KR100962268B1 - Electric conductivity electric conductivity cus nano corpuscular composition and electric conductivity acryl fiber manufacturing method - Google Patents
Electric conductivity electric conductivity cus nano corpuscular composition and electric conductivity acryl fiber manufacturing method Download PDFInfo
- Publication number
- KR100962268B1 KR100962268B1 KR1020090071594A KR20090071594A KR100962268B1 KR 100962268 B1 KR100962268 B1 KR 100962268B1 KR 1020090071594 A KR1020090071594 A KR 1020090071594A KR 20090071594 A KR20090071594 A KR 20090071594A KR 100962268 B1 KR100962268 B1 KR 100962268B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- molecular weight
- conductive
- acrylic fiber
- copper sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/12—Sulfides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/54—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
본 발명은 도전성 황화구리 나노미립자 조성물 및 이를 이용한 도전성 아크릴 섬유 제조방법에 관한 것으로,The present invention relates to a conductive copper sulfide nanoparticle composition and a method for producing a conductive acrylic fiber using the same,
환원제의 사용량이 적고 아크릴 섬유에 대한 황화구리의 실용 석출 반응이 55℃미만의 저온반응의 속도를 유지하면서 저장 및 석출반응 중에도 입자 성장이 일어나지 않는 액 안정성이 우수함은 물론 황화구리 나노미립자의 평균 입자 직경이 20nm 이하인 것을 특징으로 하는 도전성 황화구리 나노미립자 조성물과,The use amount of reducing agent is small, and the practical precipitation reaction of copper sulfide on acrylic fiber maintains the rate of low temperature reaction below 55 ℃, and it is excellent in liquid stability that does not cause particle growth even during storage and precipitation reaction. Conductive copper sulfide nanoparticle composition, characterized in that the diameter is 20nm or less,
상기 도전성 황화구리 나노미립자 조성물을 아크릴로니트릴 반복단위를 갖는 아크릴 섬유에 석출반응 시킨 우수한 체적저항을 갖는 도전성 아크릴 섬유를 제조하기 위한 도전성 아크릴 섬유 제조방법을 제공하여 결과적으로 내마모성이나 일정 사용으로 인한 화학적 변화(산화)에 의한 물성저하 등 내구성과 도전 성능에 문제점이 없는 고품질의 도전성 아크릴 섬유를 제조하여 의류용 뿐만 아니라 산업용으로 폭 넓게 활용할 수 있도록 함에 그 목적을 둔 것이다.Providing a conductive acrylic fiber manufacturing method for producing a conductive acrylic fiber having excellent volume resistance by depositing the conductive copper sulfide nanoparticle composition to an acrylic fiber having an acrylonitrile repeating unit, and as a result, chemical resistance due to wear resistance or constant use The purpose is to produce high quality conductive acrylic fibers without problems in durability and conductive performance such as deterioration of physical properties due to change (oxidation), so that they can be widely used not only for clothing but also for industrial use.
상기한 목적을 달성하기 위한 본 발명의 도전성 황화구리 나노미립자 조성물은 도전성 아크릴섬유를 제조하기 위한 도전성 조성물에 있어서 상기 아크릴섬유 피도물 중량100%에 대하여 함유량이 각각 1~30중량%인 구리염, 0.05~5중량%인 페닐화합물계 환원제, 0.05~1.5중량%인 저분자량의 황 화합물, 0.1~10중량%린 수용성 아민류, 0.1~10중량%인 티오화합물, 0.01 내지 10중량%인 티오안정제, 2~5중량%인 pH 조정제를 포함하여 이루어 짐에 그 특징 있다.The conductive copper sulfide nanoparticle composition of the present invention for achieving the above object is a copper salt having a content of 1 to 30% by weight with respect to 100% by weight of the acrylic fiber coating object in the conductive composition for producing a conductive acrylic fiber, 0.05 Phenyl compound-based reducing agent of -5% by weight, low molecular weight sulfur compound of 0.05-1.5% by weight, water-soluble amines of 0.1-10% by weight, thio compound of 0.1-10% by weight, thio stabilizer of 0.01-10% by weight, 2 It is characterized by including a pH adjuster of ~ 5% by weight.
한편, 본 발명의 도전성 아크릴섬유를 제조하기 위한 방법은 상기 도전성 황화구리 나노미립자 조성물에 아크릴로니트릴 반복단위를 갖는 아크릴계 섬유를 침지한 후 50℃~55℃ 온도에서 0.5~5시간 반응시켜 아크릴계 섬유에 상기의 조성물을 배위 결합하는 것에 그 특징이 있다.On the other hand, the method for producing a conductive acrylic fiber of the present invention is immersed acrylic fiber having an acrylonitrile repeating unit in the conductive copper sulfide nanoparticle composition and then reacted for 0.5 to 5 hours at a temperature of 50 ℃ to 55 ℃ acrylic fiber It is characterized by coordinating the above composition to.
Description
본 발명은 도전성 황화구리 나노미립자 조성물 및 이를 이용한 도전성 아크릴 섬유 제조방법에 관한 것으로,The present invention relates to a conductive copper sulfide nanoparticle composition and a method for producing a conductive acrylic fiber using the same,
더욱 상세하게는 환원제의 사용량이 적고 아크릴 섬유에 대한 황화구리의 실용 석출 반응이 55℃미만의 저온반응의 속도를 유지하면서 저장 및 석출반응 중에도 입자 성장이 일어나지 않는 액 안정성이 우수함은 물론 황화구리 나노미립자의 평균 입자 직경이 20nm 이하인 것을 특징으로 하는 도전성 황화구리 나노미립자 조성물 및,More specifically, the amount of reducing agent used is small, and the practical precipitation reaction of copper sulfide on acrylic fiber maintains a low temperature reaction rate of less than 55 ° C., while it is excellent in liquid stability in which particle growth does not occur during storage and precipitation reaction. The electroconductive copper sulfide nanoparticle composition characterized by the average particle diameter of microparticles | fine-particles being 20 nm or less,
상기 도전성 황화구리 나노미립자 조성물을 아크릴로니트릴 반복단위를 갖는 아크릴 섬유에 석출반응 시킨 우수한 체적저항을 갖는 도전성 아크릴 섬유를 제조하기 위한 도전성 아크릴 섬유 제조방법에 관한 것이다.The present invention relates to a method for producing a conductive acrylic fiber for producing a conductive acrylic fiber having excellent volume resistance by depositing the conductive copper sulfide nanoparticle composition on an acrylic fiber having an acrylonitrile repeating unit.
