KR101059413B1 - Metal Structure, Method for Manufacturing Metal Structure, and Metal Structure Catalyst for Autothermal Reforming Catalyst Layer for Synthesis of Fischer-Tropsch Liquefaction Process - Google Patents
Metal Structure, Method for Manufacturing Metal Structure, and Metal Structure Catalyst for Autothermal Reforming Catalyst Layer for Synthesis of Fischer-Tropsch Liquefaction Process Download PDFInfo
- Publication number
- KR101059413B1 KR101059413B1 KR1020090039582A KR20090039582A KR101059413B1 KR 101059413 B1 KR101059413 B1 KR 101059413B1 KR 1020090039582 A KR1020090039582 A KR 1020090039582A KR 20090039582 A KR20090039582 A KR 20090039582A KR 101059413 B1 KR101059413 B1 KR 101059413B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- metal structure
- catalyst layer
- fischer
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/348—Electrochemical processes, e.g. electrochemical deposition or anodisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/20—Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
- B01J2523/24—Strontium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/20—Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
- B01J2523/25—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/30—Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
- B01J2523/37—Lanthanides
- B01J2523/3712—Cerium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
Abstract
본 발명은 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체, 금속구조체의 제조방법 및 금속구조체촉매에 관한 것으로, 그 목적은 주된 반응으로 메탄을 수소와 일산화탄소로 전환하면서, 피셔-트롭쉬 공정에 적합한 수소와 일산화탄소 비율(H2/CO≒2)을 얻는 자열개질 장치 촉매층에 사용되는 금속구조체, 금속구조체의 제조방법 및 금속구조체촉매를 제공하는 데 있다.The present invention relates to a metal structure for the autothermal reforming catalyst layer, a method for producing a metal structure, and a metal structure catalyst for syngas production for the Fischer-Tropsch liquefaction process, the object of which is to convert methane into hydrogen and carbon monoxide in the main reaction, The present invention provides a metal structure, a method for producing a metal structure, and a metal structure catalyst for use in an autothermal reformer catalyst layer obtaining a hydrogen and carbon monoxide ratio (H 2 / CO ≒ 2) suitable for the Fischer-Tropsch process.
본 발명의 구성은 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체에 있어서, 금속지지체인 금속 모노리스와; 금속모노리스 표면에 코팅되어 활성종 촉매금속이 담지되는, 감마 알루미나(γ-alumina) 100 중량부에 대하여 마그네슘 옥사이드(MgO) 30 ~ 60 중량부, 증진제인 산화물 형태의 세리윰(Ce) 34.7~38.6 중량부, 바륨(Ba) 8.8~14 중량부, 스트론튬(Sr) 1.1~2 중량부로 조성된 금속산화물;로 구성된 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체 및 그 제조방법 그리고 금속구조체에 팔라듐이 담지된 금속구조체촉매를 특징으로 한다.According to an aspect of the present invention, there is provided a metal structure for an autothermal reforming catalyst layer for preparing a synthesis gas for a Fischer-Tropsch liquefaction process, the metal support being a metal monolith; 30 to 60 parts by weight of magnesium oxide (MgO) based on 100 parts by weight of gamma alumina coated on the surface of the metal monolith to carry the active species catalyst metal, and cerium in the form of oxide as a promoter 34.7 to 38.6 Part by weight, 8.8 to 14 parts by weight of barium (Ba), 1.1 to 2 parts by weight of strontium (Sr); Metal structure for the autothermal reforming catalyst layer for the synthesis of the fischer-Tropsch liquefaction process composed of metal oxide and its preparation And a metal structure catalyst having palladium supported on the metal structure.
금속산화물, 마그네슘 옥사이드, 팔라듐, 자열개질, 금속 구조체 Metal Oxide, Magnesium Oxide, Palladium, Autothermal Modification, Metal Structure
Description
본 발명은 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질(autothermal reforming) 촉매층용 금속구조체, 금속구조체의 제조방법 및 금속구조체촉매에 관한 것으로, 자세하게는 활성종인 금속 촉매가 열적 안정성을 가지게 하는 증진제가 포함된 금속구조체 및 이 금속구조체에 금속촉매가 워시코팅되어 담지된 금속구조체촉매와 금속촉매가 반응 도중에 덩어리지는 것을 물리적으로 방지하게끔 금속구조체의 표면을 처리하는 제조방법에 관한 것이다.The present invention relates to a metal structure for an autothermal reforming catalyst layer, a method for producing a metal structure, and a metal structure catalyst for preparing a synthesis gas for a Fischer-Tropsch liquefaction process. Specifically, the active metal catalyst has thermal stability. The present invention relates to a metal structure including an enhancer, and a method of treating the surface of the metal structure to physically prevent the metal catalyst and the metal catalyst supported by the wash coating on the metal structure from physically agglomerating during the reaction.
연료개질기(reformer)는 연료전지 및 소형 수소발생장치 외에도 합성가스 제조를 위한 천연가스 및 메탄의 개질장치로 수요가 늘고 있다. 특히 소형 및 원거리 가스전(stranded 또는 remote gas well)등 경제적인 이유로 개발이 어려워 태워지고 있는 가스전의 개발에 고유가 및 온실가스 배출 규제 등이 강화됨에 따라 사용 가능성이 증대되고 있다. In addition to fuel cells and small hydrogen generators, fuel reformers are in demand as reformers for natural gas and methane for syngas production. In particular, the development of gas fields, which are difficult to develop due to economic reasons such as small and remote gas wells (stranded or remote gas wells), is being used, and the possibility of their use is increasing due to the tightening of high oil prices and GHG emission regulations.
2004년 기준 태워지는 가스양이 하루에 100억 ft3 규모로 이 양은 유럽연합의 하루 사용량의 25% 또는 미국 내 하루 가스 사용량의 17% 정도 규모이다. 현재 매장량 기준으로 1조 ft3(1 Trillion cubic feet, Tcf)이하를 소형 가스전으로 분류할 때, 규모에 따라 약 1,400여 가스전이 전 세계적으로 산재되어 있는 것으로 조사되었다. As of 2004, the amount of gas burned was 10 billion ft 3 per day, which is 25% of the EU's daily use or 17% of the US's use of gas per day. When classifying under the current criteria reserves 1 trillion ft 3 (1 Trillion cubic feet, Tcf) with a small gas fields, gas fields, depending on the size of about 1,400 that were investigated are scattered around the world.
천연가스 주성분인 메탄은 SP3 혼성궤도 형성에 의해 메탄의 탄소 원자와 수소원자의 결합에너지가 매우 크기 때문에, 메탄을 활성화시키기 위해서는 매우 큰 에너지가 필요하다.Since methane, which is the main component of natural gas, has a very large binding energy of carbon atoms and hydrogen atoms of methane by forming an SP 3 hybrid orbit, very large energy is required to activate methane.
이러한 메탄을 이용하여 연료를 개질하는 방법에는 여러 가지 방법이 있는데, 일반적으로 1)수증기 개질(Steam reforming), 2)부분 산화 개질(Partial reforming), 3)자열 개질(Autothermal reforming) 방법을 이용한다.There are various methods of reforming fuel using methane. Generally, 1) steam reforming, 2) partial reforming, and 3) autothermal reforming are used.
