[go: up one dir, main page]

KR101147133B1 - Complementary filter for angle measuring - Google Patents

Complementary filter for angle measuring Download PDF

Info

Publication number
KR101147133B1
KR101147133B1 KR1020110014091A KR20110014091A KR101147133B1 KR 101147133 B1 KR101147133 B1 KR 101147133B1 KR 1020110014091 A KR1020110014091 A KR 1020110014091A KR 20110014091 A KR20110014091 A KR 20110014091A KR 101147133 B1 KR101147133 B1 KR 101147133B1
Authority
KR
South Korea
Prior art keywords
filter
sensor
angle
value
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020110014091A
Other languages
Korean (ko)
Inventor
민형기
Original Assignee
(주)엔티렉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엔티렉스 filed Critical (주)엔티렉스
Priority to KR1020110014091A priority Critical patent/KR101147133B1/en
Application granted granted Critical
Publication of KR101147133B1 publication Critical patent/KR101147133B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/027Complementary filters; Phase complementary filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE: A complementary filter for angle measurement and a method thereof are provided to accurately measure an angle with respect to the movements of a subject and prevent a delay of response speed. CONSTITUTION: A calculation device calculates a filter factor using a least square method. A low pass filter filters output values of a first sensor. A high pass filter filters output values of a second sensor. An adding device(220) adds up the output values of the low pass filter and the high pass filter. An integrating device(240) calculates an angle with respect to the movements of a subject by integrating results outputted from the adding device.

Description

각도측정을 위한 상보필터 및 그 방법{Complementary Filter for Angle Measuring}Complementary filter for angle measurement and its method {Complementary Filter for Angle Measuring}

본 발명은 각도측정을 위한 상보필터 및 그 방법에 관한 것으로, 보다 구체적으로 n(단, n>=1)차의 저역통과필터와 고역통과필터를 적용하고, 최소자승법을 적용하여 n차의 상보필터를 형성함으로써 피사체의 움직임에 대한 각도를 측정하는 각도측정을 위한 상보필터 및 그 방법에 관한 것이다. The present invention relates to a complementary filter for angular measurement and a method thereof, and more specifically, to apply a low pass filter and a high pass filter of order n (where n> = 1), and apply a least-square method to complement the order n of complement. The present invention relates to a complementary filter for angular measurement for measuring an angle with respect to the movement of a subject by forming a filter, and a method thereof.

고정점을 기준으로 상대각도를 측정하는 엔코더와 같은 센서를 사용할 수 없는 무인 비행체, 밸런싱 로봇 등과 같은 모바일 로봇이 자신의 자세를 측정하기 위해서는 자이로 센서와 같은 관성센서를 이용하는 것이 필수적이다. 여기서 저가의 MEMS(Micro Electro Mechanical Systems) 관성 센서의 성능향상으로 소형로봇에 관성센서를 장착하여 자세 측정에 이용하려는 연구가 많이 진행되고 있다. 특히, 회전 각속도를 측정하는 자이로 센서와 가속도를 측정하는 가속도 센서에 관심이 집중되고 있다. Mobile robots such as unmanned aerial vehicles and balancing robots, which cannot use sensors such as encoders that measure relative angles based on fixed points, use inertial sensors such as gyro sensors to measure their posture. In order to improve the performance of low-cost MEMS (Micro Electro Mechanical Systems) inertial sensors, a lot of researches are being made to use the inertial sensors in small robots for attitude measurement. In particular, attention is focused on the gyro sensor for measuring the rotational angular velocity and the acceleration sensor for measuring the acceleration.

가속도 센서를 이용해서 각도를 측정하는 방법은 간단하게 수행될 수 있으나, 센서의 중심축이 회전중심축과 동일하지 않은 경우, 병진운동성분이 포함되어 오차가 발생되는 문제점이 있다. 또한, 자이로 센서를 이용하여 각도를 측정하는 방법은 측정된 각속도를 적분하여 각도를 산출해야 하므로 적분오차가 누적되는 에러가 발생하는 문제점이 있다. The method of measuring an angle using an acceleration sensor can be performed simply, but when the central axis of the sensor is not the same as the central axis of rotation, there is a problem in that an error occurs due to the translational motion component. In addition, the method of measuring an angle using a gyro sensor has a problem in that an error in which an integration error accumulates because an angle is calculated by integrating the measured angular velocity.

이와 같이, 단일 센서를 사용한 경우에 발생하는 문제점으로 인하여 자이로 센서와 가속도 센서를 병합하여 사용하는 칼만필터 또는 상보필터 방법을 사용하기도 한다. As such, due to a problem occurring when a single sensor is used, a Kalman filter or a complementary filter method using a gyro sensor and an acceleration sensor may be used.

칼만필터 방법은 칼만필터 설계 시에 복잡한 수학적 문제를 다루어야 하고, 실제 구현에 있어서 많은 연산량을 필요로 하기 때문에 응답속도가 지연되는 문제점이 발생한다. The Kalman filter method has to deal with complex mathematical problems in the design of the Kalman filter, and it causes a problem of delayed response speed because it requires a large amount of computation in actual implementation.

아울러, 상보필터의 설계는 칼만필터의 설계보다 상대적으로 간단한 각도 추정 필터 기법을 이용하고, 자이로 센서와 가속도 센서에 각각 고역통과필터와 저역통과필터를 적용한 후 조합한다. In addition, the design of the complementary filter uses an angle estimation filter technique that is relatively simpler than the design of the Kalman filter, and then combines a high pass filter and a low pass filter to the gyro sensor and the acceleration sensor, respectively.

일반적으로 상보필터는 필터계수를 이용하여 설계되는데 이는 실제 실험 환경을 구축하는 것이 용이하지 않고, 2차 이상의 고역통과필터 및 저역통과필터를 적용하는 경우, 결정해야할 미지수가 많아져 설계하기가 어려운 문제점이 발생한다. In general, the complementary filter is designed using a filter coefficient, which is not easy to construct an actual experimental environment, and it is difficult to design a large number of unknown factors to be determined when applying a high pass filter and a low pass filter of two or more orders. This happens.

또한, 각도측정을 위해 사용되는 센서의 종류, 센서의 제조사 등에 따라 필터계수는 변경되기 때문에 피사체의 움직임에 따른 각도 값이 정확하지 않은 문제가 발생한다. In addition, since the filter coefficient is changed according to the type of sensor used for the angle measurement, the manufacturer of the sensor, and the like, an angle value according to the movement of the subject may be incorrect.

따라서, 보다 용이하게 설계할 수 있고, 응답속도의 지연을 방지하면서도 각도측정에 정확한 필터의 설계가 시급한 실정이다. Therefore, it is possible to design more easily, and it is urgent to design a filter that is accurate for angle measurement while preventing a delay in response speed.

따라서, 본 발명의 목적은 응답속도의 지연을 방지하고, 보다 용이하게 설계할 수 있으며, 피사체의 움직임에 대한 정확한 각도측정을 수행할 수 있도록 n(단, n>=1)의 저역통과필터와 고역통과필터 및 최소자승법을 적용하여 각도측정을 위한 n차 상보필터를 제공하는 것이다. Accordingly, an object of the present invention is to prevent the delay of the response speed, to be more easily designed, and to achieve an accurate angle measurement for the movement of the subject, n (where n> = 1) and a low pass filter and The high pass filter and the least square method are applied to provide an n-th order complementary filter for angular measurement.

상기 목적을 달성하기 위하여, 본 발명에 따른 각도측정을 위한 상보필터는 최소자승법을 적용하여 n(단, n>=1)차의 필터계수를 산출하는 산출수단, 제1 센서의 출력 값을 필터링 하기 위한 n차의 저역통과필터, 제2 센서의 출력 값을 필터링 하기 위한 n차의 고역통과필터, 상기 저역통과필터와 고역통과필터의 출력 값을 합산하는 합산수단, 상기 합산수단으로부터 출력된 합산결과에 적분을 수행하여 피사체의 움직임에 대한 각도를 산출하는 적분수단을 포함하는 것을 특징으로 한다.In order to achieve the above object, the complementary filter for the angle measurement according to the present invention is a means for calculating the filter coefficient of the order n (where n> = 1) by applying a least-squares method, filtering the output value of the first sensor N-th low pass filter for filtering, n-th high pass filter for filtering output value of second sensor, summing means for summing output values of the low-pass filter and high-pass filter, summing output from the summing means And integrating means for calculating an angle with respect to the movement of the subject by performing integration on the result.

또한, 상기 고역통과필터의 출력 값과 필터계수를 연산하는 연산수단을 포함하는 것을 특징으로 한다.In addition, it characterized in that it comprises a calculation means for calculating the output value and the filter coefficient of the high pass filter.

또한, 상기 최소자승법은, 피사체에 발생한 움직임에 대한 각도의 실측정 값과 상기 제2 센서 측정 값의 델타 값을 산출하고, 산출된 델타 값에 대한 n-1회 적분 값과, 상기 제1 센서 측정 값과 상기 실측정 값에 대한 크사이 값을 이용하여 도출되는 것을 특징으로 한다. In addition, the least square method calculates a delta value of an angle of the angle with respect to a movement occurring in a subject and a delta value of the second sensor measurement value, and integrates n-1 times of the calculated delta value and the first sensor. It is characterized in that it is derived by using the measured value and the magnitude value for the actual measurement value.

또한, 상기 제1 센서는, 자이로 센서인 것을 특징으로 한다. The first sensor may be a gyro sensor.

또한, 상기 제2 센서는, 가속도 센서 또는 기울기 센서인 것을 특징으로 한다. The second sensor may be an acceleration sensor or an inclination sensor.

따라서, 본 발명의 구조를 따르면 본 발명은 n(단, n>=1)차의 저역통과필터와 고역통과필터 및 최소자승법을 적용한 n차 상보필터를 설계하여 필터자체의 설계를 보다 용이하게 설계하고, 피사체의 움직임에 대한 각도측정 시 발생하는 응답속도의 지연을 방지함과 동시에 보다 정확한 각도측정을 수행할 수 있는 효과가 있다. Therefore, according to the structure of the present invention, the design of the filter itself is more easily designed by designing the n-th order low pass filter, the n-th order equalizer filter, and the n-th order complementary filter to which the least-square method is applied. In addition, it is possible to prevent the delay of the response speed generated when measuring the angle of the movement of the subject, and at the same time, to perform a more accurate angle measurement.

도 1은 종래기술에 따른 1차 상보필터를 나타내는 회로도
도 2는 본 발명의 실시예에 따른 각도측정을 위한 n(단, n>=1)차 상보필터를 나타내는 회로도
도 3은 본 발명의 실시예에 따른 3차 상보필터의 실험결과를 나타내는 도면
1 is a circuit diagram showing a first complementary filter according to the prior art
2 is a circuit diagram illustrating an n (where n> = 1) complementary filter for angle measurement according to an exemplary embodiment of the present invention.
3 is a diagram illustrating experimental results of a tertiary complementary filter according to an exemplary embodiment of the present invention.

이하, 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concept of the term appropriately in order to describe its own invention in the best way. The present invention should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

도 1은 종래기술에 따른 1차 상보필터를 나타내는 회로도이다. 1 is a circuit diagram illustrating a primary complementary filter according to the prior art.

일반적으로, 종래기술에 따른 1차 상보필터는 고주파 영역에서 응답특성이 좋은 자이로 센서(미도시)에서의 출력 값을 적분한 값에 고역통과필터를 설계하고, 저주파 영역에서 응답특성이 좋은 가속도 센서(미도시) 또는 기울기 센서(미도시)에서 출력된 값에 저역통과필터를 설계한다. 그리고 설계된 각 필터로부터 출력되는 출력 값을 합산하여 피사체의 움직임에 따른 각도 값을 도출한다. 이는 간단하게 정리하면 하기의 수학식 1과 같이 나타낼 수 있고, 수학식 1을 회로도로 나타내면 도 1과 같다. In general, the first complementary filter according to the prior art design a high-pass filter to the integrated value of the output value from the gyro sensor (not shown) with good response characteristics in the high frequency region, acceleration sensor with good response characteristics in the low frequency region Design a low-pass filter on a value output from a (not shown) or a tilt sensor (not shown). Then, the output value from each designed filter is summed to derive the angle value according to the movement of the subject. This can be briefly summarized as in Equation 1 below, and Equation 1 is shown in FIG. 1 as a circuit diagram.

Figure 112011011411510-pat00001
Figure 112011011411510-pat00001

여기서,

Figure 112011011411510-pat00002
는 피사체의 움직임에 대한 각도 산출의 결과 값,
Figure 112011011411510-pat00003
는 자이로 센서에서 측정된 각속도 값,
Figure 112011011411510-pat00004
는 가속도 센서 또는 기울기 센서(미도시)에서 측정된 각도 값,
Figure 112011011411510-pat00005
은 필터계수를 나타낸다. here,
Figure 112011011411510-pat00002
Is the resulting value of the angle calculation for the subject's movement,
Figure 112011011411510-pat00003
Is the angular velocity value measured by the gyro sensor,
Figure 112011011411510-pat00004
Is the angle value measured by the accelerometer or tilt sensor (not shown),
Figure 112011011411510-pat00005
Denotes a filter coefficient.

도 1을 참조하면, 종래기술에 따른 1차 상보필터(100)는 제1 합산수단(110), 연산수단(120), 제2 합산수단(130), 적분수단(140)으로 구성된다. Referring to FIG. 1, the first complementary filter 100 according to the related art includes a first adding means 110, a calculating means 120, a second adding means 130, and an integrating means 140.

제1 합산수단(110)은

Figure 112011011411510-pat00006
에서 각속도 센서 또는 기울기 센서로부터 출력된 각도 값이 저역통과필터(미도시)를 통과한 이후의 각도 값(
Figure 112011011411510-pat00007
)을 뺀다. The first summing means 110
Figure 112011011411510-pat00006
The angle value after the angle value output from the angular velocity sensor or the tilt sensor passes through the low pass filter (not shown)
Figure 112011011411510-pat00007
Subtract).

연산수단(120)은 제1 합산수단(110)에서 도출된 값에 필터계수(

Figure 112011011411510-pat00008
)을 곱한다. The calculation means 120 has a filter coefficient (S) with a value derived from the first summing means 110.
Figure 112011011411510-pat00008
Multiply by

제2 합산수단(130)은 자이로 센서에서 출력된 각속도 값이 고역통과필터(미도시)를 통과한 이후의 각속도 값(

Figure 112011011411510-pat00009
)에서 연산수단(120)에서 도출된 값을 뺀다.The second summation unit 130 has an angular velocity value after the angular velocity value output from the gyro sensor passes through a high pass filter (not shown).
Figure 112011011411510-pat00009
) Is subtracted from the value derived from the calculation means 120.

이후, 적분수단(140)은 제2 합산수단(130)에서 도출된 값에 적분을 수행하여 피사체의 움직임에 따른 각도 값을 도출한다. Thereafter, the integrating means 140 derives an angle value according to the movement of the subject by performing integration on the value derived from the second summing means 130.

도 2는 본 발명의 실시예에 따른 각도측정을 위한 n(단, n>=1)차 상보필터를 나타내는 회로도이다. 2 is a circuit diagram illustrating an n (where n> = 1) complementary filter for angle measurement according to an exemplary embodiment of the present invention.

도 2를 참조하면, 본 발명에 따른 각도측정을 위한 n차 상보필터(200, 이하, n차 상보필터라 함)는 제1 합산수단(210), n개의 연산수단(220), 제2 합산수단(230), n개의 적분수단(240)으로 구성되고, 산출수단(미도시)을 포함한다. Referring to FIG. 2, the n-th complementary filter 200 (hereinafter, referred to as the n-th complementary filter) for angular measurement according to the present invention includes a first adding means 210, n calculating means 220, and a second summation. The means 230 is composed of n integral means 240, and includes a calculation means (not shown).

n차 상보필터(200)는 각도정보를 가공하고 보정하는데 사용되는 여러 가지 주요 필터 중 하나를 나타내는 것으로, n차 상보필터(200)는 하기의 수학식 2에 의해 설계되고, 도 2는 수학식 2를 도식화한 도면이다. The n-th complementary filter 200 represents one of various main filters used to process and correct angle information. The n-th complementary filter 200 is designed by Equation 2 below, and FIG. 2 is a schematic diagram.

Figure 112011011411510-pat00010
Figure 112011011411510-pat00010

여기서,

Figure 112011011411510-pat00011
는 피사체의 움직임에 대한 각도 산출의 결과 값,
Figure 112011011411510-pat00012
는 상기 자이로 센서(미도시)에서 측정된 각속도 값,
Figure 112011011411510-pat00013
는 가속도 센서 또는 기울기 센서(미도시)에서 측정된 각도,
Figure 112011011411510-pat00014
은 필터계수, k는 자이로 센서 및 가속도 센서 또는 자이로 센서 및 기울기 센서에서 측정된 측정 횟수를 나타낸다. here,
Figure 112011011411510-pat00011
Is the resulting value of the angle calculation for the subject's movement,
Figure 112011011411510-pat00012
Is an angular velocity value measured by the gyro sensor (not shown),
Figure 112011011411510-pat00013
Is the angle measured by the accelerometer or tilt sensor (not shown),
Figure 112011011411510-pat00014
Is the filter coefficient, k denotes the number of measurements measured by the gyro sensor and the acceleration sensor or the gyro sensor and the tilt sensor.

보다 구체적으로 설명하면, 제1 합산수단(210)은 n(단, n>=1)차의 고역통과필터를 통해 출력된 가속도 센서 또는 기울기 센서에서 감지된 각도 값과, 피사체의 움직임에 대한 각도 산출의 결과 값을 1차적으로 합산한다. In more detail, the first summing means 210 is an angle value detected by the acceleration sensor or the tilt sensor output through the high pass filter of n (where n> = 1), and the angle with respect to the movement of the subject. The results of the calculation are summed up first.

그리고 연산수단(220)은 제1 합산수단(210)에서 합산된 출력 값에 필터계수를 곱하는 연산을 수행한다. 이때, 연산수단(220)은 n차 상보필터(200)에 해당하는 n개의 필터계수를 곱하는 연산을 수행한다. The calculation unit 220 performs an operation of multiplying the filter coefficient by the output value summed by the first adding means 210. In this case, the calculation means 220 performs an operation of multiplying the n filter coefficients corresponding to the n th complementary filter 200.

연산수단(220)에서 연산이 종료되면, 제2 합산수단(230)은 자이로 센서에서 감지되어 저역통과필터를 통해 출력된 각속도 값과, 연산수단(220)에서 출력된 연산 값을 합산한다. When the calculation is completed in the calculation means 220, the second adding means 230 sums the angular velocity value detected by the gyro sensor and output through the low pass filter and the calculation value output from the calculation means 220.

이후, 적분수단(240)은 최종적으로 합산된 값에 적분을 수행한다. 적분수단(240)에 의해 적분된 최종 값이 피사체의 움직임에 대한 각도 산출의 결과 값이 된다. Thereafter, the integrating means 240 performs integration on the finally summed values. The final value integrated by the integrating means 240 becomes a result value of the angle calculation for the movement of the subject.

아울러, 산출수단은 하기의 수학식 3을 이용하여 수학식 2에 기재된 필터계수를 산출한다. 산출수단은 n개의 필터계수를 산출하는데, 수학식 3에 기재된

Figure 112011011411510-pat00015
,
Figure 112011011411510-pat00016
, ..,
Figure 112011011411510-pat00017
은 필터계수를 의미하고, 수학식 1에 기재된 와 동일한 의미이다. In addition, the calculation means calculates the filter coefficient described in Equation 2 using Equation 3 below. The calculating means calculates n filter coefficients,
Figure 112011011411510-pat00015
,
Figure 112011011411510-pat00016
, ..,
Figure 112011011411510-pat00017
Denotes a filter coefficient and has the same meaning as described in Equation (1).

Figure 112011011411510-pat00018
Figure 112011011411510-pat00018

수학식 3에 기재된 A와 B는 각각 하기의 수학식 4와 수학식 5를 통해 도출된다. A and B described in Equation 3 are derived through Equations 4 and 5, respectively.

Figure 112011011411510-pat00019
Figure 112011011411510-pat00019

이때,

Figure 112011011411510-pat00020
이고,
Figure 112011011411510-pat00021
이다. At this time,
Figure 112011011411510-pat00020
ego,
Figure 112011011411510-pat00021
to be.

는 피사체에서 발생한 움직임에 대한 각도의 참값, 즉 엔코더에서 측정된 값을 나타내고, 도출된

Figure 112011011411510-pat00023
를 n-1번 적분한 결과 값이
Figure 112011011411510-pat00024
이다. Denotes the true value of the angle with respect to the movement in the subject, that is, the value measured by the encoder.
Figure 112011011411510-pat00023
The result of integrating n-1 times
Figure 112011011411510-pat00024
to be.

Figure 112011011411510-pat00025
Figure 112011011411510-pat00025

이때,

Figure 112011011411510-pat00026
이다. At this time,
Figure 112011011411510-pat00026
to be.

Figure 112011011411510-pat00027
는 자이로 센서에 획득된 값과 엔코더에서 측정된 값을 이용하여 산출한다.
Figure 112011011411510-pat00027
Is calculated using the value obtained by the gyro sensor and the value measured by the encoder.

이와 같이, 본 발명에서는 수학식 3 내지 5를 이용하여 각도 측정 시 사용된 센서에 대한 n차 상보필터(200)에 해당하는 n개의 필터계수를 간단하게 산출하고, 산출된 필터계수를 수학식 2에 대입함으로써, 피사체에서 발생한 움직임에 대한 각도를 정확히 산출할 수 있다. As described above, the present invention simply calculates n filter coefficients corresponding to the n-th order complementary filter 200 for the sensor used at the angle measurement using Equations 3 to 5, and calculates the calculated filter coefficients as Equation 2 below. By substituting for, the angle with respect to the movement occurring in the subject can be calculated accurately.

도 3은 본 발명의 실시예에 따른 3차 상보필터의 실험결과를 나타내는 도면이다. 3 is a diagram illustrating an experimental result of a tertiary complementary filter according to an exemplary embodiment of the present invention.

도 3을 참조하면, 도면부호 11은 엔코더를 이용하여 피사체의 움직임에 대한 각도를 측정한 실제 각도 값이고, 도면부호 12는 3차 상보필터를 이용하여 피사체의 움직임에 대한 각도를 산출한 각도 값이다. 도 3에서와 같이, 3차 상보필터를 이용하여 산출한 피사체의 움직임에 대한 각도와 엔코더를 이용하여 실제로 측정한 각도가 매우 유사함을 확인할 수 있다. Referring to FIG. 3, reference numeral 11 is an actual angle value of measuring an angle of a subject's movement using an encoder, and reference numeral 12 is an angle value of an angle of a subject's movement using a third-order complementary filter. to be. As shown in FIG. 3, it can be seen that the angle of the subject's movement calculated using the third complementary filter and the angle actually measured using the encoder are very similar.

이와 같이, n차 상보필터(200)는 피사체의 움직임에 대한 정확한 각도측정을 수행할 수 있는 효과가 있다. As described above, the n-th complementary filter 200 may perform accurate angle measurement on the movement of the subject.

아울러, 저가의 MEMS 센서를 이용하여 피사체의 움직임에 대한 정확한 각도측정을 수행할 수 있으므로, 엔코더와 같은 센서를 사용할 수 없는 무인 비행체, 밸런싱 로봇 등과 같은 장비의 움직임에 대한 각도측정 장비 설계 시 비용을 절감할 수 있는 효과가 발생한다. In addition, the low-cost MEMS sensor can be used to accurately measure the movement of the subject. Therefore, the cost of designing the angle measurement equipment for the movement of equipment such as unmanned aerial vehicles and balancing robots that cannot use sensors such as encoders can be increased. There is a saving effect.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 하기에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다. As described above, although the present invention has been described by means of a limited embodiment and drawings, the present invention is not limited thereto and by those skilled in the art to which the present invention pertains, Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

200: n차 상보필터
210: 제1 합산수단 220: 연산수단
230: 제2 합산수단 240: 적분수단
200: nth complementary filter
210: first adding means 220: calculating means
230: second adding means 240: integrating means

Claims (5)

최소자승법을 적용하여 n(단, n>=1)차의 필터계수를 산출하는 산출수단;
제1 센서의 출력 값을 필터링 하기 위한 n차의 저역통과필터;
제2 센서의 출력 값을 필터링 하기 위한 n차의 고역통과필터;
상기 저역통과필터와 고역통과필터의 출력 값을 합산하는 합산수단;
상기 합산수단으로부터 출력된 합산결과에 적분을 수행하여 피사체의움직임에 대한 각도를 산출하는 적분수단; 및
을 포함하는 것을 특징으로 하는 각도측정을 위한 상보필터.
Calculating means for calculating a filter coefficient of order n (where n> = 1) by applying the least square method;
An n-th order low pass filter for filtering the output value of the first sensor;
An n-th high pass filter for filtering the output value of the second sensor;
Summing means for summing output values of the low pass filter and the high pass filter;
Integrating means for integrating the sum result output from the adding means to calculate an angle with respect to the movement of the subject; And
Complementary filter for angle measurement, characterized in that it comprises a.
제1항에 있어서,
상기 n차의 고역통과필터에서 필터링된 n차의 출력 값과 상기 산출수단에서 산출된 n차의 필터계수를 연산하는 연산수단;
을 포함하는 것을 특징으로 하는 각도측정을 위한 상보필터.
The method of claim 1,
Calculating means for calculating an n-th order output value filtered by the n-th high pass filter and an n-th order filter coefficient calculated by the calculating means;
Complementary filter for angle measurement, characterized in that it comprises a.
제2항에 있어서,
상기 최소자승법은,
피사체에 발생한 움직임에 대한 각도의 실측정 값과 상기 제2 센서에 의한 측정 값에 대한 델타 값을 산출하고, 산출된 델타 값에 대한 n-1회 적분 값과, 상기 제1 센서에 의한 측정 값과 상기 실측정 값에 대한 크사이 값을 이용하여 도출되는 것을 특징으로 하는 각도측정을 위한 상보필터.
The method of claim 2,
The least square method is
Calculate a delta value for the actual measured value of the angle with respect to the movement occurring in the subject and the measured value by the second sensor, n-1 integration values for the calculated delta value, and the measured value by the first sensor And a complementary filter for angular measurement, which is derived using a magnitude value for the actual measured value.
제1항에 있어서,
상기 제1 센서는,
자이로 센서인 것을 특징으로 하는 각도측정을 위한 상보필터.
The method of claim 1,
The first sensor,
Complementary filter for angle measurement, characterized in that the gyro sensor.
제1항에 있어서,
상기 제2 센서는,
가속도 센서 또는 기울기 센서인 것을 특징으로 하는 각도측정을 위한 상보필터.
The method of claim 1,
The second sensor,
Complementary filter for angle measurement, characterized in that the acceleration sensor or the tilt sensor.
KR1020110014091A 2011-02-17 2011-02-17 Complementary filter for angle measuring Active KR101147133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110014091A KR101147133B1 (en) 2011-02-17 2011-02-17 Complementary filter for angle measuring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110014091A KR101147133B1 (en) 2011-02-17 2011-02-17 Complementary filter for angle measuring

Publications (1)

Publication Number Publication Date
KR101147133B1 true KR101147133B1 (en) 2012-05-25

Family

ID=46272284

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110014091A Active KR101147133B1 (en) 2011-02-17 2011-02-17 Complementary filter for angle measuring

Country Status (1)

Country Link
KR (1) KR101147133B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109674480A (en) * 2019-02-02 2019-04-26 北京理工大学 A kind of human motion attitude algorithm method based on improvement complementary filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06161561A (en) * 1992-06-15 1994-06-07 Honeywell Inc Method and apparatus for control of electromechanical actuator
KR20030041132A (en) * 2000-07-28 2003-05-23 허니웰 인터내셔널 인코포레이티드 Second order complementary global positioning system/inertial navigation system blending filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06161561A (en) * 1992-06-15 1994-06-07 Honeywell Inc Method and apparatus for control of electromechanical actuator
KR20030041132A (en) * 2000-07-28 2003-05-23 허니웰 인터내셔널 인코포레이티드 Second order complementary global positioning system/inertial navigation system blending filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109674480A (en) * 2019-02-02 2019-04-26 北京理工大学 A kind of human motion attitude algorithm method based on improvement complementary filter

Similar Documents

Publication Publication Date Title
US10101174B2 (en) Air data aided inertial measurement unit
CN109983345B (en) Signal processing device, inertial sensor, acceleration measurement method, electronic device, and program
US11125560B2 (en) Robust method for tuning of gyroscope demodulation phase
CN101375129A (en) Sensor-based orientation system
Ariffin et al. Low cost MEMS gyroscope and accelerometer implementation without Kalman Filter for angle estimation
KR101314151B1 (en) Calibration Method for 6-Axis Vibration Sensors using Periodic Angular Vibration and Its Realization System
CN105371846B (en) Attitude of carrier detection method and its system
WO2014155559A1 (en) Notch filter, external force estimator, motor controller, and robot system
Fontanella et al. An extensive analysis for the use of back propagation neural networks to perform the calibration of MEMS gyro bias thermal drift
Narasimhappa et al. An innovation based random weighting estimation mechanism for denoising fiber optic gyro drift signal
JP6383907B2 (en) Vehicle position measuring apparatus and method
US11619492B2 (en) Sensor linearization based upon correction of static and frequency-dependent non-linearities
KR101147133B1 (en) Complementary filter for angle measuring
Ivoilov et al. Detection of unrevealed non-linearities in the layout of the balancing robot
CN106197376A (en) Car body obliqueness measuring method based on single shaft MEMS inertial sensor
Shen et al. A new calibration method for low cost MEMS inertial sensor module
RU129625U1 (en) INERTIAL MEASURING MODULE
KR101160206B1 (en) Device and method for angle measuring using complementary filter
US10345329B2 (en) Inertial force sensor
KR20130082327A (en) Apparatus and method for controling vibration in object having acceleration sensor
JP5424224B2 (en) Relative angle estimation system
JP5958920B2 (en) Inclination angle estimation system
CN113932842A (en) Measuring device
Vinh An algorithm for determining the navigation parameters of AUVs based on the combination of measuring devices
Oskin et al. Experimental Research of an Array of Gyroscopic Sensors in Static Mode

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20110217

PA0201 Request for examination
A302 Request for accelerated examination
PA0302 Request for accelerated examination

Patent event date: 20111111

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20110217

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20120120

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20120427

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20120510

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20120510

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150508

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20150508

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20160510

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20160510

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20170510

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20170510

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20180510

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20180510

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20200511

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20210510

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20220510

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20230510

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20250512

Start annual number: 14

End annual number: 14