기존의 도전성 섬유 제조방법으로는 금속피막 형성법인 무전해 도금법(electroless plating), 진공증착법, 스퍼터링법(sputtering) 등이 있으며 이들 공정에 의한 도전성 부여 방법은 현재 장비와 기술면에서 적지 않은 제약을 받고 있다. 특히 고비용이 수반되므로 특수한 용도나 목적으로 국한적으로 채택되어 적용하는 실정이고 범용으로 생산하기에는 한계가 있다.Conventional methods for manufacturing conductive fibers include electroless plating, which is a metal film forming method, There are vacuum deposition, sputtering, and the like, and the method of imparting conductivity by these processes is currently limited in terms of equipment and technology. In particular, because of the high cost, it is a situation that is adopted and applied locally for a special use or purpose, and there is a limit to producing it in a general purpose.
따라서 이에 대한 대안으로 “copper 화합물 고착법”이 도전성 섬유에 보편적으로 사용되고 있는데 이“copper 화합물 고착법”의 종래 공지된 공통된 기술은 아크릴 섬유에 존재하는 시아노(CN)기가 1가 구리이온과 배위결합을 이룰 수 있음에 착안하여 2가 구리이온인 황산동(CuSO4)과 환원제 및 황(S)원자 등의 화합물을 화학적으로 결합시켜서 황화구리(CuS)가 섬유에 석출되도록 하여 도전성(導電性)을 부여토록 하는 기술이다.Thus, as an alternative to this, the "copper compound fixation method" is commonly used for conductive fibers. The conventionally known technique of the "copper compound fixation method" is coordinated with monovalent copper ions in the cyano (CN) group present in the acrylic fiber. Concentrating on the bond, copper sulfate (CuSO 4 ), a divalent copper ion, and a reducing agent and a compound such as sulfur (S) atom are chemically bonded to allow copper sulfide (CuS) to precipitate on the fiber, thereby conducting electricity. It is a technique to give.
아울러 현재 시판되고 있는 동 도전사 제품들 역시 물성 상 보완해야 할 사항과 문제점들이 각각 존재하고 있어서 개선된 방안이 필요하며, 아울러 가격과 품질 등에서 경쟁력을 갖춘 보다 새로운 제품이 요구되고 있다.In addition, the products of the conductive companies currently on the market also need to be improved in terms of their physical properties and problems, and new products with competitiveness in price and quality are required.
도전성 아크릴 섬유는 아크릴 섬유의 시아노기와 2가 구리이온으로부터 얻어진 황화구리간의 배위 결합에 의한 도전성 착물을 형성하여 섬유를 제조하는 기술이다.Conductive acrylic fiber is a technique of forming a conductive complex by coordinating a bond between a cyano group of an acrylic fiber and copper sulfide obtained from divalent copper ions to produce a fiber.
그러나 아크릴 섬유의 시아노기는 비교적 약한 결합으로서 황화구리와의 결합구조가 수 회 세탁에 의해서도 손상되어 황화구리가 탈락됨으로 그로 인한 색상의 변화와 도전성이 급격히 감소하는 단점이 있다.However, the cyano group of the acrylic fiber is a relatively weak bond, and the bonding structure with the copper sulfide is damaged by washing several times, and thus the copper sulfide is eliminated, resulting in a sharp change in color and conductivity.
아울러 종래의 “copper 화합물 고착법”은 수용액상태에서 과량의 황화 환 원제의 사용으로 인하여 구리1가 이온 상태가 상당히 불안정하여 아크릴 섬유 중 아크릴로니트릴의 시아노기와 빠른 속도로 배위결합 형태를 가지려는 현상이 강하여 결합되지 않는 구리1가 이온은 곧바로 금속구리와 2가 구리이온으로 변화하려 하는데 이러한 현상으로 수용액 중의 구리염과 황화 환원제를 70~90℃의 고온에서 일정시간 반응시킬 경우 황화구리 입자가 크게 성장하여 아크릴 섬유 조직 내에서 분산이 어려워지고 부분적으로 섬유 표면에 고착되는 불균일 현상으로 품질을 저하시킨다.In addition, the conventional “copper compound fixing method” is a phenomenon in which copper 1 is in an unstable state due to the use of an excessive amount of sulfide reducing agent in an aqueous solution to have a coordination bond form with a cyano group of acrylonitrile in an acrylic fiber at high speed. This strong, unbonded copper monovalent ion is about to be converted to metal copper and divalent copper ion. This phenomenon causes copper sulfide particles to be large when the copper salt and the sulfiding reducing agent in the aqueous solution are reacted at a high temperature of 70 to 90 ° C for a certain time. It grows, making it difficult to disperse in acrylic fiber tissue and degrades in part due to non-uniform phenomena that partially stick to the fiber surface.
그리고 작업공정상에서 반응 온도가 높아지면 1가의 금속 구리가 2가의 금속 구리 이온으로 빠르게 변하므로 반응온도가 상승할수록 침전물의 양이 증가하게 된다.As the reaction temperature increases in the work process, the monovalent metal copper rapidly changes to divalent metal copper ions, so that the amount of precipitate increases as the reaction temperature increases.
이렇게 형성된 침전물이 반응조 내벽과 섬유 표면에 부착되어 공기 중의 산소와 결합을 하여 섬유 표면에 넓은 산화피막을 형성하는 현상을 초래한다.The precipitate thus formed is attached to the inner wall of the reaction vessel and the surface of the fiber to combine with oxygen in the air to form a wide oxide film on the surface of the fiber.
이는 구리1가 이온의 결합을 방해하여서 섬유 표면이 거칠게 되는 결함이 발생함과 병행해서 반응 온도가 높을 경우 조성물 성분 중에 티오화합물이 산화 분해되어 다량의 침전물 발생으로 그 효과가 반감되며, pH 조정액으로 종래에 사용되고 있는 황산이나 질산의 성분과도 반응하여 SOx 나 NOx 등 유해한 물질 발생의 우려도 예상되어 작업환경에 좋지 않은 영향도 주게 된다.This results in a defect in which copper 1 interferes with the binding of ions, resulting in a rough surface of the fiber, and when the reaction temperature is high, the thio compound is oxidatively decomposed in the composition, resulting in a large amount of precipitate. It also reacts with components of sulfuric acid and nitric acid, which are used in the past, and may cause harmful substances such as SOx and NOx, which may adversely affect the working environment.
이와 같이 종래의 방식은 내마모성이나 일정 사용으로 인한 화학적 변화 (산화)에 의한 물성저하 등 내구성과 도전 성능에 문제점이 있다.As such, the conventional method has problems in durability and conductive performance, such as a decrease in physical properties due to chemical resistance (oxidation) due to wear resistance or constant use.
본 발명은 상기와 같은 종래의 도전성 섬유 제조에 필요한 도전성 조성물 및 이 도전성 조성물을 이용하여 도전성 섬유를 제조하는 도전성 섬유제조방법에서 발생하는 제반 문제점을 감안하여 안출한 것으로,The present invention has been made in view of the above-mentioned problems occurring in the conductive composition required for manufacturing the conventional conductive fiber as described above and the conductive fiber manufacturing method for producing the conductive fiber using the conductive composition,
환원제의 사용량이 적고 아크릴 섬유에 대한 황화구리의 실용 석출 반응이 55℃미만의 저온반응의 속도를 유지하면서 저장 및 석출반응 중에도 입자 성장이 일어나지 않는 액 안정성이 우수함은 물론 황화구리 나노미립자의 평균 입자 직경이 20nm 이하인 것을 특징으로 하는 도전성 황화구리 나노미립자 조성물과,The use amount of reducing agent is small, and the practical precipitation reaction of copper sulfide on acrylic fiber maintains the rate of low temperature reaction below 55 ℃, and it is excellent in liquid stability that does not cause particle growth even during storage and precipitation reaction. Conductive copper sulfide nanoparticle composition, characterized in that the diameter is 20nm or less,
상기 도전성 황화구리 나노미립자 조성물을 아크릴로니트릴 반복단위를 갖는 아크릴 섬유에 석출반응 시킨 우수한 체적저항을 갖는 도전성 아크릴 섬유를 제조하기 위한 도전성 아크릴 섬유 제조방법을 제공하여 결과적으로 내마모성이나 일정 사용으로 인한 화학적 변화 (산화)에 의한 물성저하 등 내구성과 도전 성능에 문제점이 없는 고품질의 도전성 아크릴 섬유를 제조하여 의류용 뿐만 아니라 산업용으로 폭 넓게 활용할 수 있도록 함에 그 목적을 둔 것이다.Providing a conductive acrylic fiber manufacturing method for producing a conductive acrylic fiber having excellent volume resistance by depositing the conductive copper sulfide nanoparticle composition to an acrylic fiber having an acrylonitrile repeating unit, and as a result, chemical resistance due to wear resistance or constant use The purpose is to produce high quality conductive acrylic fibers without problems in durability and conductive performance such as deterioration of physical properties due to change (oxidation), so that they can be widely used not only for clothing but also for industrial use.
상기와 같은 목적을 달성하기 위한 본 발명의 도전성 황화구리 나노미립자 조성물은 기본적으로 구리염, 페닐화합물계 환원제, 저분자량의 황 화합물, 수용성 아민류, 티오화합물, 티오안정제와 pH 조정제를 포함하여 이루어짐에 그 특징이 있다.The conductive copper sulfide nanoparticle composition of the present invention for achieving the above object basically comprises a copper salt, a phenyl compound-based reducing agent, a low molecular weight sulfur compound, a water-soluble amine, a thio compound, a thio stabilizer and a pH adjuster It has its features.
또한, 본 발명은 고품질의 도전성 아크릴 섬유를 얻기 위해서 상기 도전성 황화구리 나노미립자 조성물에 아크릴로니트릴 반복단위를 갖는 아크릴계 섬유를 침지한 후 50℃~55℃ 온도에서 0.5~5시간 반응하여 아크릴계 섬유에 상기의 조성물을 배위 결합하는 방법을 수행하는 것에 그 특징이 있다.In addition, the present invention is to immerse the acrylic fiber having an acrylonitrile repeating unit in the conductive copper sulfide nanoparticle composition in order to obtain a high quality conductive acrylic fiber and then reacted at 50 ℃ to 55 ℃ temperature for 0.5 to 5 hours to the acrylic fiber It is characterized by performing a method of coordinating the above composition.
본 발명의 도전성 황화구리 나노미립자 조성물은 아크릴 섬유에 안정하게 흡착반응시켜 안정적이고 경제성이 양호하며, 비저항치 및 도전성 유지기능이 우수하고 기타 물성이 매우 우수하다.The conductive copper sulfide nanoparticulate composition of the present invention is stably adsorbed and reacted to acrylic fibers stably and economically, and has excellent resistivity, conductivity retention function, and other physical properties.
한편, 상기 조성물을 이용한 도전성 아크릴 섬유 제조방법을 통해 제조되는 도전성 아크릴 섬유는 내마모성이나 일정 사용으로 인한 화학적 변화 (산화)에 의한 물성저하가 거의 없는 등 내구성과 도전 성능이 우수하면서도 아크릴섬유의 물성을 그대로 유지하고 있으므로 다른 섬유와 혼용이 가능함은 물론,On the other hand, the conductive acrylic fiber prepared by the method for producing a conductive acrylic fiber using the composition is excellent in durability and conductive performance, such as almost no physical property degradation due to chemical resistance (oxidation) due to wear resistance or constant use, but excellent physical properties of the acrylic fiber As it is maintained, it is possible to mix with other fibers,
양호한 전기비저항치를 가지므로 전자파차폐용 및 정전기방지용으로 의류용 뿐만 아니라 산업용으로 폭 넓게 활용할 수 있는 매우 획기적인 것이다.Since it has good electrical resistivity value, it is very innovative that can be widely used not only for clothing but also for industrial use for electromagnetic shielding and antistatic.
본 발명의 도전성 황화구리 나노미립자 조성물은 구리염, 페닐화합물계 환원제, 저분자량의 황 화합물, 수용성 아민류, 티오화합물, 티오안정제와 pH 조정제를 포함한다.The conductive copper sulfide nanoparticle composition of the present invention contains a copper salt, a phenyl compound-based reducing agent, a low molecular weight sulfur compound, a water-soluble amine, a thio compound, a thio stabilizer and a pH adjuster.
여기서 황화구리 나노미립자의 평균 입자 직경이 20nm 이하인 것이 가장 바 람직하기는 하나 이에 한정되지는 않는다.Here, the average particle diameter of the copper sulfide nanoparticles is preferably 20 nm or less, but is not limited thereto.
또한, 본 발명의 도전성 아크릴섬유 제조방법은 상기 도전성 황화구리 나노미립자 조성물에 아크릴로니트릴 반복단위를 갖는 아크릴계 섬유를 침지한 후 50℃~55℃ 온도에서 0.5~5시간 반응하여 아크릴계 섬유에 상기의 조성물을 배위 결합하여 얻어진다.In addition, the conductive acrylic fiber manufacturing method of the present invention is immersed in the conductive copper sulfide nanoparticle composition acrylic resin having an acrylonitrile repeating unit and then reacted at 50 ℃ to 55 ℃ temperature for 0.5 to 5 hours to the acrylic fiber Obtained by coordinating the composition.
이에 하기에서는 먼저 도전성 황화구리 나노미립자 조성물에 포함되는 각각의 성분에 대해 상세히 설명하고 이후 도전성 황화구리 나노미립자 조성물을 이용하여 고품질의 도전성 아크릴섬유를 제조하는 방법을 여러 실시예를 근거로 하여 구체적으로 설명하고자 한다.In the following, first, each component included in the conductive copper sulfide nanoparticle composition will be described in detail, and then a method of manufacturing high quality conductive acrylic fiber using the conductive copper sulfide nanoparticle composition will be described in detail based on various embodiments. I will explain.
먼저 본 발명의 황화구리 나노미립자 조성물 중에서 구리염으로는 구리금속산 및 구리금속염을 포함하는 구리금속염으로 가용인 화합물이면 특별히 한정하지 않고 구리의 설페이트, 니트레이트, 아세테이트, 수용성 할라이드 및 다른 유기 및 무기염을 포함하며 하나 이상의 구리염 혼합물이 구리 이온을 제공하는데 사용될 수 있다.In the copper sulfide nanoparticle composition of the present invention, the copper salt is not particularly limited as long as it is a compound which is soluble as a copper metal salt including a copper metal acid and a copper metal salt, and sulfates, nitrates, acetates, water-soluble halides, and other organic and inorganic compounds of copper. Salts and one or more copper salt mixtures may be used to provide copper ions.
특별하게는 구입의 용이성이나 가격 측면에서 볼 때 황산제2구리 오수화물이 바람직하다.In particular, cupric sulphate pentahydrate is preferred in view of ease of purchase and price.
구리화합물의 조성물 중 함유량은 아크릴 섬유 피도물 중량에 대해서 1~30중량%가 적당하다.As for content in the composition of a copper compound, 1-30 weight% is suitable with respect to the weight of an acrylic fiber coating material.
구리 함유량이 30중량%를 넘어가면 도전성은 높아지나 아크릴 섬유의 물성저하 및 황화구리 침전물이 발생하게 되며, 또한 1중량% 미만이면 충분한 도전성을 확보하지 못하게 된다.If the copper content exceeds 30% by weight, the conductivity becomes high, but the physical properties of the acrylic fiber and copper sulfide precipitates are generated. If the copper content is less than 1% by weight, sufficient conductivity is not secured.
또한, 환원제로는 (하기 화학식Ⅰ로 표시되는)페닐 화합물계 환원제를 사용하는 것이 바람직하다.In addition, it is preferable to use a phenyl compound-type reducing agent (represented by the following general formula (I)) as a reducing agent.
상기 화학식1 중 R1은 수산기 또는 아미노기를 나타내고, R2 내지 R4는 각각 동일하거나 상이 할 수 있고, 수산기, 아미노기, 수소원자 또는 알킬기를 나타낸다.R 1 in Formula 1 represents a hydroxyl group or an amino group, and R 2 R <4> may be same or different, respectively, and represents a hydroxyl group, an amino group, a hydrogen atom, or an alkyl group.
상기 화학식Ⅰ에 있어서 R2 내지 R4에서의 알킬기로서는 직쇄 또는 분지상의 탄소 원자 수 가 1 내지 6의 알킬기가 바람직하고 더욱 바람직하기로는 메틸기, 에틸기 및 t-부틸기 등인 직쇄 또는 분지상의 탄소 원자 수 1 내지 4의 알킬기를 들 수 있다.R 2 in Chemical Formula I The alkyl group for R 4 to R 4 is preferably an alkyl group having 1 to 6 linear or branched carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, or a t-butyl group. Can be mentioned.
이 종류의 구체적인 화합물로는 페놀, O-크레졸, P-크레졸, O-에틸페놀, P-에틸페놀, t-부틸페놀, O-아미노페놀, P-아미노페놀, 히드로퀴논, 카테콜, 피로갈롤, 메틸히드로퀴논, 아닐린, O-페닐렌디아민, P-페닐렌디아민, O-톨루이딘, P-톨 루이딘, O-에틸아닐린, P-에틸아닐린 등을 들 수 있다.Specific compounds of this class include phenol, O-cresol, P-cresol, O-ethylphenol, P-ethylphenol, t-butylphenol, O-aminophenol, P-aminophenol, hydroquinone, catechol, pyrogallol, Methyl hydroquinone, aniline, O-phenylenediamine, P-phenylenediamine, O-toluidine, P-toluidine, O-ethylaniline, P-ethylaniline, etc. are mentioned.
이들 중에서 1종류 이상을 사용 할 수 있으며, 그 중에서도 P-페닐렌디아민, 메틸히드로퀴논, 히드로퀴논 등이 바람직하다.Among them, one or more kinds can be used, and among them, P-phenylenediamine, methylhydroquinone, hydroquinone and the like are preferable.
그 함유량은 아크릴계 섬유 피도물 중량에 대하여 0.05 내지 5중량%의 범위가 바람직하다.The content is preferably in the range of 0.05 to 5% by weight based on the weight of the acrylic fiber coating.
이 페닐계의 환원제 함유량이 0.05중량% 미만이면 실용적인 환원이 일어나지 않는다.If this phenyl-type reducing agent content is less than 0.05 weight%, practical reduction will not occur.
또한 5중량%를 초과하면 조성물의 안정성을 확보 할 수 없으므로 바람직하지 않다.In addition, if the content exceeds 5% by weight, it is not preferable because the stability of the composition cannot be ensured.
구리금속염 및 페닐계 환원성 화합물을 함유하는 용액을 환원 반응 처리한 콜로이드성 구리나노미립자는 입자표면상에 보호콜로이드로서 저분자량의 황 화합물을 포함한다.Colloidal copper nanoparticles which have undergone a reduction reaction of a solution containing a copper metal salt and a phenyl-based reducing compound contain a sulfur compound having a low molecular weight as a protective colloid on the particle surface.
저분자량의 황 화합물은 구체적으로 48~180의 분자량을 갖는 것이며 구체적으로 저분자량의 황 화합물은 예를 들면 메르캅토아세트산(분자량:92), 메르캅토프로피온산(분자량:106), 티오디프로피온산(분자량:178), 메르캅토숙신산(분자량:150), 메르캅토에탄올(분자량:78), 티오디에틸렌글리콜(분자량:122), 티오글리콜산(분자량:150), 아미노에틸 메르캅탄(분자량:77), 티오디에틸아민(분자량:120), 티오우레탄(분자량:105), 티오카르본산(분자량:110), 티오우레아(분자량:76), 티오페놀(분자량:110), 티오포름아미드(분자량:61), 메틸메르캅탄(분자량:72), 이소프로필 메르캅탄(분자량:76), n-부틸 메르캅탄(분자량:90), 알릴 메르캅탄(분자량 :74), 벤질 메르캅탄(분자량:124) 및 이의 염, 유도체 등을 포함하며 하나 이상의 상기 황 화합물이 사용 될 수 있다.The low molecular weight sulfur compound has a molecular weight of 48 to 180 specifically, and specifically the low molecular weight sulfur compound is, for example, mercaptoacetic acid (molecular weight: 92), mercaptopropionic acid (molecular weight: 106), thiodipropionic acid (molecular weight). : 178), mercaptosuccinic acid (molecular weight: 150), mercaptoethanol (molecular weight: 78), thiodiethylene glycol (molecular weight: 122), thioglycolic acid (molecular weight: 150), aminoethyl mercaptan (molecular weight: 77) , Thiodiethylamine (molecular weight: 120), thiourethane (molecular weight: 105), thiocarboxylic acid (molecular weight: 110), thiourea (molecular weight: 76), thiophenol (molecular weight: 110), thioformamide (molecular weight: 61), methyl mercaptan (molecular weight: 72), isopropyl mercaptan (molecular weight: 76), n-butyl mercaptan (molecular weight: 90), allyl mercaptan (molecular weight: 74), benzyl mercaptan (molecular weight: 124) And salts, derivatives, and the like thereof, and one or more of the above sulfur compounds may be used.
무엇보다도 티올 기재 황 화합물이 콜로이드성 금속 입자에 대한 더욱 높은 친화성 및 우수한 보호 콜로이드성 기능 때문에 바람직하고, 메르캅토아세트산, 메르캅토프로피온산 및 메르캅토에탄올이 특히 바람직하다.First of all, thiol based sulfur compounds are preferred because of their higher affinity to colloidal metal particles and good protective colloidal functions, with mercaptoacetic acid, mercaptopropionic acid and mercaptoethanol being particularly preferred.
상기 화합물은 콜로이드성 금속입자 중량%에 대해 0.05 내지 1.5중량%의 비율로 사용되는 것이 바람직한데 저분자량의 황 화합물은 적은 비율로도 보호 콜로이드로서의 양호한 효과를 가질 수가 있다.The compound is preferably used at a ratio of 0.05 to 1.5% by weight relative to the weight percent colloidal metal particles, but the low molecular weight sulfur compound may have a good effect as a protective colloid even at a small ratio.
그리고 상기 금속 화합물의 환원 반응이 저분자량의 황 화합물의 부재 하에 수행되는 경우는 상기 형성된 콜로이드성 금속 입자가 즉시 석출되고, 그 후에는 황 화합물이 첨가된다고 해도 콜로이드성 금속 입자의 표면은 완전히 보호되지 않은 채로 남아있다.And when the reduction reaction of the metal compound is carried out in the absence of a low molecular weight sulfur compound, the formed colloidal metal particles are immediately precipitated, after which the surface of the colloidal metal particles is not completely protected even if a sulfur compound is added. Remain.
따라서 황 화합물의 존재 하에 금속 화합물을 환원 반응시키는 것이 필수적이다.It is therefore essential to reduce the metal compound in the presence of a sulfur compound.
또한 황화구리 나노미립자 조성물 중에서 페닐계 환원제를 사용할 경우 에틸렌디아민 등의 수용성 아민을 1종 이상을 첨가하면 아크릴계 섬유 중에 황화구리의 석출온도를 55℃ 이하로 낮출 수 있으며 석출속도도 증대시킬 수 있다.In addition, in the case of using a phenyl-based reducing agent in the copper sulfide nanoparticle composition, by adding at least one water-soluble amine such as ethylenediamine, the precipitation temperature of copper sulfide in the acrylic fiber may be lowered to 55 ° C. or lower, and the precipitation rate may be increased.
아울러 아크릴계 섬유의 부착성을 향상시키고 액 안정성도 현저히 높일 수 있다.In addition, the adhesion of the acrylic fiber can be improved and the liquid stability can be significantly increased.
따라서 이러한 첨가제는 전형적으로 조성물 중 구리(Ⅱ)를 보존하기 위한 착 화제로도 작용한다.Such additives therefore typically also act as a complexing agent to preserve copper (II) in the composition.
이러한 아민류에는 모노알칸올아민, 디알칸올아민, 트리알칸올아민, 에틸렌트리아민, m-헥실아민, 테트라메틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 헵타메틸렌디아민, 에틸렌디아민, 디에틸트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, 디메틸아민, 트리에탄올아민, 황산히드록실아민, EDTA염 등을 사용 할 수 있고 그 중 에서도 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 펜타에틸렌헥사민이 바람직하나 에틸렌디아민이 가장 바람직하다.Such amines include monoalkanolamine, dialkanolamine, trialkanolamine, ethylenetriamine, m-hexylamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, ethylenediamine, diethyltriamine, Triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, dimethylamine, triethanolamine, hydroxylamine sulfate, EDTA salt and the like can be used. Among them, ethylenediamine, diethylenetriamine, triethylenetetramine, Tetraethylenepentamine and pentaethylenehexamine are preferred, but ethylenediamine is most preferred.
이 수용성 아민류의 배합량은 아크릴계 섬유 피도물 중량 대비 0.1 내지 10중량%의 범위에서 사용하나 0.1중량% 미만이면 아민류 첨가의 효과가 충분히 발휘되지 않고 또한 10중량%를 초과하게 되면 환원제 조성물의 안정성이 자하되는 경우가 발생하므로 바람직하지 않다.The amount of the water-soluble amines is used in the range of 0.1 to 10% by weight based on the weight of the acrylic fiber coating, but if less than 0.1% by weight, the effect of the amine addition is not sufficiently exhibited. It is not preferable because a case occurs.
이에 따라 2 내지 10중량%의 범위가 보다 바람직하다.Accordingly, the range of 2 to 10% by weight is more preferable.
수용성 아민류는 상기 중에서 1종 이상을 첨가함으로서 조성물의 석출속도를 증대시키며 액 안정성도 현저히 향상 시킬 수 있다.Water-soluble amines can increase the precipitation rate of the composition by adding one or more of the above, it can also significantly improve the liquid stability.
또한 도전성 황화구리 나노미립자 조성물에는 황화 환원제 및 착화제로서 티오황산화합물을 함유하는 것이 더욱 바람직하다.The conductive copper sulfide nanoparticulate composition further preferably contains a thiosulfate compound as a sulfiding reducing agent and a complexing agent.
즉, 티오황산화합물은 아크릴계 섬유 내 황화구리의 결합력의 향상에 도움을 준다. 티오황산화합물로는 티오황산의 알칼리금속염, 알칼리토류금속염, 암모늄염 등을 들 수 있고 구체적으로는 티오황산나트륨, 티오황산칼륨, 티오황산암모늄 등이 있다. That is, the thiosulfate compound helps to improve the bonding strength of copper sulfide in the acrylic fiber. Examples of the thiosulfate compound include alkali metal salts, alkaline earth metal salts, and ammonium salts of thiosulfate, and specific examples thereof include sodium thiosulfate, potassium thiosulfate, and ammonium thiosulfate.
그 함류량은 0.1 내지 10중량%의 범위가 바람직하고 상기 화합물의 함량이 0.1중량% 미만이면 황화구리의 환원 및 착화력이 저하되고 안정정이 떨어진다.The content of the content is preferably in the range of 0.1 to 10% by weight, the content of the compound is less than 0.1% by weight of copper sulfide reduction and ignition power is lowered and the stability is poor.
또한 10중량%를 초과하면 도전성은 향상되지만 액 중에 재결정이 발생하고 반응 중 티오화합물이 분해되어 침전물이 다량 발생하게 된다.In addition, if the content exceeds 10% by weight, the conductivity is improved, but recrystallization occurs in the liquid, and the thio compound is decomposed during the reaction to generate a large amount of precipitate.
이러한 티오화합물의 침전 발생 문제점을 개선하기 위해 본 발명에서는 도전성 나노미립자 조성물 중에 티오(Thio) 안정화제를 사용함을 특징으로 한다.In order to improve the problem of precipitation of thio compounds, the present invention is characterized by using a thio (Thio) stabilizer in the conductive nanoparticle composition.
이러한 화합물로는 황산히드록실아민, 아스코브르산, 포르말린 중에서 선택된 1종 이상의 티오(Thio) 안정화제를 함유한다. 특히 황산히드록실아민은 산화가 되더라도 액 중에 잔류하여 아크릴 섬유의 착화와 도전성에 크게 영향을 주지 않기 때문에 가장 바람직하다.Such compounds contain at least one Thio stabilizer selected from hydroxylamine sulfate, ascorbic acid, formalin. In particular, hydroxylamine sulfate is most preferable because it remains in the liquid even if it is oxidized and does not significantly affect the complexation and conductivity of the acrylic fiber.
이러한 화합물은 실질적으로 액 중에 존재하면 티오화합물의 산화 분해를 방지하는 작용이 있기 때문에 농도는 특별히 정해진 것은 아니지만 아크릴 섬유 피도물 중량 대비 0.01 내지 10중량%가 적당하다.Since such a compound substantially prevents oxidative decomposition of the thio compound when substantially present in the liquid, the concentration is not particularly defined, but 0.01 to 10% by weight relative to the weight of the acrylic fiber coating is appropriate.
본 발명의 황화구리 나노미립자 조성물 중에는 원하는 석출온도 및 속도, pH 등을 일정하게 유지하기 위하여 pH조절제를 더 첨가해 사용 할 수 있다.In the copper sulfide nanoparticle composition of the present invention, a pH adjusting agent may be further added to maintain a desired precipitation temperature and rate, pH, and the like.
바람직하게 사용되는 화합물로는 인산염, 아세트산염, 붕산염, 시트르산, 황산염 등을 들 수 있고, 그 함류량은 2 내지 5중량%의 범위가 바람직하다.Examples of the compound preferably used include phosphate, acetate, borate, citric acid, sulfate, and the like, and the content thereof is preferably in the range of 2 to 5% by weight.
이하에서는 앞에서도 언급한 바와같이 상기 도전성 황화구리 나노미립자 조 성물을 이용하여 고품질의 도전성 아크릴섬유를 제조하는 방법에 대한 바람직한 실시예를 기재한다.Hereinafter, as described above, a preferred embodiment of the method for producing a high quality conductive acrylic fiber using the conductive copper sulfide nanoparticle composition is described.
다만, 하기의 실시예는 본 발명의 바람직한 하나의 실시예일 뿐 본 발명이 하기 실시예에 의해 결코 한정되는 것이 아님을 분명히 하고자 한다.However, the following examples are only one preferred embodiment of the present invention is intended to make it clear that the present invention is by no means limited by the following examples.
<실시예> < Example>
100중량%의 폴리아크릴로니트릴사를 비이커에 넣고 아래 [표1]과 같은 조성물을 비이커에 욕비 1:20으로 투입하고 서서히 승온시켜 53℃±2℃에서 2시간 동안 반응시킨 다음, 수세 및 탈수한 후 80℃의 열풍으로 건조하였다.100% by weight of polyacrylonitrile was added to the beaker, and the composition as shown in Table 1 was added to the beaker at a bath ratio of 1:20, and gradually heated to react at 53 ° C ± 2 ° C for 2 hours, followed by washing with water and dehydration. After drying, it was dried with hot air at 80 ° C.
상기 [표1]의 실시예 중에서 실시예 1 내지 실시예 3은 에틸렌디아민 농도를1, 2, 2.5중량%로 변화시켜 반응을 수행한 결과이다.In Examples of Table 1, Examples 1 to 3 are the results of the reaction by changing the ethylenediamine concentration to 1, 2, 2.5% by weight.
환원제인 히드로퀴논 농도가 낮은 조건에서도 반응 석출 온도가 20분, 25분, 28분으로 서서히 빠르게 진행되었다.The reaction precipitation temperature was rapidly progressed to 20 minutes, 25 minutes and 28 minutes even under low hydroquinone concentration as a reducing agent.
또한 폴리아크릴로니트릴사의 외관도 올리브 그린색을 나타냈으며 변색, 석출 부착 불량 등은 발생하지 않았다.In addition, the appearance of polyacrylonitrile also showed olive green color, and there was no discoloration, poor deposition adhesion, or the like.
그리고 석출 반응 중 욕조 안정성 시험에서도 안정성을 나타내었으며 비이커 반응조 내에서의 침전물 발생은 전혀 없었다.In addition, it showed stability in the bath stability test during the precipitation reaction and there was no sediment generation in the beaker reactor.
아울러 보존 안정성에 대해서도 10일 이상 상온상태 보관에서 도전처리 용액의 이상 석출이 발생하지 않고 양호한 상태였다.In addition, the storage stability was in a good state without abnormal precipitation of the conductive treatment solution in storage at room temperature for 10 days or more.
상기 실시예 4 내지 실시예 6은 환원제인 히드로퀴논 농도를 0.5, 2, 3중량%로 변화시켜 반응을 수행한 결과이다.Examples 4 to 6 are the results of the reaction by changing the hydroquinone concentration of the reducing agent to 0.5, 2, 3% by weight.
이 결과로부터 환원제의 농도가 낮은 조건에서도 실용 가능한 양호한 석출속도를 얻었다.From this result, the favorable precipitation rate which was practical even in the conditions of low concentration of a reducing agent was obtained.
폴리아크릴로니트릴사의 외관은 올리브 그린색을 나타냈으며 변색이나 석출 부착 불량 등은 발생하지 않았다.The appearance of the polyacrylonitrile yarn was olive green, and no discoloration or poor deposition adhesion occurred.
그리고 석출 반응 중 욕조 안정성 시험에서도 욕조 안정성을 나타내고 비이커 반응조 내에서의 침전물 발생이 전혀 없었고 보존 안정성에 대서도 10일 이상 상온에 보관해도 도전처리 용액의 이상 석출이 발생하지 않고 양호하였다.In the bath stability test during the precipitation reaction, the bath stability was shown, and no precipitate was generated in the beaker reaction tank, and even when stored at room temperature for 10 days or more, the precipitation stability of the conductive treatment solution was good.
한편, 상기 실시예 1 내지 실시예 6에 따라 제조된 도전성 아크릴 섬유에 대하여 다음과 같은 물성을 측정하였으며 그 측정결과는 하기 [표2]와 같다.On the other hand, the following physical properties were measured for the conductive acrylic fibers prepared according to Examples 1 to 6, and the measurement results are shown in the following [Table 2].
비저항(Ω㎝)After 50 washes
Resistivity
인장신도 및 인장강도는 KSK ISO 2062 : 2007로 측정하였으며 1cN ≒ 1.0197gf 이다.Tensile elongation and tensile strength were measured according to KSK ISO 2062: 2007 and 1cN ≒ 1.0197gf.
비저항 (Ω ㎝) : KSK 0180 : 2003을 준용하였으며 시험기는 ACL 800 Megohm Meter를 사용하고 적용전압은 10V, 온도와 습도는 (20±2)℃, (40±2)% R.H로 측정하였다.Specific resistance (Ω ㎝): KSK 0180: 2003 was used. The tester used ACL 800 Megohm Meter, and applied voltage was 10V, temperature and humidity were (20 ± 2) ℃ and (40 ± 2)% R.H.
중금속(Cu) 함량 (%)은 EPA 3052 : 1996으로 측정하였으며 시험조건은 시료 전처리 방법으로 EPA 3052 : 1996, 분석기기는 ICP/AES를 사용하였다.Heavy metal (Cu) content (%) was measured by EPA 3052: 1996, and the test conditions were EPA 3052: 1996 and ICP / AES.
상기 [표2]와 같이 실시예 1 내지 실시예 6에 따라 제조된 본 발명의 도전성 아크릴 섬유는 섬유표면에 평균입자 직경이 20nm 이하의 황화구리 나노미립자가 균일하게 흡착되어 균일하고 우수한 도전성능을 갖는다.The conductive acrylic fiber of the present invention prepared according to Examples 1 to 6, as shown in Table 2 above, copper sulfide nanoparticles having an average particle diameter of 20 nm or less are uniformly adsorbed on the fiber surface to provide uniform and excellent conductivity. Have
또한 내세탁 견뢰도가 뛰어나서 50회 세탁 후에도 비저항(Ω㎝)이 우수하다.In addition, it has excellent washing fastness and is excellent in specific resistance even after 50 washes.
결과적으로 상기한 제조방법으로 얻어지는 본 발명의 도전성 아크릴섬유는 내마모성이나 일정 사용으로 인한 화학적 변화 (산화)에 의한 물성저하가 거의 없는 등 내구성과 도전 성능이 우수하면서도 아크릴섬유의 물성을 그대로 유지하고 있으므로 다른 섬유와 혼용이 가능함은 물론,As a result, the conductive acrylic fiber of the present invention obtained by the above-described manufacturing method is excellent in durability and conductive performance while maintaining the physical properties of the acrylic fiber while having excellent durability and conductive properties such as almost no deterioration in physical properties due to chemical resistance (oxidation) due to wear resistance or constant use. Of course, you can mix with other fibers,
양호한 전기 비저항치를 가지므로 전자파차폐용 및 정전기방지용으로 의류용 뿐만 아니라 산업용으로 폭 넓게 활용할 수 있다.Since it has a good electrical resistivity, it can be widely used not only for clothing but also for industrial use for electromagnetic shielding and antistatic.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020090071594A KR100962268B1 (en) | 2009-08-04 | 2009-08-04 | Electric conductivity electric conductivity cus nano corpuscular composition and electric conductivity acryl fiber manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020090071594A KR100962268B1 (en) | 2009-08-04 | 2009-08-04 | Electric conductivity electric conductivity cus nano corpuscular composition and electric conductivity acryl fiber manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR100962268B1 true KR100962268B1 (en) | 2010-06-11 |
Family
ID=42369774
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020090071594A Expired - Fee Related KR100962268B1 (en) | 2009-08-04 | 2009-08-04 | Electric conductivity electric conductivity cus nano corpuscular composition and electric conductivity acryl fiber manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100962268B1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101227076B1 (en) * | 2011-07-11 | 2013-01-29 | 장래영 | Near-infrared ray reflectance camouflage fabric with adjustable characteristics |
| KR101266881B1 (en) * | 2011-04-08 | 2013-06-18 | 그린텍스(주) | Functional textile materials and producing method thereof |
| WO2014115965A1 (en) * | 2013-01-22 | 2014-07-31 | (주)비에스써포트 | Plastic molded product comprising copper-based compound microparticles and preparation method therefor |
| WO2016159556A1 (en) * | 2015-03-27 | 2016-10-06 | 이규상 | Functional copper sulfide composition and functional fiber prepared from same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4746541A (en) | 1985-12-16 | 1988-05-24 | Hoechst Celanese Corporation | Electrically conductive thermally stabilized acrylic fibrous material and process for preparing same |
| US5017420A (en) | 1986-10-23 | 1991-05-21 | Hoechst Celanese Corp. | Process for preparing electrically conductive shaped articles from polybenzimidazoles |
| KR100676485B1 (en) | 2006-03-24 | 2007-02-01 | (주)트라보스 | Acrylic fiber treatment composition and method for producing conductive acrylic fiber using same |
| KR100772056B1 (en) | 2006-11-28 | 2007-10-31 | 최환철 | Conductive acrylic fiber containing amide oxime group and its manufacturing method |
-
2009
- 2009-08-04 KR KR1020090071594A patent/KR100962268B1/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4746541A (en) | 1985-12-16 | 1988-05-24 | Hoechst Celanese Corporation | Electrically conductive thermally stabilized acrylic fibrous material and process for preparing same |
| US5017420A (en) | 1986-10-23 | 1991-05-21 | Hoechst Celanese Corp. | Process for preparing electrically conductive shaped articles from polybenzimidazoles |
| KR100676485B1 (en) | 2006-03-24 | 2007-02-01 | (주)트라보스 | Acrylic fiber treatment composition and method for producing conductive acrylic fiber using same |
| KR100772056B1 (en) | 2006-11-28 | 2007-10-31 | 최환철 | Conductive acrylic fiber containing amide oxime group and its manufacturing method |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101266881B1 (en) * | 2011-04-08 | 2013-06-18 | 그린텍스(주) | Functional textile materials and producing method thereof |
| KR101227076B1 (en) * | 2011-07-11 | 2013-01-29 | 장래영 | Near-infrared ray reflectance camouflage fabric with adjustable characteristics |
| WO2013009077A3 (en) * | 2011-07-11 | 2013-03-07 | Jang Rae Young | Camouflage fabric having near infrared ray reflectance adjusting characteristics |
| CN103827369A (en) * | 2011-07-11 | 2014-05-28 | 张来荣 | Camouflage fabric having near infrared ray reflectance adjusting characteristics |
| US20140154482A1 (en) * | 2011-07-11 | 2014-06-05 | Rae Young Jang | Camouflage fabric having near infrared ray reflectance adjusting characteristics |
| WO2014115965A1 (en) * | 2013-01-22 | 2014-07-31 | (주)비에스써포트 | Plastic molded product comprising copper-based compound microparticles and preparation method therefor |
| US9953741B2 (en) | 2013-01-22 | 2018-04-24 | Bs Support Co., Ltd. | Plastic molded product comprising copper-based compound microparticles and preparation method therefor |
| US10096397B2 (en) | 2013-01-22 | 2018-10-09 | Bs Support Co., Ltd. | Plastic molded product comprising copper-based compound microparticles and preparation method therefor |
| WO2016159556A1 (en) * | 2015-03-27 | 2016-10-06 | 이규상 | Functional copper sulfide composition and functional fiber prepared from same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3300519B2 (en) | Monovalent metal plating solution without cyanide | |
| KR100962268B1 (en) | Electric conductivity electric conductivity cus nano corpuscular composition and electric conductivity acryl fiber manufacturing method | |
| KR101660520B1 (en) | Method of performing continuous electroless plating of copper and nickel and plating layer using the same | |
| CN110230061A (en) | A kind of gold and silver surface anti-oxidation Anti- tarnishing protective agent and its preparation method and application | |
| US20050201890A1 (en) | Composition for the controlled release of inhibitors for corrosion, biofouling, and scaling | |
| KR101073524B1 (en) | Conductive Nylon Fiber Manufacturing Method | |
| JP6108870B2 (en) | How to prevent silver discoloration | |
| KR101372091B1 (en) | Method for preparing electroconductive nylon or polyester fibers having copper sulfite layer, and electroconductive nylon or polyester fibers obtained therefrom | |
| US11326439B2 (en) | Compositions, systems, and methods for iron sulfide scale identification, prevention, and reduction | |
| CN101260549B (en) | Non-preplating type non-cyanide silver-plating electroplate liquid | |
| KR20040050887A (en) | Electroless Gold Plating Solution | |
| CN105937028A (en) | Compound cyanide-free gold plating solution and preparation method thereof | |
| Das et al. | Effect of bath stabilizers on electroless nickel deposition on ferrous substrates | |
| WO2012011305A1 (en) | Electroless gold plating solution, and electroless gold plating method | |
| US3661596A (en) | Stabilized, chemical nickel plating bath | |
| EP2878702B1 (en) | Organic disulfide-containing surface treatment solution for gold or gold alloy plating and method thereof | |
| CN112663033B (en) | Environment-friendly chemical nickel deposition solution | |
| US5306334A (en) | Electroless nickel plating solution | |
| KR101266881B1 (en) | Functional textile materials and producing method thereof | |
| JP3479639B2 (en) | Electroless nickel plating solution | |
| CN105378151A (en) | Method and apparatus for mitigating tin whisker growth on tin and tin-plated surfaces by doping tin with gold | |
| CN108517516B (en) | Chemical silver plating solution and preparation method thereof | |
| ES2712858T3 (en) | Use of water-soluble and air-stable phospha-adamantanes as stabilizers in electrolytes for non-electrolytic deposition of metal | |
| JP5526463B2 (en) | Electroless gold plating method for electronic parts and electronic parts | |
| JP4645862B2 (en) | Electroless nickel plating bath and plating method using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| A302 | Request for accelerated examination | ||
| PA0302 | Request for accelerated examination |
St.27 status event code: A-1-2-D10-D16-exm-PA0302 St.27 status event code: A-1-2-D10-D17-exm-PA0302 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| N231 | Notification of change of applicant | ||
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R11-asn-PN2301 St.27 status event code: A-3-3-R10-R13-asn-PN2301 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
Fee payment year number: 1 St.27 status event code: A-2-2-U10-U11-oth-PR1002 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20130328 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 4 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
| FPAY | Annual fee payment |
Payment date: 20141127 Year of fee payment: 5 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 5 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
Not in force date: 20150602 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20160204 Year of fee payment: 6 |
|
| K11-X000 | Ip right revival requested |
St.27 status event code: A-6-4-K10-K11-oth-X000 |
|
| PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20150602 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
| PR0401 | Registration of restoration |
St.27 status event code: A-6-4-K10-K13-oth-PR0401 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 6 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| R401 | Registration of restoration | ||
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PC1903 | Unpaid annual fee |
Not in force date: 20160602 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| K11-X000 | Ip right revival requested |
St.27 status event code: A-6-4-K10-K11-oth-X000 |
|
| PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20160602 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
| PR0401 | Registration of restoration |
St.27 status event code: A-6-4-K10-K13-oth-PR0401 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 7 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PC1903 | Unpaid annual fee |
Not in force date: 20170602 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
| FPAY | Annual fee payment |
Payment date: 20180117 Year of fee payment: 8 |
|
| K11-X000 | Ip right revival requested |
St.27 status event code: A-6-4-K10-K11-oth-X000 |
|
| PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20170602 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
| PR0401 | Registration of restoration |
St.27 status event code: A-6-4-K10-K13-oth-PR0401 |
|
| R401 | Registration of restoration | ||
| PR1001 | Payment of annual fee |
Fee payment year number: 8 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PC1903 | Unpaid annual fee |
Not in force date: 20180602 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
| P14-X000 | Amendment of ip right document requested |
St.27 status event code: A-5-5-P10-P14-nap-X000 |
|
| P16-X000 | Ip right document amended |
St.27 status event code: A-5-5-P10-P16-nap-X000 |
|
| Q16-X000 | A copy of ip right certificate issued |
St.27 status event code: A-4-4-Q10-Q16-nap-X000 |
|
| K11-X000 | Ip right revival requested |
St.27 status event code: A-6-4-K10-K11-oth-X000 |
|
| PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20180602 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
| PR0401 | Registration of restoration |
St.27 status event code: A-6-4-K10-K13-oth-PR0401 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 9 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20191104 Year of fee payment: 10 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 10 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 11 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| P14-X000 | Amendment of ip right document requested |
St.27 status event code: A-5-5-P10-P14-nap-X000 |
|
| P16-X000 | Ip right document amended |
St.27 status event code: A-5-5-P10-P16-nap-X000 |
|
| Q16-X000 | A copy of ip right certificate issued |
St.27 status event code: A-4-4-Q10-Q16-nap-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 12 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 13 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 14 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| PC1903 | Unpaid annual fee |
Not in force date: 20240602 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20240602 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |