고체전해질 분말을 잉크형태로 제조하고 볼밀하는 단계; 상기 준비된 고체전해질을 기판의 일면에 도포하는 단계; 및 상기 고체전해질 도포층 상에 Pt 잉크를 도포하고, 백금선을 연결하는 단계를 포함하여 구성되는 것을 특징으로 하는 산소센서의 제조방법을 제공한다.The present invention comprises the steps of preparing a solid electrolyte powder in the form of an ink and ball mill; Applying the prepared solid electrolyte to one surface of a substrate; And applying Pt ink on the solid electrolyte coating layer, and connecting the platinum wire.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 사용가능한 고체전해질 분말은 ZnO, 탈크, SiO2, Al2O3, Nb2O5, TiO2, CeO2, SrTiO3, LaCoO3및 La2CuO4로 이루어진 군에서 선택된 하나의 물질이며, 상기 고체전해질 분말에 용매 및 증점제를 가해 잉크형태로 제조한다.One material selected usable solid electrolyte powder in the present invention are from the group consisting of ZnO, talc, SiO 2, Al 2 O 3 , Nb 2 O 5, TiO 2, CeO 2, SrTiO 3, LaCoO 3 , and La 2 CuO 4 It is prepared in the form of an ink by adding a solvent and a thickener to the solid electrolyte powder.

이때, 사용되는 반도체식 산소센서 물질인 고체전해질 분말의 합성법은 용융법, 동결-건조법, 침전법, 자동-점화법, 솔-겔법 등이 있으나 제조방법에 따라 각각의 특성을 가진다. In this case, the method of synthesizing the solid electrolyte powder, which is the semiconductor oxygen sensor material used, may be a melting method, a freeze-drying method, a precipitation method, an auto-ignition method, a sol-gel method, etc., but each has characteristics.

고상반응에 의한 용융법은 1100℃ 만큼 높은 온도가 필요하므로 비경제적이고 나노크기의 입자를 얻기가 어렵고, 또한 고온 및 산화-환원분위기에 따라 여러 형태의 구조를 가지는 특성을 나타낸다. Melting by the solid phase reaction requires a temperature as high as 1100 ° C., which is uneconomical and difficult to obtain nano-sized particles, and also has various types of structures depending on the high temperature and the oxidation-reduction atmosphere.

솔-겔법은 나노크기의 입자를 제조하는 방법으로 많이 사용되나 전구물질의 불안정성 때문에 제조하기 어렵다는 단점을 가진다. 반면에 자동-점화법은 비결정 이핵 착물을 이용하여 전구물질이 소결되면서 제조하는 방법으로 입자크기가 매우 작고, 비표면적값은 비교적 큰 값을 가지는 물질을 제조하기가 용이하다. The sol-gel method is widely used as a method for preparing nano-sized particles, but has a disadvantage in that it is difficult to manufacture due to instability of precursors. On the other hand, the auto-ignition method is a method in which precursors are sintered using amorphous binuclear complexes. Thus, it is easy to prepare a material having a very small particle size and a relatively large surface area.

따라서, 본 발명에서는 낮은 온도에서 용이하게 제조할 수 있는 자동-점화법을 이용하여 반도체식 산소센서 물질을 제조한다.Accordingly, in the present invention, a semiconductor oxygen sensor material is prepared by using an auto-ignition method which can be easily prepared at low temperatures.

또한, 상기 용매로는 에탄올, 이소프로판올, 아세톤, 벤젠, 암모니아수, 증류수, 사염화탄소, 초산 및 톨루엔으로 이루어진 군에서 선택된 하나 또는 하나 이상의 혼합용매를 사용하며, 바람직하게는 물 또는 에탄올에서 선택된 하나 이상을 사용한다. In addition, the solvent is used one or more mixed solvents selected from the group consisting of ethanol, isopropanol, acetone, benzene, ammonia water, distilled water, carbon tetrachloride, acetic acid and toluene, preferably at least one selected from water or ethanol do.

이때, 상기 용매는 고체전해질 분말 1 중량부에 대하여 10-50 중량부로 사용되며, 상기 범위를 벗어나 과량 또는 소량의 용매를 사용하게 되면 저항값이 낮거나 높아서 산소의 농도를 정밀하게 감지할 수 없는 문제가 야기될 수 있다.At this time, the solvent is used in 10-50 parts by weight with respect to 1 part by weight of the solid electrolyte powder, when using an excess or a small amount of solvent outside the above range, the resistance value is low or high can not accurately detect the concentration of oxygen Problems may arise.

또한, 상기 증점제로는 폴리에틸렌글리콜, 카복시메틸셀룰로즈, 산탄검, 카라키난, 전분 및 알긴산소다로 이루어진 군에서 선택된 하나를 사용하며, 바람직하게는 폴리에틸렌글리콜 또는 알긴산소다를 사용한다. In addition, the thickener is one selected from the group consisting of polyethylene glycol, carboxymethyl cellulose, xanthan gum, carrageenan, starch and sodium alginate, preferably polyethylene glycol or sodium alginate.

이때, 상기 증점제는 고체전해질 분말 100 중량부에 대하여 100-200 중량부로 사용되며, 상기 범위를 벗어나 과량 또는 소량의 증점제를 사용하게 되면 점성이 낮거나 높아서 스크린 프린팅이 효율적으로 수행되지 않는 문제가 야기될 수 있다.In this case, the thickener is used in an amount of 100-200 parts by weight based on 100 parts by weight of the solid electrolyte powder, and when the excess or small amount of the thickener is used out of the range, the viscosity may be low or high, causing screen printing not to be efficiently performed. Can be.

본 발명에 따른 볼밀 처리는 2-롤밀(two-roll mill)을 사용하며, 회전비는 2:1이고, 각각 120rpm과 60rpm으로 고정하여 15-25 시간동안 운전하는 것이 바람직하다. The ball mill treatment according to the present invention uses a two-roll mill, and the rotation ratio is 2: 1, and it is preferable to operate for 15-25 hours by fixing at 120 rpm and 60 rpm, respectively.

상기 회전속도 범위를 벗어나면 입자가 너무 곱거나 굵은 문제가 야기될 수 있고, 또 상기 시간 범위를 벗어나면 충분히 섞이지 않거나, 점도가 묽어지는 문제가 야기될 수 있다.Outside the range of rotation speed may cause a problem that the particles are too multiplied or coarse, and when outside the time range it may not be sufficiently mixed, or may cause a problem of thinning of the viscosity.

상기와 같이 준비된 고체전해질은 1-10 ㎛ 정도의 입자경을 갖는 잉크 형태의 입자이다. 이때, 입자경이 상기 범위를 벗어나 크거나 작으면 저항값의 변동으로 인하여 산소농도를 정확하게 측정할 수 없는 문제가 야기될 수 있다.The solid electrolyte prepared as described above is an ink particle having a particle diameter of about 1-10 μm. At this time, if the particle diameter is larger or smaller than the above range, the oxygen concentration may not be accurately measured due to the variation of the resistance value.

상기와 같이 준비된 고체전해질을 기판의 일면에 도포한다.The solid electrolyte prepared as described above is applied to one surface of the substrate.

본 발명에서 사용가능한 기판으로는 Al2O3 또는 YSZ(Yttrium Stabilized Zirconia)을 사용하며, 스크린 프린팅법으로 고체전해질을 기판 상에 도포한다.As a substrate usable in the present invention, Al 2 O 3 or YSZ (Yttrium Stabilized Zirconia) is used, and a solid electrolyte is coated on the substrate by screen printing.

이때, 도포층의 두께는 0.01-0.05 mm인 것이 바람직하며, 상기 범위를 벗어나면 반응시간이 지연되거나 저항값의 변화가 둔한 문제가 야기될 수 있다.At this time, the thickness of the coating layer is preferably 0.01-0.05 mm, the outside of the range may cause a problem that the reaction time is delayed or the change in the resistance value is dull.

또한, 상기 고체전해질 도포층 상에 스크린 프린팅법으로 Pt 잉크(Pt paste)를 도포하고, 여기에 백금선을 연결한다.In addition, Pt ink (Pt paste) is applied to the solid electrolyte coating layer by the screen printing method, and a platinum wire is connected thereto.

도 2를 참조하여 보다 상세하게 설명하면, 본 발명은 고체전해질 분말을 준비하는 단계(S100), 상기 고체전해질 분말에 증점제 및 용매를 가하여 혼합하는 단계(S110), 혼합물을 볼밀하여 고체전해질 잉크를 제조하는 단계(S120 및 S130), 기판에 고체전해질 잉크를 스크린 프린팅하는 단계(S140), 소결하는 단계(S150), Pt 잉크를 스크린 프린팅하는 단계(S160) 및 소결하는 단계(S170)를 거쳐 산소센서를 제조할 수 있다.Referring to Figure 2 in more detail, the present invention is a step of preparing a solid electrolyte powder (S100), the step of adding a thickener and a solvent to the solid electrolyte powder and mixing (S110), ball mill the mixture to a solid electrolyte ink Oxygen through the manufacturing step (S120 and S130), screen printing the solid electrolyte ink on the substrate (S140), sintering (S150), screen printing the Pt ink (S160) and sintering (S170) Sensors can be manufactured.

본 발명에 따른 산소센서는 굴뚝이 장착된 가정용 및 산업용 보일러에 모두 적용 가능하며, 이는 산소농도를 연소-공연비를 최적화하여 제2의 에너지 절약을 유도하고 또한 완전연소로 인한 대기오염을 방지할 수 있다. Oxygen sensor according to the present invention can be applied to both home and industrial boilers equipped with a chimney, which can optimize the combustion-fuel ratio to induce a second energy saving and prevent air pollution due to complete combustion. have.

그 이외에도 공업적으로는 화학반응 공정의 제어, 화학공장이나 유조선 등의 저장탱크에서 작업시 질식사고 방지, 환경 및 계측기 분야에서는 대기오염방지, 가스 오염 분석 등에 응용할 수 있고, 광업 및 건설 분야에서는 탄광작업 또는 맨홀작업시 산소부족으로 인한 인명사고의 예방을 알리는 센서로서 그 역할을 담당할 수 있다. In addition, industrially, it can be applied to control of chemical reaction process, to prevent suffocation when working in storage tanks such as chemical plants or oil tankers, to prevent air pollution in the environment and instrument fields, and to analyze gas pollution. It can play a role as a sensor to prevent the accident of life due to lack of oxygen during work or manhole work.

그 뿐만 아니라 의료분야에서도 수술시 마취 중 산소농도 저하에 대한 결핍사고 예방, 보육기내의 산소농도가 높아져 발생하는 영아의 실명 등 여러분야에서 인명사고 예방책으로도 사용이 가능하다.In addition, in the medical field, it can be used as a preventive measure for human accidents such as prevention of deficiency of oxygen concentration during anesthesia during surgery and blindness of infants caused by high oxygen concentration in incubator.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<< 참고예Reference Example 1> 재료 및 기기 1> materials and appliances

본 발명에서 산소센서 기판으로 사용된 지르코니아 지지체의 YSZ(Yttria Stabilized Zirconium, 8M% Yttria)는 20mm x 10mm x 100μm의 규격을 가지는 Marketch International Inc. 제품을 구입하여 사용하였고, 스크린 프린터에 사용된 Pt 잉크는 Heraeus사를 이용하였다. The YSZ (Yttria Stabilized Zirconium, 8M% Yttria) of the zirconia support used as the oxygen sensor substrate in the present invention is Marketch International Inc. having a standard of 20 mm x 10 mm x 100 μm. The product was purchased and used, and Pt ink used in the screen printer was used by Heraeus.

산소센서 고체전해질은 La2CuO4을 합성하여 사용하였다. La2CuO4을 합성하기 위하여 사용된 시약인 La(NO3)3, Cu(NO3)2 및 구연산은 Aldrich Co.로부터 구입하였다. Oxygen sensor solid electrolyte was used to synthesize La 2 CuO 4 . La (NO 3 ) 3 , Cu (NO 3 ) 2 and citric acid, the reagents used to synthesize La 2 CuO 4 , were purchased from Aldrich Co.

<< 참고예Reference Example 2>  2> LaLa 22 CuOCuO 44 의 제조Manufacture

La(NO3)3와 Cu(NO3)2의 혼합물에 구연산을 첨가하여 도 1에 나타낸 것과 같은 자동-점화법(auto-ignition process)을 이용하여 La2CuO4을 제조하였다. La 2 CuO 4 was prepared using an auto-ignition process as shown in FIG. 1 by adding citric acid to a mixture of La (NO 3 ) 3 and Cu (NO 3 ) 2 .

이때, 환원제로서 사용하는 구연산과 산화제로서 사용하는 질산염(La(NO3)3, Cu(NO3)2)의 몰비는 구연산/질산염 = 0.90로 하여 제조하였다. 이때, 구연산/질산염의 몰비가 0.3 미만에서는 겔화 형성 후에 자동-점화가 일어나지 않고, 1.0 이상에서는 많은 양의 가스를 배출하면서 팽창하기 시작하고 연쇄적인 폭발적 반응을 한다.At this time, the molar ratio of citric acid used as the reducing agent and nitrates (La (NO 3 ) 3 , Cu (NO 3 ) 2 ) used as the oxidizing agent was prepared as citric acid / nitrate = 0.90. At this time, when the molar ratio of citric acid / nitrate is less than 0.3, auto-ignition does not occur after gelling formation, and when it is 1.0 or more, it starts to expand while releasing a large amount of gas and has a cascading explosive reaction.

La(NO3)3와 Cu(NO3)2의 혼합물에 구연산 용액을 첨가한 후 85 - 90℃를 유지하면서 계속적으로 저어주었다. 겔화 되었을 때 가열판 위에서 자동점화가 되고, 이렇게 제조된 물질은 500℃와 600℃에서 소결하고, 10시간 동안 방치하여 La2CuO4의 고체전해질을 얻었다.Citric acid solution was added to the mixture of La (NO 3 ) 3 and Cu (NO 3 ) 2, and the mixture was continuously stirred while maintaining a temperature of 85 ° C. to 90 ° C. When gelled, autoignition was carried out on a heating plate, and the material thus prepared was sintered at 500 ° C. and 600 ° C. and left for 10 hours to obtain a solid electrolyte of La 2 CuO 4 .

<< 실시예Example 1> 산소센서의 제조 1> Manufacture of Oxygen Sensor

산소센서의 제조과정은 도 2와 같다.The manufacturing process of the oxygen sensor is shown in FIG.

보다 구체적으로는, 상기 제조된 La2CuO4분말 1 중량부에 대하여 전분 2 중량부 및 증류수 10 중량부로 혼합한 후 2-롤밀의 회전비가 120 rpm과 60 rpm으로 고정하여 20시간 동안 처리하여 잉크 형태의 고체전해질을 제조하였다.More specifically, 2 parts by weight of starch and 10 parts by weight of distilled water are mixed with 1 part by weight of the prepared La 2 CuO 4 powder, and the rotation ratio of the 2-roll mill is fixed at 120 rpm and 60 rpm, and treated for 20 hours. A solid electrolyte in the form was prepared.

상기 준비된 고체전해질 잉크를 YSZ 기판 위에 스크린 프린팅한 후 700℃에서 2시간동안 소결한 후 냉각하였다. The prepared solid electrolyte ink was screen printed on an YSZ substrate, and then sintered at 700 ° C. for 2 hours and then cooled.

다시 Pt 잉크를 스크린 프린팅한 후 Pt 와이어를 부착하여 800℃에서 2시간동안 소결하여 도 3과 같은 산소센서를 완성하였다. After screen printing Pt ink again, Pt wire was attached and sintered at 800 ° C. for 2 hours to complete an oxygen sensor as shown in FIG. 3.

도 3의 산소센서 모식도와 같이, YSZ(20mm x 10mm x 100μm) 기판 한쪽면에 제조된 산소센서 물질인 La2CuO4를 스크린 프린팅법을 이용하여 0.01-0.05 mm 두께로 도포하고 상기 도포층 상에 스크린 프린팅법을 이용하여 Pt 잉크를 0.01-0.05 mm 두께로 도포하여 여기에 백금선을 연결한 후 산소센서를 제작하였고, 두 전극사이의 산소분압 차이에 의한 저항값을 측정하여 산소농도를 측정하였다.As shown in the oxygen sensor schematic of FIG. 3, La 2 CuO 4 , an oxygen sensor material, manufactured on one side of an YSZ (20 mm x 10 mm x 100 μm) substrate was coated to a thickness of 0.01-0.05 mm by using a screen printing method, and the coating layer was coated on the coating layer. Pt ink was applied at 0.01-0.05 mm thickness using screen printing method to connect platinum wire to it, and oxygen sensor was fabricated. Oxygen concentration was measured by measuring resistance value by oxygen partial pressure difference between two electrodes. .

상기 제작된 산소센서는 도 4에 도시된 바와 같이 가스-흐름 및 온도를 제어할 수 있고, 여러 가스의 농도변화에 따라 저항값의 변화를 자동 감지할 수 있는 장치가 부착된 것을 자체 제작하여 성능을 측정하였다.The manufactured oxygen sensor is capable of controlling gas flow and temperature as shown in FIG. 4, and is manufactured by attaching an apparatus capable of automatically detecting a change in resistance value according to a change in concentration of various gases. Was measured.

<< 실험예Experimental Example 1> 산소농도 측정 1> Oxygen concentration measurement

실시예 1에서 제작한 산소센서를 이용하여 산소농도를 측정하였다. 이때, 운반가스로는 질소가스를 사용하였다. 가스흐름 속도는 300 mL/min., 0% - 100% 산소농도 범위에서 산소농도 변화에 따라 두 전극사이에서 발생하는 저항값을 측정하여 산소농도를 분석하였다.Oxygen concentration was measured using the oxygen sensor produced in Example 1. At this time, nitrogen gas was used as the carrier gas. The gas flow rate was 300 mL / min. And the oxygen concentration was analyzed by measuring the resistance value generated between the two electrodes according to the oxygen concentration change in the range of 0%-100% oxygen concentration.

그 결과, 온도변화에 대한 산소농도 측정시 산소농도 변화에 의한 저항값 및 감응시간을 도 5 및 도 6에 도시하였다. 저항형태의 산소센서는 일정 온도에서 입자크기가 감소함에 따라 감응시간도 감소한다고 보고되어 있다. As a result, the resistance value and the response time due to the oxygen concentration change when measuring the oxygen concentration with respect to the temperature change are shown in FIGS. 5 and 6. It is reported that the resistance type oxygen sensor decreases the response time as the particle size decreases at a certain temperature.

그래서 본 실험에서는 동일한 입자 크기를 가지는 고체전해질 물질이 온도 변화에 따른 감응속도 및 산소농도에 미치는 영향을 조사하였고, 그 결과 산소농도 및 온도변화에 따른 전형적인 산소감응을 나타낸 것으로 표류없이 안정적인 저항값 을 나타내었다. Therefore, in this experiment, the effects of solid electrolyte materials with the same particle size on the reaction rate and oxygen concentration according to the temperature change were investigated. As a result, the oxygen resistance and the typical oxygen response according to the temperature change were shown. Indicated.

그리고 같은 온도에서는 산소농도가 증가함에 따라 저항값이 증가하는 경향을 보이는 데, 이것은 산소농도의 증가는 YSZ기판이 많은 양의 산소를 펌핑할 수 없어서 저항이 높아지기 때문인 것으로 판단된다. At the same temperature, the resistance tends to increase as the oxygen concentration increases, which is believed to be due to the increase in resistance because the YSZ substrate cannot pump a large amount of oxygen.

산소농도와 관계없이 온도가 증가함에 따라 저항값이 감소하는 경향을 보이는데, 이것은 산소농도가 증가할수록 확산장벽을 통한 산소의 확산속도가 커져서 결과적으로 산소의 유입량이 많아졌기 때문이라고 판단된다. Regardless of the oxygen concentration, the resistance tends to decrease as the temperature increases. This is because the oxygen diffusion rate increases as the oxygen concentration increases, and as a result, the inflow of oxygen increases.

또한, 여러 온도에서 산소농도 변화에 따라 감응성 기울기를 표시하였듯이 500℃, 600℃, 700℃에서는 산소온도가 증가함에 따라 선형적인 결과를 나타내었으나, 400℃에서는 산소농도의 변화에 따라 선형적인 결과를 나타내지 못하였다. 이는 낮은 온도에서 YSZ 기판의 자체 저항이 커서 확산장벽을 확산해 들어오는 산소를 제대로 펌핑하지 못하기 때문이다. In addition, as indicated by the gradient of sensitivity according to the change of oxygen concentration at various temperatures, the linear results were shown as the oxygen temperature was increased at 500 ℃, 600 ℃, and 700 ℃, but the linear results according to the change of oxygen concentration at 400 ℃. Not shown. This is because at low temperatures, the YSZ substrate's self-resistance is so large that it does not properly pump oxygen into the diffusion barrier.

산소센서의 저항값은 온도가 증가함에 따라 낮게 나타내는 것은, 온도 상승에 따른 YSZ 기판의 저항값이 상대적으로 낮아져 낮은 저항값에서 많은 양의 산소를 펌핑할 수 있기 때문인 것으로 판단된다. The resistance value of the oxygen sensor is shown to be lower as the temperature is increased, because the resistance value of the YSZ substrate with the temperature rise is relatively low, it is determined that a large amount of oxygen can be pumped at the low resistance value.

한편, 도 5에서는 산소센서의 온도 변화에 의한 감응시간을 나타낸 것으로, 각 전극에서의 전기화학적 반응은 기준전극 표면에서 O2+ 4e- → 2O2 -, 지시전극 표면에서 2O2 - → O2 + 4e-의 반응이 각각 일어난다. On the other hand, in FIG. 5 illustrates the response time of the temperature change of the oxygen sensor, the electrochemical reaction in each electrode from the reference electrode surface O 2 + 4e - → 2O 2 -, 2O 2 in the indicator electrode surface - → O 2 Reactions of + 4e - occur respectively.

이 반응은 전극표면에서의 확산속도에 의하여 지배를 받는데 400℃ 부근에서는 전극표면에서 산소의 확산속도가 느려서 감응시간이 약 140초로 매우 느리게 나타나고, 500℃ 이상에서는 전극표면에서 화학평형속도가 매우 빠르게 일어나 감응시간도 약 5초로 매우 빠르게 나타내어 고온에서 매우 우수한 산소센서 성능을 가진다.This reaction is governed by the diffusion rate on the electrode surface, and the reaction time is very slow (approximately 140 seconds) due to the slow diffusion rate of oxygen on the electrode surface at around 400 ° C, and the chemical equilibrium rate is very fast on the electrode surface above 500 ° C. Wake up response time is also very fast (about 5 seconds) has a very good oxygen sensor performance at high temperature.

도 6은 0 - 100% O2 농도변화에 따른 산소센서의 감응도를 나타낸 것으로, 산소농도 변화에 따라 표류없이 안정한 저항값을 나타내었고, 1회, 2회를 연소 측정한 결과 재현성 있는 결과를 얻었고, 산소농도 0%에서 100%까지 빠른 감응시간과 산소농도에 비례하는 선형적인 결과를 보였다. Figure 6 shows the sensitivity of the oxygen sensor according to the change in concentration of 0-100% O 2 , showed a stable resistance value without drifting according to the change in oxygen concentration, the combustion measurement of one time, two times to obtain a reproducible results The results showed a rapid response time from 0% to 100% oxygen concentration and a linear result proportional to oxygen concentration.

앞서 상술한 바와 같이, 본 발명에 따라 제작된 산소센서는 여러 환경조건에서도 매우 우수한 감응도 및 감응시간을 나타낼 뿐만 아니라 재현성도 매우 좋아 선풍기 등에 적용시 실내 산소 저농도 및 기타 가스오염에 의한 사고를 예방할 수 있다.As described above, the oxygen sensor manufactured according to the present invention not only shows a very good sensitivity and response time under various environmental conditions but also has a very good reproducibility, and can prevent accidents due to low indoor oxygen concentration and other gas pollution when applied to a fan. have.

Claims (5)

ZnO, 탈크, SiO2, Al2O3, Nb2O5, TiO2, CeO2, SrTiO3, LaCoO3및 La2CuO4로 이루어진 군에서 선택된 하나의 물질인 고체전해질 분말을 잉크형태로 제조하고 볼밀하는 단계;Preparation of ZnO, talc, SiO 2, Al 2 O 3 , Nb 2 O 5, TiO 2, CeO 2, SrTiO 3, LaCoO 3 , and a material of the solid electrolyte powders selected from the group consisting of La 2 CuO 4 in ink form And ball milling; 잉크형태로 제조되고 볼밀되어 준비된 고체전해질을 기판의 일면에 도포하는 단계; 및Applying a solid electrolyte prepared in the form of ink and prepared by ball milling to one surface of the substrate; And 상기 고체전해질이 도포된 기판상에 Pt 잉크를 도포하고, 백금선을 연결하는 단계;를 포함하여 구성되는 것을 특징으로 하는 산소센서의 제조방법.And applying a Pt ink on the substrate to which the solid electrolyte is applied, and connecting platinum wires. 삭제delete 제 1항에 있어서, 상기 고체전해질 분말에 용매 및 증점제를 가해 잉크형태로 제조하는 것을 특징으로 하는 산소센서의 제조방법.The method of claim 1, wherein a solvent and a thickener are added to the solid electrolyte powder to prepare the ink in the form of an ink. 제 3항에 있어서, 상기 용매는 에탄올, 이소프로판올, 아세톤, 벤젠, 암모니아수, 물, 사염화탄소, 초산 및 톨루엔으로 이루어진 군에서 선택된 하나 또는 하나 이상의 혼합용매인 것을 특징으로 하는 산소센서의 제조방법.The method of claim 3, wherein the solvent is one or more mixed solvents selected from the group consisting of ethanol, isopropanol, acetone, benzene, ammonia water, water, carbon tetrachloride, acetic acid and toluene. 제 1항에 있어서, 상기 볼밀은 2-롤밀을 사용하고 회전비는 120rpm과 60rpm 으로 고정하여 15-25 시간동안 운전하는 것을 특징으로 하는 산소센서의 제조방법.The method of claim 1, wherein the ball mill uses a two-roll mill and the rotation ratio is fixed at 120 rpm and 60 rpm to operate for 15-25 hours.
KR1020070065757A 2007-06-29 2007-06-29 Manufacturing method of oxygen sensor Expired - Fee Related KR100900092B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070065757A KR100900092B1 (en) 2007-06-29 2007-06-29 Manufacturing method of oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070065757A KR100900092B1 (en) 2007-06-29 2007-06-29 Manufacturing method of oxygen sensor

Publications (2)

Publication Number Publication Date
KR20090001399A KR20090001399A (en) 2009-01-08
KR100900092B1 true KR100900092B1 (en) 2009-05-28

Family

ID=40484483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070065757A Expired - Fee Related KR100900092B1 (en) 2007-06-29 2007-06-29 Manufacturing method of oxygen sensor

Country Status (1)

Country Link
KR (1) KR100900092B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200448571Y1 (en) * 2007-12-31 2010-04-26 주식회사 대연 Cover lift / lower devices such as ceiling lights
CN109119648B (en) * 2018-08-24 2021-03-30 广东工业大学 LaCoO3-δ/CNTs bifunctional composite catalyst, preparation method and application thereof
KR20200051421A (en) 2018-11-05 2020-05-13 이종현 heating hat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238964A (en) * 1988-07-29 1990-02-08 Tanaka Kikinzoku Kogyo Kk Manufacturing method of thin film oxygen sensor
KR20050017968A (en) * 2003-08-12 2005-02-23 (주)해은켐텍 The Polyelectrolyte composition for humidity sensor, Polyelectrolyte ink and preparation method of Polyelectrolyte membrane for humidity sensor by inkjet printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238964A (en) * 1988-07-29 1990-02-08 Tanaka Kikinzoku Kogyo Kk Manufacturing method of thin film oxygen sensor
KR20050017968A (en) * 2003-08-12 2005-02-23 (주)해은켐텍 The Polyelectrolyte composition for humidity sensor, Polyelectrolyte ink and preparation method of Polyelectrolyte membrane for humidity sensor by inkjet printing

Also Published As

Publication number Publication date
KR20090001399A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US8501269B2 (en) Sensitive materials for gas sensing and method of making same
KR101440648B1 (en) Hydrogen sensitive composite material, tubular sensor for detecting hydrogen and other gases
Liu et al. Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors
Kang et al. A carbon dioxide gas sensor based on cobalt oxide containing barium carbonate
Dai et al. Ammonia sensing characteristics of La10Si5MgO26-based sensors using In2O3 sensing electrode with different morphologies and CuO reference electrode
EP2816012A1 (en) Macroporous titanium compound monolith and method for manufacturing same
RU2464554C1 (en) Gas sensor for detecting nitrogen and carbon oxides
US5427740A (en) Tin oxide gas sensors
Wang et al. An amperometric NO2 sensor based on La10Si5NbO27. 5 electrolyte and nano-structured CuO sensing electrode
Zheng et al. Mesoporous tungsten oxide electrodes for YSZ-based mixed potential sensors to detect NO2 in the sub ppm-range
Wang et al. Mixed potential type ppb-level acetaldehyde gas sensor based on stabilized zirconia electrolyte and a NiTiO3 sensing electrode
KR100900092B1 (en) Manufacturing method of oxygen sensor
Kim et al. Sensitivity enhancement for CO gas detection using a SnO2–CeO2–PdOx system
US11692987B2 (en) CoCr2O4-based gas sensor and method for manufacturing the same
Kruefu et al. Effects of Niobium‐Loading on Sulfur Dioxide Gas‐Sensing Characteristics of Hydrothermally Prepared Tungsten Oxide Thick Film
CA1227384A (en) Antimony-doped stannic oxide thick film gas sensor
Chakraborty et al. Improvement of recovery time of nanostructured tin dioxide-based thick film gas sensors through surface modification
CN108152337B (en) A LaFeO3-based ethanol gas sensor with high gas-sensing performance and preparation method thereof
Zhu et al. A novel triethylamine gas sensor based on PrVO4 material by hydrothermal synthesis
Ha et al. High-Temperature Stable NO x Sensor for Exhaust Gas Monitoring in Automobiles
Shelke et al. A review article on zirconia based thick film gas sensors
Tiwari et al. Vacuum-deposited poly (o-phenylenediamine)/WO3· nH2O nanocomposite thin film for NO2 gas sensor
KR20170137619A (en) Gas detection material with high sensitivity and selectivity for methyl benzene, method for preparing the same, and gas sensor comprising the gas detection material
KR100551225B1 (en) Method for preparing catalyst-doped tin oxide powder for semiconductor gas sensor
JP2007017426A (en) Gas sensor that detects the concentration of carbon monoxide and hydrocarbons in the atmosphere

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

FPAY Annual fee payment

Payment date: 20120405

Year of fee payment: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20140523

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20140523

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000