KR101007928B1 - Premix admixture composition for cement replacement by improving the physical properties of blast furnace slag powder and binder composition for concrete comprising the same - Google Patents
Premix admixture composition for cement replacement by improving the physical properties of blast furnace slag powder and binder composition for concrete comprising the same Download PDFInfo
- Publication number
- KR101007928B1 KR101007928B1 KR20080098196A KR20080098196A KR101007928B1 KR 101007928 B1 KR101007928 B1 KR 101007928B1 KR 20080098196 A KR20080098196 A KR 20080098196A KR 20080098196 A KR20080098196 A KR 20080098196A KR 101007928 B1 KR101007928 B1 KR 101007928B1
- Authority
- KR
- South Korea
- Prior art keywords
- fine powder
- blast furnace
- furnace slag
- composition
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims abstract description 99
- 239000000203 mixture Substances 0.000 title claims abstract description 66
- 239000002893 slag Substances 0.000 title claims abstract description 57
- 239000004567 concrete Substances 0.000 title claims abstract description 42
- 239000004568 cement Substances 0.000 title claims abstract description 35
- 239000011230 binding agent Substances 0.000 title claims abstract description 12
- 230000000704 physical effect Effects 0.000 title claims description 13
- 235000019738 Limestone Nutrition 0.000 claims abstract description 40
- 239000006028 limestone Substances 0.000 claims abstract description 40
- 239000010440 gypsum Substances 0.000 claims abstract description 22
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 22
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 4
- 239000000428 dust Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 3
- 239000004570 mortar (masonry) Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 230000035515 penetration Effects 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 9
- 230000007774 longterm Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 239000011398 Portland cement Substances 0.000 description 6
- 238000006703 hydration reaction Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 5
- 230000036571 hydration Effects 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 101150047137 ABF1 gene Proteins 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 102100037676 CCAAT/enhancer-binding protein zeta Human genes 0.000 description 4
- 101000880588 Homo sapiens CCAAT/enhancer-binding protein zeta Proteins 0.000 description 4
- 101100025200 Homo sapiens MSC gene Proteins 0.000 description 4
- 101710189714 Major cell-binding factor Proteins 0.000 description 4
- 102100038169 Musculin Human genes 0.000 description 4
- 101100438011 Oryza sativa subsp. japonica BZIP12 gene Proteins 0.000 description 4
- 101100165744 Oryza sativa subsp. japonica BZIP23 gene Proteins 0.000 description 4
- 101100165754 Oryza sativa subsp. japonica BZIP46 gene Proteins 0.000 description 4
- 102100030000 Recombining binding protein suppressor of hairless Human genes 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 101150111300 abf2 gene Proteins 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000010881 fly ash Substances 0.000 description 4
- 102100032450 Endothelial differentiation-related factor 1 Human genes 0.000 description 3
- 101710182961 Endothelial differentiation-related factor 1 Proteins 0.000 description 3
- 102100040604 Myotubularin-related protein 5 Human genes 0.000 description 3
- 108050003253 Myotubularin-related protein 5 Proteins 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- -1 BBF2 Proteins 0.000 description 2
- 101001116514 Homo sapiens Myotubularin-related protein 13 Proteins 0.000 description 2
- 102100024960 Myotubularin-related protein 13 Human genes 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000013035 low temperature curing Methods 0.000 description 2
- 229910012226 MBF4 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007589 penetration resistance test Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명은 고로슬래그 미분말과 석회석 고미분말 및 석고를 적절히 조성함으로써 고로슬래그 미분말의 고유 물성을 최적으로 개선시켜 시멘트 대체용으로 바람직하게 사용할 수 있게 한 프리믹스 혼화재 조성물과, 이 혼화재 조성물을 적절히 조성한 콘크리트용 결합재 조성물에 관한 것이다.The present invention provides a premix admixture composition which optimally improves the intrinsic properties of the blast furnace slag fine powder by appropriately formulating the blast furnace slag fine powder, the limestone fine powder and the gypsum so that it can be preferably used as a substitute for cement, and for the concrete having appropriately formulated the admixture composition. A binder composition is disclosed.
본 발명에 따른 시멘트 대체용 프리믹스 혼화재 조성물은, 고로슬래그 미분말 60~80중량%; 석회석 고미분말 15~30중량%; 및, 석고 5~10중량%;으로 구성되되, 상기 석회석 고미분말은, 탄산칼슘(CaCO3)이 주성분으로 75~90중량% 차지하는 한편, 분말도가 6,000~12,000㎠/g이면서 평균입경이 4~6㎛이고 밀도가 2.6~7g/㎤인 것을 특징으로 한다.Cement substitute premix admixture composition according to the present invention, blast furnace slag fine powder 60 to 80% by weight; Limestone high fine powder 15-30% by weight; And, gypsum 5 ~ 10% by weight; The limestone high fine powder, calcium carbonate (CaCO 3 ) occupies 75 ~ 90% by weight as the main component, while the powder degree of 6,000 ~ 12,000㎠ / g and the average particle size of 4 It is characterized by having a density of ˜6 μm and a density of 2.6-7 g / cm 3.
본 발명에 따른 콘크리트용 결합재 조성물은, 상기한 시멘트 대체용 프리믹스 혼화재 조성물을 10~35중량% 치환하여 조성하는 것을 특징으로 한다.The binder composition for concrete according to the present invention is characterized in that the composition by substituting 10 to 35% by weight of the premix admixture composition for cement replacement.
고로슬래그, 석회석 고미분말, 석고, 혼화재, 초기강도 Blast furnace slag, limestone fine powder, gypsum, admixture, initial strength
Description
본 발명은 고로슬래그 미분말과 석회석 고미분말 및 석고를 적절히 조성함으로써 고로슬래그 미분말의 고유 물성을 최적으로 개선시켜 시멘트 대체용으로 바람직하게 사용할 수 있게 한 프리믹스 혼화재 조성물과, 이 혼화재 조성물을 적절히 조성한 콘크리트용 결합재 조성물에 관한 것이다.The present invention provides a premix admixture composition which optimally improves the intrinsic properties of the blast furnace slag fine powder by appropriately formulating the blast furnace slag fine powder, the limestone fine powder and the gypsum so that it can be preferably used as a substitute for cement, and for the concrete having appropriately formulated the admixture composition. A binder composition is disclosed.
콘크리트 제조시 통상적으로 고로슬래그 미분말이나 플라이애쉬, 기타의 천연 포졸란 재료들이 혼화재로서 사용되고 있다. 혼화재는 산업부산물을 활용하여 상대적으로 고가인 시멘트량을 일부 대체하는 것이기 때문에 경제성은 물론 자원 재활용에 기여한다. 나아가, 강도 발현, 화학저항성 증대, 콘크리트 수화열 저감을 통한 등 내구성 향상에도 기여하는 것으로 확인되어 혼화재는 기능성 콘크리트 제조에 유용한 재료로서 그 사용실적이 늘어나고 있는 추세이다.In the manufacture of concrete, blast furnace slag powder, fly ash, and other natural pozzolanic materials are commonly used as admixtures. Admixtures contribute to economics as well as resource recycling because they replace some of the relatively expensive cement by industrial by-products. In addition, it has been found to contribute to the improvement of durability, such as by developing strength, increasing chemical resistance, and reducing heat of hydration of concrete, and thus the admixture is a useful material for producing functional concrete, and its performance has been increasing.
여러 혼화재 중에서 고로슬래그 미분말은 화학저항성 증대, 콘크리트의 수화열에 의한 온도상승 제어, 알칼리 골재반응 억제, 해수에 대한 저항성 및 장기강도 등이 크게 개선되는 장점이 인정되어 많이 이용되고 있다. Among various admixtures, blast furnace slag fine powder has been widely used because of its improved chemical resistance, control of temperature rise by heat of hydration of concrete, inhibition of alkali aggregate reaction, resistance to seawater and long-term strength.
하지만, 고로슬래그 미분말은 물과 접촉하게 되면 고로슬래그 입자의 표면에 불투수성의 산성피막이 입자를 둘러싸게 되어 수화반응이 억제되는데, 이 때문에 고로슬래그 미분말을 사용하면 초기의 수화반응 발현율이 현저히 떨어지고, 특히 저온에서의 강도 발현율이 낮은 특성이 나타난다. 이와 같은 특성은 고로슬래그 미분말의 적극적인 활용을 저해하는 요인이 된다.However, when the blast furnace slag powder comes into contact with water, the impermeable acidic film surrounds the particles on the surface of the blast furnace slag particles, thereby inhibiting the hydration reaction. Therefore, when the blast furnace slag powder is used, the initial hydration expression rate is significantly lowered. The characteristic of low intensity expression at low temperature is shown. Such a characteristic becomes a factor that inhibits the active use of blast furnace slag fine powder.
한편, 시멘트 제조 중 원료의 분쇄 및 이송공정에는 공기의 흐름과 함께 비산분진(킬른더스트)이 발생하며, 이러한 비산분진은 별도 집진기를 통해 포집된 후 다시 제조공정으로 재투입되는 과정을 반복하게 된다. 하지만, 비산분진은 시멘트 원료의 90%이상이 석회석으로 구성되기 때문에 그 역시 주성분이 석회석 고미분말(CaCO3)인데, 이러한 비산분진은 매우 미립자의 형태를 띠고 있어 시멘트 제조공정으로 재투입되면 원료의 흐름을 방해하거나 일부 휘발성 물질과 함께 접착성을 높여 설비의 효율성을 저하시킨다. Meanwhile, in the process of crushing and transporting raw materials during cement production, scattering dust (kilndust) is generated along with the flow of air, and the scattering dust is collected through a separate dust collector and then re-introduced into the manufacturing process. . However, since 90% or more of the cement raw material is composed of limestone, the main component is also limestone fine powder (CaCO 3 ), which is a very fine particle. Impede the flow or increase adhesion with some volatiles, reducing the efficiency of the installation.
그렇다면 시멘트 제조과정에서 발생한 비산분진을 포집하여 제거하는 것이 시멘트 제조의 효율성과 시멘트 생산성 향상을 위해 바람직할 것이고, 나아가 포집한 비산분진을 재활용할 수 있다면 자원 재활용 차원에서 바람직할 것이다. Then, it is desirable to collect and remove the fugitive dust generated during the cement manufacturing process in order to improve the efficiency of cement production and cement productivity, and furthermore, if the collected fugitive dust can be recycled, it would be preferable in terms of resource recycling.
이에 본 발명자는 비산분진의 재활용 방안에 대해 연구하게 되었으며, 그 결과 비산분진(킬른더스트)의 시멘트 혼화재로의 사용가능성에 대하여 연구하고 이를 특허출원 제10-2001-0008806호로 출원하여 등록받은 바 있다. 하지만, 특허출원 제10-2001-0008806호는 비산분진의 시멘트 혼화재로의 사용가능성에 대해 검토하는 정도에만 머무르기 때문에, 비산분진의 적극적인 활용을 위해서는 비산분진의 효과적인 이용방법에 대한 실질적인 연구가 더욱 필요한 상황이다. 이와 같은 상황에 따라 본 발명자들은 비산분진의 최적 배합범위 대한 연구를 수행하여 본 발명을 개발하기에 이르렀다.Accordingly, the present inventors have studied the recycling method of fly ash dust, and as a result, the study on the availability of fly ash (kilndust) as a cement admixture, and filed and registered it as a patent application No. 10-2001-0008806 . However, since patent application No. 10-2001-0008806 only remains to examine the availability of fugitive dust as a cement admixture, practical research on the effective use of fugitive dust is needed for the active use of fugitive dust. Situation. In this situation, the present inventors have developed the present invention by conducting a study on the optimum blending range of fugitive dust.
본 발명은 상기한 종래의 문제점을 개선하고자 개발된 것으로서, 고로슬래그 미분말의 물성을 최적으로 개선시키기 위해 석회석 고미분말을 최적 조합비율로 이용한 시멘트 대체용 프리믹스 혼화재 조성물과, 그 혼화재 조성물이 바람직하게 치환된 결합재 조성물을 제공하는데 기술적 과제가 있다.The present invention was developed in order to improve the above-mentioned problems, and in order to optimally improve the physical properties of the blast furnace slag powder, the premix admixture composition for cement replacement using the limestone high powder in an optimum combination ratio, and the admixture composition are preferably substituted. There is a technical problem in providing a binder composition.
상기한 기술적 과제를 해결하기 위해 본 발명은, 고로슬래그 미분말 60~80중량%; 석회석 고미분말 15~30중량%; 및, 석고 5~10중량%;으로 구성되되, 상기 석회석 고미분말은, 탄산칼슘(CaCO3)이 주성분으로 75~90 중량% 차지하는 한편, 분말도가 6,000~12,000㎠/g이면서 평균입경이 4~6㎛이고 밀도가 2.6~7g/㎤인 것을 특징으로 하는 시멘트 대체용 프리믹스 혼화재 조성물을 제공한다.In order to solve the above technical problem, the present invention, blast furnace slag fine powder 60-80% by weight; Limestone high fine powder 15-30% by weight; And,
또한, 본 발명은 상기한 시멘트 대체용 프리믹스 혼화재 조성물을 10~35중량% 치환하여 조성하는 것을 특징으로 하는 콘크리트용 결합재 조성물을 제공한다.In addition, the present invention provides a binder composition for concrete, characterized in that the composition by substituting 10 to 35% by weight of the above-mentioned cement substitute premix admixture composition.
본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.
첫째, 고로슬래그 미분말의 장점을 그대로 살리면서 단점인 초기강도 저하문제와 저온특성 저하문제를 개선할 수 있기 때문에 고로슬래그 미분말의 시멘트 대체용으로의 활용성을 극대화할 수 있다. 특히, 고로슬래그 미분말을 주요 성분으로 이용하면서도 저온 양생조건에서도 충분한 초기강도를 확보할 수 있는 혼화재를 제공할 수 있다. 따라서 본 발명에 따른 혼화재를 이용하면 다각도로 우수한 품질의 콘크리트를 제공할 수 있다. First, it is possible to maximize the utilization of the blast furnace slag powder as a cement replacement because it can improve the problems of lowering initial strength and low temperature characteristics while maintaining the advantages of the blast furnace slag fine powder. In particular, while using the blast furnace slag fine powder as a main component can provide a miscible material that can secure sufficient initial strength even under low temperature curing conditions. Therefore, using the admixture according to the present invention can provide a concrete of excellent quality at multiple angles.
둘째, 원재료 중의 하나인 석회석 고미분말을 산업부산물로 제안하기 때문에 자원재활용을 하면서 경제적으로 콘크리트를 생산할 수 있을 뿐만 아니라 환경도 보호할 수 있다.Second, the limestone high fine powder, which is one of the raw materials, is proposed as an industrial by-product, so it can not only produce concrete economically while recycling resources, but also protect the environment.
본 발명에 따른 시멘트 대체용 프리믹스 혼화재 조성물은, 고로슬래그 미분말 60~80중량%; 석회석 고미분말 15~30중량%; 및, 석고 5~10중량%;으로 구성된다.Cement substitute premix admixture composition according to the present invention, blast furnace slag
고로슬래그 미분말은 일반적으로 장기강도가 우수하며 시멘트와 혼합사용할 경우 원가절감 효과는 물론 우수한 반응성 때문에 기존 레미콘에서도 사용되어 왔으며, 본 발명에서는 이와 같은 특성을 그대로 활용하고 있다. 다만, 고로슬래그 미분말은 초기강도가 떨어지는 단점이 있는데, 본 발명에서는 이러한 단점은 석회석 고미분말 및 석고와 함께 사용함으로써 보완하고 있다. Blast furnace slag powder is generally excellent in long-term strength, and when used in combination with cement has been used in the existing ready-mixed concrete because of the cost reduction effect and excellent reactivity, the present invention utilizes the same characteristics as it is. However, the blast furnace slag powder has a disadvantage in that the initial strength falls, this disadvantage is compensated by using in combination with limestone high powder and gypsum.
본 발명에 따른 혼화재 조성물에서 고로슬래그 미분말은 60~80중량% 차지하는데, 이러한 함량범위는 하기의 실험예를 통해 가장 바람직하게 범위로서 결정된 것이다. 다시 말해, 고로슬래그 미분말이 60중량% 이하이면 고로슬래그 미분말의 장점인 내구성과 장기강도 성능이 크게 부각되지 않게 됨은 물론 석회석 고미분말이 상대적으로 증가하여 초기 유동성이 저하되며, 고로슬래그 미분말이 80중량% 이상이면 고로슬래그 미분말의 초기강도 개선효과가 미흡하여 실효성이 떨어진다.The blast furnace slag fine powder in the admixture composition according to the present invention accounts for 60 to 80% by weight, and this content range is most preferably determined as a range through the following experimental example. In other words, when the blast furnace slag powder is 60% by weight or less, the durability and long-term strength performance, which are advantages of the blast furnace slag powder, are not significantly highlighted, and the limestone high powder is relatively increased, and thus the initial fluidity decreases, and the blast furnace slag powder is 80 wt%. If it is more than%, the effect of improving the initial strength of the blast furnace slag fine powder is insufficient and the effectiveness is inferior.
석회석 고미분말은 주성분으로 탄산칼슘(CaCO3)이 75~90중량% 차지하는 한편 분말도가 6,000~12,000㎠/g이면서 평균입경이 4~6㎛이고 밀도 2.6~7g/㎤인 것이며, SiO2, Al2O3, Fe2O3, MgO, SO3, K2O, Na2O 등 미량 성분을 포함하고 있는 것이 특징이다(하기 표 3 참조). 이와 같은 석회석 고미분말은 고분말도에 의한 미립자 충전효과, 미량의 알칼리 자극성 성분에 의한 상승작용으로 고로슬래그 미분말의 초기수화 촉진효과를 나타내게 된다. Limestone fine powder is composed of calcium carbonate (CaCO 3 ) 75-90% by weight, the powder of 6,000 ~ 12,000 ㎠ / g, the average particle diameter of 4 ~ 6㎛, density 2.6 ~ 7g / ㎠, SiO 2 , It is characterized by including trace components such as Al 2 O 3 , Fe 2 O 3 , MgO, SO 3 , K 2 O, Na 2 O (see Table 3 below). Such limestone fine powder exhibits the effect of promoting the initial hydration of the blast furnace slag fine powder by synergistic action by the fine powder filling effect and a small amount of alkali-stimulating component.
특히, 본 발명에서는 석회석 고미분말로 시멘트 제조공정 중에서 원료의 분 쇄 및 이송공정에서 발생하는 비산분진을 백필터로 집진한 것을 사용할 것을 제안한다. 석회석 고미분말을 석회석 원석에서 얻는다면 석회석 원석을 고미분으로 분쇄가공하는 공정 때문에 원가 상승이 불가피하겠지만, 본 발명에서는 석회석 고미분말을 시멘트 제조공정에서 불리하게 작용하는 비산분진을 포집하여 입수하기 때문에 재료의 원가를 오히려 절감할 수 있고 나아가 자원재활용 효과도 기대할 수 있다. In particular, the present invention proposes to use a high concentration of limestone powder collected by the bag filter of fly ash dust generated in the grinding and conveying process of the raw material in the cement manufacturing process. If the limestone fine powder is obtained from limestone ore, the cost increase will be inevitable due to the process of grinding the limestone ore into the fine powder, but in the present invention, the limestone fine powder is obtained by collecting fugitive dust that acts adversely in the cement manufacturing process. Rather, it is possible to reduce costs and to expect resource recycling.
본 발명에 따른 혼화재 조성물에서 석회석 고미분말은 본 발명에 따른 혼화재 조성물에서 고로슬래그 미분말은 15~30중량% 차지하는데, 이러한 함량범위는 하기의 실험예를 통해 가장 바람직하게 범위로서 결정된 것이다. 다시 말해, 석회석 고미분말이 15중량% 이하이면 충전효과에 의한 초기강도 개선효과가 저하되고, 석회석 고미분이 30중량% 이상이면 분말도 증가에 따른 유동성 저하 및 강도저하의 문제점이 발생한다.Limestone high fine powder in the admixture composition according to the present invention, the blast furnace slag fine powder in the admixture composition according to the present invention occupies 15 to 30% by weight, and this content range is most preferably determined as a range through the following experimental example. In other words, when the limestone high fine powder is 15 wt% or less, the initial strength improvement effect is lowered by the filling effect, and when the limestone high fine powder is 30 wt% or more, problems of fluidity decrease and strength decrease due to the increase of the powder level occur.
석고는 수화생성물(에트린자이트) 생성에서 SO4 2-이온의 공급원이 되어 고로슬래그 미분말의 자극재 역할을 한다. Gypsum serves as a source of SO 4 2- ions in the production of hydration products (ethrinzite) and acts as a stimulator for blast furnace slag fine powder.
본 발명에 따른 혼화재 조성물에서 석고는 5~10중량%를 차지하는데, 5중량% 이하이면 고로슬래그 미분말의 자극재 역할이 충분치 못하고 초기강도 개선에 미읍하게 되고, 10중량% 이상이면 초기강도는 크게 증가하나 과잉첨가에 의한 장기강도 하락의 우려가 발생하여 바람직하지 못하다.In the admixture composition according to the present invention, the gypsum occupies 5 to 10% by weight, and if it is 5% by weight or less, the role of the stimulator of the blast furnace slag powder is insufficient, and the initial strength is improved. It is unfavorable because of the increase in long-term strength due to over-addition.
상기와 같은 고로슬래그 미분말, 석회석 고미분말 및 석고의 3성분으로 구성된 프리믹스 혼화재 조성물은 전체 결합재에 대해 10~35중량%로 치환하여 사용하는 것이 바람직한데, 이는 경제적인 배합과 고로슬래그 미분말의 초기강도 개선을 위함이다. 다시 말해, 본 발명에 따른 혼화재 치환량이 10중량% 이하이면 고로슬래그 미분말의 혼입량이 지나치게 작아져 고로슬래그 미분말의 특성과 장점을 충분히 얻을 수 없기 때문에 비경제적인 배합이 되고, 본 발명에 따른 혼화재 치환량이 35중량% 이상이면 석회석 고미분말이 상대적으로 증가하여 유동성 경시변화가 클 뿐만 아니라 초기강도는 물론 28일 이후 장기강도도 저하하는 문제점이 발생한다. 여기서 결합재(binder)라 함은 시멘트와 각종 혼화재를 합한 분체를 의미하며, 본 발명에 따른 혼화재 조성물은 일종의 콘크리트용 혼화재로서 결합재에 포함된다. 이와 같은 혼화재 조성물은 레디믹스드(ready-mixed) 타입의 콘크리트 생산에 바로 적용할 수 있으며, 이때 프리믹스 혼화재 조성물은 사전이 미리 배합되어 하나의 사일로(silo)에 투입된다.The premix admixture composition consisting of the above three types of blast furnace slag powder, limestone high powder and gypsum is preferably substituted with 10 to 35% by weight of the total binder, which is economical formulation and initial strength of the blast furnace slag powder. For improvement. In other words, when the amount of admixture of the admixture according to the present invention is 10% by weight or less, the amount of admixture of the blast furnace slag fine powder becomes too small, so that the characteristics and advantages of the blast furnace slag fine powder are not sufficiently obtained, resulting in an uneconomical mixture and the amount of admixture according to the present invention. If the weight is more than 35% by weight, the limestone high fine powder is relatively increased, so that the change in fluidity over time is not only large, but also the initial strength and the long-term strength after 28 days also decrease. Here, "binder" means a powder in which cement and various admixtures are combined, and the admixture composition according to the present invention is included in the binder as a kind of admixture for concrete. Such admixture composition can be directly applied to the production of ready-mixed type concrete, in which the premix admixture composition is pre-mixed and put into one silo.
이하에서는 실험예에 의거하여 본 발명에 따른 혼화재 조성물이 시멘트 대체용 혼화재로 이용가능한지에 대해 살펴본다. 다만, 하기의 실험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다. Hereinafter, look at whether the admixture composition according to the present invention can be used as a cement substitute admixture based on the experimental example. However, the following experimental examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
[실험예 1] 혼화재의 바람직한 조성 도출을 위한 모르타르 품질특성 실험[Experimental Example 1] Mortar Quality Characteristics Test for Derivation of Desirable Composition of Admixtures
(1)혼화재 조성물 재료(1) admixture composition materials
①고로슬래그 미분말①Blast furnace slag fine powder
본 실험예에서 이용한 고로슬래그 미분말의 화학적 특성 및 물리적 특성은 하기의 [표 1] 및 [표 2]와 같다. Chemical and physical properties of the blast furnace slag fine powder used in the present experimental example are as shown in Table 1 and Table 2.
(㎠/g)Specific surface area
(
②석회석 고미분말② limestone fine powder
본 실험예에서 이용한 석회석 고미분말은 시멘트 제조공정 중에서 원료의 분쇄 및 이송공정에서 발생하는 비산분진을 백필터로 집진한 것으로, 하기 [표 3]과 같은 화학적 특성을 가지며 그 분말도(Blaine)가 7,850㎠/g인 것이다. Limestone high fine powder used in this Experimental Example is a dust collection of dust scattered in the process of crushing and transporting raw materials in the cement manufacturing process with a bag filter, and has the chemical properties as shown in the following [Table 3]. It is 7,850 cm <2> / g.
③석고(CaSO42H2O)③ Gypsum (CaSO 4 2H 2 O)
본 실험예에서 이용한 석고는 하기 [표 4]와 같은 화학적 특성을 가지는 것으로 그 분말도(Blaine)가 4,760 ㎠/g 수준의 것이다. Gypsum used in the present experimental example has the chemical properties as shown in the following [Table 4] and the powder degree (Blaine) is 4,760
(2)실험방법(2) Experimental method
상기의 재료를 가지고 본 발명에 따른 혼화재 조성물의 최적 조합 인자를 도출할 수 있도록 실험계획을 수립하였다. 즉, 하기 [표 5]와 [표 6]에서와 같이, 일반 보통 포틀랜드 시멘트만을 이용한 Plain, 혼화재를 고로슬래그 미분말(BFS)로 하여 각각 25%, 50% 치환한 SBF1과 MBF1, SBF1과 MBF1에서 혼화재를 석회석 고미분말과 석고로 조정하면서 치환한 SBF2~8과 MBF2~8에 대한 실험계획을 수립하였다.Experimental plan was established to derive the optimal combination factor of the admixture composition according to the present invention with the above materials. That is, as shown in the following [Table 5] and [Table 6], SBF1 and MBF1, SBF1 and MBF1 in which plain and admixtures using only ordinary portland cement were replaced with blast furnace slag fine powder (BFS) by 25% and 50%, respectively Experimental plans for SBF2 ~ 8 and MBF2 ~ 8 were prepared by adjusting the admixture with limestone fine powder and gypsum.
한편, 모르타르 시험체 제작 및 양생은 ISO 679(Method of testing cement- Determination of strength)에 의거하여 실시하였다.Meanwhile, the mortar test specimen was manufactured and cured according to ISO 679 (Method of testing cement- Determination of strength).
(g)cement
(g)
(g)sand
(g)
(g)water
(g)
(g)
Admixture
(g)
미분말Blast furnace slag
Fine powder
고미분말Limestone
Fine powder
(R=
25%)
S
(R =
25%)
모래: ISO 표준사
물: KS F 4009에 규정된 상수도수Cement: Class 1 Common Portland Cement
Sand: ISO Standard Yarn
Water: Tap water specified in KS F 4009
(g)cement
(g)
(g)sand
(g)
(g)water
(g)
(g)
Admixture
(g)
미분말Blast furnace slag
Fine powder
고미분말Limestone
Fine powder
(R=
50%)
M
(R =
50%)
모래: ISO 표준사
물: KS F 4009에 규정된 상수도수Cement: Class 1 Common Portland Cement
Sand: ISO Standard Yarn
Water: Tap water specified in KS F 4009
(3)실험결과(3) Experimental results
상기 [표 5]와 [표 6]의 배합에 따른 모르타르의 물성을 평가한 결과, 하기 [표 7]과 같이 확인되었다.As a result of evaluating the physical properties of the mortar according to the combination of [Table 5] and [Table 6], it was confirmed as shown in [Table 7].
(㎜)Flow
(Mm)
한편, 상기 [표 7]에서와 같은 모르타르의 물성 결과를 정리하면 도 1 내지 도 3과 같다. On the other hand, the physical properties of the mortar as shown in the above [Table 7] summarized as shown in Figs.
도 1은 플로우 값을 보여주는데, 전반적으로 혼화재의 치환비율 25%일 때보다 치환비율 50%일 때의 모르타르 플로우가 큰 경향을 나타내고 있다. 다만, 어느 경우에서는 충분한 유동성을 확보하고 있는 것으로 확인되는 바, 사용상 문제되지 않을 것이다. Figure 1 shows the flow value, the overall mortar flow tends to be larger when the substitution ratio is 50% than when the substitution ratio of the admixture is 25%. However, in some cases, it is confirmed that sufficient fluidity is secured, so it will not be a problem in use.
도 2는 재령별 모르타르 휨강도를 보여주는데, SBF3가 Plain 대비 초기강도 개선효과가 가장 뛰어난 것은 물론 모든 재령에서도 우수한 것으로 나타났으며, 나머지 경우에는 일부 재령에서 Plain 대비 저하되는 것으로 나타났다. Figure 2 shows the mortar bending strength by age, SBF3 was the most excellent initial strength improvement effect compared to plain as well as all ages, and in other cases was shown to be lower than plain at some ages.
도 3은 재령별 모르타르 압축강도를 보여주는데, SBF3가 모든 재령에서 Plain 대비 우수한 것으로 나타나고, 나머지 경우에는 일부 재령에서 Plain 대비 저하되는 것으로 나타났다.Figure 3 shows the mortar compressive strength by age, SBF3 is superior to plain at all ages, and in other cases it was shown to be lower than plain at some ages.
결국, 고로슬래그 미분말, 석회석 고미분말, 석고의 최적 조합 비율 도출을 위한 모르타르의 휨강도 및 압축강도에 대한 강도 발현특성을 종합적으로 고찰해 보면, SBF3이 유일하게 초기 재령 및 중장기 재령에서의 휨강도 및 압축강도가 Plain 대비 동등 수준 이상으로 나타났다. 이에, 본 발명에서는 이러한 결과를 참고하여 60~80중량%의 고로슬래그 미분말, 15~30중량%의 석회석 고미분말, 5~10중량%의 석고로 구성된 혼화재 조성물을 바람직한 최적범위로 제안한다. In conclusion, SBF3 is the only flexural strength and compression at early age and medium and long-term age. The strength was higher than the plain level. Thus, the present invention proposes a mixed material composition composed of 60 to 80% by weight of blast furnace slag fine powder, 15 to 30% by weight of limestone high powder, and 5 to 10% by weight of gypsum in a preferred optimum range.
[실험예 2] 혼화재의 바람직한 사용량 도출을 위한 모르타르 품질특성 실험[Experimental Example 2] Mortar quality characteristics test for deriving desirable amount of admixture
(1)실험방법(1) Experimental method
상기 [실험예 1]에서 도출한 최적 조성의 혼화재 조성물 SBF3로서 본 발명에 따른 혼화재 조성물의 바람직한 사용량(치환량)을 도출할 수 있도록 실험계획을 수립하였다. 즉, 하기 [표 11]에서와 같이, 일반 보통 포틀랜드 시멘트만을 이용한 Plain, 혼화재를 고로슬래그 미분말 단독으로 하면서 각각 10%, 20%, 30% 치환한 ABF1, BBF1 및 CBF1, 혼화재를 상기 [실험예 1]에서 도출한 최적 조성의 혼화재 조성물 SBF3로 하여 각각 10%, 20%, 30% 치환한 ABF2, BBF2 및 CBF2에 대한 실험계획을 수립하였다.As the mixed material composition SBF3 of the optimum composition derived in [Experimental Example 1], an experimental plan was established to derive the preferred amount of use (substitution amount) of the mixed material composition according to the present invention. That is, as shown in the following [Table 11], ABF1, BBF1 and CBF1, admixtures substituted with 10%, 20%, and 30%, respectively, using plain plain admixture using only ordinary portland cement as blast furnace slag fine powder alone, [Experimental Example] Experimental plans for ABF2, BBF2, and CBF2 substituted with 10%, 20%, and 30%, respectively, were made with the mixed composition SBF3 having the optimum composition derived from 1].
한편, 실험재료와 실험방법은 상기 [실험예 1]과 동일하게 하였다.On the other hand, the experimental materials and the test method were the same as in [Experimental Example 1].
(g)cement
(g)
(g)sand
(g)
(g)water
(g)
(g)Admixture
(g)
미분말Blast furnace slag
Fine powder
고미분말Limestone
Fine powder
(R=10%)A
(R = 10%)
(R=20%)B
(R = 20%)
(R=30%)C
(R = 30%)
(2)실험결과(2) Experimental results
상기 [표 8]의 배합에 따른 모르타르의 물성을 평가한 결과, 하기 [표 9]와 같이 확인되었다.As a result of evaluating the physical properties of mortar according to the formulation of [Table 8], it was confirmed as shown in [Table 9].
(㎜)Flow
(Mm)
(20℃)Room temperature
(20 ℃)
(10℃)Low temperature
(10 ℃)
한편, 상기 [표 9]에서와 같은 모르타르의 물성 결과를 정리하면 도 4 내지 도 8과 같다. On the other hand, the physical properties of the mortar as shown in Table 9 summarized as shown in Figs.
도 4는 플로우 값을 보여주는데, 전반적으로 어느 경우에서는 충분한 유동성을 확보하고 있는 것으로 확인된다. 4 shows the flow values, which in some cases are confirmed to have sufficient fluidity.
도 5와 도 6은 상온에서의 재령별 모르타르 휨강도와 압축강도를 보여주는데, 전체적으로 Plain 또는 고로슬래그 미분말을 단독으로 치환한 ABF1, BBF1, CBF1에 비하여 본 발명에 따른 혼화재 조성물을 치환한 ABF2, BBF2, CBF2가 휨강도 및 압축강도 발현특성이 현저히 우수한 것으로 확인된다. 5 and 6 show the mortar bending strength and compressive strength of each age at room temperature, ABF2, BBF2, BBF2, which substituted the admixture composition according to the present invention as compared to ABF1, BBF1, CBF1 substituted with plain or blast furnace slag fine powder as a whole CBF2 was found to be remarkably superior in the characteristics of flexural strength and compressive strength.
도 7과 도 8은 상온과 저온에서의 3일과 7일 모르타르 휨강도와 압축강도를 보여주는데, 본 발명에 따른 혼화재 조성물을 치환한 경우는 Plain 대비 동등 수준이었지만 고로슬래그 미분말을 단독으로 치환한 경우보다 강도 발현특성이 양호한 것으로 나타났다. 특히, 저온환경에서의 강도발현은 고로슬래그 미분말을 단독으로 사용한 경우와 비교하여 상대적으로 크게 나타나 저온환경에서의 조기강도 개선효과가 우수함을 확인할 수 있었다. 7 and 8 show the 3 and 7 day mortar bending strength and compressive strength at room temperature and low temperature, the case of replacing the admixture composition according to the present invention was equivalent to that of plain, but stronger than when the blast furnace slag fine powder alone Expression characteristics were found to be good. In particular, the strength expression in the low temperature environment is relatively large compared to the case of using the blast furnace slag powder alone, it was confirmed that the early strength improvement effect is excellent in the low temperature environment.
결국, 고로슬래그 미분말, 석회석 고미분말, 석고로 구성된 혼화재의 바람직한 사용량 도출을 위한 모르타르의 휨강도 및 압축강도에 대한 강도 발현특성을 종합적으로 고찰해 보면, ABE2와 BBF2, 특히 BBF2가 초기 재령 및 중장기 재령에서의 휨강도 및 압축강도가 Plain 대비 동등 수준 이상으로 나타났다. 이에, 본 발명에서는 이러한 결과를 참고하여 고로슬래그 미분말, 석회석 고미분말, 석고로 구성된 혼화재 조성물을 전체 결합재에 대하여 10~35중량% 치환할 것을 제안한다. In conclusion, the strength expression characteristics of the mortar's flexural and compressive strengths for deriving the desired amount of admixture composed of blast furnace slag powder, limestone powder, and gypsum were investigated. Flexural strength and compressive strength at were higher than that of plain. Thus, the present invention proposes to replace the admixture composition consisting of blast furnace slag fine powder, limestone high fine powder,
[실험예 3] 혼화재 조성물의 콘크리트 적용특성 검토실험Experimental Example 3 Examination of Concrete Application Characteristics of Admixture Composition
(1)실험방법(1) Experimental method
본 발명에 따른 혼화재 조성물이 콘크리트에 바람직하게 적용할 수 있는지 확인할 수 있도록 실험계획을 수립하였다. 즉, 하기 [표 10]에서와 같이, 일반 보통 포틀랜드 시멘트만을 이용한 P-C(Plain Concrete), 혼화재를 고로슬래그 미분말 단독으로 하면서 20% 치환한 B-C(Blast Furnace Slag Concrete), 혼화재를 상기 [실험예 1]에서 도출한 최적 조성의 혼화재 조성물 SBF3로 하여 20% 치환한 M-C(Mix Concrete)에 대한 실험계획을 수립하였다.An experimental plan was established to confirm whether the admixture composition according to the present invention can be preferably applied to concrete. That is, as shown in Table 10 below, PC (Plain Concrete) using only ordinary ordinary Portland cement, BC (Blast Furnace Slag Concrete) substituted with blast furnace slag
(%)W / B
(%)
(㎜)G max
(Mm)
(%)S / a
(%)
감수제AE
Water reducing agent
물: KS F 4009에 규정된 상수도수
잔골재: 해사(조립률 2.23)
굵은골재: 부순골재(조립률 6.83)
AE감수제: 나프탈렌계 고성능 AE감수제(표준형)Cement: Class 1 Common Portland Cement
Water: Tap water specified in KS F 4009
Fine Aggregate: Maritime (assembly 2.23)
Coarse aggregate: Crushed aggregate (assembly 6.83)
AE water reducing agent: Naphthalene-based high performance AE water reducing agent (standard type)
한편, 콘크리트 혼합은 20±2℃의 실험실에서 강제식 팬믹서를 이용하여 잔골재, 결합재(시멘트, 고로슬래그 미분말, 혼화재), 굵은골재를 투입하여 30초간 건비빔한 후 AE감수제를 희석한 배합수를 넣고 90초간 혼합하여 총 120초간에 걸쳐 혼합을 완료하는 것으로 하였다. 시험체의 제작은 각각의 시험항목별 한국산업규격(KS) 기준에 따라서 실시하였다. 콘크리트의 물성특성을 확인하기 위한 구체적은 실험방법은 하기 [표 11]과 같다.On the other hand, concrete mixing is mixed with fine aggregate, cement (blast furnace slag fine powder, admixture) and coarse aggregate for 30 seconds using a forced fan mixer in a laboratory at 20 ± 2 ℃, and then dilute AE water reducing agent. The mixture was added for 90 seconds to complete the mixing for a total of 120 seconds. The fabrication of test specimens was carried out in accordance with the Korean Industrial Standard (KS) for each test item. Specific test methods for checking the properties of the concrete properties are shown in Table 11 below.
(2)침투저항성 시험 끝난 시험체 2분할->KS M ISO 6353-2 R 28
규정의 질산 0.1N수용액 분무->염소이온 침투깊이 측정
(1) Applying potential difference to specimen-> forced passage of chlorine-ion concrete-> concrete penetration resistance evaluation by passing charge
(2) Penetration resistance test finished
Nitric Acid 0.1N Aqueous Solution Spray-> Determination of Chlorine Ion Penetration Depth
(2)실험결과(2) Experimental results
상기 [표 10]의 배합에 따른 콘크리트를 상기 [표 11]의 방법에 따라 물성을 평가한 결과, 하기 [표 12]와 [표 13]에서와 같이 확인되었다.As a result of evaluating the physical properties of the concrete according to the formulation of [Table 10] according to the method of [Table 11], it was confirmed as in the following [Table 12] and [Table 13].
(10℃)Low temperature
(10 ℃)
(×103 Columbs)Passing charge
(× 10 3 Columbs)
(㎜)Penetration depth
(Mm)
한편, 상기 [표 12]와 [표 13]에서와 같은 콘크리트의 물성결과를 정리하면 도 9 내지 도 13과 같다.On the other hand, the physical properties of the concrete as shown in Table 12 and Table 13 are summarized as shown in Figures 9 to 13.
도 9는 콘크리트의 슬럼프 및 경시변화 특성을 나타내고 있는데, 보는 바와 같이 혼합직후의 콘크리트 슬럼프는 B-C가 가장 높은 것으로 측정되었다. 비록 본 발명에 따른 혼화재 조성물을 이용한 콘크리트 M-C는 P-C에 비하여 감소된 특성을 보이고 있지만, KS F 4009 : 2004(레디믹스드 콘크리트)에서 규정하고 있는 슬럼프 8㎝이상에서의 허용오차 ±2.5㎝의 범위(목표 슬럼프 대비 ±13.8% 이내) 내에 속하고 있기 때문에 적용상에는 문제되지 않는다. Figure 9 shows the slump of the concrete and the change over time, as shown, the concrete slump immediately after mixing was measured to have the highest B-C. Although the concrete MC using the admixture composition according to the present invention shows a reduced characteristic compared to the PC, the tolerance of ± 2.5cm in the slump of more than 8cm prescribed in KS F 4009: 2004 (Ready Mixed Concrete) (Within ± 13.8% of the target slump), it does not matter in application.
도 10은 콘크리트의 공기량 및 경시변화 특성을 나타내고 있는데, 보는 바와 같이 혼합직후의 콘크리트 공기량은 P-C가 가장 높은 것으로 측정되었다. 비록 본 발명에 따른 혼화재 조성물을 이용한 M-C의 공기량은 P-C에 비하여 감소되는 것으로 나타났지만, 목표 공기량인 4.5±1.5%를 만족하는 것으로 측정되었기 때문에 적용상에는 문제되지 않는다. 10 shows the air content and change over time of the concrete, as shown, the concrete air amount immediately after mixing was measured to have the highest P-C. Although the air amount of M-C using the admixture composition according to the present invention was shown to be reduced compared to P-C, it is not a problem in application because it was measured to satisfy the target air amount of 4.5 ± 1.5%.
도 11은 재령별 콘크리트의 압축강도 특성을 나타내고 있는데, M-C는 초기 재령에서 P-C와 비하여 동등 수준 내지 그 이상의 강도가 발현되고 중장기 재령에서는 P-C에 비하여 높게 발현되는 것으로 측정되었는 바, M-C는 초기 재령 및 중장기 재령에 있어 압축강도의 확보에 양호한 것으로 평가할 수 있다. 또한, 도 12는 콘크리트의 저온(10℃) 양생에 따른 압축강도 발현특성을 보여주는데, 저온 양생한 콘크리트의 압축강도는 전반적으로 동일 수준의 상온 양생 콘크리트의 압축강도에 비하여 -26.1~-36.2% 정도 낮은 것으로 측정되지만, M-C가 P-C와 비슷하면서도 B-C에 비해 우수한 수준으로 확인되는 바, 저온환경에서의 조기강도 개선효과가 우수하여 강도면에서도 M-C의 활용가능성은 매우 양호한 수준으로 평가할 수 있다.Figure 11 shows the compressive strength characteristics of concrete by age, MC was measured to express the same level or more strength than the PC in the early age and higher than the PC in the medium and long-term age, MC is the early age and It can be evaluated as being good for securing the compressive strength in the medium to long term age. In addition, Figure 12 shows the characteristics of the compressive strength according to the low temperature (10 ℃) curing of the concrete, the compressive strength of the low-temperature curing concrete is -26.1 ~ -36.2% compared to the compressive strength of the room temperature curing concrete of the same overall Although it is measured to be low, MC is similar to PC, but it is confirmed to be superior to BC, and it is excellent in early strength improvement effect in low temperature environment, so the utilization of MC can be evaluated as a very good level in terms of strength.
도 13은 염소이온 침투저항에 따른 통과전하량과 염소이온 침투깊이를 나타내고 있는데, 보는 바와 같이 M-C는 P-C와 B-C에 비하여 염화물 침투저항 성능이 뚜렷하게 향상되는 것으로 확인된다. Figure 13 shows the amount of penetration charge and chlorine ion penetration depth according to the chlorine ion penetration resistance, as shown in the M-C it is confirmed that the chloride penetration resistance performance is significantly improved compared to P-C and B-C.
결국, 고로슬래그 미분말, 석회석 고미분말, 석고로 구성된 혼화재는 결합재의 하나로서 콘크리트에 바람직하게 적용할 수 있다고 하겠다. After all, the admixture composed of blast furnace slag powder, limestone high powder, and gypsum can be suitably applied to concrete as one of the binders.
도 1 내지 도 3은 혼화재 조성물의 조성별 모르타르 물성평가결과(슬럼프, 휨강도, 압축강도)를 보여준다.1 to 3 show mortar property evaluation results (slump, flexural strength, and compressive strength) for each composition of the admixture composition.
도 4 내지 도 8은 혼화재 조성물의 사용량별 모르타르 물성평가결과(슬럼프, 휨강도, 압축강도)를 보여준다.4 to 8 show mortar physical properties evaluation results (slump, flexural strength, compressive strength) for each usage amount of the admixture composition.
도 9 내지 도 13은 혼화재 조성물의 사용대비 콘크리트 물성평가결과(슬럼프, 공기량, 압축강도, 염소이온 통과전하량, 염화물 침투깊이)를 보여준다.9 to 13 show concrete property evaluation results (slump, air amount, compressive strength, chlorine ion passage charge amount, chloride penetration depth) of the admixture composition.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20080098196A KR101007928B1 (en) | 2008-10-07 | 2008-10-07 | Premix admixture composition for cement replacement by improving the physical properties of blast furnace slag powder and binder composition for concrete comprising the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20080098196A KR101007928B1 (en) | 2008-10-07 | 2008-10-07 | Premix admixture composition for cement replacement by improving the physical properties of blast furnace slag powder and binder composition for concrete comprising the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20100039006A KR20100039006A (en) | 2010-04-15 |
| KR101007928B1 true KR101007928B1 (en) | 2011-01-14 |
Family
ID=42215643
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR20080098196A Active KR101007928B1 (en) | 2008-10-07 | 2008-10-07 | Premix admixture composition for cement replacement by improving the physical properties of blast furnace slag powder and binder composition for concrete comprising the same |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR101007928B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102188071B1 (en) | 2019-11-05 | 2020-12-07 | 이상준 | Concrete composition with recycled aggregate |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR3051461B1 (en) | 2016-05-18 | 2018-05-18 | Saint-Gobain Weber | BINDER BASED ON CALCIUM ALUMINOSILICATE DERIVATIVES FOR CONSTRUCTION MATERIALS |
| KR102265152B1 (en) * | 2020-11-05 | 2021-06-15 | 주식회사 위드엠텍 | Eco-friendly Binder Composition for Construction |
| KR102787493B1 (en) * | 2021-11-15 | 2025-03-31 | (주)삼우아이엠씨 | Eco-friendly concrete composition |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20010074108A (en) * | 2001-02-21 | 2001-08-04 | 김동열 | Cement admixture composition based on slag powder |
| KR20030008264A (en) * | 2001-07-19 | 2003-01-25 | 대한시멘트 주식회사 | Blast-furnace slag cement composition improved initial compression |
| KR100403831B1 (en) * | 2003-03-26 | 2003-11-01 | 주식회사한국포조텍 | Crack retardant mixture made from flyash and its application to concrete |
| KR20030092712A (en) * | 2002-05-31 | 2003-12-06 | 삼성물산 주식회사 | concrete composite mixed with limestone powder |
-
2008
- 2008-10-07 KR KR20080098196A patent/KR101007928B1/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20010074108A (en) * | 2001-02-21 | 2001-08-04 | 김동열 | Cement admixture composition based on slag powder |
| KR20030008264A (en) * | 2001-07-19 | 2003-01-25 | 대한시멘트 주식회사 | Blast-furnace slag cement composition improved initial compression |
| KR20030092712A (en) * | 2002-05-31 | 2003-12-06 | 삼성물산 주식회사 | concrete composite mixed with limestone powder |
| KR100403831B1 (en) * | 2003-03-26 | 2003-11-01 | 주식회사한국포조텍 | Crack retardant mixture made from flyash and its application to concrete |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102188071B1 (en) | 2019-11-05 | 2020-12-07 | 이상준 | Concrete composition with recycled aggregate |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20100039006A (en) | 2010-04-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101247707B1 (en) | Additive for cement, mortar and concrete comprising ferronickel slag | |
| KR101078951B1 (en) | Blast furnace slag fine powder composition and concrete composition comprising the same | |
| KR20120066769A (en) | Manufacture and composition of high strength concrete using fine aggregate from fe-ni slag | |
| KR101201924B1 (en) | High Functional Binder Composition for Carbon Dioxide Reduction Displaying Properties of Early Strength | |
| KR101018009B1 (en) | Manufacturing Method of Cemented Concrete Using Waste Glass Fine Powder and Fly Ash as Binder | |
| KR101007928B1 (en) | Premix admixture composition for cement replacement by improving the physical properties of blast furnace slag powder and binder composition for concrete comprising the same | |
| KR102485927B1 (en) | Prepartion method of low heated mixed cement using ferro-nickel slag powder and concrete composition prepared using the same | |
| TW201512408A (en) | Granulated blast furnace slag for cement raw material and sorting method thereof | |
| KR101308388B1 (en) | Compound gypsum composition for ground granulated blast-furance slag and method for manufacturing of the same | |
| KR101856380B1 (en) | Concrete Composition Using Utilizing Liquid Activator | |
| CN1167642C (en) | Cement high-activity fine steel slag powder mixed material and method for preparing high-grade cement | |
| KR101286445B1 (en) | Manufacturing method of magnesium fluorosilicate using ferro-nickel slag by mechanochemistry | |
| CN113277793A (en) | Method for manufacturing set cement by using regenerated micro powder | |
| KR101015066B1 (en) | High Strength Light Weight Non-Shrink Filling Mortar | |
| KR102146455B1 (en) | Blast furnace slag-based compositon and hardened product thereof | |
| KR20110113329A (en) | Method for producing antibacterial and deodorant functional composition using ferronickel slag. | |
| KR101861228B1 (en) | Concrete composition with improved early strength | |
| KR101146373B1 (en) | High-strenght centrifugal concrete powder mineral admixture composition | |
| KR20160096325A (en) | Cement brick having gypsum wastes and manufacturing process thereof | |
| KR100962319B1 (en) | Compound for concrete admixture using slag dust | |
| Ogunbode et al. | Determining the properties of green laterized concrete with fly ash for sustainable solid waste management | |
| KR20040065100A (en) | Manufacturing Method of Recycled Aggregate Concrete | |
| KR102200319B1 (en) | Cement composition using bottom ash | |
| KR101989503B1 (en) | Precast light weight concrete and manufacture method thereof | |
| KR100862917B1 (en) | Cement clinker and cement manufacturing method using LCD waste glass, LCD waste glass cement manufactured by the method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20081007 |
|
| PA0201 | Request for examination | ||
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20100707 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20110104 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20110106 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20110106 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| FPAY | Annual fee payment |
Payment date: 20131125 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
Payment date: 20131125 Start annual number: 4 End annual number: 4 |
|
| FPAY | Annual fee payment |
Payment date: 20141114 Year of fee payment: 5 |
|
| PR1001 | Payment of annual fee |
Payment date: 20141114 Start annual number: 5 End annual number: 5 |
|
| FPAY | Annual fee payment |
Payment date: 20170106 Year of fee payment: 7 |
|
| PR1001 | Payment of annual fee |
Payment date: 20170106 Start annual number: 7 End annual number: 7 |
|
| FPAY | Annual fee payment |
Payment date: 20190107 Year of fee payment: 9 |
|
| PR1001 | Payment of annual fee |
Payment date: 20190107 Start annual number: 9 End annual number: 9 |
|
| FPAY | Annual fee payment |
Payment date: 20200102 Year of fee payment: 10 |
|
| PR1001 | Payment of annual fee |
Payment date: 20200102 Start annual number: 10 End annual number: 10 |
|
| PR1001 | Payment of annual fee |
Payment date: 20201031 Start annual number: 11 End annual number: 11 |
|
| PR1001 | Payment of annual fee |
Payment date: 20211220 Start annual number: 12 End annual number: 12 |
|
| PR1001 | Payment of annual fee |
Payment date: 20231206 Start annual number: 14 End annual number: 14 |
|
| PR1001 | Payment of annual fee |
Payment date: 20241218 Start annual number: 15 End annual number: 15 |