[go: up one dir, main page]

KR100942091B1 - Stacked Structure of Flat Solid Oxide Fuel Cell - Google Patents

Stacked Structure of Flat Solid Oxide Fuel Cell Download PDF

Info

Publication number
KR100942091B1
KR100942091B1 KR1020070119896A KR20070119896A KR100942091B1 KR 100942091 B1 KR100942091 B1 KR 100942091B1 KR 1020070119896 A KR1020070119896 A KR 1020070119896A KR 20070119896 A KR20070119896 A KR 20070119896A KR 100942091 B1 KR100942091 B1 KR 100942091B1
Authority
KR
South Korea
Prior art keywords
fuel
connecting member
anode
solid oxide
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020070119896A
Other languages
Korean (ko)
Other versions
KR20090053195A (en
Inventor
조남웅
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020070119896A priority Critical patent/KR100942091B1/en
Publication of KR20090053195A publication Critical patent/KR20090053195A/en
Application granted granted Critical
Publication of KR100942091B1 publication Critical patent/KR100942091B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 연료극의 바닥면과 연료가스와의 접촉 면적을 크게 함으로써 연료전지의 발전 효율을 향상시킨 평판형 고체산화물 연료전지의 적층구조를 마련하는데 그 목적이 있다.An object of the present invention is to provide a stack structure of a plate-type solid oxide fuel cell which improves the power generation efficiency of a fuel cell by increasing the contact area between the bottom surface of the anode and the fuel gas.

상기한 목적을 달성하기 위한 본 발명의 기술구성은, 평판형의 연료극(3), 전해질(2), 공기극(1)이 차례로 적층되어 단전지를 구성하고, 2개 이상이 상하로 배열된 상기 단전지의 사이 사이에 연결재(4)가 삽입 설치되며, 상기 단전지의 양측에는 밀봉재(5)가 밀봉 설치된 평판형 고체산화물 연료전지의 적층구조에 있어서, 상기 연결재(4)와 접촉되는 연료극(3)의 하부면에는 연료 터널(3a)이 일정 간격으로 형성되고, 상기 공기극(1)과 접촉되는 연결재(4)의 하부면에는 공기 터널(4b)이 일정 간격으로 형성된다.In order to achieve the above object, the technical configuration of the present invention includes a flat fuel electrode 3, an electrolyte 2, and an air electrode 1 which are stacked in this order to form a unit cell, and two or more of the stages arranged vertically. In the laminated structure of a flat solid oxide fuel cell in which a connecting member 4 is inserted between cells, and a sealing material 5 is sealed on both sides of the unit cell, the fuel electrode 3 in contact with the connecting member 4. The fuel tunnel 3a is formed at regular intervals on the lower surface of the bottom, and the air tunnel 4b is formed on the lower surface of the connecting member 4 in contact with the cathode 1.

평판형, 고체산화물 연료전지, 연료극, 연결재, 연료 터널, Flat panel, solid oxide fuel cell, anode, connector, fuel tunnel,

Description

평판형 고체산화물 연료전지의 적층구조{Stacking structure of planar solid oxide fuel cell} Stacking structure of planar solid oxide fuel cell

본 발명은 평판형 고체산화물 연료전지의 적층구조에 관한 것으로서, 보다 상세하게는 연료전지의 음극을 구성하는 연료극의 바닥면과 연료가스와의 접촉 면적을 크게 함으로써 연료전지의 발전 효율을 향상시킨 평판형 고체산화물 연료전지의 적층구조에 관한 것이다. The present invention relates to a laminated structure of a flat-plate solid oxide fuel cell, and more particularly, a flat plate that improves the power generation efficiency of a fuel cell by increasing the contact area between the bottom surface of the anode constituting the cathode of the fuel cell and the fuel gas. It relates to a laminated structure of a solid oxide fuel cell.

연료전지는 1세대 전지(건전지), 2세대 전지(충전지)에 이은 3세대 전지로 불리는 것으로, 연료의 산화에 의해서 생기는 화학에너지를 직접 전기에너지로 변환시키는 전지이다. 이러한 연료전지의 특징은 반응물이 외부에서 연속적으로 공급되고 반응생성물이 연속적으로 계의 바깥으로 제거되는 과정에서 반영구적으로 전기를 생산할 수 있고, 기계적 변환에서 발생하는 손실이 없기 때문에 에너지 효율이 매우 높다는 것이다. 화석연료, 액체연료, 기체연료 등 다양한 연료를 사용하며, 작동온도에 따라 저온형과 고온형으로도 나눈다.A fuel cell is called a 3rd generation battery following a 1st generation battery (battery) and a 2nd generation battery (charger), and is a battery which directly converts chemical energy generated by oxidation of fuel into electrical energy. This fuel cell is characterized by high energy efficiency because it can produce electricity semi-permanently as the reactants are continuously supplied from the outside and the reaction products are continuously removed to the outside of the system, and there is no loss in mechanical conversion. . It uses various fuels such as fossil fuel, liquid fuel and gaseous fuel, and is divided into low temperature type and high temperature type according to operating temperature.

이 중에서 고체산화물 연료전지(SOFC, Solid Oxide Fuel Cell)는 산소 또는 수소 이온전도성을 띄는 고체산화물을 전해질로 사용하는 연료전지로써, 현존하는 연료전지 중 가장 높은 온도(600 - 1000 ℃)에서 작동하며, 모든 구성요소가 고체로 이루어져 있기 때문에 다른 연료전지에 비해 구조가 간단하고, 전해질의 손실 및 보충과 부식의 문제가 없으며, 귀금속 촉매가 필요 없고 직접 내부 개질을 통한 연료 공급이 용이하다. Among these, the solid oxide fuel cell (SOFC) is a fuel cell that uses a solid oxide having oxygen or hydrogen ion conductivity as an electrolyte, and operates at the highest temperature (600-1000 ℃) among the existing fuel cells. Because all components are solid, the structure is simpler than other fuel cells, and there is no problem of loss, replenishment and corrosion of electrolyte, no precious metal catalyst, and easy fuel supply through direct internal reforming.

또한, 고온의 가스를 배출하기 때문에 폐열을 이용한 열 복합 발전이 가능하다는 장점도 지니고 있다. 이러한 장점 때문에 고체산화물 연료전지에 관한 연구는 21세기 초 상업화를 목표로 미국, 일본 등 선진국을 중심으로 활발히 이루어지고 있다. In addition, it has the advantage that thermal combined cycle power generation using waste heat is possible because the high-temperature gas is discharged. Because of these advantages, research on solid oxide fuel cells has been actively conducted in advanced countries such as the United States and Japan, aiming to commercialize in the early 21st century.

고체산화물 연료전지는 그 적층구조에 따라 크게 평판형과 원통형으로 구분되는데, 도 1 및 도 2에는 본 발명과 관련된 평판형 고체산화물 연료전지의 단전지 구조 및 그 적층구조가 도시되어 있다.The solid oxide fuel cell is classified into a flat plate type and a cylindrical type according to the stacked structure thereof. FIGS. 1 and 2 illustrate a unit cell structure and a stacked structure of the plate type solid oxide fuel cell according to the present invention.

도 1에 도시된 바와 같이, 평판형 고체산화물 연료전지의 단전지는 직사각 단면을 가진 평판형 구성요소인 연료극(음극, 3), 전해질(2), 공기극(양극, 1)이 차례로 적층된 구조로 이루어져 있다. 작동 원리는 공기극(1)에서 산소의 환원 반응에 의해 생성된 산소이온이 산소 이온전도성 전해질(2)을 통해 연료극(3)으로 이동한 다음 연료극(3)에서 공급된 수소와 반응함으로써 물을 생성하게 되고, 이 과정에서 연료극(3)에서는 전자가 생성되고 공기극(1)에서는 전자가 소모되는데, 이 두 전극을 서로 연결하면 전기가 흐르게 되는 것이다.As shown in FIG. 1, the unit cell of the planar solid oxide fuel cell has a structure in which a cathode (cathode, 3), an electrolyte (2), and an anode (anode, 1), which are planar components having a rectangular cross section, are sequentially stacked. consist of. The working principle is that oxygen ions produced by the reduction reaction of oxygen in the cathode 1 move to the anode 3 through the oxygen ion conductive electrolyte 2 and then react with the hydrogen supplied from the anode 3 to generate water. In this process, electrons are generated at the anode 3 and electrons are consumed at the cathode 1, and when the two electrodes are connected to each other, electricity flows.

도 2에는 상기 연료극(3), 전해질(2), 공기극(1)으로 된 단전지의 적층 구조가 도시되어 있다. 2개 이상이 상하 배열된 단전지의 사이 사이에는 연결재(4)가 끼워지는데, 이 연결재(4)는 전지에서 발생된 전자를 집전하는 역할을 함과 동시에 적층되는 각 단전지를 분리하는 역할을 하므로 분리판(Separator)이라고도 한다. 2 shows a stacked structure of a unit cell of the fuel electrode 3, the electrolyte 2, and the air electrode 1. The connecting member 4 is sandwiched between two or more unit cells arranged up and down, and the connecting member 4 serves to collect electrons generated from the battery and to separate each stacked cell. Also called a separator.

또한, 상기 연결재(4)의 상부면과 하부면에는 각각 연료극(3)과 접하게 되는 연료 터널(4a)과 공기극(1)과 접하게 되는 공기 터널(4b)이 형성된다. 이 연료 터널(4a)과 공기 터널(4b)을 통해 연료가스(수소)와 공기가스가 흐르면 전해질(2)을 통해 전기화학 반응이 일어난다. In addition, the upper and lower surfaces of the connecting member 4 are formed with a fuel tunnel 4a in contact with the fuel electrode 3 and an air tunnel 4b in contact with the air electrode 1, respectively. When fuel gas (hydrogen) and air gas flow through the fuel tunnel 4a and the air tunnel 4b, an electrochemical reaction occurs through the electrolyte 2.

한편, 상기 단전지의 좌, 우측은 밀봉재(5)에 의해 밀봉되는데, 이 밀봉재(5)는 단전지를 밀봉하여 연료가스와 공기가스가 혼합되거나 누출되지 않도록 해준다.On the other hand, the left and right sides of the unit cell are sealed by a sealant 5, which seals the unit cell so that fuel gas and air gas are not mixed or leaked.

이와 같이 구성된 평판형 고체산화물 연료전지는 보통 1000℃ 이상의 고온에서 작동하므로, 고온에서 견딜 수 있는 세라믹 재료가 주로 사용된다. 즉, 상기 전해질(2)로는 이트리아 안정화 지르코니아(YSZ, Yttria-Stabilized-ZrO2)가 많이 사용되고, 연료극(3)으로는 Ni-ZrO2 등이 사용되며, 공기극(1)으로는 Sr-LaMnO3 등이 많이 사용된다. Since the plate-type solid oxide fuel cell configured as described above usually operates at a high temperature of 1000 ° C. or more, a ceramic material that can withstand high temperatures is mainly used. That is, yttria stabilized zirconia (YSZ, Yttria-Stabilized-ZrO 2 ) is used as the electrolyte 2 , Ni-ZrO 2 is used as the anode 3, and Sr-LaMnO is used as the cathode 1. 3 is used a lot.

상기 연결재(4)도 세라믹 재질인 Sr-doped LaCrO3가 주로 사용되었으나, 최근에 600 ~ 800℃에서 작동하는 중저온 고체산화물 연료전지가 개발되면서 CrFe 합금(Cr5FeY2O3), 페라이트계 스테인레스강(Ferritic Stainless Steel)과 같은 금속 재질도 함께 사용되고 있다. 이러한 금속 연결재(4)를 사용하면 세라믹 재료보다 상대적으로 제작 비용이 저렴하다는 장점이 있다.The consolidated 4 also ceramic materials of Sr-doped LaCrO 3 has been mainly used, in recent years while the development is low and medium on the solid oxide fuel cell operating at 600 ~ 800 ℃ CrFe alloy (Cr 5 FeY 2 O 3) , ferrite Metallic materials such as Ferritic Stainless Steel are also used. Using such a metal connecting material 4 has the advantage that the manufacturing cost is relatively lower than the ceramic material.

그러나, 종래의 연결재(4)는 그 재질에 상관없이 연료극 또는 공기극과 맞닿은 부분에 연료가스와 공기가스가 흐를 수 있도록 상, 하부면에 여러 개의 터널(4a,4b)이 가공되고 이로 인해 작업 공수가 증가되는데, 이는 연결재(4)의 전체 두께를 얇게 하는데 대한 제한으로 인해 매우 정밀한 작업이 요구되므로 가공 비용이 크게 증가되는 문제점이 있었다. However, in the conventional connecting member 4, several tunnels 4a and 4b are processed on the upper and lower surfaces thereof so that fuel gas and air gas can flow to a portion contacting the anode or the cathode regardless of the material thereof, and thus the work maneuver. This is increased, which requires a very precise operation due to the limitation on thinning the overall thickness of the connecting member (4) has a problem that the processing cost is greatly increased.

또한, 종래의 연료터널(4a)의 형태로는 연료가스가 연료극(3)가 접촉하는 면적이 너무 작아서 발전 효율이 낮고, 장시간 사용 시에는 연료극(3)과 연결재(4) 사이에 접촉 저항이 증가하여 출력이 저하되는 문제점이 있었다. 이를 해결하기 위해 도 2에 도시된 바와 같이 연료극(3)과 연결재(4) 사이에 고가의 금속으로 만든 메쉬형 금속판(6)을 삽입 설치하여 연료극(3)에서 발생한 전기를 직접 연결재(4)로 전달하도록 구성하였는데, 이는 연료전지의 적층구조를 더욱 복잡하게 만들어 제작비용을 증가시키는 주요 원인이 되어왔다. In addition, in the form of the conventional fuel tunnel 4a, the area where the fuel gas is in contact with the anode 3 is too small, so the power generation efficiency is low, and the contact resistance between the anode 3 and the connecting member 4 is long when used for a long time. There was a problem that the output is reduced by increasing. To solve this problem, as shown in FIG. 2, a mesh metal plate 6 made of expensive metal is inserted between the anode 3 and the connecting member 4 to directly connect electricity generated from the anode 3 to the connecting member 4. It has been configured to deliver the fuel cell, which has been the main reason for increasing the manufacturing cost by making the fuel cell stack more complicated.

본 발명은 이러한 문제점을 해결하기 위하여 개발된 것으로서, 평판형 고체산화물 연료전지의 구성요소 중에서 음극으로 사용되는 연료극의 하부면에 직접 연료 터널을 형성함으로써 연료가스와 연료극 사이의 접촉면적을 증가시켜 발전 효율을 향상시킨 새로운 형태의 적층구조를 제공하는데 그 목적이 있다. The present invention has been developed to solve this problem, by forming a fuel tunnel directly on the lower surface of the anode used as a cathode of the flat-plate solid oxide fuel cell components to increase the contact area between the fuel gas and the anode to generate electricity The purpose is to provide a new type of laminated structure with improved efficiency.

상기한 목적을 달성하기 위한 본 발명의 기술구성은, 평판형의 연료극, 전해 질, 공기극이 차례로 적층되어 단전지를 구성하고, 2개 이상이 상하로 배열된 상기 단전지의 사이 사이에 연결재가 삽입 설치되며, 상기 단전지의 양측에는 밀봉재가 밀봉 설치된 평판형 고체산화물 연료전지의 적층구조에 있어서,According to the technical configuration of the present invention for achieving the above object, a flat fuel electrode, an electrolyte, and an air electrode are sequentially stacked to form a unit cell, and a connecting member is inserted between the unit cells in which two or more are arranged vertically. In the laminated structure of the flat-type solid oxide fuel cell is provided, both sides of the unit cell is provided with a sealing material,

상기 연결재와 접촉되는 연료극의 하부면에는 연료 터널이 일정 간격으로 형성되고, 상기 공기극과 접촉되는 연결재의 하부면에는 공기 터널이 일정 간격으로 형성된다.Fuel tunnels are formed at regular intervals on the lower surface of the anode contacting the connecting member, and air tunnels are formed at regular intervals on the lower surface of the connecting member contacting the cathode.

바람직하게는, 상기 연료극은, 상기 연료 터널의 높이가 전체 연료극의 두께의 20 ~ 80%이고, 상기 연결재와의 접촉 면적이 전체 연료극의 하부 면적의 20 ~ 80%가 되도록 구성된다. Preferably, the fuel electrode is configured such that the height of the fuel tunnel is 20 to 80% of the thickness of the entire anode and the contact area with the connecting member is 20 to 80% of the lower area of the entire anode.

이와 같이 구성된 본 발명에 따른 평판형 고체산화물 연료전지의 적층구조에 의하면, 연료가스와 연료극과의 접촉 면적이 넓어져 집전 특성 및 발전 효율이 크게 향상된다. 또한, 발생된 전기를 연결재로 전달하기 위하여 별도의 메쉬형 금속판을 설치할 필요가 없고, 연결재를 가공하기 위한 작업 공수가 간단해져 제작 비용을 절감할 수 있다. According to the laminated structure of the planar solid oxide fuel cell according to the present invention configured as described above, the contact area between the fuel gas and the anode is increased, and the current collecting characteristics and power generation efficiency are greatly improved. In addition, there is no need to install a separate mesh-shaped metal plate in order to transfer the generated electricity to the connecting material, and the labor cost for processing the connecting material can be simplified to reduce the production cost.

이하에서 첨부된 도면을 참조로 본 발명에 따른 평판형 고체산화물 연료전지의 적층구조에 대하여 보다 상세히 설명한다. 도 3은 본 발명에 따른 단전지 구조를 나타내고, 도 4는 그 단전지의 적층구조를 나타낸다. 이해를 돕기 위하여 종래와 동일한 구성요소에 대하여는 전술한 도 1 및 도 2와 동일한 도면부호를 병기한 다. Hereinafter, with reference to the accompanying drawings will be described in more detail with respect to the laminated structure of a flat solid oxide fuel cell according to the present invention. 3 shows a single cell structure according to the present invention, and FIG. 4 shows a laminated structure of the single cell. For the sake of clarity, the same reference numerals are used for the same components as those of FIGS. 1 and 2 described above.

본 발명에 따른 단전지 구조는 평판형의 연료극(3), 전해질(2), 공기극(1)이 차례로 적층되어 단전지를 구성하고, 2개 이상이 상하로 배열된 상기 단전지의 사이 사이에 연결재(4)가 삽입 설치되며, 상기 단전지의 양측에는 밀봉재(5)가 밀봉 설치된다는 점에서 종래와 동일하다.In the unit cell structure according to the present invention, a flat fuel electrode 3, an electrolyte 2, and an air electrode 1 are sequentially stacked to form a unit cell, and two or more of the unit cells are arranged up and down. (4) is inserted and is the same as the conventional one in that the sealant 5 is sealedly installed on both sides of the unit cell.

본 발명의 가장 큰 기술적 특징은 상기 연결재(4)와 접촉되는 연료극(3)의 하부면에 연료 터널(3a)이 일정 간격으로 형성된다는 것이다. 이 연료 터널(3a)은 올록볼록한 요철 형태로 형성되며, 그 단면은 사각형, 사다리꼴, 원호형 등 어느 것이어도 무방하다.The biggest technical feature of the present invention is that the fuel tunnel 3a is formed at regular intervals on the lower surface of the anode 3 in contact with the connecting member 4. The fuel tunnel 3a is formed in a convex concave-convex shape, and the cross section may be any of a rectangle, a trapezoid, and an arc.

이와 같이, 홈 형태로 파여진 연료 터널(3a)이 연료극(3)의 하부면에 직접 형성되면, 다음과 같은 2가지 메카니즘에 의해 연료전지의 발전 효율이 크게 향상된다. As such, when the fuel tunnel 3a, which is cut into the groove shape, is directly formed on the lower surface of the anode 3, the power generation efficiency of the fuel cell is greatly improved by the following two mechanisms.

첫째, 도 2에 도시된 바와 같이 종래에 연결재(4)의 상부면에 연료 터널(4a)이 형성되는 경우와 비교할 때, 연료 터널(3a)로 주입된 연료가스(수소)가 연료극과 접촉되는 단위 면적이 크게 증가된다. 이에 의해 전해질(2)을 통해 이동해 온 산소이온과 결합되는 수소이온의 양이 증가된다.First, as shown in FIG. 2, the fuel gas (hydrogen) injected into the fuel tunnel 3a is in contact with the anode as compared with the case where the fuel tunnel 4a is formed on the upper surface of the connecting member 4. The unit area is greatly increased. This increases the amount of hydrogen ions bonded to the oxygen ions that have migrated through the electrolyte 2.

둘째, 연료 터널(3a)을 통해 흐르는 연료가스가 연료극(3)의 하부면 전체에 걸쳐 균등하게 공급된다. 이에 의해 연료극(3)의 전체에 걸쳐 전기화학 반응이 유도되므로 전기 발전량이 크게 증가된다.Second, the fuel gas flowing through the fuel tunnel 3a is uniformly supplied over the entire lower surface of the anode 3. As a result, an electrochemical reaction is induced over the entire fuel electrode 3, so that the amount of electricity generated is greatly increased.

Ni과 ZrO2가 대략 50 : 50 wt%로 구성된 연료극(3)의 미세구조는 두께 방향으로 따라 다르게 형성된다. 즉, 전해질(2)과 맞닿은 상부면은 조밀한 구조를 가지는 반면 연결재(4)와 맞닿는 하부면은 큰 입자와 기공이 많은 조대한 구조를 가진다. 따라서, 연결재(4)와 맞닿는 하부면에서 연료가스와 접촉되는 면적이 넓어지면 기공율이 높은 표면을 통해 더 많은 양의 수소이온이 연료극 내부로 공급되므로, 발전 효율의 증가에 기여하는 정도가 더욱 커진다. 이러한 점에서 볼 때, 본 발명에 따르면 연료가스가 적정 유량으로 설계되었을 경우 연료극(3)의 내부로 훨씬 많은 양의 연료가스를 공급할 수 있다. The microstructure of the anode 3 composed of approximately 50:50 wt% of Ni and ZrO 2 is formed differently in the thickness direction. That is, the upper surface contacting the electrolyte 2 has a dense structure, while the lower surface contacting the connecting material 4 has a coarse structure with a lot of large particles and pores. Therefore, when the area in contact with the fuel gas in the lower surface in contact with the connecting member 4 becomes wider, a larger amount of hydrogen ions are supplied into the anode through the surface having a higher porosity, which contributes to an increase in power generation efficiency. . In view of this, according to the present invention, when the fuel gas is designed at an appropriate flow rate, a much larger amount of fuel gas can be supplied into the fuel electrode 3.

이와 같이, 연료극(3)의 하부면에 연료 터널(3a)이 직접 형성되면, 연료 터널(3a)을 통해 더욱 많은 양의 연료를 공급할 수 있다. 이를 바꾸어 말하면, 더 작은 면적의 연료 터널(3a)만으로도 동등 이상의 발전 효율을 낼 수 있게 된다는 것이다. 따라서, 더 작은 면적의 연료 터널(3a)을 통해 연료가스 공급이 가능하게 되면, 그 외의 부분은 모두 연결재(4)와 접촉시키는 것이 가능하다. 이에 의해 접촉면적이 증가되면 연료극(3)과 연결재(4) 간의 전기 저항이 감소되어 장시간 사용하여도 출력이 저하되지 않는다.As such, when the fuel tunnel 3a is directly formed on the lower surface of the anode 3, a larger amount of fuel can be supplied through the fuel tunnel 3a. In other words, the fuel tunnel 3a having a smaller area can generate power of equal or more. Therefore, when fuel gas can be supplied through the fuel tunnel 3a of a smaller area, all the other parts can be made to contact the connecting material 4. As a result, when the contact area is increased, the electrical resistance between the anode 3 and the connecting member 4 is reduced, so that the output does not decrease even when used for a long time.

더욱이, 연료극(3)과 연결재(4)의 접촉 면적이 증가되면 연료극에서 발생된 전기를 직접 연결재(4)로 전달할 수 있기 때문에 도 2에 도시된 바와 같이 별도의 메쉬형 금속판(6)을 삽입 설치할 필요가 없게 된다. 이는 본 발명에 따른 고체산화물 연료전지의 적층구조를 더욱 간단하게 만들어 제작 비용을 감소시켜 준다.Furthermore, when the contact area between the anode 3 and the connecting member 4 is increased, the electricity generated from the anode can be directly transmitted to the connecting member 4, so that a separate mesh-shaped metal plate 6 is inserted as shown in FIG. 2. There is no need to install it. This makes the stacking structure of the solid oxide fuel cell according to the present invention simpler and reduces the manufacturing cost.

상술한 바와 같이, 본 발명에 따르면 연료 터널(3a)을 연료극(3)의 하부면에 직접 형성하기 때문에 종래와 달리 연결재(4)의 상부면에는 별도의 가스 통로를 형성시킬 필요가 없다. 그러므로, 본 발명에 따른 연결재(4)는 상기 공기극(1)과 접촉되는 연결재(4)의 하부면에만 공기 터널(4b)이 일정 간격으로 형성되므로, 종래에 비해 형태가 매우 단순해진다. 연결재(4)는 그 두께의 제한으로 인해 매우 정밀한 가공작업이 요구되므로, 본 발명에 따른 단순한 형태의 연결재(4)는 그 가공 비용을 크게 절감시켜 준다. As described above, according to the present invention, since the fuel tunnel 3a is directly formed on the lower surface of the anode 3, it is not necessary to form a separate gas passage on the upper surface of the connecting member 4 unlike the conventional art. Therefore, in the connecting member 4 according to the present invention, since the air tunnels 4b are formed at regular intervals only on the lower surface of the connecting member 4 in contact with the air electrode 1, the shape of the connecting member 4 is very simple. Since the connecting member 4 requires a very precise machining due to the limitation of the thickness, the connecting member 4 of the present invention greatly reduces the processing cost.

본 발명에 따른 연료극(3)은, 그 하부면에 형성된 연료 터널(3a)의 높이와 연결재(4)와의 접촉 면적에 따라서 연료가스의 공급 효율이 달라져 연료전지의 집전 특성에 영향을 미치게 된다. 본 발명자는 여러 번의 실험을 통해, 상기 연료극(3)은 상기 연료 터널(3a)의 높이(t)가 전체 연료극(3)의 두께의 20 ~ 80%이고, 상기 연결재(4)와의 접촉 면적이 전체 연료극(3)의 하부 면적의 20 ~ 80%일 때 가장 우수한 집전 특성을 나타내는 것을 밝혀냈다. In the fuel electrode 3 according to the present invention, the supply efficiency of the fuel gas varies depending on the height of the fuel tunnel 3a formed on the lower surface thereof and the contact area between the connecting member 4, thereby affecting the current collecting characteristics of the fuel cell. The inventors have made several experiments. The fuel electrode 3 has a height t of the fuel tunnel 3a of 20 to 80% of the thickness of the entire fuel electrode 3, and the contact area with the connecting member 4 is increased. It was found that the best current collection characteristics are shown when 20 to 80% of the lower area of the entire anode 3 is present.

보다 상세하게 설명하면, 연료 터널(3a)의 높이(t)가 전체 연료극(3)의 두께의 20% 미만이거나, 연결재(4)와의 접촉면적이 전체 연료극(3)의 하부 면적의 80%를 초과하는 때에는 연료가스 공급 통로를 충분히 확보하지 못해 전지 성능이 저하된다. 반대로, 연료 터널(3a)의 높이(t)가 전체 연료극(3)의 두께의 80%를 초과하거나, 연결재(4)와의 접촉면적이 전체 연료극(3)의 하부 면적의 20% 미만인 때에는 발생된 전기를 집전하는 성능이 저하되어 장시간 사용시 출력이 불안정해진다. In more detail, the height t of the fuel tunnel 3a is less than 20% of the thickness of the entire anode 3, or the contact area with the connecting member 4 represents 80% of the lower area of the entire anode 3. When it exceeds, it will not fully secure a fuel gas supply passage and battery performance will fall. On the contrary, when the height t of the fuel tunnel 3a exceeds 80% of the thickness of the entire anode 3 or the contact area with the connecting member 4 is less than 20% of the lower area of the entire anode 3, The current collecting performance deteriorates and the output becomes unstable when used for a long time.

[실시예]EXAMPLE

본 발명자는 우수한 집전 특성을 나타내는 연료 터널(3a)의 최적의 형태를 밝혀내기 위해 다음과 같이 실험을 실시하였다.The inventors conducted the experiment as follows to find out the optimum shape of the fuel tunnel 3a showing excellent current collecting characteristics.

연료극(3)을 제조하기 위하여, 먼저 한쪽면이 올록볼록한 형상을 갖는 금형을 제작하여, 기공을 형성하면서 동시에 결합제 역할을 하는 유기바인더와 NiO, YSZ 등의 원료혼합분말을 금형에 투입하여, 일정 압력을 부가한 후 성형한다. 금형은 12×12×12cm와 24×24×24cm 정도의 내적을 갖도록 제조하였다. 이 금형은 상하가 관통된 형태로 한쪽에서 밀어서 금형품을 외부로 나올 수 있도록 하고, 상하판의 이격에 따라 연료극(3)의 두께를 조절할 수 있도록 설계하였다. In order to manufacture the fuel electrode 3, first, a mold having a convex shape on one side thereof is prepared, and organic binder and NiO, YSZ and other raw material mixed powder, which forms pores and at the same time, serves as a binder, are placed in a mold. Mold is applied after adding pressure. The mold was manufactured to have an inner product of about 12 × 12 × 12 cm and 24 × 24 × 24 cm. The mold was designed to be pushed from one side in the form of a penetrating top and bottom to come out of the mold, and to adjust the thickness of the anode 3 according to the separation of the upper and lower plates.

바닥면 금형을 여러 종류의 크기와 깊이가 다른 연료 터널(3a)의 형태로 제작하여 다양한 종류의 바닥면을 가진 연료극(3)을 제작하고, 1차로 소결한 후에 종래의 기술에 따라 전해질(2)과 공기극(1)을 형성하여 단전지를 제작하였다. 그리고, 상기 금형을 사용하여 연료극(3)의 전체 두께가 200~4000㎛가 되고, 연료극의 하부 면적이 10×10cm(100cm2) 또는 20×20cm (400cm2)으로 제작하였다. The bottom mold is manufactured in the form of fuel tunnels 3a having different sizes and depths, to fabricate fuel electrodes 3 having various types of bottom surfaces, and after primary sintering, the electrolyte (2) according to the prior art. ) And a cathode (1) were formed to produce a unit cell. Using the mold, the total thickness of the anode 3 was set to 200 to 4000 µm, and the bottom area of the anode was made 10 × 10 cm (100 cm 2 ) or 20 × 20 cm (400 cm 2 ).

이 때, 연료극(3)의 하부면에 형성된 연료 터널(3a)의 높이가 전체 두께에 대비하여 10 ~ 90%가 되고, 연료극(3)과 연결재(4)의 접촉면적이 전체 연료극(3)의 하부 면적에 대비하여 10 ~ 90% 범위가 되도록 각각의 실시예 및 비교예를 제작하였다. 이와 같이 제작된 각각의 실시예 및 비교예에 대하여 기계적 안정성, 연결재와의 전기적 특성, 연료가스 반응특성 등을 평가하였고, 그 결과는 다음 표1과 같다. At this time, the height of the fuel tunnel 3a formed on the lower surface of the anode 3 is 10 to 90% of the total thickness, and the contact area between the anode 3 and the connecting member 4 is the entire anode 3. Each Example and Comparative Example was prepared so that the range of 10 to 90% relative to the lower area of the. For each of the examples and comparative examples thus prepared, the mechanical stability, electrical properties with the connecting member, fuel gas reaction characteristics and the like were evaluated, and the results are shown in Table 1 below.

연료극의 형태Form of anode 물성Properties 연료패널의 높이(%)Height of fuel panel (%) 연결재와의 접촉면적(%)Contact area with connecting materials (%) 기계적 안정성Mechanical stability 전기적 특성Electrical characteristics 연료가스 반응성Fuel gas reactivity 실시예1Example 1 2020 5050 실시예2Example 2 8080 5050 실시예3Example 3 5050 2020 실시예4Example 4 5050 8080 비교예1Comparative Example 1 1010 5050 ×× 비교예2Comparative Example 2 9090 5050 ×× 비교예3Comparative Example 3 5050 1010 ×× 비교예4Comparative Example 4 5050 9090

◎ : 우수 △ : 보통 × : 미달◎: Excellent △: Normal ×: under

상기 기계적 안정성은 단전지 제작 후의 전지의 평편도를 나타내는 것으로, 제작 후에 단전지가 뒤틀리거나 구부러짐이 발생하지 않을수록 우수한 것이 된다. 상기 전기적 특성은 단전지를 적층한 후에 운전조건에서 연결재(4)와의 전기전도도를 나타내는 것으로, 연결재(4)와의 전기전도도가 높을수록 우수한 것이 된다. 상기 연료가스 반응성은 운전조건 하에서의 연료 이용율을 나타내는 것으로, 공급되는 연료가스의 유량이 일정할 때 전기화학 반응에 참여하는 연료가스의 양이 많을수록 우수한 것이 된다.The mechanical stability represents the flatness of the battery after the unit cell is fabricated, and the better the better the unit cell is not twisted or bent after fabrication. The electrical characteristics indicate electrical conductivity with the connecting member 4 under the operating conditions after stacking of single cells, and the higher the electrical conductivity with the connecting member 4, the better. The fuel gas reactivity is indicative of fuel utilization under operating conditions, and the higher the amount of fuel gas participating in the electrochemical reaction when the flow rate of the supplied fuel gas is constant, the better.

상기 표1에서 보는 바와 같이 연료극(3)는 형태는 그 하부면에 형성된 연료 패널(3a)의 높이와 연료 패널(3a)로 인해 변화되는 연결재(4)와의 접촉 면적에 의해 달라지는 바, 이 중에서 어느 하나라도 20 ~ 80% 범위를 벗어나게 되면 요구되는 물성을 나타내지 못하였다.As shown in Table 1, the shape of the anode 3 varies depending on the height of the fuel panel 3a formed on the lower surface thereof and the contact area between the connecting member 4 which is changed due to the fuel panel 3a. Any one out of the 20 to 80% range did not exhibit the required physical properties.

도 1은 종래의 평판형 고체산화물 연료전지의 단전지 구조를 도시한 도면;1 is a view showing a unit cell structure of a conventional planar solid oxide fuel cell;

도 2는 종래의 평판형 고체산화물 연료전지의 적층구조를 도시한 도면;2 is a view showing a laminated structure of a conventional planar solid oxide fuel cell;

도 3은 본 발명에 따른 평판형 고체산화물 연료전지의 단전지 구조를 도시한 도면;3 is a view illustrating a unit cell structure of a plate-type solid oxide fuel cell according to the present invention;

도 4는 본 발명에 따른 평판형 고체산화물 연료전지의 적층구조를 도시한 도면이다. 4 is a diagram illustrating a laminated structure of a planar solid oxide fuel cell according to the present invention.

※도면의 주요 부분에 대한 부호의 설명※※ Explanation of code for main part of drawing ※

1: 공기극1: air cathode

2: 전해질2: electrolyte

3: 연료극3: fuel electrode

3a: 연료 터널3a: fuel tunnel

4: 연결재4: connecting material

4a: 연료 터널4a: fuel tunnel

4b: 공기 터널4b: air tunnel

5: 밀봉재5: sealing material

6: 메쉬형 금속판6: mesh type metal plate

Claims (2)

평판형의 연료극(3), 전해질(2), 공기극(1)이 차례로 적층되어 단전지를 구성하고, 2개 이상이 상하로 배열된 상기 단전지의 사이 사이에 연결재(4)가 삽입 설치되며, 상기 단전지의 양측에는 밀봉재(5)가 밀봉 설치된 평판형 고체산화물 연료전지의 적층구조에 있어서,The flat fuel electrode 3, the electrolyte 2, and the air electrode 1 are stacked in this order to form a unit cell, and a connecting member 4 is inserted between the unit cells in which two or more are arranged vertically. In the laminated structure of the flat-type solid oxide fuel cell, the sealing material 5 is sealed on both sides of the unit cell, 상기 연결재(4)와 접촉되는 연료극(3)의 하부면에는 연료 터널(3a)이 일정 간격으로 형성되고, 상기 공기극(1)과 접촉되는 연결재(4)의 하부면에는 공기 터널(4b)이 일정 간격으로 형성되며, 상기 연료 터널(3a)의 높이는 전체 연료극(3)의 두께의 20 ~ 80%이고, 상기 연료 터널(3a)의 상기 연결재(4)와의 접촉 면적은 전체 연료극(3)의 하부 면적의 20 ~ 80%인 것을 특징으로 하는 평판형 고체산화물 연료전지의 적층구조.Fuel tunnels 3a are formed on the lower surface of the anode 3 in contact with the connecting member 4 at regular intervals, and an air tunnel 4b is formed on the lower surface of the connecting member 4 in contact with the cathode 1. It is formed at regular intervals, the height of the fuel tunnel (3a) is 20 to 80% of the thickness of the entire fuel electrode (3), the contact area of the fuel tunnel (3a) with the connecting member (4) of the entire fuel electrode (3) Laminated structure of a planar solid oxide fuel cell, characterized in that 20 to 80% of the lower area. 삭제delete
KR1020070119896A 2007-11-22 2007-11-22 Stacked Structure of Flat Solid Oxide Fuel Cell Active KR100942091B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070119896A KR100942091B1 (en) 2007-11-22 2007-11-22 Stacked Structure of Flat Solid Oxide Fuel Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070119896A KR100942091B1 (en) 2007-11-22 2007-11-22 Stacked Structure of Flat Solid Oxide Fuel Cell

Publications (2)

Publication Number Publication Date
KR20090053195A KR20090053195A (en) 2009-05-27
KR100942091B1 true KR100942091B1 (en) 2010-02-12

Family

ID=40860733

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070119896A Active KR100942091B1 (en) 2007-11-22 2007-11-22 Stacked Structure of Flat Solid Oxide Fuel Cell

Country Status (1)

Country Link
KR (1) KR100942091B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101151868B1 (en) 2012-02-27 2012-05-31 한국에너지기술연구원 Unit cell of solid oxide fuel cell and solid oxide fuel cell using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348968B1 (en) * 2012-04-06 2014-01-16 한국에너지기술연구원 Cathode for flat-tubular soide oxide cell and flat-tubular solid oxide cell and method for manufacturing the same and flat-tubular solid oxide fuel cell and flat-tubular solid oxide electrolyzer using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038751A (en) * 2002-10-28 2004-05-08 한국전력공사 Solid oxide fuel cells having gas channel
KR20050064545A (en) * 2003-12-24 2005-06-29 주식회사 포스코 Separator of solid oxide fuel cell
KR100665391B1 (en) * 2004-10-30 2007-01-04 한국전력공사 Flat Solid Oxide Fuel Cell with Improved Structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038751A (en) * 2002-10-28 2004-05-08 한국전력공사 Solid oxide fuel cells having gas channel
KR20050064545A (en) * 2003-12-24 2005-06-29 주식회사 포스코 Separator of solid oxide fuel cell
KR100665391B1 (en) * 2004-10-30 2007-01-04 한국전력공사 Flat Solid Oxide Fuel Cell with Improved Structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101151868B1 (en) 2012-02-27 2012-05-31 한국에너지기술연구원 Unit cell of solid oxide fuel cell and solid oxide fuel cell using the same
WO2013129787A1 (en) * 2012-02-27 2013-09-06 한국에너지기술연구원 Unit cell for solid-oxide fuel cell and solid-oxide fuel cell using same
JP2015511755A (en) * 2012-02-27 2015-04-20 コリア インスティチュート オブ エナジー リサーチ Unit cell for solid oxide fuel cell and solid oxide fuel cell using the same
US9806360B2 (en) 2012-02-27 2017-10-31 Korea Institute Of Energy Research Unit cell for solid-oxide fuel cell and solid-oxide fuel cell using same

Also Published As

Publication number Publication date
KR20090053195A (en) 2009-05-27

Similar Documents

Publication Publication Date Title
Dwivedi Solid oxide fuel cell: Materials for anode, cathode and electrolyte
JP6167174B2 (en) Gas distribution element for fuel cell, fuel cell, and method for homogenizing flammable gas in gas distribution element for fuel cell
KR102055514B1 (en) Assembly method and arrangement for a cell system
KR101778496B1 (en) Sealing arrangement and method of solid oxide cell stacks
KR20250124793A (en) Solid oxide fuel cell with ceramic intermediate plate
JP2014207120A (en) Solid oxide electrochemical cell stack structure and hydrogen power storage system
KR101120134B1 (en) flat-tubular solid oxide cell stack
KR100942091B1 (en) Stacked Structure of Flat Solid Oxide Fuel Cell
US8999594B2 (en) Unit cell for flat-tubular solid oxide fuel cell or solid oxide electrolyzer, and flat-tubular solid oxide fuel cell and flat-tubular solid oxide electrolyzer using the same
KR101180161B1 (en) Solid oxide fuel cell with serpentine gas flow channel and method for manufacturing the smae
KR102030981B1 (en) Metal-supported solid oxide fuel cell and manufacturing method
US20110039187A1 (en) Manufacturing Method of Solid Oxide Fuel Cell
KR101228763B1 (en) Planar solid oxide fuel cell having improved reaction area and method for manufacturing the same
KR101289171B1 (en) Planar Solid Oxide Fuel Cell Without Manifold Sealing
CN115051010A (en) Solid oxide cell oxygen electrode contact and cell stack
KR100546016B1 (en) Current collector for fuel cell, manufacturing method thereof and fuel cell having same
CN113948748A (en) A connecting plate and solid oxide fuel cell/electrolyte stack
KR101226489B1 (en) Solid oxide fuel cell and method for manufacturing thereof
JP7753530B2 (en) Interconnector for a stack of solid oxide cells of the SOEC/SOFC type including various projecting elements
JP6084532B2 (en) Hydrogen production equipment
KR100424195B1 (en) Fuel cell separator plate comprising bidirectional slot plate
KR100683419B1 (en) Separator for Fuel Cell
KR20250149172A (en) Modular array of solid oxide battery stacks
JP2024537780A (en) Interconnect for a stack of solid oxide cells of the SOEC/SOFC type including various protruding elements - Patent Application 20070123333
JP2024537785A (en) Interconnect with optimized tab shape for solid oxide cell stacks of SOEC/SOFC type

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

FPAY Annual fee payment

Payment date: 20130205

Year of fee payment: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

FPAY Annual fee payment

Payment date: 20140205

Year of fee payment: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

FPAY Annual fee payment

Payment date: 20150204

Year of fee payment: 6

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

FPAY Annual fee payment

Payment date: 20160205

Year of fee payment: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

FPAY Annual fee payment

Payment date: 20170206

Year of fee payment: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

FPAY Annual fee payment

Payment date: 20180202

Year of fee payment: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

FPAY Annual fee payment

Payment date: 20200205

Year of fee payment: 11

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 13

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R14-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 14

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 15

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000