상기 수증기 개질 방법의 경우, 1300도 이상에서 촉매 없이도 반응을 일으키지만, Pt나 Rh와 같은 촉매를 사용하면 800도에서 반응이 일어나며, 이때 생산되는 합성가스의 수소와 일산화탄소 비율은 대략 3으로 알려져 있다. 그러나 이 방법은 필요한 스팀의 양이 메탄의 3배 정도이고, 강한 흡열반응이라 에너지 소모가 크며, 수소와 일산화탄소 비율이 피셔-트로쉬용 합성가스로 적절치 않다. In the case of the steam reforming method, the reaction occurs even without a catalyst at 1300 ° C. or higher, but when a catalyst such as Pt or Rh occurs, the reaction occurs at 800 ° C. The hydrogen and carbon monoxide ratio of the produced synthesis gas is known to be about 3. . However, this method requires about three times as much steam as methane, a strong endothermic reaction, which consumes a lot of energy, and the hydrogen-carbon monoxide ratio is not suitable for Fischer-Trosch syngas.
또한 상기 부분 산화 개질 방법의 경우, 동일 처리양 기준으로 촉매 부피가 수증기 개질의 약 1/100으로 컴팩트화에 유리하나, 수소와 일산화탄소 비율이 1.5 정도로 또한 적합하지 않다. In addition, in the case of the partial oxidation reforming method, the catalyst volume is advantageously compacted to about 1/100 of the steam reforming on the basis of the same treatment amount, but the hydrogen to carbon monoxide ratio of 1.5 is also not suitable.
또한 자열개질(autothermal reforming) 방식에 있어, 이는 부분산화개질 방법을 보완하기 위해, 흡열반응인 수증기 개질(steam reforming) 반응과 발열반응인 부분 산화개질(partial oxidation) 반응이 동시에 일어나서, 조업에너지 절감 효과가 있으며, 반응물인 물과 산소의 공급비를 조절함에 따라 생성물인 수소와 일산화탄소 비율을 조절할 수 있어, 수소와 일산화 탄소 비율이 대략 2로 생성시킬 수 있는 중요한 활용 방법으로 등장하고 있다. 이러한 특성을 부합할 수 있어 현 추세가 자열개질(autothermal reforming)인 이유가 된다(Sasol 사의 Oryx Plant).In addition, in the autothermal reforming method, in order to complement the partial oxidation reforming method, an endothermic steam reforming reaction and an exothermic partial oxidation reforming reaction occur simultaneously, thereby reducing operating energy. It is effective, and the ratio of hydrogen and carbon monoxide, which is a product, can be controlled by controlling the supply ratio of water and oxygen, which is a reactant, and has emerged as an important utilization method that can generate hydrogen and carbon monoxide ratio of approximately 2. The ability to meet these characteristics is why the current trend is autothermal reforming (Oryx Plant, Sasol).
피셔-트롭쉬 공정을 위한 합성가스 제조와 관련하여 조사된 특허 동향을 보면, 발전기에 있는 가스액화기술은 90년대 이후 증가세를 보이고 있고, 미국에서의 특허활동이 가장 활발하며, 일본의 경우 합성가스제조 분야가 우세한 반면 그 외 지역 특허는 피셔-트롭쉬공정 분야가 우세하였다. Patent trends investigated for syngas production for the Fischer-Tropsch process show that gas liquefaction technology in generators has been on the rise since the 1990s, with the most active patent activity in the US, and syngas in Japan. The manufacturing sector dominated, while other regional patents prevailed in the Fischer-Tropsch process.
각 분야별 내에서는 촉매제조 보다는 공정에 비율이 높은 추세가 나타났다. 이는 우수한 촉매도 중요하지만, 개질장치의 고효율화를 위한 반응기 구조 및 반응기간 연결, 운전조건 등의 기술도 중요한 부분을 차지함을 말해준다. Within each sector, there was a trend toward higher proportions in the process than in the production of catalysts. This is important for good catalysts, but technology such as reactor structure, reaction period connection, and operating conditions for high efficiency of reforming equipment is also important.
합성가스제조의 경우 많이 인용되는 대표 특허가 촉매부분(Ni계 US 5,368,835, 귀금속계 US 6,293,979, 촉매구조 US 4,793,904)를 비롯하여, 공정분야에서 자열개질은 US 5,023,276(1991. 6. 11, ENGELHARD CORP., 수소농축가스 제조용), 부분산화는 US 6,016,868(2000, 1. 25, World Energy Systems), 그리고 수증 기개질은 US 4,579,985(1986. 4. 1, ENGELHARD CORP.)로 조사되었다.In the case of syngas production, representative patents cited widely include catalyst parts (Ni-based US 5,368,835, precious metals-based US 6,293,979, catalyst structure US 4,793,904), and thermal reforming in the process field is US 5,023,276 (June 11, 1991, ENGELHARD CORP. , Partial hydrogen oxidation, US 6,016,868 (2000, 1.25, World Energy Systems), and steam reforming were US 4,579,985 (April 1, 1986, ENGELHARD CORP.).
특히 합성가스 제조시 사용되는 귀금속계 촉매에 관한 특허(US 6,293,979)는 메탄 또는 천연가스의 합성가스로의 변환시 Be, Mg, Ca 또는 이의 혼합물이 미리 코팅된 지지체에 코발트 산화물이 침착된 촉매를 사용한 기술이며, 자열개질(US 5,023,276) 특허는 접촉부분산화법 및 선택적 수증기개질법을 이용하여 탄화수소계 원료로부터 수소농축가스를 제조하기 위한 기술이다. 또한 비활성 지지체의 외표면에 알카리 금속을 담지한 다음, 니켈과 코발트를 동시에 공침한 촉매(USP 6,293,979)가 공개되었지만, 효과적인 자열개질(autothermal reforming) 장치에 대한 연구 결과 보고가 대다수이고, 본 자열개질 반응에 고활성을 띠는 촉매 조성과 적합 조성비에 대한 연구결과는 보고되지 않고 있다.In particular, the patent on noble metal catalysts used in syngas production (US 6,293,979) describes a technique using a catalyst in which cobalt oxide is deposited on a support in which Be, Mg, Ca or a mixture thereof is pre-coated upon conversion of methane or natural gas into syngas. The autothermal reforming (US 5,023,276) patent is a technique for producing hydrogen enriched gas from hydrocarbon-based raw materials using a catalytic partial oxidation method and a selective steam reforming method. In addition, although a catalyst (USP 6,293,979) supporting an alkali metal on the outer surface of an inert support and then co-precipitating nickel and cobalt has been disclosed, a large number of studies have reported on an effective autothermal reforming device. The results of studies on the catalyst composition and the suitable composition ratio which are highly active in the reaction have not been reported.
개질기에 사용함에 있어서 촉매의 형상은 보통, 분말, 펠렛 및 모노리스형으로 구분된다. 또한 벌집형으로 막대형태의 빈 공간이 연결되어 있는 모노리스(monolith)형 촉매는 벽을 통하여 열이 용이하게 전달되므로 촉매의 온도가 균일해지고 압력손실이 낮아서 높은 유량의 반응기체를 처리하는데 적합한 형태이다.(세라믹 모노리스, US 5,648,582; 지르코니아(ZrO2)계 모노리스, US 5,639,401; 금속 모노리스, US 5,786,296, 제 5,648,582 및 제 6,221,280 B1, 유럽특허 303438, Feb. 1989, Freni 외, J. of Power Sources 87 (2000), 28-38). 이러한 장점을 살리면서 더 보완하는 방법이 금속 메쉬들의 셀이 불규칙적으로 배열되게 적층한 방법이 반응가스들의 유로를 선형이 아닌 공간적으로 유발하여 반응성을 향상 시킬 수 있다. When used in reformers, the shape of the catalyst is usually divided into powder, pellet and monolithic. In addition, the monolith type catalyst, which has a honeycomb-shaped rod-shaped void space, is easily transferred through the wall, so that the temperature of the catalyst is uniform and the pressure loss is low. (Ceramic monolith, US 5,648,582; zirconia (ZrO 2 ) based monolith, US 5,639,401; metal monolith, US 5,786,296, 5,648,582 and 6,221,280 B1, EP 303438, Feb. 1989, Freni et al., J. of Power Sources 87 ( 2000), 28-38). Taking advantage of these advantages, the more complementary method is a method in which cells of metal meshes are arranged in an irregular arrangement to improve the reactivity by causing a channel of the reaction gases spatially rather than linearly.
하지만 종래 금속 모노리스에 워시코트된 금속산화물은 높은 공간속도를 가진 반응물 및 생성물 가스와 수증기의 영향으로 쉽게 탈리될 수 있는데, 이는 점차적으로 반응성이 저하되거나 후단 공정에 이 물질로 압력 상승 등의 악영향을 미칠 수 있다. 이는 촉매의 고유 활성 저하에 의한 것과 차별화 되는 것으로 반응성 저하의 또 다른 이유가 된다.However, metal oxides washcoat on conventional metal monoliths can be easily desorbed by the effects of reactants and product gases and water vapor having a high space velocity, which gradually degrades the reactivity or adversely affects the pressure to the material in the subsequent process. Can be crazy This is another reason for the lowering of reactivity as it is differentiated from the lowering of the intrinsic activity of the catalyst.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 주된 반응으로 메탄을 수소와 일산화탄소로 전환하면서, 피셔-트롭쉬 공정에 적합한 수소와 일산화탄소 비율(H2/CO≒2)을 얻는 자열개질 장치 촉매층에 사용되는 금속구조체를 제공하는 데 있다. An object of the present invention for solving the above problems is to convert the methane into hydrogen and carbon monoxide as the main reaction, the autothermal reformer catalyst layer to obtain a hydrogen and carbon monoxide ratio (H 2 / CO ≒ 2) suitable for Fischer-Tropsch process It is to provide a metal structure used for.
본 발명의 다른 목적은 피셔-트롭쉬 액화공정용 합성가스 제조 반응을 위한 자열개질 장치 촉매층에 사용되는 금속구조체의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for producing a metal structure used in the autothermal reformer catalyst layer for the synthesis gas production reaction for Fischer-Tropsch liquefaction process.
본 발명의 다른 목적은 주된 반응으로 메탄을 수소와 일산화탄소로 전환하면서, 피셔-트롭쉬 공정에 적합한 수소와 일산화탄소 비율(H2/CO≒2)을 얻는 자열개질 장치 촉매층에 사용되는 금속구조체촉매를 제공하는 데 있다. Another object of the present invention is to convert the methane into hydrogen and carbon monoxide in the main reaction, while the metal structure catalyst used in the autothermal reformer catalyst layer to obtain a hydrogen and carbon monoxide ratio (H 2 / CO ≒ 2) suitable for Fischer-Tropsch process To provide.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체에 있어서,The present invention to achieve the object as described above and to remove the drawbacks of the prior art in the fissure-Tropsch liquefaction process for the self-reforming catalyst layer metal structure for syngas production,
금속지지체인 금속 모노리스와;A metal monolith which is a metal support;
금속모노리스 표면에 코팅되어 활성종 촉매금속이 담지되는, 감마 알루미나(γ-alumina) 100 중량부에 대하여 마그네슘 옥사이드(MgO) 30 ~ 60 중량부, 증진제인 산화물 형태의 세리윰(Ce) 34.7~38.6 중량부, 바륨(Ba) 8.8~14 중량부, 스트론튬(Sr) 1.1~2 중량부로 조성된 금속산화물;로 구성된 것을 특징으로 하는 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체를 제공함으로써 달성된다.30 to 60 parts by weight of magnesium oxide (MgO) based on 100 parts by weight of gamma alumina coated on the surface of the metal monolith to carry the active species catalyst metal, and cerium in the form of oxide as a promoter 34.7 to 38.6 Part by weight, 8.8 to 14 parts by weight of the barium (Ba), 1.1 to 2 parts by weight of strontium (Sr); metal for autothermal reforming catalyst layer for the synthesis of the Fischer-Tropsch liquefaction process, characterized in that composed of By providing a structure.
상기 감마 알루미나(γ-alumina)는 비표면적이 100m2/g 보다 큰 것을 특징으로 한다.The gamma alumina has a specific surface area of greater than 100 m 2 / g.
상기 금속구조체를 구성하는 금속모노리스의 성분은 써스(SUS), 티타늄(Ti) 또는 페클알로이 (FeCrAlloy) 중에서 선택된 어느 하나인 것을 특징으로 한다.The component of the metal monolith constituting the metal structure is characterized in that any one selected from sus (SUS), titanium (Ti) or FeCrAlloy (FeCrAlloy).
상기 금속구조체를 구성하는 금속 모노리스는 100 ~ 150마이크로미터 두께의 선재를 사용하는 것을 특징으로 한다.Metal monolith constituting the metal structure is characterized in that using a wire of 100 ~ 150 micrometers thick.
또한 본 발명은 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체촉매에 있어서,In addition, the present invention is a metal structure catalyst for the autothermal reforming catalyst layer for the synthesis of synthesis gas for Fischer-Tropsch liquefaction process,
상기 금속구조체의 금속산화물 100중량부에 대하여 팔라듐 금속 3 ~ 7 중량 부가 담지되어 조성된 것을 특징으로 하는 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체촉매를 제공함으로써 달성된다.It is achieved by providing a metal structure catalyst for an autothermal reforming catalyst layer for preparing a synthesis gas for the Fischer-Tropsch liquefaction process, characterized in that 3 to 7 parts by weight of palladium metal is supported with respect to 100 parts by weight of the metal oxide of the metal structure. .
또한 본 발명은 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체의 제조방법에 있어서,In addition, the present invention provides a method for producing a metal structure for the autothermal reforming catalyst layer for the synthesis gas for Fischer-Tropsch liquefaction process,
금속 모노리스 표면을 전해질 내에서 인가전압과 전해질의 농도를 조절하여 감마 알루미나(γ-alumina) 100 중량부에 대하여 마그네슘 옥사이드(MgO) 30 ~ 60 중량부, 증진제인 산화물 형태의 세리윰(Ce) 34.7~38.6 중량부, 바륨(Ba) 8.8~14 중량부, 스트론튬(Sr) 1.1~2 중량부로 조성된 금속산화물을 형성시키는 전기화학적 단계와; 30 to 60 parts by weight of magnesium oxide (MgO) based on 100 parts by weight of gamma alumina by adjusting the applied voltage and the concentration of the electrolyte in the surface of the metal monolith, and oxide-formed cerium (Ce) 34.7 An electrochemical step of forming a metal oxide composed of 38.6 parts by weight, 8.8-14 parts by weight of barium (Ba), and 1.1-2 parts by weight of strontium (Sr);
금속 모노리스에 형성된 금속산화물의 거칠기를 조절하여 원하는 형상으로 제조하기 위해 산화분위기하의 가열로에서 열처리하는 단계;를 포함하여 구성된 것을 특징으로 하는 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체의 제조방법을 제공함으로써 달성된다.Heat treatment in a furnace under an oxidizing atmosphere to produce a desired shape by controlling the roughness of the metal oxide formed in the metal monolith; autothermal reforming catalyst layer for manufacturing a synthesis gas for the Fischer-Tropsch liquefaction process It is achieved by providing a method for producing a metal structure for use.
상기 금속모노리스를 전기화학적 표면처리하여 금속산화물을 형성하는 단계는,Electrochemical surface treatment of the metal monolith to form a metal oxide,
금속모노리스를 세제로 세척하는 단계와;Washing the metal monolith with a detergent;
이후 0.5 ~1 wt% 불산(HF) 또는 암모늄 플루라이드(NH4F) 전해질 내에서 구 리, 철 또는 백금 코일을 상대 전극인 음극으로 하여 양극에 세정된 금속모노리스를 연결하고 전압을 인가하여 금속 모노리스 표면에 금속산화물을 형성시키는 전기화학적 처리단계;로 이루어진 것을 특징으로 한다.Then, in a 0.5 to 1 wt% hydrofluoric acid (HF) or ammonium fluoride (NH 4 F) electrolyte, a copper, iron, or platinum coil is used as a negative electrode as a negative electrode, and the metal monolith is cleaned and applied with a voltage. It characterized by consisting of; electrochemical treatment step of forming a metal oxide on the surface of the monolith.
상기 양극과 음극 두 전극에 인가되는 전압을 5~10V 범위로 0.5 내지 1시간 정도 산화시키는 것을 특징으로 한다.It is characterized in that the voltage applied to the two electrodes of the positive electrode and the negative electrode is oxidized for 0.5 to 1 hour in the range of 5 ~ 10V.
상기 열처리단계는 700~1100℃ 공기 또는 산소의 산화분위기에서 실시되는 것을 특징으로 한다.The heat treatment step is characterized in that carried out in the oxidation atmosphere of 700 ~ 1100 ℃ air or oxygen.
상기 금속구조체를 구성하는 금속모노리스의 성분은 써스(SUS), 티타늄(Ti) 또는 페클알로이 (FeCrAlloy) 중에서 선택된 어느 하나인 것을 특징으로 한다.The component of the metal monolith constituting the metal structure is characterized in that any one selected from sus (SUS), titanium (Ti) or FeCrAlloy (FeCrAlloy).
상기 금속구조체를 구성하는 금속 모노리스는 100 ~ 150마이크로미터 두께의 선재를 사용하는 것을 특징으로 한다.Metal monolith constituting the metal structure is characterized in that using a wire of 100 ~ 150 micrometers thick.
본 발명은 금속구조체촉매를 이루는 활성 금속 촉매의 열적 안정성을 증가시키기 위하여 금속구조체 제조시 금속모노리스에 코팅되는 금속산화물에 증진제들이 포함되도록 조성함으로써, 물리적으로 금속촉매가 고분산을 유지할 수 있게 되고, 금속구조체 제조시 그 표면 거칠기 등의 형상을 전기화학적 전처리 및 열처리를 함으로써 두 가지 방향으로 담지된 금속의 분산(dispersion)을 유지시켜줌으로써 적은 양으로 안정하고 효율적으로 피셔-트롭쉬 액화공정용 합성가스 제조용 자열개질반응기의 촉매층을 제공하게 되고, 거칠기 등의 형상 변화 등의 전처리된 금속 모노리스는 일반적인 화학공정에서 코팅되는 금속산화물 금속 담체가 탈리되어 반응성 저하 및 후단 공정 압력 상승 등에 악영향을 미치는 것을 방지할 수 있는 등의 장점을 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명이다.According to the present invention, the metal catalyst coated on the metal monolith may be included to enhance the thermal stability of the active metal catalyst constituting the metal structure catalyst, so that the metal catalyst may physically maintain high dispersion. When manufacturing metal structures, by maintaining the dispersion of metals supported in two directions by electrochemical pretreatment and heat treatment of the surface roughness, etc., the synthesis gas for Fischer-Tropsch liquefaction process is stable and efficient in small amount. The catalyst layer of the autothermal reforming reactor for manufacturing, and pretreated metal monoliths such as shape changes such as roughness can prevent the metal oxide metal carrier coated in a general chemical process from being detached and adversely affect the reactivity and rise in post process pressure. Can be useful with such advantages In one invention, the invention is expected to be greatly utilized.
이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, the configuration and the operation of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.
본 발명은 피셔-트롭쉬 액화공정용 합성가스(H2/CO≒2) 제조를 위한 메탄 자열개질 장치에 사용되는 촉매층을 이루는 금속구조체촉매를 구성하는 금속모노리스와 산화물금속으로 이루어진 금속구조체 및 금속구조체의 제조방법과 제조된 금속구조체의 금속산화물금속에 활성종 금속인 촉매금속을 담지하여 이루어진 금속구조 체촉매에 관한 것이다. 여기서 금속구조체촉매를 구성하는 촉매금속은 금속산화물에 담지된 후 워시코트(wash-coating)되어 완성된다.The present invention relates to a metal structure and a metal structure consisting of a metal monolith and an oxide metal constituting a metal structure catalyst constituting the catalyst layer used in the methane autothermal reforming device for the synthesis of Fischer-Tropsch liquefaction process (H 2 / CO ≒ 2) The present invention relates to a metal structure catalyst formed by supporting a catalytic metal, which is an active species metal, on a metal oxide metal of a manufactured metal structure. Here, the catalytic metal constituting the metal structure catalyst is completed by being wash-coated after being supported on the metal oxide.
본 발명에서 제시되는 금속구조체촉매의 조성은, 금속구조체를 구성하는 금속산화물 100중량부에 대하여 팔라듐 금속 3 ~ 7 중량부가 담지되어 구성된다.The composition of the metal structure catalyst proposed in the present invention is composed of 3 to 7 parts by weight of palladium metal supported on 100 parts by weight of the metal oxide constituting the metal structure.
상기 팔라듐 조성비를 한정한 이유는 3 중량부 이하일 경우 반응 진행율이 충분치 못하여 촉매로써의 기능을 다하지 못하게 되어 최소 담지량을 3 중량부로 제한하였으며, 담체인 금속산화물의 비표면적에 비해 과량이 금속이 담지될 경우 소결현상으로 인해 촉매 활성점이 감소할 수 있음으로 함량을 7 중량부로 제한하였다. The reason for limiting the palladium composition ratio is that when the content is less than 3 parts by weight, the progress of the reaction is not sufficient, so that the minimum supported amount is limited to 3 parts by weight. In this case, the catalyst active point may be reduced due to sintering, so the content is limited to 7 parts by weight.
본 발명에 따른 금속산화물은 비표면적이 100m2/g 보다 큰 감마 알루미나(γ-alumina) 100중량부에 대하여 마그네슘 옥사이드(MgO) 30 ~ 60 중량부, 증진제(promoter)인 세리윰(Ce), 바륨(Ba) 그리고 스트론튬(Sr)이 각 산화물 형태로 34.7~38.6 중량부, 8.8~14 중량부 그리고 1.1~2 중량부를 함유하여 조성된다.Metal oxide according to the present invention is 30 to 60 parts by weight of magnesium oxide (MgO) with respect to 100 parts by weight of gamma alumina (γ-alumina) having a specific surface area of more than 100 m 2 / g, Cerium (Ce), a promoter (Ce), Barium (Ba) and strontium (Sr) are composed of 34.7 to 38.6 parts by weight, 8.8 to 14 parts by weight and 1.1 to 2 parts by weight in the form of each oxide.
위에서 언급한 증진제의 경우, 세리윰은 촉매인 PdO의 분산도 및 산소와의 반응을 증진시키며, 스트론튬은 PdO의 열적 안정성을 증가시켜 신터링(sintering)을 방지하며, 바륨은 알루미나의 상전이를 방지하여 비표면적 저하 방지 및 안정성유지 작용을 한다. 다만 증진제의 경우 수치 한정 하한값 이하의 경우 효과가 나타 나지 않으며, 상한값 이상의 경우 활성물질인 PdO의 표면 노출을 저하하여 촉매작용을 방해할 수 있다. In the case of the above-mentioned enhancers, cerium improves the dispersion of PdO as a catalyst and reaction with oxygen, strontium increases thermal stability of PdO to prevent sintering, and barium prevents phase transition of alumina. It prevents the decrease of specific surface area and maintains stability. However, in the case of the enhancer, the effect is not exhibited below the lower limit of the numerical value, and in the case of the upper limit, the catalyst may be hindered by lowering the surface exposure of the active substance PdO.
본 발명에 따른 금속촉매가 담지되는 금속구조체의 제조방법은, 금속 모노리스 표면을 전해질 내에서 인가전압과 전해질의 농도를 조절하여 금속산화물을 형성시키는 전기화학적 단계와; 금속 모노리스에 형성된 금속산화물의 거칠기를 조절하여 원하는 형상으로 제조하기 위해 산화분위기하의 가열로에서 열처리하는 단계;를 포함하여 구성된다.According to an aspect of the present invention, there is provided a method of manufacturing a metal structure carrying a metal catalyst, the method comprising: an electrochemical step of forming a metal oxide by controlling an applied voltage and a concentration of an electrolyte in a metal monolith surface; And heat treatment in a furnace under an oxidizing atmosphere to produce a desired shape by adjusting the roughness of the metal oxide formed on the metal monolith.
상기 금속모노리스를 전기화학적 표면처리하여 금속산화물을 형성하는 단계는, 금속모노리스를 세제로 세척하는 단계와; 이후 0.5 ~1 wt% 불산(HF) 또는 암모늄 플루라이드(NH4F) 전해질 내에서 구리, 철 또는 백금 코일을 상대 전극인 음극으로 하여 양극에 세정된 금속모노리스를 연결하고 전압을 인가하여 금속모노리스 표면에 금속산화물을 형성시키는 전기화학적 처리단계;로 이루어진다. Electrochemical surface treatment of the metal monolith to form a metal oxide may include washing the metal monolith with a detergent; Then, in the 0.5 ~ 1 wt% hydrofluoric acid (HF) or ammonium fluoride (NH 4 F) electrolyte, the copper, iron, or platinum coil is used as a negative electrode as a negative electrode, and the metal monolith is cleaned and the voltage is applied to the metal monolith. Electrochemical treatment step of forming a metal oxide on the surface; consists of.
여기서 양극과 음극 두 전극에 인가되는 전압을 5~10V 범위로 0.5 내지 1시간 정도 산화시킨다. 이와 같이 수치 한정한 이유는 전압이 5V에 미치지 못하면 산화물의 생성이 불규칙해지고, 10V를 초과하게 되면 산화물층의 탈리나 구조체의 용해가 초래되기 때문이다. 또한 0.5 내지 1시간 정도 산화시킬때 가장 양호한 양극산화에 의해 금속산화물이 잘 생성되기 때문이다.Here, the voltage applied to both the positive electrode and the negative electrode is oxidized in the range of 5 to 10V for about 0.5 to 1 hour. The reason for the numerical limitation is that when the voltage is less than 5V, the generation of oxide becomes irregular, and when the voltage exceeds 10V, the oxide layer is detached or the structure is dissolved. This is because the metal oxide is well formed by the best anodization when oxidized for 0.5 to 1 hour.
또한 전해질로 불산(HF) 또는 암모늄 플루라이드(NH4F) 0.5 중량%을 사용하 는 이유는 0.5중량%에 미치지 못하면 표면처리를 위한 인가전압이 높아지고, 시간이 오래 걸리기 때문이다. 또한 1중량%를 초과하면 낮은 인가전압에서도 급격히 산화가 진행되어 안정적인 전극을 제조하기 어렵다. In addition, the reason why 0.5 wt% of hydrofluoric acid (HF) or ammonium fluoride (NH 4 F) is used as an electrolyte is that if it is less than 0.5 wt%, the applied voltage for surface treatment is high and takes a long time. In addition, when it exceeds 1% by weight, oxidation proceeds rapidly even at low applied voltage, making it difficult to manufacture a stable electrode.
또한 열처리단계는 700~1100℃ 공기 또는 산소 등의 산화분위기에서 실시되는데, 이와 같이 수치 한정한 이유는 하한수치 보다 낮으면 거칠기 변화가 미비하며, 상한수치 보다 높으면 결정상의 변화나 거칠기 감소로 이어지게 되기 때문이다.In addition, the heat treatment step is performed in an oxidation atmosphere such as air or oxygen at 700 to 1100 ° C. The reason for the numerical limitation is that the lower the lower limit value, the less the change in roughness, and the higher the upper limit value, the higher the upper limit value leads to a change in crystal phase or roughness. Because.
상기에서 금속구조체를 구성하는 금속모노리스의 성분은 써스(SUS), 티타늄(Ti) 또는 페클알로이(FeCrAlloy) 중에서 선택된 어느 하나를 사용한다.As the component of the metal monolith constituting the metal structure, any one selected from sus (SUS), titanium (Ti), or FeCrAlloy is used.
상기 열처리 온도는 금속 재질과 원하는 산화물층의 형성에 따라 700℃에서 1100℃까지 다양하게 조절 가능하다. 온도 수치를 한정하는 이유는 700℃보다 낮으면 결정이 형성되지 않고 1100℃보다 높으면 표면의 응집이 일어나서 표면적이 감소하는 문제가 있기 때문이다.The heat treatment temperature can be variously adjusted from 700 ℃ to 1100 ℃ according to the formation of a metal material and the desired oxide layer. The reason for limiting the temperature value is that crystals do not form when lower than 700 ° C., whereas when higher than 1100 ° C., surface agglomeration occurs and the surface area decreases.
상기 금속구조체를 구성하는 금속 모노리스는 100 ~ 150마이크로미터 두께의 선재를 사용하는데 그 이유는 하한수치 보다 낮으면 작업성이 떨어지고 쉽게 변형이 되며, 상한수치 보다 높으면 반응기내 불필요한 부피를 채우게 되기 때문이다.The metal monolith constituting the metal structure uses a wire having a thickness of 100 to 150 micrometers because lower workability lowers the workability and easily deforms, and if the upper limit is higher than the upper limit, the monolithic metal is filled with unnecessary volume. .
본 발명은 상기와 같은 금속구조체의 제조방법에 따른 처리과정을 거치게 됨 으로써 팔라듐 등의 금속촉매가 반응조건에서 견딜 수 있도록 열 및 기계적 성질을 증진시키기 위한 증진제(promoter)가 포함된 금속구조체(support)와 활성물인 금속촉매의 분산도를 물리적으로 유지시키게 된다.The present invention is a metal structure including a promoter (promoter) to enhance the thermal and mechanical properties so that the metal catalyst such as palladium to withstand the reaction conditions by going through the process according to the manufacturing method of the metal structure as described above (support) ) And the dispersity of the active metal catalyst.
도 1은 본 발명을 위하여 사용된 지지체별 촉매층의 자열개질 반응을 이용한 메탄 전환율 결과이고, 도 2는 본 발명을 위하여 사용된 자열개질 반응장치 개념도이다. 1 is a methane conversion result using the autothermal reforming reaction of the catalyst layer for each support used for the present invention, Figure 2 is a conceptual diagram of the autothermal reforming reactor used for the present invention.
먼저 도 2를 참조하여 본 발명의 금속구조체촉매와 다른 촉매의 성능을 평가하기 위하여 사용된 개질장치 및 전체 반응 공정을 설명하자면, 자열개질 반응기내부에는 상단에 전원공급기에 연결된 기동장치가 장치되고, 그 하부에 일정 간격 이격되어 금속 모노리스에 형성된 금속산화물에 촉매가 워시코트된 촉매층이 설치된다. First, referring to FIG. 2, the reforming apparatus and the entire reaction process used to evaluate the performance of the metal structure catalyst and the other catalyst of the present invention are described. An autonomous reforming reactor includes a starter connected to a power supply at an upper end thereof. A catalyst layer wash-coated with a catalyst is provided on the metal oxide formed in the metal monolith spaced apart from the lower portion.
상기 기동장치는 가압용 써쓰(SUS) 용접봉이 반응물 유로를 일정하게 하기 위한 금속 모노리스 형태의 물체 양쪽 끝에 단락 및 누전을 방지하며 용접되어 전원공급기(power supply)의 전력이 인가되도록 구성된다. The starting device is configured such that a pressurized SUS electrode is welded to prevent short circuits and short circuits at both ends of a metal monolith type object for keeping the reactant flow path constant, so that power of a power supply is applied.
상기 외부를 이루는 개질장치 반응기의 상단과 하단부에는 가스의 유입구(도시없음) 및 유출구(도시없음)가 형성된다.The inlet (not shown) and the outlet (not shown) of the gas are formed at the upper and lower portions of the reformer reactor forming the outside.
상기 촉매층은 자열개질 반응기 케이스의 내부 둘레방향으로 설치된 고온단열재(도시없음)의 내경부에 설치되며, 고온단열재는 촉매층과 개질장치반응기의 케이스 벽 사이의 공간을 채워서 촉매층의 열손실을 방지하게 된다.The catalyst layer is installed on the inner diameter of the high temperature insulation material (not shown) installed in the inner circumferential direction of the autothermal reforming reactor case, the high temperature insulation material to fill the space between the catalyst layer and the case wall of the reformer reactor to prevent heat loss of the catalyst layer. .
상기와 같이 구성된 자열개질 반응기를 포함한 전체 시스템을 설명하자면, 전원공급기가 연결된 자열개질 반응기의 상부로는 반응기체인 메탄 또는 도시가스와 산소가 혼합버퍼에서 만나 혼합된 후 자열개질반응기에 들어가기 직전 스팀과 합류하여 공급되는데, 산소는 열교환기를 거치면서 예열되어 메탄 또는 도시가스와 혼합된다. 상기 혼합버퍼(buffer)는 메탄과 산소가 잘 혼합되도록 하는 공간 또는 시간 역할을 하는 장치이다. 상기 메탄과 산소로 이루어진 반응기체는 산소(O2) 대 탄소 부피 비율이 0.59로 주입하였으며, 스팀/탄소의 비는 0.3 이었으며, 상기 촉매층은 공간속도가 100,000hr-1 이였다. Referring to the entire system including the autothermal reforming reactor configured as described above, the upper part of the autothermal reforming reactor to which the power supply is connected, the steam and the steam just before entering the autothermal reforming reactor after the reaction of methane or city gas and oxygen as the reaction medium is mixed in the mixing buffer Joined and supplied, oxygen is preheated through a heat exchanger and mixed with methane or city gas. The mixing buffer (buffer) is a device that serves as a space or time to mix the methane and oxygen well. The reactor consisting of methane and oxygen was injected with a volume ratio of oxygen (O 2 ) to 0.59, the steam / carbon ratio was 0.3, and the catalyst layer had a space velocity of 100,000 hr −1 .
이후 자열개질 반응기에서 반응 후 배출된 합성가스는 열교환기를 통과하면서 산소와의 온도차에 의해 열교환되어 냉각되도록 구성한다.Since the synthesis gas discharged after the reaction in the autothermal reforming reactor is configured to be cooled by heat exchange by the temperature difference with oxygen while passing through the heat exchanger.
상기 자열개질 반응기 및 열교환기의 재질은 스테인리스 스틸과 같은 저가 재료로 제작이 가능하다.The material of the autothermal reforming reactor and the heat exchanger can be made of a low cost material such as stainless steel.
또한 미도시되었으나 자열개질 반응기의 케이스 내부에 설치되어 코일형 기동장치 전단부, 코일과 촉매층, 촉매층 후단부 온도를 측정하는 하도록 열전쌍;을 구비한 반응기를 이용하여 활성을 비교 평가하도록 구성하였다.In addition, although not shown, it was installed inside the case of the autothermal reforming reactor, and the thermocouple was used to measure the temperature of the front end of the coil type starter, the coil and the catalyst layer, and the rear end of the catalyst layer.
이하 바람직한 실시 예를 통해 보다 구체적인 본 발명의 구성 및 효과에 대하여 설명한다. 그러나 이러한 실시예들이 본 발명의 범주를 한정하지는 않는다.Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to preferred embodiments. However, these embodiments do not limit the scope of the present invention.
(실시 예 1) - 지지체별 자열개질 성능(메탄 전환율 및 안정성) (Example 1)-Autothermal reforming performance of each support (methane conversion and stability)
본 발명에서 사용된 촉매의 활성 성분은 공통으로 팔라듐(Pd)을 사용하였으며, 촉매를 지지하는 금속산화물로는 알루미나, Ce-Ba-Sr-알루미나, MgO(30%)-알루미나, MgO(60%)-알루미나, Ce-Ba-Sr-MgO(30%)-알루미나 그리고 Ce-Ba-Sr-MgO(60%)-알루미나를 사용하였다 (도 1 참조).Palladium (Pd) was commonly used as the active component of the catalyst used in the present invention, and the metal oxide supporting the catalyst was alumina, Ce-Ba-Sr-alumina, MgO (30%)-alumina, MgO (60%). ) -Alumina, Ce-Ba-Sr-MgO (30%)-alumina and Ce-Ba-Sr-MgO (60%)-alumina were used (see FIG. 1).
도 1에 나타나듯이, 메탄 전환율의 경우 알루미나, Ce-Ba-Sr-알루미나, MgO(30%)-알루미나(또는 MgAl2O4(30)), MgO(60%)-알루미나(또는 MgAl2O4(60)) 지지체는 활성저하가 뚜렷하였으며, 그 보다는 덜 하지만 Ce-Ba-Sr-MgO(60%)-알루미나의 경우도 서서히 활성 저하가 일어났다. 그러나 Ce-Ba-Sr-MgO(30%)-알루미나의 경우 100시간의 연속 실험의 경우 활성 저하가 거의 일어나지 않으며 활성이 유지되는 경향을 보여주었다.As shown in FIG. 1, for methane conversion, alumina, Ce-Ba-Sr-alumina, MgO (30%)-alumina (or MgAl 2 O 4 (30)), MgO (60%)-alumina (or MgAl 2 O 4 (60)) The support showed a marked decrease in activity, but less than that, Ce-Ba-Sr-MgO (60%)-alumina also slowly decreased. However, Ce-Ba-Sr-MgO (30%)-alumina showed a tendency that activity is hardly decreased and activity is maintained in 100 hours of continuous experiments.
MgO와 같은 알칼리 금속염을 촉매에 첨가하면, 이의 작용으로 탄화수소 전환 반응에 흔하게 일어나는 탄소 석출 문제를 침적된 탄소를 물과 반응하여 일산화탄소와 수소로 전환시킴으로써 촉매의 내구성을 증진시킬 수 있다. 또한 알칼리 금속은 산촉매의 산점 개수를 줄여 탄소침적 속도를 느리게 하는데, 너무 많으면 활성점인 산점수가 급격히 줄어 반응성이 나빠질 수도 있다. The addition of alkali metal salts, such as MgO, to the catalyst can enhance the catalyst's durability by converting deposited carbon into water and reacting with carbon monoxide to hydrogen, which is a common carbon precipitation problem in hydrocarbon conversion reactions. In addition, alkali metals slow the carbon deposition rate by reducing the number of acidic acid sites, but if the amount is too high, the number of acidic sites, which are active sites, may decrease rapidly, resulting in poor reactivity.
메탄 전환율(%)={출구가스 (CO+CO2) 유량}ㅧ 100 / {출구가스 (CH4+CO+CO2) 유량}Methane Conversion Rate (%) = {Outlet Gas (CO + CO 2 ) Flow Rate} ㅧ 100 / {Outlet Gas (CH 4 + CO + CO 2 ) Flow Rate}
(실시 예 2) - 지지체별 촉매 분석 Example 2-Catalyst Analysis by Support
본 발명에서 사용된 지지체별 촉매들의 온도에 따른 환원 성질을 알아보기 위하여 Temperature Programmed Reduction(TPR) 분석을 수행하였다. 도 3a는 MgO(30%)-알루미나(또는 MgAl2O4(30))의 경우이며, 도 3b는 MgO(60%)-알루미나(또는 MgAl2O4(60)) 그리고 도 3c는 제공 받은 스피넬(spinel)의 경우이다. 도 3a에 비해서 도 3b 및 도 3c는 온도에 따른 환원 성질의 피크가 많은 것으로 보아 많은 변화가 일어나는 불안정성을 보여주었으나 도 3a의 경우는 Pd가 환원되는 피크 외에 안정된 경향을 보여주었다.Temperature Programmed Reduction (TPR) analysis was performed to investigate the reduction properties of the catalysts for each support used in the present invention. FIG. 3A shows MgO (30%)-alumina (or MgAl 2 O 4 (30)), FIG. 3B shows MgO (60%)-alumina (or MgAl 2 O 4 (60)) and FIG. 3C received In the case of a spinel. 3B and 3C show instability in which many changes occur due to a large number of peaks of reducing properties with respect to temperature, but FIG. 3A shows a stable tendency in addition to the peak at which Pd is reduced.
사용된 지지체별 촉매들의 비표면적과 메탈 디스퍼션을 측정하여 표 1에 나타내었다. Table 1 shows the specific surface area and metal dispersion of the catalysts used for each support.
(표 1 지지체별 촉매 분석)Table 1 Catalyst Analysis by Support
비표면적의 경우도 MgO(60%)-알루미나(또는 MgAl2O4(60))과 제공 받은 spinel의 값보다 MgO(30%)-알루미나(또는 MgAl2O4(30))의 값이 훨씬 높았으며, 메탈 디스퍼션의 경우도 같은 경향을 보여주었다. 그 중에서도 Ce-Ba-Sr-MgO(30%)-알루미나의 경우 메탈 디스퍼션의 경우 74.707 m2/g으로 측정되어 다른 경우보다 가장 높은 측정값이 확인되었다. 이러한 결과는 실시 예 1에서 언급한 반응성 결과와 매우 잘 일치하고 있다.Even for the specific surface area, the value of MgO (30%)-alumina (or MgAl 2 O 4 (30)) is much higher than that of MgO (60%)-alumina (or MgAl 2 O 4 (60)) and the spinel provided. High, and metal dispersion showed the same trend. Among them, Ce-Ba-Sr-MgO (30%)-alumina was measured as 74.707 m 2 / g for metal dispersion, and the highest measured value was found. These results agree very well with the reactivity results mentioned in Example 1.
메탈 디스퍼션(%) = {화학흡착 사이트 수 ㅧ 100} / 담지된 금속원자 수Metal dispersion (%) = {number of chemisorption sites ㅧ 100} / number of supported metal atoms
(실시 예 3) - 금속 구조체 전처리별 형상 비교(Example 3)-Shape comparison by metal structure pretreatment
금속 구조체의 전처리 유무를 통하여 동일 촉매가 워시코트되는 형상의 변화를 SEM 사진으로 분석하였다. 도 4a는 기존 전처리 없이 워시코트한 사진이며, 도 4b는 전기화학적 표면 처리 후 촉매를 워시코트한 사진이다. 금속 팔라듐 촉매의 분산도가 많이 향상된 것을 확인할 수 있다. 도 5는 도 4b를 1.5배 더 확대하여 Energy dispersive X-ray Spectroscopy(EDS, 에너지분산형분광기) 분석을 수행하여 포인트 A와 B의 조성을 확인하였다. 아래의 표 2와 표 3에 나타났듯이 도 4b와 도 5에서 밝게 빛나는 원형 부분이 팔라듐 약 10.83 wt% 부분(B영역)이고 그 외 어두운 부분이 3.23 wt%(A영역)로 안정하게 분산되어 있는 결과를 확인하였다. 도 5는 도 4b의 일지점을 확대한 사진으로 도 5의 A, B 원형 영역은 사진상의 표면영역뿐만이 아닌 3차원 공간 영역에 대한 팔라듐의 영역을 말하는 것이다. SEM images were analyzed for changes in the shape of the same catalyst washcoat through the pretreatment of the metal structure. Figure 4a is a photograph washcoat without conventional pretreatment, Figure 4b is a photograph washwashing the catalyst after the electrochemical surface treatment. It can be seen that the dispersion degree of the metal palladium catalyst is much improved. FIG. 5 further enlarges 1.5 times of FIG. 4b to perform energy dispersive X-ray spectroscopy (EDS) analysis to confirm the composition of points A and B. FIG. As shown in Table 2 and Table 3 below, the brightly glowing circular portion in FIGS. 4B and 5 is about 10.83 wt% portion (P region) and the dark portion is stably dispersed to 3.23 wt% (region A). Confirmed the results. FIG. 5 is an enlarged photograph of one point of FIG. 4B, in which A and B circular regions of FIG. 5 refer to regions of palladium with respect to three-dimensional space regions as well as surface regions on the photograph.
표 2. 포인트 ATable 2. Point A
표 3. 포인트 BTable 3. Point B
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.
도 1은 본 발명을 위하여 사용된 지지체별 촉매층의 자열개질 반응을 이용한 메탄 전환율 결과이고, 1 is a result of methane conversion using the autothermal reforming reaction of the catalyst layer for each support used for the present invention,
도 2는 본 발명을 위하여 사용된 자열개질 반응장치 개념도이고,2 is a conceptual diagram of an autothermal reforming reactor used for the present invention,
도 3a는 본 발명을 위하여 사용된 MgO(30%)-알루미나(또는 MgAl2O4(30)) 지지체의 온도별 환원 경향 (TPR 분석)이고,Figure 3a is a temperature-dependent reduction trend (TPR analysis) of the MgO (30%)-alumina (or MgAl 2 O 4 (30)) support used for the present invention,
도 3b는 본 발명을 위하여 사용된 MgO(60%)-알루미나(또는 MgAl2O4(60)) 지지체의 온도별 환원 경향 (TPR 분석)이고,Figure 3b is the temperature-dependent reduction trend (TPR analysis) of the MgO (60%)-alumina (or MgAl 2 O 4 (60)) support used for the present invention,
도 3c는 본 발명을 위하여 사용된 제공받은 스피넬(spinel) 지지체의 온도별 환원 경향(TPR 분석)이고,Figure 3c is the temperature-dependent reduction trend (TPR analysis) of the provided spinel support used for the present invention,
도 4a는 금속 구조체의 전처리 없이 알루미나 파우더, 알루미나 졸과 Pd전구체를 섞어 워시코트한 후 소성한 샘플의 전자현미경(SEM) 사진이고,Figure 4a is an electron micrograph (SEM) of the sample fired after the washcoat mixed with alumina powder, alumina sol and Pd precursor without pretreatment of the metal structure,
도 4b는 본 발명을 위하여 금속 구조체의 전처리 후에 알루미나 졸과 Pd전구체를 섞어 워시코트한 후 소성한 샘플의 전자현미경(SEM) 사진이고,Figure 4b is an electron micrograph (SEM) of the sample fired after mixing the alumina sol and Pd precursor after the pretreatment of the metal structure for the present invention,
도 5는 도 4b를 1.5배 확대하여 촬영한 후 밝은 둥근 부분과 어두운 부분을 포인트 표시한 전자현미경(SEM) 사진이다.FIG. 5 is an electron microscope (SEM) photograph showing a bright round part and a dark part after point 1.5 times of magnification of FIG. 4B.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020090039582A KR101059413B1 (en) | 2009-05-07 | 2009-05-07 | Metal Structure, Method for Manufacturing Metal Structure, and Metal Structure Catalyst for Autothermal Reforming Catalyst Layer for Synthesis of Fischer-Tropsch Liquefaction Process |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020090039582A KR101059413B1 (en) | 2009-05-07 | 2009-05-07 | Metal Structure, Method for Manufacturing Metal Structure, and Metal Structure Catalyst for Autothermal Reforming Catalyst Layer for Synthesis of Fischer-Tropsch Liquefaction Process |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20100120773A KR20100120773A (en) | 2010-11-17 |
| KR101059413B1 true KR101059413B1 (en) | 2011-08-29 |
Family
ID=43406214
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020090039582A Active KR101059413B1 (en) | 2009-05-07 | 2009-05-07 | Metal Structure, Method for Manufacturing Metal Structure, and Metal Structure Catalyst for Autothermal Reforming Catalyst Layer for Synthesis of Fischer-Tropsch Liquefaction Process |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR101059413B1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101459191B1 (en) * | 2012-10-11 | 2014-11-10 | 에이치앤파워(주) | Catalyst for monolith fuel-cell and mathod for manufacturing the same |
| CN104722327B (en) * | 2013-12-18 | 2018-05-22 | 武汉凯迪工程技术研究总院有限公司 | It is a kind of for metal base monolithic film catalyst of Fiscber-Tropscb synthesis and preparation method thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020038062A1 (en) | 1999-12-24 | 2002-03-28 | Diego Carmello | Metallic monolith catalyst support for selective gas phase reactions in tubular fixed bed reactors |
| WO2002026618A2 (en) | 2000-09-25 | 2002-04-04 | Engelhard Corporation | Suppression of methanation acitvity by a water gas shift reaction catalyst |
| US20030149120A1 (en) | 1999-08-17 | 2003-08-07 | Yong Wang | Catalyst structure and method of Fischer-Tropsch synthesis |
-
2009
- 2009-05-07 KR KR1020090039582A patent/KR101059413B1/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030149120A1 (en) | 1999-08-17 | 2003-08-07 | Yong Wang | Catalyst structure and method of Fischer-Tropsch synthesis |
| US20020038062A1 (en) | 1999-12-24 | 2002-03-28 | Diego Carmello | Metallic monolith catalyst support for selective gas phase reactions in tubular fixed bed reactors |
| WO2002026618A2 (en) | 2000-09-25 | 2002-04-04 | Engelhard Corporation | Suppression of methanation acitvity by a water gas shift reaction catalyst |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20100120773A (en) | 2010-11-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yang et al. | The effect of promoters in La0. 9M0. 1Ni0. 5Fe0. 5O3 (M= Sr, Ca) perovskite catalysts on dry reforming of methane | |
| US9005552B2 (en) | Selective CO methanation catalyst, method of producing the same, and apparatus using the same | |
| CN101001695B (en) | Catalyst for Hydrogen Production by Steam Reforming of Hydrocarbons | |
| JP4648004B2 (en) | Nickel catalyst formulation without precious metals for hydrogen generation | |
| US20100298131A1 (en) | Catalyst For Hydrogen Production By Autothermal Reforming, Method Of Making Same And Use Thereof | |
| JP4953546B2 (en) | Methane partial oxidation method using dense oxygen permselective ceramic membrane | |
| Dasireddy et al. | Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production | |
| WO2007029862A1 (en) | Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas | |
| EP2476484B1 (en) | Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system | |
| Dong et al. | Transition metal (Ni, Cu, Ga, Fe) doped LaCoO3 improve surface hydrogen activation to promote low-temperature CO2 methanation | |
| JP2013546140A (en) | Method for removing CO, H2, and CH4 from anode exhaust gas of a fuel cell and catalyst system useful for removing these gases | |
| KR101059413B1 (en) | Metal Structure, Method for Manufacturing Metal Structure, and Metal Structure Catalyst for Autothermal Reforming Catalyst Layer for Synthesis of Fischer-Tropsch Liquefaction Process | |
| JPWO2005094988A1 (en) | Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus | |
| CN109718790A (en) | Storage oxygen solid solution for acetic acid self-heating reforming hydrogen manufacturing supports cobalt-base catalyst | |
| JP2005066516A (en) | Dimethyl ether reforming catalyst and synthesis method thereof | |
| Bogolowski et al. | Activity of La 0.75 Sr 0.25 Cr 0.5 Mn 0.5 O 3− δ, Ni 3 Sn 2 and Gd-doped CeO 2 towards the reverse water-gas shift reaction and carburisation for a high-temperature H 2 O/CO 2 co-electrolysis | |
| JP2005046808A (en) | Hydrogen production catalyst | |
| Jun et al. | Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition | |
| Al-Fatesh et al. | Optimizing barium oxide promoter for nickel catalyst supported on yttria–stabilized zirconia in dry reforming of methane | |
| Matus et al. | Efficient hydrogen production by combined reforming of methane over perovskite-derived promoted Ni catalysts | |
| JP2012020888A (en) | Reformer and method for manufacturing the same | |
| JP2008194549A (en) | Hydrogen production catalyst for fuel cell and fuel cell for DSS operation | |
| Morales Comas et al. | Hydrogen-rich gas production by steam reforming and oxidative steam reforming of methanol over La0. 6Sr0. 4CoO3-d: effects of preparation, operation conditions, and Redox cycl | |
| CN115945197B (en) | YxPr2-xO3-δ solid solution cobalt-based catalyst for hydrogen production from acetic acid autothermal reforming | |
| CN116273019B (en) | Cerium-yttrium solid solution structured nickel-based catalyst for autothermal reforming of acetic acid to produce hydrogen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| N231 | Notification of change of applicant | ||
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| N231 | Notification of change of applicant | ||
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| N231 | Notification of change of applicant | ||
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20140813 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20150724 Year of fee payment: 5 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| FPAY | Annual fee payment |
Payment date: 20160819 Year of fee payment: 6 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20170816 Year of fee payment: 7 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 9 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 10 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R14-asn-PN2301 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 11 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 12 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 13 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| P14-X000 | Amendment of ip right document requested |
St.27 status event code: A-5-5-P10-P14-nap-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 14 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 15 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |