KR100931117B1 - Method for producing polymer electrolyte membrane for fuel cell and polymer electrolyte membrane prepared therefrom - Google Patents
Method for producing polymer electrolyte membrane for fuel cell and polymer electrolyte membrane prepared therefrom Download PDFInfo
- Publication number
- KR100931117B1 KR100931117B1 KR1020070130226A KR20070130226A KR100931117B1 KR 100931117 B1 KR100931117 B1 KR 100931117B1 KR 1020070130226 A KR1020070130226 A KR 1020070130226A KR 20070130226 A KR20070130226 A KR 20070130226A KR 100931117 B1 KR100931117 B1 KR 100931117B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrolyte membrane
- pmma
- polymer electrolyte
- fuel cell
- ssa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1081—Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1044—Mixtures of polymers, of which at least one is ionically conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1086—After-treatment of the membrane other than by polymerisation
- H01M8/1088—Chemical modification, e.g. sulfonation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1086—After-treatment of the membrane other than by polymerisation
- H01M8/109—After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Sustainable Development (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 양친성 블록공중합체와 불소를 함유하는 소수성 고분자 주형물인 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF)를 블렌드하여 제조되며, 열적, 화학적 및 기계적 안정성을 가지며, 기존의 전해질 막에 비해 높은 양성자 전도율을 갖는 연료전지용 고분자 전해질 막의 제조방법 및 그로부터 제조된 연료전지용 고분자 전해질 막을 제공하기 위한 것이다.The present invention is prepared by blending a polyvinylidene fluoride (PVDF), a hydrophobic polymer template containing amphiphilic block copolymer and fluorine, has thermal, chemical and mechanical stability, and is higher than that of a conventional electrolyte membrane. A method of manufacturing a polymer electrolyte membrane for a fuel cell having a proton conductivity and a polymer electrolyte membrane for a fuel cell prepared therefrom.
연료전지, 고분자 전해질 막, PVDF, 자기조립 구조 Fuel cell, polymer electrolyte membrane, PVDF, self-assembly structure
Description
본 발명은 연료전지용 고분자 전해질막의 제조방법 및 그로부터 제조된 연료전지용 고분자 전해질막에 관한 것이다. 더욱 상세하게는 양친성 블록공중합체와 불소를 함유하는 소수성 고분자 주형물인 폴리비닐리덴 플루오라이드(PVDF)를 블렌드하여서 제조되며, 열적, 화학적 및 기계적 안정성을 가지며, 기존의 전해질 막에 비해 높은 양성자 전도율을 갖는 연료전지용 고분자 전해질 막의 제조방법 및 그로부터 제조된 연료전지용 고분자 전해질 막에 관한 것이다. The present invention relates to a method for producing a polymer electrolyte membrane for a fuel cell and a polymer electrolyte membrane for a fuel cell produced therefrom. More specifically, polyvinylidene fluoride (PVDF), a hydrophobic polymer template containing amphiphilic block copolymer and fluorine, is prepared by blending, has thermal, chemical and mechanical stability, and has a high proton conductivity compared to conventional electrolyte membranes. A method for producing a polymer electrolyte membrane for a fuel cell having a and a polymer electrolyte membrane for a fuel cell produced therefrom.
머지 않은 미래에 수소경제시대를 바라보는 현시점에서 연료전지는 고효율에너지이자 자원고갈의 우려가 없으며, 공해가 없는 차세대 에너지원으로 각광받고 있다. 다양한 방식의 연료전지 중 고체고분자 연료전지(PEMFC: Proton Exchange Membrane Fuel Cell)는 출력 밀도가 높아 소형화가 가능하여 이동형으로 이용이 가능하고, 비교적 낮은 작동온도를 가져 상온 기동성이 좋으며, 전해질이 고체상의 고분자막이므로 관리와 운용이 편리하다는 등의 많은 장점을 가지고 있다.In the near future, the fuel cell is in the spotlight as a next-generation energy source with high efficiency energy and no fear of resource depletion. Among various fuel cells, solid polymer fuel cell (PEMFC) has high power density and can be miniaturized and can be used as a mobile type. Since it is a polymer membrane, it has many advantages such as easy management and operation.
또한, PEMFC는 크기에 따라 출력용량을 조절할 수 있어 휴대용, 자동차용 그리고 소형 발전 시스템 등 다양한 용도로 이용이 가능하다. 5W 이하의 용량으로는 휴대폰, PDA, 소형 디지털 카메라 등에 이용될 수 있고, 5~50W 의 용량은 노트북, 캠코더 등의 전원으로 이용이 가능하다. 또한 100~300W 용량을 지닌 PEMFC는 비상시의 전원과 군사용 전원으로, 1~25kW는 자동차와 다가구 주택용 소형 발전시스템 등으로 이용된다. 직접 메탄올 연료전지(DMFC: Direct Methanol Fuel Cell)는 메탄올을 연료로 사용하는 방식으로서, 간단한 구성으로 되어 있어 휴대용 연료전지로 이용되고 있다.In addition, the PEMFC can adjust the output capacity according to the size, it can be used for various purposes such as portable, automotive and small power generation system. The capacity of 5W or less can be used for mobile phones, PDAs, small digital cameras, etc., and the capacity of 5-50W can be used as a power source for notebooks, camcorders, and the like. Also, PEMFC with 100 ~ 300W capacity is used for emergency power and military power, and 1 ~ 25kW is used for small power generation system for automobile and multi-family house. Direct Methanol Fuel Cell (DMFC) is a method of using methanol as a fuel, and has a simple structure and is used as a portable fuel cell.
현재 가장 널리 사용되는 고분자 전해질 막은 미국 듀퐁(Du Pont)사의 Nafion으로 대표되는 과불소계 전해질 막(Perfluorinated ionomers)으로서 열에 강하고 화학 및 기계적 안정성이 높으며 수소이온 전도도도 높은 장점을 가지고 있다. 그러나 유리전이온도가 110 ℃ 정도에 불과하여 100 ℃ 이상의 높은 작동 온도에서는 성능이 현저히 떨어지고, 일정한 수화가 충족되어야만 수소이온 전도도가 높게 유지되므로 스텍(stack) 내의 수분을 적절하게 조절해야 하는 큰 단점이 있으며, 또한 공정상의 단점으로 제조공정이 매우 복잡하여 생산단가가 높으며, 환경 문제도 일으키는 문제점을 가지고 있다. Currently, the most widely used polymer electrolyte membranes are perfluorinated ionomers represented by Nafion of Du Pont, USA, which have heat resistance, high chemical and mechanical stability, and high hydrogen ion conductivity. However, the glass transition temperature is only about 110 ℃, the performance is significantly reduced at a high operating temperature of more than 100 ℃, the hydrogen ionic conductivity is maintained only when a certain hydration must be met, so the big disadvantage that must properly control the moisture in the stack (stack) In addition, due to the disadvantages of the process, the manufacturing process is very complicated, the production cost is high, there is a problem causing environmental problems.
이러한 단점을 극복하기 위해 저가이면서도 전기화학적 성질이 비슷한 비불소계 방향족 주쇄형 고분자(Non-fluorinated polymers with aromatic backbone)를 이용한 전해질 막에 대한 연구가 많이 진행되고 있다. 그러나 비불소계 전해질 막 의 경우 술폰화도가 낮으면 수분흡수가 잘 일어나지 않아 수소이온 전도도가 현저히 떨어지게 되고, 반대로 술폰화도가 높으면 기계적 성질이 떨어지며 팽윤이 일어나게 되는 단점을 가지고 있다. 또한 비불소계와 마찬가지로 전기삼투적 이끌림(electro-osmotic drag)에 의해 수분이 양극으로 쏠리게 되어 연료전지의 성능이 급격하게 감소하게 된다.In order to overcome these drawbacks, many researches have been conducted on electrolyte membranes using non-fluorinated polymers with aromatic backbone having low cost and similar electrochemical properties. However, in the case of the non-fluorine-based electrolyte membrane, low sulfonation does not absorb water well, so the conductivity of hydrogen ions decreases significantly. On the contrary, high sulfonation has a disadvantage in that mechanical properties decrease and swelling occurs. In addition, as in the non-fluorine system, the moisture is concentrated to the anode by the electro-osmotic drag, thereby dramatically reducing the performance of the fuel cell.
이에, 본 발명자는 상기와 같은 문제점을 해결하기 위하여 예의 연구를 거듭한 결과, 고분자 블록공중합체는 그 반복 단위체(building block)의 화학 종 및 개수, 분자량, 배열구조(sequence) 등의 고유인자에 의해 다양한 형태의 자기조립 구조를 가지므로 높은 수소이온 전도도를 보이는 친수성 고분자 사슬과 수화에 대한 충분한 화학 및 기계적 안정성을 가지는 소수성 고분자 사슬로 합성된 블록 공중합체의 자기조립 현상을 이용하여 미세 상 분리를 제어하면 기존보다 우수한 성능을 가지는 전해질 막을 제조할 수 있음을 알게 되어 본 발명을 완성하게 되었다.Accordingly, the present inventors have intensively researched to solve the above problems, and as a result, the polymer block copolymer has intrinsic factors such as chemical species and number, molecular weight, and sequence of the building block. It has various forms of self-assembly structure, and thus, microphase separation is achieved by using self-assembly of block copolymers synthesized with hydrophilic polymer chains showing high hydrogen ion conductivity and hydrophobic polymer chains having sufficient chemical and mechanical stability against hydration. The present invention has been completed by knowing that control can produce an electrolyte membrane having superior performance than before.
본 발명의 연료전지용 고분자 전해질 막은 양친성 블록공중합체와 불소를 함유하는 소수성 고분자 주형물인 폴리비닐리덴 플루오라이드(PVDF)를 블렌드하여서 제조하는 것을 특징으로 하며, 열적, 화학적 및 기계적 안정성을 가지며, 기존의 전해질 막에 비해 높은 양성자 전도율을 갖는다.The polymer electrolyte membrane for a fuel cell of the present invention is prepared by blending a polyvinylidene fluoride (PVDF), a hydrophobic polymer template containing amphiphilic block copolymer and fluorine, and has thermal, chemical and mechanical stability. Has a higher proton conductivity than the electrolyte membrane.
본 발명은 저가의 양친성 블록공중합체와 소수성 고분자 주형물 이용함으로써 고분자 전해질 막의 제조단가가 감소하고, 불소를 포함한 소수성 고분자 주형물인 PVDF를 사용함으로써 고분자 전해질 막의 열적, 화학 및 기계적 안정성을 부여할 수 있다. The present invention reduces the manufacturing cost of the polymer electrolyte membrane by using a low-cost amphiphilic block copolymer and a hydrophobic polymer template, and can impart thermal, chemical and mechanical stability of the polymer electrolyte membrane by using PVDF, a hydrophobic polymer template containing fluorine. have.
또한, 양친성 블록공중합체의 자기조립 현상에 의한 쌍연속 형태(bicontinuous morphology)를 발현시킴으로써 기존 전해질보다 높은 양성자 전도도(proton conductivity)을 구현할 수 있는 효과가 있다.In addition, by expressing bicontinuous morphology due to the self-assembly of the amphiphilic block copolymer has a high proton conductivity (proton conductivity) than the conventional electrolyte can be achieved.
본 발명의 연료전지용 고분자 전해질 막은 양친성 블록공중합체와 불소를 함유하는 소수성 고분자 주형물인 폴리비닐리덴 플루오라이드(PVDF)를 블렌드하하고 용액 케스팅 방법에 의해서 제조를 하는 바, 상기 양친성 블록공중합체인 폴리(스티렌-co-스티렌 술폰산)-b-폴리메틸메타크릴레이트 [P(S-co-SSA)-b-PMMA] 는, 먼저 톨루엔과 합성한 폴리스티렌(PS)를 혼합하여 동결 융해과정을 거친 후에 N,N,N',N",N"-펜타메틸디에틸렌트리아민 (PMDETA)와 금속 촉매로서 브롬화구리(CuBr)을 넣고 ATRP(Atom Transfer Radial Polymerization) 반응을 통해서 폴리스티렌-b-폴리메틸메타크릴레이트 [PS-b-PMMA]를 제조한다. 이때 폴리스티렌과 폴 리메틸메타그릴레이트의 블록비율은 라멜라 구조가 발현되는 1:1로 한다.The polymer electrolyte membrane for a fuel cell of the present invention blends an amphiphilic block copolymer and a fluorine-containing hydrophobic polymer template polyvinylidene fluoride (PVDF) and is prepared by a solution casting method. Poly (styrene- co -styrene sulfonic acid) -b -polymethyl methacrylate [P (S- co- SSA) -b- PMMA] is a mixture of toluene and synthetic polystyrene (PS) that undergoes freeze-thawing process. Subsequently, N, N, N ', N ", N" -pentamethyldiethylenetriamine (PMDETA) and copper bromide (CuBr) were added as a metal catalyst, and polystyrene- b -polymethyl Prepare methacrylate [PS- b- PMMA]. At this time, the block ratio of polystyrene and polymethyl methacrylate is set to 1: 1 in which lamellar structures are expressed.
첨부하는 도 1에서와 같이 상기 PS-b-PMMA를 1,2-디클로로에탄에 녹인 후에 아세틸술페이트(CH3COOSO3H)를 첨가하여 술폰화하면 최종적으로 P(S-co-SSA)-b-PMMA을 제조할 수 있다. As shown in FIG. 1, the PS- b- PMMA was dissolved in 1,2-dichloroethane, and then sulfonated by adding acetyl sulfate (CH 3 COOSO 3 H) to finally form P (S- co -SSA) -b -PMMA. It can manufacture.
본 발명에서 상기 양친성 블록공중합체로서 친수성 고분자 사슬을 갖는 P(S-co-SSA)-b-PMMA와 불소를 함유하는 소수성 고분자 주형물인 PVDF의 블렌드는 도 1에 나타낸 바와 같이 P(S-co-SSA)-b-PMMA와 PVDF를 N-메틸피롤리돈에 녹인 후에 초음파 교반을 통해서 두 고분자를 블렌딩하면 된다. 이와 같은 블랜드를 유리기판에 용액 케스팅을 하고, 상온에서 수일간 건조시킨 후에 진공오븐(60℃)에 넣어 수일간 완전히 용매를 제거하고, 미세상 구조 발현을 위해 180℃에서 수일간 어닐링을 하면 본 발명에 따른 고분자 전해질 막을 제조할 수 있다. In the present invention, the blend of P (S- co- SSA) -b- PMMA having a hydrophilic polymer chain as the amphiphilic block copolymer and PVDF, which is a hydrophobic polymer template containing fluorine, is represented by P (S- After dissolving co -SSA) -b -PMMA and PVDF in N-methylpyrrolidone, the two polymers are blended by ultrasonic stirring. This blend is solution cast on a glass substrate, dried at room temperature for several days, and then placed in a vacuum oven (60 ° C.) for several days to completely remove the solvent, followed by annealing at 180 ° C. for several days to express microstructure. The polymer electrolyte membrane according to the invention can be prepared.
상기 한 바와 같이 합성한 PS를 ATRP의 매크로 개시제로 사용하여 PS-b-PMMA를 제조한 후 아세틸 술페이트로 술폰화하여 P(S- co-SSA)-b-PMMA를 제조할 수 있으나, 본 발명의 다른 실시예로서 P(S-co-SSPen)을 ATRP의 매크로개시제로 사용하여 P(S-co-SSPen)-b-PMMA를 제조한 후에 150℃에서 가열분해반응을 통해서 P(S-co-SSA)-b-PMMA를 제조할 수도 있다. PS-synthesized PS as described above using PS as a macro initiator of the preparation of PS- b -PMMA and sulfonated with acetyl sulfate can be prepared P (S - co -SSA) -b -PMMA, but in another embodiment of the invention, P (S- co -SSPen) using the start of zero macro ATRP P (S- co -SSPen) - b -PMMA the back through a heat decomposition reaction at 150 ℃ P (S- producing a co -SSA) -b -PMMA can also be prepared.
즉, 네오펜틸알코올을 피리딘에 녹인 후에 p-스티렌 술포닐 클로라이드를 첨가하고 헥산을 넣어 흰 고체상을 얻고 재결정을 통해서 네오펜틸 p-스티렌 술포네이트(SSPen)을 얻는다. 다음에 스티렌 모노머와 상기 SSPen 모노머를 톨루엔과 함께 동결 융해과정을 거치고, 리간드로서 PMDETA와 금속 촉매로서 CuBr을 넣고 반응 시켜서 P(S-co-SSPen)을 합성한다. That is, after dissolving neopentyl alcohol in pyridine, p-styrene sulfonyl chloride is added, hexane is added to obtain a white solid phase, and neopentyl p-styrene sulfonate (SSPen) is obtained through recrystallization. Next, the styrene monomer and the SSPen monomer are subjected to freeze-thawing with toluene, and then reacted with PMDETA as a ligand and CuBr as a metal catalyst to synthesize P (S- co- SSPen).
상기와 같이 합성한 P(S-co-SSPen)을 ATRP 매크로개시제로 사용하여 톨루엔과 함께 동결 융해과정을 거친 후에 PMDERA와 CuBr을 넣고 ATRP 반응을 시키면 P(S-co-SSPen)-b-PMMA를 합성할 수 있다. 합성된 P(S-co-SSPEN)-b-PMMA를 150℃에서 가열분해반응에 의해 P(S-co-SSA)-b-PMMA를 제조할 수 있다. P (S- co- SSPen) synthesized as described above was freeze-thawed with toluene using ATRP macroinitiator. After PMDERA and CuBr were added and ATRP reaction was carried out, P (S- co- SSPen) -b - PMMA Can be synthesized. Can be prepared b -PMMA - P (S- co -SSA ) by heating at 150 ℃ b -PMMA reaction-synthesized P (S- co -SSPEN).
앞에서도 기술한 바와 같이, 본 발명에서 상기 양친성 블록공중합체로서 친수성 고분자 사슬을 갖는 P(S-co-SSA)-b-PMMA와 불소를 함유하는 소수성 고분자 주형물인 PVDF의 블렌드는 도 1에 나타낸 바와 같이 P(S-co-SSA)-b-PMMA와 PVDF를 N-메틸피롤리돈에 녹인 후에 초음파 교반을 통해서 두 고분자를 블렌딩하면 된다. 이와 같은 블렌드를 유리기판에 용액 캐스팅을 하고, 상온에서 수일간 건조시킨 후에 진공오븐(60℃)에 넣어 수일간 완전히 용매를 제거하고, 미세상 구조 발현을 위해 180℃에서 수일간 어닐링을 하면 본 발명에 따른 고분자 전해질 막을 제조할 수 있다.As described above, in the present invention, a blend of P (S- co- SSA) -b- PMMA having a hydrophilic polymer chain as the amphiphilic block copolymer and PVDF which is a hydrophobic polymer template containing fluorine is shown in FIG. As shown, after dissolving P (S- co- SSA) -b- PMMA and PVDF in N-methylpyrrolidone, the two polymers may be blended through ultrasonic stirring. The solution is cast on a glass substrate, dried at room temperature for several days, and then put in a vacuum oven (60 ° C.) to completely remove the solvent for several days, and then annealed at 180 ° C. for several days to express the microstructure. The polymer electrolyte membrane according to the invention can be prepared.
첨부 도면 중에서 도 2는 본 발명에 따른 연료전지용 고분자 전해질 막을 형성하는 상기 양친성 블록공중합체로서 친수성 고분자 사슬을 갖는 P(S-co-SSA)-b-PMMA와 불소를 함유하는 소수성 고분자 주형물인 PVDF의 블렌드를 예시한 것으로서 불소를 포함한 소수성 고분자 주형물인 PVDF로 인해 고분자 전해질 막의 열적, 화학 및 기계적 안정성을 부여할 수 있고, 또한, 양친성 블록공중합체의 자기조립 현상에 의한 쌍연속 형태를 발현시킴으로써 기존 전해질보다 높은 양성자 전도도을 구현할 수 있다.2 is a hydrophobic polymer template containing P (S- co- SSA) -b- PMMA having a hydrophilic polymer chain and fluorine as the amphiphilic block copolymer forming a polymer electrolyte membrane for a fuel cell according to the present invention. As a blend of PVDF, PVDF, a hydrophobic polymer template containing fluorine, can impart thermal, chemical and mechanical stability of a polymer electrolyte membrane, and express a bicontinuous form due to self-assembly of an amphiphilic block copolymer. By doing so, it is possible to realize higher proton conductivity than the conventional electrolyte.
이와 같은 본 발명을 실시예에 의거하여 보다 구체적으로 설명하겠는바. 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.This invention will be described in more detail based on Examples. The present invention is not limited by the following examples.
실시예 1Example 1
1.PS의 제조1.PS manufacturing
톨루엔을 반응 플라스크에 넣은 후, 스티렌 모노머를 연속적으로 첨가한다. 이때 톨루엔과 스티렌 모노머의 부피비를 부피비를 10:1로 첨가한다. 용존 산소를 제거하기 위해 3번의 동결 융해 과정을 거친 후, 리간드로서 PMDETA와 금속 촉매로서 CuBr을 넣고 개시제인 methyl 2-bromopropionate를 넣은 후, 110 ℃에서 12 시간 동안 반응하여 PS을 합성하였다. 이때PMDETA와 CuBr, 개시제는 같은 몰비로 첨가하고, 스티렌 모노머는 원하는 분자량에 맞추어 몰비를 계산하여 첨가한다(분자량이 50000인 PS의 경우, PMDETA : CuBr : methyl 2-bromopropionate : 스티렌모노머 = 1 : 1 : 1 : 480의 몰비가 되도록 첨가). 상기 금속 촉매를 제거하기 위하여 지름1.5cm의 column에 산화알루미늄(Al2O3) 를 약 10cm가 되도록 넣은 후 여과를 실시하고, 이를 남아있는 솔벤트의 약 10배가 되는 양의 메탄올(MeOH)에 침전을 하여 최종적으로 순수한 PS을 얻었다.After toluene is placed in the reaction flask, styrene monomer is added continuously. At this time, the volume ratio of toluene and styrene monomer is added in a volume ratio of 10: 1. After three freeze-thawing processes to remove dissolved oxygen, PMDETA as a ligand and CuBr as a metal catalyst were added, methyl 2-bromopropionate as an initiator, and then reacted at 110 ° C. for 12 hours to synthesize PS. At this time, PMDETA, CuBr, and initiator are added in the same molar ratio, and styrene monomer is added by calculating the molar ratio according to the desired molecular weight (for PS having a molecular weight of 50000, PMDETA: CuBr: methyl 2-bromopropionate: styrene monomer = 1: 1) : 1: added at a molar ratio of 480). In order to remove the metal catalyst, aluminum oxide (Al 2 O 3 ) was put in a column of 1.5 cm in diameter to about 10 cm and then filtered, and precipitated in methanol (MeOH) in an amount of about 10 times that of the remaining solvent. To finally obtain pure PS.
2. PS-b-PMMA의 제조2. Preparation of PS-b-PMMA
상기에서 합성된 PS를 ATRP매크로개시제로 사용하였다. 먼저 톨루엔과 PS를 반응 플라스크에 넣고 3번의 동결 융해 과정을 거쳤다. 그 후, PMDETA와 CuBr을 넣 고 80 ℃에서 2시간 동안 ATRP 반응을 보냄으로써 최종적으로 PS-b-PMMA를 얻었다. 이 때 PS와 PMMA의 블록 비율은 1:1이 되도록 모노머의 양을 조절하여 투입하였다. 금속 촉매를 제거하기 위하여 Al2O3 여과를 한 후, MeOH에 침전을 하여 최종적으로 순수한 PS-b-PMMA를 얻었다.PS synthesized above was used as an ATRP macroinitiator. First, toluene and PS were added to the reaction flask and subjected to three freeze thawing processes. After that, PMDETA and CuBr were added and ATRP reaction was carried out at 80 ° C. for 2 hours to finally obtain PS- b- PMMA. At this time, the block ratio of PS and PMMA was added by adjusting the amount of monomer to be 1: 1. Filtration of Al 2 O 3 to remove the metal catalyst was followed by precipitation in MeOH to finally obtain pure PS- b- PMMA.
3. PS-b-PMMA의 술폰화(sulfonation)3. Sulfonation of PS- b -PMMA
PS-b-PMMA에서 P(S-co-SSA)-b-PMMA를 얻기 위하여 다음과 같은 술폰화 방법을 수행한다. 우선 PS-b-PMMA를 1,2-디클로로에탄에 녹인 후, 50 ℃에서 1시간 동안 교반을 한다. 그 후, 아세틸 술페이트를 첨가하여 술폰화를 한다. 반응을 종결하기 위하여 에탄올을 첨가하고 메탄올에 침전을 하여 최종적으로 순수한 P(S-co-SSA)-b-PMMA를 얻는다.In PS- b -PMMA P (S- co -SSA ) - to obtain a b -PMMA performs the following sulfonation method. First, PS- b- PMMA is dissolved in 1,2-dichloroethane and stirred at 50 ° C. for 1 hour. Thereafter, acetyl sulfate is added to sulfonate. To terminate the reaction, ethanol is added and precipitated in methanol to finally obtain pure P (S- co- SSA) -b- PMMA.
4. P(S-co-SSA)-b-PMMA/PVDF 블렌드의 제조4. Preparation of P (S- co- SSA) -b- PMMA / PVDF Blend
P(S-co-SSA)-b-PMMA와 다양한 분자량의 PVDF를 N-메틸피롤리돈(NMP)에 녹인 후 2시간 동안 초음파교반(ultrasonic agitation) 과정을 통해 두 고분자를 블렌딩한다. 그 후 유리 기판에 용액 케스팅(solution casting)을 하고 상온에서 수 일간 건조시킨 후 진공오븐(80 ℃)에 넣어 수 일간 완전히 용매를 제거하여 최종적으로 전해질 막을 얻었다.After dissolving P (S- co- SSA) -b- PMMA and PVDF of various molecular weights in N-methylpyrrolidone (NMP), the two polymers are blended through ultrasonic agitation for 2 hours. Then, the solution was cast on a glass substrate, dried at room temperature for several days, and then put in a vacuum oven (80 ° C.) to completely remove the solvent for several days to finally obtain an electrolyte membrane.
실시예 2Example 2
1. 네오펜틸 p-스티렌 술포네이트 (SSPen)의 합성1.Synthesis of neopentyl p -styrene sulfonate (SSPen)
네오펜틸알코올을 피리딘에 녹인 후 0 ℃까지 온도를 내린다. 그 후 p-스티렌 술포닐 클로라이드를 조금씩 첨가하고 2.5 시간 동안 0 ℃를 유지한다. 여기에 헥산을 넣어 -15 ℃로 온도를 내린 후 흰 고체상을 얻었다. 최종적으로 헥산 : 톨루엔(1:1)에서 재결정을 통해 SSPen을 얻었다.Dissolve neopentyl alcohol in pyridine and lower the temperature to 0 ° C. Then p -styrene sulfonyl chloride is added in portions and maintained at 0 ° C. for 2.5 hours. Hexane was added thereto and the temperature was lowered to -15 ° C to obtain a white solid phase. Finally, SSPen was obtained through recrystallization from hexane: toluene (1: 1).
2. P(S-co-SSPen)의 제조2. Preparation of P (S- co- SSPen)
톨루엔을 반응 플라스크에 넣은 후, 스티렌 모노머와 SSPen 모노머를 연속적으로 첨가한다. 용존 산소를 제거하기 위해 3번의 동결 융해과정을 거친 후, 리간드로서 PMDETA와 금속 촉매로서 CuBr를 넣고 110 ℃에서12 시간 동안 반응하여P(S-co-SSPen)를 합성하였다. 금속 촉매를 제거하기 위하여 Al2O3 여과를 한 후, 메탄올에 침전을 하여 최종적으로 순수한 P(S-co-SSPen)를 얻었다.After putting toluene into the reaction flask, styrene monomer and SSPen monomer are added continuously. After three freeze-thawing processes to remove dissolved oxygen, PMDETA as a ligand and CuBr as a metal catalyst were added and reacted at 110 ° C. for 12 hours to synthesize P (S- co- SSPen). Al 2 O 3 to remove metal catalyst After filtration, precipitated in methanol to obtain finally pure P (S- co -SSPen).
3. P(S-co-SSPen)-b-PMMA의 제조3. Preparation of P (S- co- SSPen) -b- PMMA
합성된 P(S-co-SSPen)를 ATRP 매크로개시제로 사용하였다. 먼저 톨루엔과 P(S-co-SSPen)를 반응 플라스크에 넣고 3번의 동결 융해과정을 거쳤다. 그 후, PMDETA와 CuBr를 넣고 80 ℃에서 2시간 동안 ATRP 반응을 보냄으로써 최종적으로 P(S-co-SSPen)-b-PMMA를 얻는다. 이 때 원하는 P(S-co-SSPen)와 PMMA의 몰 비율이 되도록 모노머의 양을 조절하여 투입하였다. 금속 촉매를 제거하기 위하여 Al2O3 여과를 한 후, 메탄올에 침전을 하여 최종적으로 순수한 P(S-co-SSPen)-b-PMMA를 얻었다.Synthesized P (S- co- SSPen) was used as the ATRP macroinitiator. First, toluene and P (S- co- SSPen) were put into the reaction flask and subjected to three freeze thawing processes. After that, PMDETA and CuBr were added and ATRP reaction was performed at 80 ° C. for 2 hours to finally obtain P (S- co- SSPen) -b- PMMA. At this time, the amount of the monomer was adjusted so as to have a molar ratio of desired P (S- co- SSPen) and PMMA. After filtration with Al 2 O 3 to remove the metal catalyst, precipitation was carried out in methanol to obtain pure P (S- co- SSPen) -b- PMMA.
4. P(S-co-SSA)-b-PMMA의 제조4. Preparation of P (S- co- SSA) -b- PMMA
150 ℃ 가열에 의한 P(S-co-SSPen)-b-PMMA의 가열분해반응을 통해서 P(S-co-SSA)-b-PMMA를 얻었다.P (S- co- SSA) -b- PMMA was obtained by thermal decomposition of P (S- co- SSPen) -b- PMMA by heating at 150 ° C.
5. P(S-co-SSA)-b-PMMA/PVDF 블렌드의 제조5. Preparation of P (S- co- SSA) -b- PMMA / PVDF Blend
P(S-co-SSA)-b-PMMA와 다양한 분자량의 PVDF를 NMP에 녹인 후 2시간 동안 초음파교반 과정을 통해 두 고분자를 블렌딩하였다. 그 후 유리 기판에 용액 케스팅을 하고 상온에서 수일간 건조시킨 후 진공 건조기(80 ℃)에 넣어 수일간 완전히 용매를 제거하여 최종적으로 전해질 막을 얻었다. After dissolving P (S- co -SSA) -b -PMMA and PVDF of various molecular weights in NMP, the two polymers were blended through ultrasonic stirring for 2 hours. After that, the solution was cast on a glass substrate, dried at room temperature for several days, and then put in a vacuum dryer (80 ° C.) to completely remove the solvent for several days to finally obtain an electrolyte membrane.
도 1은 본 발명에 따른 양친성 블록공중합체인 친수성 고분자 사슬을 갖는 P(S-co-SSA)-b-PMMA의 합성과정과 불소를 함유하는 소수성 고분자 주형물인 PVDF와의 블렌드 과정을 보여주기 위한 반응식이다.1 is a scheme for showing the synthesis of P (S- co- SSA) -b- PMMA having a hydrophilic polymer chain, an amphiphilic block copolymer according to the present invention, and a blending process with PVDF, a hydrophobic polymer template containing fluorine to be.
도 2는 도 1의 반응식에 따라 제조된 PMMA 블록과 P(S-co-SSA) 블록이 PVDF와 혼재되어 있음을 보여주고 있는 블랜드를 확대하여 나타낸 도면이다. FIG. 2 is an enlarged view of a blend showing that a PMMA block and a P (S-co-SSA) block prepared according to the reaction scheme of FIG. 1 are mixed with PVDF.
도 3은 막 저항에서의 이온교환용량이블렌드 비율에 따라서 수소이온 전도도에 미치는 영향을 보여주는 그래프이다.3 is a graph showing the effect of the ion exchange capacity in the membrane resistance on the hydrogen ion conductivity according to the blend ratio.
도 4는 막 저항에서의 함수율이 블렌드 비율에 따라서 수소이온 전도도에 미치는 영향을 보여주기 위한 그래프이다. 4 is a graph for showing the effect of the water content in the membrane resistance on the hydrogen ion conductivity according to the blend ratio.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020070130226A KR100931117B1 (en) | 2007-12-13 | 2007-12-13 | Method for producing polymer electrolyte membrane for fuel cell and polymer electrolyte membrane prepared therefrom |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020070130226A KR100931117B1 (en) | 2007-12-13 | 2007-12-13 | Method for producing polymer electrolyte membrane for fuel cell and polymer electrolyte membrane prepared therefrom |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20090062790A KR20090062790A (en) | 2009-06-17 |
| KR100931117B1 true KR100931117B1 (en) | 2009-12-10 |
Family
ID=40991977
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020070130226A Expired - Fee Related KR100931117B1 (en) | 2007-12-13 | 2007-12-13 | Method for producing polymer electrolyte membrane for fuel cell and polymer electrolyte membrane prepared therefrom |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100931117B1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101134478B1 (en) * | 2010-02-16 | 2012-04-13 | 서울대학교산학협력단 | Novel Hydrophilic-Hydrophobic Block Copolymer, Manufacturing Method the Same, and Electrolyte Membrane Using the Same |
| KR101639536B1 (en) | 2015-12-21 | 2016-07-13 | 한국에너지기술연구원 | Reinforced composite membranes and method for manufacturing the same |
| KR102474500B1 (en) | 2016-10-20 | 2022-12-05 | 현대자동차주식회사 | Method for manufacturing reinforcing layer of fuel cell electrolyte membrane |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030003367A1 (en) * | 2001-06-30 | 2003-01-02 | Roh Kwon-Sun | Lithium battery and method for the preparation thereof |
-
2007
- 2007-12-13 KR KR1020070130226A patent/KR100931117B1/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030003367A1 (en) * | 2001-06-30 | 2003-01-02 | Roh Kwon-Sun | Lithium battery and method for the preparation thereof |
Non-Patent Citations (2)
| Title |
|---|
| 논문1:한국고분자학회 2007년 추계 학술대회 |
| 논문2: 한국고분자학회 2007년 춘계 학술대회 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20090062790A (en) | 2009-06-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101367903B (en) | A kind of reinforced composite proton exchange membrane based on semi-interpenetrating network and its preparation method | |
| CN107394240B (en) | A kind of preparation method and application of sulfonated polyaryletherketone ion exchange membrane | |
| JP5740030B2 (en) | Copolymer of sulfonated polyethersulfone containing hydroxy group and method for producing the same, polymer electrolyte membrane for fuel cell, and membrane electrode assembly including the same | |
| JPH1021943A (en) | Polymer electrolyte for fuel cell and fuel cell | |
| KR101826539B1 (en) | Polyarylene-based polymer, preparation method for the same, and polymer electrolyte membrane for fuel cell using the polymer | |
| Dimitrov et al. | Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes | |
| JP2007515513A (en) | Multiblock copolymers containing hydrophilic and hydrophobic segments for proton exchange membranes | |
| CN102086265B (en) | Sulfonated poly (arylene ether) copolymers and related polymer electrolyte membranes and fuel cells | |
| JP2005171025A (en) | Proton conductive membrane manufacturing method | |
| KR100931117B1 (en) | Method for producing polymer electrolyte membrane for fuel cell and polymer electrolyte membrane prepared therefrom | |
| WO2017029967A1 (en) | Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for solid polymer fuel cells, and fuel cell | |
| WO2007123268A1 (en) | Vinyl polymer of sulfone group-containing monomer, method for producing the same, polymer electrolyte, polymer electrolyte membrane, and fuel cell | |
| KR100599677B1 (en) | Manufacturing method of sulfonated polystyrene for polymer electrolyte membrane of fuel cell | |
| JP2009217950A (en) | Ion conductive polymer electrolyte membrane, and manufacturing method thereof | |
| CN107556422B (en) | Preparation of P (VDF-DB) -g-S-C3H6-SO3Method for H proton exchange membrane material | |
| CN1556100A (en) | Novel sulfonated monomer, polymer and synthesis method thereof | |
| WO2006047158A2 (en) | Novel compositions of monomers, oligomers and polymers and methods for making the same | |
| JP5391779B2 (en) | Polymer electrolyte membrane and solid polymer electrolyte fuel cell | |
| KR100598159B1 (en) | Polysulfone copolymer grafted with polystyrene sulfonic acid and its manufacturing method, polymer electrolyte membrane for fuel cell using the same | |
| JP5581593B2 (en) | Polyarylene-based copolymer, proton conducting membrane and solid polymer electrolyte fuel cell | |
| JP2004161873A (en) | Multibranched polymer, method for producing the same, solid electrolyte, electrochemical element, and separation membrane | |
| Lee et al. | Synthesis and characterization of crosslinked triblock copolymers for fuel cells | |
| CN108172876A (en) | A kind of proton exchange membrane blended with sulfonated polyarylether or thioether phosphine oxide and fluorine-containing resin and its preparation method | |
| KR101857152B1 (en) | Latent ion-conducting polymer, resin composition comprising the polymer, and manufacturing method of ion-conducting membrane using the same | |
| KR101127320B1 (en) | Method for preparing sulfonated multi-block copolymer and branched sulfonated multi-block copolymer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| N231 | Notification of change of applicant | ||
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R11-asn-PN2301 St.27 status event code: A-3-3-R10-R13-asn-PN2301 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
Fee payment year number: 1 St.27 status event code: A-2-2-U10-U11-oth-PR1002 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
| FPAY | Annual fee payment |
Payment date: 20121130 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 4 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20131129 Year of fee payment: 5 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 5 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| FPAY | Annual fee payment |
Payment date: 20141128 Year of fee payment: 6 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 6 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 7 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 8 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| FPAY | Annual fee payment |
Payment date: 20171129 Year of fee payment: 9 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 9 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 10 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
| PC1903 | Unpaid annual fee |
Not in force date: 20191203 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
| PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20191203 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |