폴리펩티드(들)/단백질(들)
용어 "폴리펩티드" 및 "단백질"은 본 발명에서 상호 교체 사용되며, 임의의 길이의 아미노산의 중합형을 말한다.
폴리뉴클레오티드(들)/핵산(들)/핵산 서열(들)/뉴클레오티드 서열(들)
용어 "폴리뉴클레오티드(들)", "핵산 서열(들)", "뉴클레오티드 서열(들)"은 본 발명에서 상호 교체 사용되며, 임의의 길이의 중합형인, 리보뉴클레오티드 또는 데옥시리보뉴클레오티드 또는 양자의 조합인 뉴클레오티드를 말한다.
대조구
식물(들)
적절한 대조구 식물의 선택은 실험 셋업에서는 통상적인 부분이며, 해당 식물의 야생형 또는 목적 유전자가 없는 해당 식물을 포함할 수 있다. 대조구 식물은 전형적으로 평가되는 식물과 동일한 식물 종 또는 동일한 변종이다. 대조구 식물은 또한 평가되는 식물의 공접합자(nullizygote)일 수 있다. 본 발명에서 사용된 "대조구 식물"은 전체 식물뿐 아니라 종자 및 종자의 일부분을 포함한 식물의 일부분을 말한다.
상동체
(들)
단백질의 "상동체"는 문제의 변형되지 않은 단백질에 대해 아미노산 치환, 결실 및/또는 삽입을 가지며, 이들이 유래되는 변형되지 않은 단백질과 유사한 생물학적 및 기능적 활성을 가진 펩티드, 올리고펩티드, 폴리펩티드, 단백질 및 효소를 포함한다.
결실은 단백질로부터 하나 이상의 아미노산의 제거를 말한다.
삽입은 단백질 내의 예정된 위치에 하나 이상의 아미노산 잔기가 도입되는 것을 말한다. 삽입은 하나 또는 다수 아미노산의 서열 내 삽입뿐 아니라 N-말단 및/또는 C-말단 융합을 포함할 수 있다. 일반적으로 아미노산 서열 내 삽입은 N- 또는 C-말단 융합보다 작을 것이며, 약 1 내지 10 개 정도의 잔기이다. N- 또는 C-말단 융합 단백질 또는 펩티드의 예는 효모 투 하이브리드(two-hybrid) 시스템에 사용된 전사 활성제의 결합 도메인 또는 활성화 도메인, 파아지 외피 단백질, (히스티딘)-6-태그, 글루타치온 S-전달효소-태그, 단백질 A, 말토스-결합 단백질, 디히드로폴레이트 환원효소, Tag·100 에피토프, c-myc 에피토프, FLAG
-에피토프, lacZ, CMP (칼모둘린-결합 펩티드), HA 에피토프, 단백질 C 에피토프 및 VSV 에피토프를 포함한다.
치환은 유사한 성질 (유사한 소수성, 친수성, 항원성, 알파 나선 구조 또는 베타 병풍 구조를 형성하거나 파괴하는 경향 같은)을 가진 다른 아미노산으로 단백질의 아미노산의 치환을 말한다. 아미노산 치환은 전형적으로 한 잔기의 치환이나, 폴리펩티드에 부여된 기능적 제약에 따라 클러스터될(clustered) 수도 있으며; 삽입은 보통 약 1 내지 10 개 정도의 아미노산 잔기가 삽입된다. 아미노산 치환은 바람직하게는 보존적 아미노산 치환이다. 보존적 치환 표는 당업계에 주지되어 있다 (예를 들면, Creighton (1984) Proteins. W.H. Freeman and Company (Eds) 및 하기 표 1 참고).
표 1: 보존된 아미노산 치환의 예
| 잔기 |
보존적 치환 |
잔기 |
보존적 치환 |
| Ala |
Ser |
Leu |
Ile; Val |
| Arg |
Lys |
Lys |
Arg; Gln |
| Asn |
Gln; His |
Met |
Leu; Ile |
| Asp |
Glu |
Phe |
Met; Leu; Tyr |
| Gln |
Asn |
Ser |
Thr; Gly |
| Cys |
Ser |
Thr |
Ser; Val |
| Glu |
Asp |
Trp |
Tyr |
| Gly |
Pro |
Tyr |
Trp; Phe |
| His |
Asn; Gln |
Val |
Ile; Leu |
| Ile |
Leu, Val |
|
|
아미노산 치환, 결실 및/또는 삽입은 고체상 펩티드 합성 등과 같은 당업계에 주지된 펩티드 합성 기술을 이용하거나 또는 재조합 DNA 조작에 의해 용이하게 수행될 수 있다. 단백질의 치환, 삽입 또는 결실 변이체를 제조하기 위한 DNA 서열 조작 방법은 당업계에 주지되어 있다. 예를 들면, DNA 상의 예정된 위치에 치환 돌연변이를 제조하기 위한 기술은 당업자에게 주지되어 있으며, M13 돌연변이유발, T7-Gen 시험관 내 돌연변이유발 (USB, Cleveland, OH), QuickChange 자리지정 돌연변이유발 (Stratagene, San Diego, CA), PCR-매개된 자리지정 돌연변이유발 또는 기타 자리지정 돌연변이유발 프로토콜을 포함한다.
유도체
"유도체"는 서열번호 2에 제시된 것과 같은 자연발생 형태의 단백질의 아미노산 서열과 비교하여, 자연적으로 발생하지 않는 아미노산 잔기로 아미노산의 치환 또는 자연적으로 발생하지 않는 아미노산 잔기의 첨가를 포함할 수 있는 펩티드, 올리고펩티드, 폴리펩티드를 포함한다. 단백질의 "유도체"는 또한 자연발생 형인 폴리펩티드의 아미노산 서열과 비교하여 자연적으로 발생하는 변형된 (글리코실화, 아실화, 프레닐화, 인산화, 미리스토일화, 황화 등) 또는 자연적으로 발생하지 않는 변형된 아미노산 잔기를 포함하는 펩티드, 올리고펩티드, 폴리펩티드를 포함한다. 유도체는 또한 유래되는 아미노산 서열과 비교하여 하나 이상의 비아미노산의 치환 또는 첨가를 포함할 수 있는데, 예를 들면, 이의 검출을 용이하게 하기 위해 결합되는 리포터 분자와 같은 아미노산 서열에 공유적으로 또는 비공유적으로 결합한 리포터 분자나 다른 리간드, 및 자연적으로 발생하는 단백질의 아미노산 서열에 대해 비자연적으로 발생하는 아미노산 잔기이다.
오쏘로그
(들)/
패럴로그
(들)
오쏘로그 및 패럴로그는 유전자의 조상관계를 기재하는데 사용되는 진화적 개념을 포함한다. 패럴로그는 조상 유전자의 복제로 생긴 동일한 종 내의 유전자이고, 오쏘로그는 종분화를 통해 유래된 다른 생물체의 유전자이다.
도메인
용어 "도메인"은 진화적으로 연관된 단백질의 서열정렬 시 특정 위치에서 보존된 아미노산의 세트이다. 다른 위치의 아미노산은 상동체들 간에 다양할 수 있는 반면, 특정 위치에서 고도로 보존된 아미노산은 단백질의 구조, 안정성 또는 활성에 필수적일 것 같은 아미노산을 나타낸다. 단백질 상동체 패밀리의 정렬된 서열상에서 고도로 보존된 부분은 임의의 문제되는 폴리펩티드가 이전에 동정된 폴리펩티드 패밀리에 속하는지를 결정하는 동정부위로 사용될 수 있다.
모티프/일치 서열(
consensus
sequence
)/시그너처(
Signature
)
용어 "모티프", "일치 서열" 또는 "시그너처"는 진화적으로 연관된 단백질의 서열에 있어 짧은 보존된 영역을 말한다. 모티프는 흔히 도메인의 고도로 보존된 부분뿐만 아니라, 도메인의 일부만을 포함할 수도 있거나 또는 보존된 도메인 외부에 있을 수도 있다 (만일 모티프의 아미노산 모두가 지정된 도메인 외부에 있으면).
혼성화
본 발명에 정의된 용어 "혼성화"는 실질적으로 상동인 상보적인 뉴클레오티드 서열이 서로 어닐링하는 과정이다. 혼성화 과정은 전적으로 용액 내에서, 즉 상보적인 양 핵산이 용액 내에 있을 때 일어날 수 있다. 혼성화 과정은 또한 상보적인 핵산의 하나가 자성 비드, Sepharose 비드 또는 어떤 다른 수지(resin) 같은 기질에 고정되었을 때도 일어날 수 있다. 혼성화 과정은 더욱이 상보적인 핵산 중의 하나가 니트로셀룰로스 또는 나일론 막 같은 고체 지지체에 고정되었거나 또는 포토리쏘그래피에 의하여 규산질의 유리 지지체 (핵산 어레이, 마이크로어레이 또는 핵산 칩이라 알려짐)에 고정되었을 때에도 일어날 수 있다. 혼성화가 일어나게 하기 위하여, 핵산분자는 일반적으로 열적으로 또는 화학적으로 변성되어 하나의 이중가닥을 2개의 단일가닥으로 녹이고/녹이거나 단일가닥 핵산으로부터 헤어핀 또는 기타 이차 구조를 제거한다.
용어 "스트린전시"는 혼성화가 일어나는 조건을 말한다. 혼성화의 스트린전시는 온도, 염 농도, 이온 강도 및 혼성화 완충액 조성 같은 조건의 영향을 받는다. 일반적으로 낮은 스트린전시 조건은 정해진 이온강도 및 pH에서 특정 서열에 대한 용해점 (Tm) 보다 약 30℃ 낮은 온도가 선택된다. 중간 스트린전시 조건은 Tm 보다 20℃ 낮은 온도일 때, 높은 스트린전시 조건은 Tm 보다 10℃ 낮은 온도이다. 높은 스트린전시 혼성화 조건은 전형적으로 표적 핵산 서열에 높은 서열 유사성을 가진 혼성화 서열을 분리하기 위해 사용된다. 그러나, 핵산은 서열 상의 차이가 있더라도 유전암호의 축퇴로 인하여 실제로는 동일한 폴리펩티드를 암호화할 수 있다. 그러므로, 중간 스트린전시 혼성화 조건은 종종 상기 핵산분자를 동정하는데 필요할 수 있다.
Tm은 정해진 이온 강도 및 pH 하에서 표적 서열의 50%가 완벽하게 매치된 탐침에 혼성화하는 온도이다. Tm은 용액 조건, 염기 조성 및 탐침의 길이에 의존적이다. 예를 들면, 보다 긴 서열일수록 보다 높은 온도에서 특이적으로 혼성화한다. 최대 혼성화율은 Tm보다 약 16℃에서 32℃까지 낮을 때 얻어진다. 1가 양이온이 혼성액에 있으면 두 핵산 가닥 간에 정전기적 반발이 감소하여 혼성화가 촉진되고; 이 효과는 0.4M (보다 높은 농도에서는 이 효과가 무시될 수 있다)까지의 나트륨 농도에서 보여진다. 포름아미드는 DNA-DNA 및 DNA-RNA 이중가닥의 용해 온도를 포름아미드 퍼센트당 0.6 내지 0.7℃ 내리며, 50% 포름아미드의 첨가는 혼성화율은 낮아지더라도 혼성화가 30 내지 45℃에서 일어나게 한다. 염기쌍 미스매치는 혼성화율 및 이중가닥의 온도 안정성을 감소시킨다. 평균적으로 그리고 큰 탐침에 대하여, Tm은 염기 미스매치 %당 약 1℃ 감소한다. Tm은 혼성체의 유형에 따라 하기의 식으로 계산할 수 있다:
1) DNA-DNA 혼성체 (Meinkoth and Wahl, Anal. Biochem., 138: 267-284, 1984):
Tm=81.5℃+16.6xlog10[Na+]a+0.41x%[G/Cb]-500x[Lc]-1 -0.61x%포름아미드
2) DNA-RNA 또는 RNA-RNA 혼성체:
Tm= 79.8 + 18.5 (log10[Na+]a)+0.58(%G/Cb)+11.8(%G/Cb)2-820/Lc
3) 올리고-DNA 또는 올리고-RNAd 혼성체:
20개 뉴클레오티드 미만에 대해: Tm=2(In)
20-35개 뉴클레오티드에 대해: Tm=22+1.46(In)
a 또는 다른 1가 양이온에 대하여, 0.01-0.4 M 범위 내에서만 정확.
b 30% 내지 75% 범위 내에서 %GC에 대하여만 정확.
c L = bp으로 표시된 이중가닥의 길이.
d 올리고, 올리고뉴클레오티드; In, 효과적인 프라이머 길이 = 2x(G/C의 수)+(A/T의 수)
비특이적 결합은 예를 들면, 단백질 함유 용액으로 막을 차단하고, 혼성화 완충액에 이종의 RNA, DNA, 및 SDS를 첨가하고, RNAse 처리하는 것과 같은 많은 알려진 기술 중 임의의 하나를 사용하여 조절할 수 있다. 비상동 탐침에 대하여, 일련의 혼성화 과정은 (i) 점차적으로 어닐링 온도를 낮추거나 (예를 들면 68℃에서 42℃까지) (ii) 점차적으로 포름아미드 농도를 낮추거나 (예를 들면 50%에서 0%까지) 중 하나를 변화시킴으로써 수행될 수 있다. 당업자는 혼성화 중에 변할 수 있는, 그리고 스트린전시 조건을 유지하거나 바꾸는 다양한 매개변수를 인식하고 있다.
혼성화 조건 외에, 혼성화의 특이성은 또한 전형적으로 혼성화 후 세척 기능에 의존한다. 비특이적 혼성화로 생기는 백그라운드를 제거하기 위하여, 시료를 묽은 염 용액으로 세척한다. 이런 세척의 결정적인 요인은 최종 세척액의 이온 강도 및 온도를 포함하며: 염 농도가 낮고 세척 온도가 높을수록 세척의 스트린전시는 높아진다. 세척 조건은 전형적으로 혼성화 스트린전시에서 또는 보다 낮게 수행된다. 양성 혼성화는 적어도 백그라운드의 2 배의 신호로 나타난다. 일반적으로 핵산 혼성화 분석이나 유전자 증폭 검출 과정에 적절한 스트린전트 조건은 상기와 같다. 다소 스트린전트한 조건 또한 선택될 수 있다. 당업자는 세척 중에 변할 수 있는, 그리고 스트린전시 조건을 유지하거나 바꾸는 다양한 매개변수를 인식하고 있다.
예를 들면, 50 뉴클레오티드보다 긴 DNA 혼성체에 대한 전형적인 높은 스트린전시 혼성화 조건은 65℃, 1x SSC에서 또는 42℃, 1x SSC 및 50% 포름아미드에서 혼성화 후 65℃, 0.3x SSC에서 세척하는 것이다. 50 뉴클레오티드보다 긴 DNA 혼성체에 대한 중간 스트린전시 혼성화 조건은 50℃, 4x SSC 또는 40℃, 6x SSC 및 50% 포름아미드에서 혼성화 후, 50℃, 2x SSC에서 세척하는 것이다. 혼성체의 길이는 혼성화하는 핵산에 대해 예측된 길이이다. 알려진 서열의 핵산이 혼성화될 때 혼성체의 길이는 서열을 정렬하고 본 발명에서 기재된 보존된 영역을 동정하면 결정될 수 있다. 1X SSC는 0.15M NaCl 및 15mM 소듐 시트레이트이며; 혼성액 및 세척액에는 부가적으로 5x Denhardt's reagent, 0.5-1.0% SDS, 100 ㎍/ml 변성된, 단편화된 연어 정자 DNA, 0.5% 소듐 피로포스페이트가 포함된다.
스트린전시 수준을 결정하기 위해서는 [Sambrook 등 (2001) Molecular Cloning: laboratory manual, 3rdEdition, Cold Spring Harbor Laboratory Press, CSH, New York or to Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989, 매년 개정됨)]을 참조하면 된다.
유전자
셔플링
(
shuffling
)/방향진화(
directed
evolution
)
유전자 셔플링 또는 방향진화는 DNA 셔플링의 반복에 이은 변형된 생물학적 활성을 가진 단백질을 암호화하는 핵산이나 그 일부분의 변이체 생성을 위해 적절한 탐색 및/또는 선발로 구성된다 (Castle 등, (2004) Science 304(5674): 1151-4; 미국 특허 제5,811,238호 및 제6,395,547호).
조절 인자/조절 서열/프로모터
용어 "조절 인자", "조절 서열" 및 "프로모터"는 본 발명에서 상호 호환적으로 사용되며, 결합되는 서열의 발현에 영향을 미칠 수 있는 조절 핵산 서열을 말하는 것으로 사용된다. 용어 "프로모터"는 전형적으로 유전자의 전사개시점의 업스트림에 있으며, RNA 중합효소 및 다른 단백질의 인지 및 결합에 관여하여 작동가능하게 연결된 핵산의 전사를 지시하는 핵산 조절 서열을 말한다. 상기 언급한 용어에는 전형적인 진핵세포 게놈 유전자 (CCAAT 박스 서열이 있거나 없이 정확한 전사 개시에 필요한 TATA 박스를 포함) 및 발달 및/또는 외부 자극에 반응하여 또는 조직 특이적 방식으로 유전자 발현을 변경하는 부가적인 조절 인자 (즉, 업스트림 활성화 서열, 인핸서 및 사일런서)로부터 유래한 전사 조절 서열이 포함된다. 또한 상기 용어에는 -35 박스 서열 및/또는 -10 박스 전사 조절 서열을 포함하는 전형적인 원핵생물 유전자의 전사 조절 서열이 포함된다. 용어 "조절인자"는 또한 세포, 조직 또는 기관에 핵산분자의 발현을 하게 하거나 활성화 또는 증가시키는 합성 융합 분자 또는 유도체를 포함한다.
"식물 프로모터"는 식물 세포에 암호화 서열 단편의 발현을 중재하는 조절 인자를 포함한다. 따라서, 식물 프로모터는 식물에서 유래해야 하는 것은 아니며, 예를 들면 식물 세포에 침범하는 바이러스 또는 미생물 기원일 수도 있다. "식물 프로모터"는 식물 세포, 예를 들면, 본 발명의 방법에서 발현되며, 본 발명에 기재된 핵산 서열로 형질전환된 식물 기원일 수 있다. 이는 또한 "식물" 종결신호 같은 "식물" 조절 신호에도 해당된다. 본 발명의 방법에 유용한 뉴클레오티드 서열의 프로모터 업스트림은 프로모터, 개방형해독틀 (ORF) 또는 종결신호 또는 ORF로부터 떨어져 있는 다른 3' 조절 영역 같은 3'-조절 영역의 기능성 또는 활성을 방해하지 않고 하나 이상의 뉴클레오티드 치환(들), 삽입(들) 및/또는 결실(들)에 의하여 변형될 수 있다. 더욱이 서열의 변형에 의하여 프로모터 활성은 증가될 수 있거나, 또는 보다 활성이 큰 프로모터, 심지어 이종 생물체의 프로모터로 완전히 대체되는 것도 가능하다. 식물체에서의 발현을 위해서는 상기 언급된 것처럼 핵산분자는 올바른 시점에 요구되는 공간적 발현 양상으로 유전자를 발현하는 적절한 프로모터에 작동가능하게 연결되거나 프로모터를 포함해야 한다.
작동가능하게 연결된
본 발명에서 사용된 용어 "작동가능하게 연결된"은 프로모터 서열과 해당 유전자 간의 기능적 연관을 말하는 것으로, 그럼으로써 프로모터 서열이 해당 유전자의 전사를 개시할 수 있다.
구성적 프로모터
"구성적 프로모터"는 반드시 항상은 아니더라도 생장 및 발달의 대부분 기간 중에 그리고 대부분의 환경적 조건하에서 적어도 하나의 세포, 조직 또는 기관에서 전사적으로 활성인 프로모터를 말한다. 하기 표 2a가 구성적 프로모터의 예이다.
표 2a: 구성적 프로모터의 예
편재하는 프로모터
편재하는 프로모터는 생물체의 실질적으로 모든 조직이나 세포에서 활성을 가진 것이다.
발달적으로
조절된 프로모터
발달적으로 조절된 프로모터는 특정 발달 단계 중에 또는 발달적 변화가 일어나는 식물체의 부위에서 활성을 가진 것이다.
유도성 프로모터
유도성 프로모터는 화학적 (Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108), 환경적 또는 물리적 자극에 반응하여 전사 개시가 유도되거나 증가되거나 또는 식물이 다양한 스트레스 환경에 노출될 때 "스트레스 유도성", 즉 활성화될 수 있거나 또는, 식물이 다양한 병원균에 노출될 때 "병원균 유도성", 즉 활성화될 수 있다.
기관 특이적/조직 특이적 프로모터
기관 특이적 또는 조직 특이적 프로모터는 잎, 뿌리, 종자조직 등과 같이 특정 기관 또는 조직에서 우선적으로 발현 개시가 가능한 것이다. 예를 들면, "뿌리 특이적 프로모터"는 식물의 다른 부위에 약간 누설된(leaky) 발현을 허용하지만, 실질적으로 식물의 다른 부위를 제외하고 식물 뿌리에서 우세하게 전사적으로 활성이 있는 프로모터이다. 특정 세포에서만 전사를 개시할 수 있는 프로모터는 본 발명에서 "세포 특이적"이라 한다.
뿌리 특이적 프로모터의 예는 하기 표 2b에 열거된다:
표 2b: 뿌리 특이적 프로모터의 예
종자 특이적 프로모터는 종자 조직에서만 반드시 배타적으로는 아니지만 (누설 발현의 경우) 종자조직에서 우세하게 전사적으로 활성인 것이다. 종자 특이적 프로모터는 종자발달 및/또는 발아 중에 활성일 것이다. 종자 특이적 프로모터는 배유 및/또는 호분층 및/또는 배(embryo) 특이적일 수 있다. 종자 특이적 프로모터 (배유/호분층/배 특이적)의 예는 하기 표 2c, d, e, f에 제시된다. 종자 특이적 프로모터의 추가적인 예는 Qing Qu 및 Takaiwa (Plant Biotechnol. J. 2, 1 13-125, 2004)에 제시되며, 이의 개시는 충분히 설명한 것처럼 본 발명에 원용에 의해 포함된다.
표 2c: 종자 특이적 프로모터의 예
표 2d: 배유 특이적 프로모터의 예
표 2e: 배(embryo) 특이적 프로모터의 예
표 2f: 호분층 특이적 프로모터의 예
본 발명에서 정의된 녹색 조직 특이적 프로모터는 식물의 다른 부위에 약간 누설된 발현을 허용하지만, 실질적으로 식물의 다른 부위를 제외하고 녹색 조직에서 우세하게 전사적으로 활성이 있는 프로모터이다.
본 발명의 방법을 수행하는데 사용될 수 있는 녹색 조직 특이적 프로모터의 예는 하기의 표 2g에 있다.
표 2g: 녹색 조직 특이적 프로모터의 예
조직 특이적 프로모터의 다른 예는 식물의 다른 부위에 약간 누설된 발현을 허용하지만, 실질적으로 식물의 다른 부위를 제외하고 분열조직에서 우세하게 전사적으로 활성이 있는 분열조직 특이적 프로모터이다. 본 발명의 방법을 수행하는데 사용될 수 있는 녹색 분열조직 특이적 프로모터의 예는 하기의 표 2h에 있다.
표 2h: 분열조직 특이적 프로모터의 예
종결신호(Term
inator
)
용어 "종결신호"는 일차 전사체의 3' 프로세싱 및 폴리아데닐화와 전사 종결의 신호가 되는 전사 단위의 말단에 있는 DNA 서열인 조절 서열이다. 종결신호는 자연 유전자, 다양한 다른 식물 유전자, 또는 T-DNA로부터 유래될 수 있다. 첨가된 종결신호는 예를 들면, 노팔린 신타아제 또는 옥토파인 신타아제 유전자, 또는 또 다른 식물 유전자, 또는 덜 바람직하게는 임의의 다른 진핵세포 유전자로부터 유래된다.
선발
마커
(유전자)/리포터 유전자
"선발 마커", "선발 마커 유전자" 또는 "리포터 유전자"는 본 발명의 핵산 구축물로 감염되거나 형질전환된 세포의 동정 및/또는 선발을 촉진하기 위하여 발현된 세포에 표현형을 부여하는 임의의 유전자를 포함한다. 이들 마커 유전자는 일련의 상이한 원리를 통해 핵산 분자의 성공적인 전달을 확인 가능하게 한다. 적절한 마커는 항생제나 제초제 저항성을 주거나 새로운 대사 형질을 도입하거나 또는 시각적인 선발을 가능하게 하는 마커로부터 선택된다. 선발 마커 유전자의 예는 항생제 (네오마이신 및 카나마이신을 인산화하는 nptII, 하이그로마이신을 인산화하는 hpt, 또는 예를 들면, 블레오마이신, 스트렙토마이신, 테트라사이클린, 클로람페니콜, 앰피실린, 겐타마이신, 제네티신 (G418), 스펙티노마이신, 블라스티시딘에 저항성을 주는 유전자), 제초제 (예를 들면, Basta
에 저항성을 제공하는 bar; 글리포제이트에 대한 저항성을 제공하는 aroA 또는 gox, 또는 예를 들면, 이미다졸리논, 포스피노트리신, 설포닐우레아에 저항성을 주는 유전자)에 저항성을 주는 유전자 또는 대사적 형질을 제공하는 유전자 (식물이 유일한 탄소원으로 만노즈를 이용하게 하는 manA 또는 자일로스 이용을 위한 자일로스 이성화효소, 또는 2-데옥시글루코스에 대한 저항성 같은 반영양적 마커)를 포함한다. 가시적 마커 유전자의 발현으로 발색 (예를 들면 베타-글루쿠로니다제, GUS, 또는 발색된 기질, 예를 들면 X-Gal을 가진 베타-갈락토시다제), 발광 (루시페린/루시파라제 시스템 같은) 또는 형광 (녹색 형광 단백질, GFP, 및 이의 유도체)이 형성된다. 이 목록은 소수의 가능한 마커만을 나타낸다. 당업자는 상기 마커에 친숙하다. 생물체 및 선발 방법에 따라 다른 마커가 선호된다.
형질전환된(
Transgenic
)/외래도입유전자(
Transgene
)/재조합
본 발명에서 "형질전환된", "외래도입유전자" 또는 "재조합"은 예를 들면, 핵산 서열, 발현카세트, 핵산 서열을 포함하는 유전자 구축물 또는 벡터, 또는 본 발명에 따른 핵산 서열, 발현 카세트나 벡터로 형질전환된 생물체, 하기에 기재된 재조합 방법에 의해 생성된 모든 구조물에 관한 의미이며:
(a) 본 발명의 방법에 유용한 단백질을 암호화하는 핵산서열, 또는
(b) 본 발명에 따른 핵산 서열에 작동가능하게 연결된 유전자 조절 서열(들), 예를 들면 프로모터, 또는
(c) a) 및 b)
자연적인 유전적 환경에 있지 않거나, 재조합 방법으로 변형되어 왔으므로 예를 들면, 하나 이상의 뉴클레오티드 잔기의 치환, 부가, 결실, 역위 또는 삽입의 유형의 변형이 가능하다. 자연적인 유전적 환경은 원래의 식물에서 자연적인 게놈 또는 염색체상의 위치나 게놈 라이브러리에서의 존재를 의미하는 것으로 이해된다. 게놈 라이브러리의 경우, 핵산 서열의 자연적인 유전적 환경은 바람직하게는 적어도 부분적으로는 보유된다. 환경은 적어도 한 쪽의 핵산서열을 플랭킹하며 적어도 50 bp, 바람직하게는 적어도 500 bp, 특히 바람직하게는 적어도 1000 bp, 가장 바람직하게는 적어도 5000 bp 길이의 서열을 갖는다. 자연적으로 발생하는 발현 카세트, 예를 들면 본 발명의 방법에 유용한 폴리펩티드를 암호화하는 해당 핵산 서열과 핵산 서열의 자연적 프로모터의 자연적으로 생긴 조합은 이 발현 카세트가 예를 들면 돌연변이 처리 같은 비자연적인 합성 ("인위적") 방법으로 변형될 때 형질 전환 발현카세트가 된다. 적절한 방법이 예를 들면 US 5,565,350 또는 WO 00/15815에 기재되어 있다.
본 발명의 목적상, 형질전환된 식물은 상기처럼 본 발명의 방법에서 사용된 핵산은 상기 식물의 게놈상의 자연적 위치에 있지 않아 핵산이 동종에서 또는 이종에서 발현될 수 있다는 의미로 이해된다. 그러나, 언급된 바와 같이, "형질전환된"은 또한 본 발명에 있어 또는 본 발명 방법에 사용된 핵산은 식물 게놈 내의 자연적 위치에 있는 반면, 그 서열이 자연적 서열에 대하여 변형되었고 및/또는 자연적 서열의 조절 서열이 변형되었음을 의미한다. "형질전환된"은 핵산의 동종 또는 바람직하게는 이종 발현이 일어나는 게놈 내의 비자연적 위치에서 본 발명에 따른 핵산의 발현을 의미하는 것으로 바람직하게는 이해된다. 바람직한 형질전환된 식물이 본 발명에서 언급된다.
형질전환
본 발명에 언급된 용어 "도입" 또는 "형질전환"은 전달에 사용된 방법에 관계 없이 외래 폴리뉴클레오티드의 숙주 세포로의 전달을 포함한다. 기관 발생이나 배발생에 의하여 연이은 클론 번식이 가능한 식물 조직은 본 발명의 유전자 구축물로 형질전환될 수 있으며, 전체 식물체가 이로부터 재분화된다. 선택된 특정 조직은 형질전환될 특정 종에 이용 가능하며 가장 잘 맞는 클론 번식 시스템에 따라 다양할 것이다. 전형적인 조직 표적은 잎 디스크, 화분, 배, 자엽, 하배축, 대배우체, 캘러스 조직, 기존의 분열조직 (예를 들면, 정단 분열조직, 액아, 및 뿌리 분열조직), 및 유도된 분열조직 (예를 들면, 자엽 분열조직 및 하배축 분열조직)을 포함한다. 폴리뉴클레오티드는 일시적으로 또는 안정적으로 숙주 세포에 도입되며, 예를 들면, 플라스미드처럼 비통합적으로 유지된다. 다르게는, 숙주 게놈으로 통합된다. 결과적인 형질전환 식물 세포는 당업자에게 주지된 방식으로 형질전환 식물을 재분화하는데 사용된다.
외래 유전자의 식물 게놈으로 전달을 형질전환이라 부른다. 식물 종의 형질전환은 지금 꽤 통상적인 기술이다. 유리하게도, 임의의 몇 가지 형질전환 방법이 목적 유전자를 적절한 조상 세포로의 도입에 사용될 수 있다. 식물 조직 또는 식물 세포로부터 식물의 형질전환 및 재분화에 관하여 기재된 방법은 일시적인 또는 안정한 형질전환에 이용될 수 있다. 형질전환 방법은 리포좀, 전기천공법, 유리 DNA 흡수를 증가시키는 화학물질, 식물체 내로 DNA의 직접적인 주입, 입자총 충격법, 바이러스 또는 화분을 이용한 형질전환 및 미세주입(microprojection)을 포함한다. 방법은 원형질에 대한 칼슘/폴리에틸렌 글리콜법 (Krens, F.A. 등, (1982) Nature 296, 72-74; Negrutiu I 등 (1987) Plant Mol Biol 8: 363-373); 원형질의 전기천공법 (Shillito R.D. 등 (1985) Bio/Technol 3, 1099-1102); 식물로 미세주사(microinjection) (Crossway 등, (1986) Mol. Gen Genet 202: 179-185); DNA 또는 RNA 코팅된 입자 충격법 (Klein TM 등, (1987) Nature 327: 70) (비통합적) 바이러스로 감염 등으로부터 선택할 수도 있다. 형질전환 작물을 포함한 형질전환 식물은 바람직하게는 아그로박테리움-매개된 형질전환을 통해 제조된다. 유리한 형질전환방법은 식물체에서의 형질전환이다. 이를 위해, 예를 들면, 아그로박테리아를 식물 종자 상에 작용하게 하거나 식물 분열조직을 아그로박테리아로 접종하는 것이 가능하다. 형질전환된 아그로박테리아의 현탁액을 손상되지 않은 식물이나 적어도 꽃 원기에 작용하게 하는 것이 본 발명에 따라 특히 편리하다는 것이 입증되었다. 처리된 식물의 종자를 얻을 때까지 식물체를 키운다 (Clough and Bent, Plant J. (1998) 16, 735-743). 벼의 아그로박테리움 매개된 형질전환 방법은 하기 임의의 것에 기재된 것처럼 벼 형질전환에 관한 잘 알려진 방법들을 포함한다: 유럽특허출원 EP 1198985 A1, Aldemita and Hodges (Planta 199: 612-617, 1996); Chan 등 (Plant Mol Biol 22 (3): 491-506, 1993), Hiei 등 (Plant J 6 (2): 271-282, 1994), 상기 명세서는 충분히 설명한 것처럼 본 발명에 원용에 의해 포함된다. 옥수수 형질전환의 경우에, 바람직한 방법은 Ishida 등 (Nat. Biotechnol 14(6): 745-50, 1996) 또는 Frame 등 (Plant Physiol 129(1): 13-22, 2002)에 기재된 것이며, 상기 명세서는 충분히 설명한 것처럼 본 발명에 원용에 의해 포함된다. 상기 방법들은 [B. Jenes 등, Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S.D. Kung and R. Wu, Academic Press (1993) 128-143] 및 [Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225]에 예로서 기재되어 있다. 핵산 또는 발현될 구축물은 바람직하게는 아그로박테리움 투머파시엔스 형질전환에 적절한 벡터, 예를 들면 pBin19 내로 클로닝된다 (Bevan 등, Nucl. Acids Res. 12 (1984) 8711). 상기 벡터로 형질전환된 아그로박테리아가 아라비돕시스처럼 모델로 사용된 식물 (본 발명의 범위 내의 아라비돕시스 탈리아나는 작물로 고려되지 않는다)이나 담배 같은 작물의 예를 들면, 상처 내거나 잘게 썬 잎을 아그로박테리아 용액에 적신 후 적절한 배지에 배양하는 것과 같은 작물 형질전환을 위해 알려진 방식으로 사용될 수 있다. 아그로박테리움 투머파시엔스에 의한 식물의 형질전환은 예를 들면, [Hofgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877]에 의하여 기재되었거나, 특히 [F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S.D. Kung and R. Wu, Academic Press, 1993, pp. 15-38]에 알려져 있다.
온전한 식물로 재생되는 체세포의 형질전환 외에, 식물의 분열조직 특히 배우자로 발달하는 세포의 형질전환이 가능하다. 이 경우에, 형질전환된 배우자는 자연적인 식물 발달 과정을 거쳐 형질전환 식물이 된다. 따라서 예를 들면, 아라비돕시스의 종자가 아그로박테리아로 처리되고, 발달하는 식물체로부터 취한 종자 중의 일부분이 형질전환되어 형질전환 식물체로 된다 [Feldman, KA and Marks MD (1987). Mol Gen Genet 208:274-289; Feldmann K (1992). In: C Koncz, N-H Chua and J Shell, eds, Methods in Arabidopsis Research. Word Scientific, Singapore, pp. 274-289]. 또 다른 방법은 화서의 반복적인 제거에 근거하며 근생엽 중앙의 절단 부위를 형질전환된 아그로박테리아와 함께 배양하면 형질전환된 종자를 이후에 얻을 수 있다 (Chang (1994). Plant J. 5: 551-558; Katavic (1994). Mol Gen Genet, 245: 363-370). 그러나, 특히 효과적인 방법은 "화서 담그기 (floral dip)" 방법의 변형인 진공 침윤 (vacuum infiltration)이다. 아라비돕시스의 진공 침윤의 경우, 감압 하에 온전한 식물체를 아그로박테리아 현탁액으로 처리하는 것이고 [Bechthold, N (1993). C R Acad Sci Paris Life Sci, 316: 1194-1199], "화서 담그기법"에서는 발달 중인 화서 조직을 계면활성제가 처리된 아그로박테리아 현탁액과 잠깐 배양하는 것이다 [Clough, SJ and Bent AF (1998) Plant J. 16, 735-743]. 양자의 경우에 특정 비율의 형질전환 종자가 수확되며, 이들 종자는 상기 기재된 선발 조건하에서 재배함으로써 형질전환되지 않은 종자와 구분된다. 색소체는 모계로 유전되기 때문에 색소체의 안정적인 형질전환의 잇점은 대부분의 작물에서 화분을 통한 외래도입유전자의 유전이 감소되거나 제거된다는 점이다. 엽록체 게놈의 형질전환은 일반적으로 Klaus 등, 2004 [Nature Biotechnology 22 (2), 225-229]에 도식적으로 표시된 과정에 의하여 수행된다. 간단히, 형질전환될 서열을 선발 마커 유전자와 함께 엽록체 게놈에 상동인 플랭킹 서열 사이에 클론한다. 이들 상동 플랭킹 서열이 플라스톰(plastome) 내로 자리 특이적으로 통합된다. 색소체 형질전환은 많은 다른 식물 종에 대해 기술되어 왔으며, 개관은 [Bock (2001) Transgenic plastids in basic Research and plant biotechnology. J Mol Biol. 2001 Sep 21; 312 (3):425-38] 또는 [Maliga, P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 21, 20-28]에 있다. 추가의 생물공학적 진보는 마커 없는 색소체 형질전환체의 형태로 최근 보고되었으며, 이는 일시적인 동시통합된(co-integrated) 마커 유전자에 의해 생성될 수 있다 (Klaus 등, 2004, Nature Biotechnology 22(2), 225-229).
TILLING
TILLING (Targeted Induced Local Lesions In Genomes)은 변형된 발현 및/또는 활성을 가진 단백질을 암호화하는 핵산을 생성 및/또는 동정하는데 유용한 돌연변이 기술을 말한다. TILLING은 또한 상기 돌연변이체를 가진 식물의 선발을 가능하게 한다. 이들 돌연변이체는 강도나 위치 또는 시기상의 변형된 발현을 보인다 (만일 돌연변이가 프로모터에 영향을 준다면). 이들 돌연변이체는 자체의 자연적 형태의 유전자에 비하여 훨씬 높은 활성을 나타낸다. TILLING은 고밀도 돌연변이 유발과 고속처리 탐색 방법을 조합한 것이다. TILLING의 전형적인 단계는 하기와 같다: (a) EMS 돌연변이유발 (Redei GP 및 Koncz C (1992) In Methods in Arabidopsis Research, Koncz C, Chu NH, Schell J, eds. Singapore, World Scientific Publishing Co, pp. 1682; Feldmann 등, (1994) In Meyerowitz EM, Somerville CR, eds, Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 137-172; Lightner J and Caspar T (1998) In J Martinez-Zapater, J Salinas, eds, Methods on Molecular Biology, Vol. 82. Humana Press, Totowa, NJ, pp 91-104); (b) DNA 준비 및 개체의 풀링(pooling); (c) 관심 영역의 PCR 증폭; (d) 이형 이중가닥 (heteroduplexes)이 되게 변성 및 어닐링; (e) DHPLC로 풀(pool)에 이형 이중가닥이 있는지를 크로마토그램 상의 여분의 피크로 검출; (f) 돌연변이체 개체의 동정; (g) 돌연변이 PCR 산물의 염기서열결정. TILLING의 방법은 당업계에 주지되어 있다 (McCallum 등, (2000) Nat Biotechnol 18: 455-457; Stemple (2004) Nat Rev Genet 5(2): 145-50).
수확량
일반적인 의미에서의 용어 "수확량"은 경제적 가치 있는 측정 가능한 생산량을 말하며, 전형적으로 특정 작물, 면적, 및 기간에 관련이 있다. 개개 식물체 부분이 직접적으로 수, 크기 및/또는 중량에 근거한 수확량에 기여하거나, 또는 실제 수확량은 작물 에이커 및 년당 수확량이고, 이는 총생산량 (수확된 및 평가된 생산량을 포함)을 재배된 에이커로 나눔으로써 결정된다.
증가/향상/강화
용어 "증가", "향상", 또는 "강화"는 서로 호환성 있게 사용할 수 있으며, 본 발명에서 정의된 대조구 식물과 비교하여 적어도 5%, 6%, 7%, 8%, 9% 또는 10%, 바람직하게는 적어도 15% 또는 20%, 더욱 바람직하게는 25%, 30%, 35% 또는 40% 이상의 수확량 및/또는 생장을 의미한다.
종자 수확량
증가된 종자 수확량은 다음 중 하나 이상으로 나타난다: a) 개별 종자당 및/또는 식물체당 및/또는 헥타르 또는 에이커당 종자 생물량 (총 종자 중량)의 증가; b) 식물체당 꽃 수의 증가; c) 증가된 수의 (충만된(filled)) 종자; d) 증가된 종자 충만도 (충만된 종자 수를 총 종자 수로 나눈 비로 나타냄); e) 증가된 수확 지수 (종자 같은 수확할 수 있는 부분의 수확량을 총 생물량으로 나눈 비율); 및 f) 증가된 천 개 낱알 중량 (TKW) (카운트한 충만된 종자 및 이의 총 중량으로부터 외삽됨). 증가된 TKW는 증가된 종자 크기 및/또는 종자 중량, 및 배 및/또는 배유 크기의 증가에 기인한다.
증가된 종자 수확량은 또한 종자 크기 및/또는 종자 부피의 증가로 나타낼 수 있다. 더욱이, 종자 수확량의 증가는 또한 종자 면적 및/또는 종자 길이 및/또는 종자 폭 및/또는 종자 주계의 증가로 나타난다. 증가된 수확량으로 외형이 변형되거나, 또는 변형된 외형으로 인해 수확량이 증가할 수도 있다.
식물
본 발명에서 사용된 용어 "식물"은 전체식물, 식물 및 종자, 어린 줄기, 줄기, 잎, 뿌리 (괴경 포함), 꽃, 및 조직과 기관을 포함하는 식물 부분의 조상 및 자손을 포함하며, 이들 각각은 목적 유전자/핵산을 포함한다. 용어 "식물"은 또한 식물 세포, 현탁 배양액, 캘러스 조직, 배, 분열 영역, 배우체, 포자체, 화분 및 소포자를 포함하며, 이들 각각은 목적 유전자/핵산을 포함한다.
본 발명의 방법에 특히 유용한 식물은 수퍼패밀리 비리디플란태 (Viridiplantae)에 속하는 모든 식물, 특히 하기를 포함하는 목록에서 선택된 사료 또는 마초용 콩, 관상 식물, 식량 작물, 교목 또는 관목을 포함하는 단자엽 및 쌍자엽 식물을 포함한다: 에이서 (Acer spp.), 악티니디아 (Actinidia spp.), 아벨모스쿠스 ( Abelmoschus spp.), 아가베 시살라나 ( Agave sisalana ), 아그로피론 (Agropyron spp.), 아그로스티스 스톨로니페라 ( Agrostis stolonifera ), 알리움 (Allium spp.), 아마란투스 ( Amaranthus spp.), 암모필라 아레나리아 ( Ammophila arenaria), 아나나스 코모수스 ( Ananas comosus ), 안노나 (Annona spp.), 아피움 그라베오렌스 (Apium graveolens ), 아라키스 ( Arachis spp.), 알토칼푸스 ( Artocarpus spp.), 아스파라거스 오피시날리스 ( Asparagus officinalis), 아베나 (Avena spp.) (예를 들면, 아베나 사티바 ( Avena sativa ), 아베나 파투아 ( Avena fatua), 아베나 비잔티나 ( Avena byzantina ), 아베나 파투아 var . 사티바 ( Avena fatua var . sativa ), 아베나 하이브리다 ( Avena hybrida )), 아베로아 카람볼라 (Averrhoa carambola ), 뱀부사 ( Bambusa sp .), 베닌카사 히스피다 (Benincasa hispida), 벨톨레티아 엑셀세아 ( Bertholletia excelsea ), 베타 불가리스 (Beta vulgaris), 브라시카 ( Brassica spp.) (예를 들면, 브라시카 나푸스 ( Brassica napus ), 브라시카 라파 ( Brassica rapa ssp.) [캐놀라, 유채, 순무]), 카다바 파리노사 (Cadaba farinosa ), 카멜리아 시넨시스 (Camellia sinensis ), 칸나 인디카 ( Canna indica ), 칸나비스 사티바 (Cannabis sativa ), 캡시쿰 ( Capsicum spp.), 카렉스 엘라타 (Carex elata ), 카리카 파파야 (Carica papaya ), 카리사 마크로칼파 (Carissa macrocarpa ), 카리야 (Carya spp .), 카르타무스 팅크토리우스 (Carthamus tinctorius), 카스타네아 (Castanea spp.), 케이바 펜탄드라 (Ceiba pentandra), 키코리움 엔디비아 (Cichorium endivia ), 신나모뭄 ( Cinnamomum spp .), 시트룰루스 라나투스 (Citrullus lanatus), 시트루스 (Citrus spp.), 코코스 (Cocos spp .), 코페아 ( Coffea spp.), 콜로카시아 에스쿨렌타 (Colocasia esculenta), 콜라 (Cola spp.), 콜코루스 (Corchorus sp.), 코리안드룸 사티붐 (Coriandrum sativum), 코리루스 (Corylus spp.), 크라태구스 (Crataegus spp.), 크로쿠스 사티부스 (Crocus sativus), 쿠쿨비타 (Cucurbita spp .), 쿠쿠미스 ( Cucumis spp.), 키나라 ( Cynara spp.), 다우쿠스 카로타 (Daucus carota ), 데스모디움 ( Desmodium spp.), 디모칼푸스 론간 (Dimocarpus longan ), 디오스코레아 ( Dioscorea spp.), 디오스피로스 (Diospyros spp.), 에키노크로아 (Echinochloa spp .), 엘래이스 ((Elaeis (예를 들면, 엘래이스 귀넨시스 (Elaeis guineensis), 엘레이스 올레이페라 (Elaeis oleifera )), 엘레우신 코라카나 ( Eleusine coracana), 에리안투스 (Erianthus sp .), 에리오보트리아 야포니카 (Eriobotrya japonica), 유카립투스 ( Eucalyptus spp.), 유게니아 유니플로라 ( Eugenia uniflora), 파고피룸 ( Fagopyrum spp.), 파구스 (Fagus spp.), 페스투카 아룬디나케이 (Festuca arundinacea), 피쿠스 카리카 (Ficus carica ), 폴투넬라 ( Fortunella spp.), 프라가리아 ( Fragaria spp.), 깅코 빌로바 ( Ginkgo biloba ), 글라이신 (Glycine spp.) (예를 들면, 글라이신 맥스 (Glycine max ), 소야 히스피다 (Soja hispida ) 또는 소야 맥스 ( Soja max )), 고시피움 힐수툼 ( Gossypium hirsutum), 헬리안투스 ( Helianthus spp.) (예를 들면, 헤리안투스 안누스 (Helianthus annuus)), 헤메로칼리스 풀바 ( Hemerocallis fulva ), 히비스쿠스 (Hibiscus spp.) 홀데움 ( Hordeum spp.) (예를 들면, 홀데움 불가레 ( Hordeum vulgare)), 이포모에아 바타타스 ( Ipomoea batatas ), 주글란스 ( Juglans spp.), 락투카 사티바 (Lactuca sativa), 라티루스 (Lathyrus spp.), 렌스 쿨리나리스 (Lens culinaris), 리눔 우시타티시뭄 (Linum usitatissimum), 리치 키넨시스 (Litchi chinensis), 로투스 ( Lotus spp.), 루파 아쿠탄굴라 ( Luffa acutangula ), 루피누스 ( Lupinus spp.), 루줄라 실바티카 (Luzula sylvatica ), 라이코펠시콘 ( Lycopersicon spp.) (예를 들면, 라이코펠시콘 에스쿨렌툼 (Lycopersicon esculentum ), 라이코펠시콘 라이코펠시쿰 ( Lycopersicon lycopersicum ), 라이코펠시콘 피리폴메 ( Lycopersicon pyriforme)), 마크로틸로마 (Macrotyloma spp.), 말루스 (Malus spp.), 말피기아 에말기나타 ( Malpighia emarginata), 맘메아 아메리카나 (Mammea americana ), 망기페라 인디카 ( Mangifera indica ), 마니호트 ( Manihot spp.), 마닐카라 자포타 (Manilkara zapota), 메디카고 사티바 (Medicago sativa), 메릴로투스 ( Melilotus spp.), 멘타 ( Mentha spp.), 미스칸투스 시넨시스 ( Miscanthus sinensis ), 모몰디카 ( Momordica spp.), 모루스 니그라 (Morus nigra), 무사 (Musa spp.), 니코티아나 ( Nicotiana spp.), 올레아 ( Olea spp.), 오푼티아 (Opuntia spp.), 오르니토푸스 (Ornithopus spp.), 오리자 (Oryza spp.) (예를 들면, 오리자 사티바 (Oryza sativa ), 오리자 라티포리아 (Oryza latifolia )), 패니쿰 미리아케움 ( Panicum miliaceum ), 패니쿰 벌가툼 ( Panicum virgatum ), 파시플로라 에둘리스 ( Passiflora edulis), 파스티나카 사티바 ( Pastinaca sativa ), 페니세툼 (Pennisetum sp .), 펠세아 ( Persea spp.), 페트로셀리눔 크리스품 (Petroselinum crispum), 파라리스 아룬디나케아 (Phalaris arundinacea), 파세올루스 ( Phaseolus spp.), 플레움 프라텐세 ( Phleum pratense), 피닉스 ( Phoenix spp .), 프라그미테스 오스트라리스 (Phragmites australis), 피사리스 (Physalis spp.), 피누스 ( Pinus spp.,) 피스타키아 베라 (Pistacia vera ), 피숨 (Pisum spp.), 포아 ( Poa spp.), 포푸러스 ( Populus spp.), 프로소피스 ( Prosopis spp.), 프루누스 (Prunus spp.), 프시디움 ( Psidium spp.), 푸니카 그라나툼 ( Punica granatum ), 피루스 코무니스 ( Pyrus communis ), 켈쿠스 (Quercus spp.), 라파누스 사티부스 (Raphanus sativus), 레움 라발바룸 (Rheum rhabarbarum), 리베스 (Ribes spp.), 리키누스 콤무니스 ( Ricinus communis ), 루부스 (Rubus spp.), 사카룸 (Saccharum spp.), 살릭스 ( Salix spp.), 삼부쿠스 (Sambucus spp.), 세카레 세레알레 ( Secale cereale ), 세사뭄 ( Sesamum spp.), 시나피스 ( Sinapis sp .), 솔라눔 ( Solanum spp.) (예를 들면, 솔라눔 투베로숨 (Solanum tuberosum ), 솔라눔 인테그리폴리움 ( Solanum integrifolium ) 또는 솔라눔 라이코펠시쿰 (Solanum lycopersicum )), 솔굼 바이칼라 ( Sorghum bicolor ), 스피나시아 ( Spinacia spp.), 시지기움 ( Syzygium spp.), 타게테스 ( Tagetes spp.), 타마린두스 인디카 ( Tamarindus indica ), 테오브로마 카카오 (Theobroma cacao ), 트리폴리움 (Trifolium spp.), 트리티코세칼레 림파우이 (Triticosecale rimpaui ), 트리티쿰 (Triticum spp. (예를 들면, 트리티쿰 아에스티붐 (Triticum aestivum ), 트리티쿰 두룸 (Triticum durum ), 트리티쿰 툴기둠 (Triticum turgidum ), 트리티쿰 하이베르눔 ( Triticum hybernum ), 트리티쿰 마차 (Triticum macha ), 트리티쿰 사티붐 (Triticum sativum ) 또는 트리티쿰 불가레 (Triticum vulgare)), 트로패오룸 미누스 ( Tropaeolum minus ), 트로패오룸 마주스 ( Tropaeolum majus ), 박시니움 ( Vaccinium spp.), 비시아 ( Vicia spp.), 비그나 (Vigna spp.), 비올라 오도라타 ( Viola odorata ), 비티스 ( Vitis spp.), 제아 메이즈 ( Zea mays ), 지자니아 팔루스트리스 (Zizania palustris ), 지지푸스 ( Ziziphus spp.).
발명의 상세한 설명
I.
HARPlN
첫 번째 구현예에 따라, 본 발명은 HpaG(Harpin-associated Factor G) 폴리펩티드를 암호화하는 핵산의 식물에서 발현의 조절을 포함하는 식물의 수확량 관련 형질을 향상시키는 방법을 제공한다.
HpaG 폴리펩티드를 암호화하는 핵산의 발현을 조절하는 (바람직하게는, 증가) 바람직한 방법은 HpaG 폴리펩티드를 암호화하는 핵산의 식물에의 도입 및 발현이다.
이후 "본 발명의 방법에 유용한 단백질"은 본 발명에서 정의된 HpaG 폴리펩티드를 의미한다. 이후 "본 발명의 방법에 유용한 핵산"은 상기 HpaG 폴리펩티드를 암호화하는 것이 가능한 핵산을 의미한다. 식물에 도입되는 핵산은 (따라서 본 발명의 방법 수행에 유용한) 하기에 기술될 유형의 단백질을 암호화하는 임의의 핵산이며, 이후 또한 "HpaG 핵산" 또는 "HpaG 유전자"라 칭한다.
본 발명에서 정의된 HpaG 폴리펩티드는 하기 특징을 가지는 폴리펩티드를 포함한다:
(i) 서열번호 2로 표시된 HpaG 폴리펩티드 서열에 증가하는 순으로 선호되는, 적어도 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% 또는 그 이상의 서열 동일성; 및
(ii) 글리신(glycine) 함량은 약 13% 내지 약 25%, 글루타민(glutamine) 함량은 약 13% 내지 약 20%, 시스테인(cysteine) 함량은 약 0% 내지 약 1 %, 히스티딘(histidine) 함량은 약 0% 내지 약 1 %의 범위이며, 트립토판(tryptophan)은 없는 아미노산 조성.
바람직하게는, HpaG 폴리펩티드의 길이는 약 121 내지 약 143 아미노산의 범위이다.
바람직하게는, HpaG 단백질은 또한 보존된 모티프 1 (서열번호 3):
G (G/E/D) (N/E) X (Q/R/P) Q (A/S) GX (N/D) G
상기에서 4 번째 위치의 X는 임의의 아미노산일 수 있으며, 바람직하게는 S, N, P, R, 또는 Q 중의 하나이며, 상기에서 9 번째 위치의 X는 임의의 아미노산일 수 있으며, 바람직하게는 Q, E, S, 또는 P중의 하나이고;
및/또는 보존된 모티프 2 (서열번호 4)을 포함한다:
(P/A/V) S (P/Q/A) (F/L/Y) TQ (M/A) LM (H/N/Q) IV (G/M) (E/D/Q)
선택적으로, HpaG 단백질은 또한 보존된 모티프 3:
QGISEKQLDQLL
및/또는 보존된 모티프 4를 가진다:
ILQAQN
더욱이, HpaG 폴리펩티드 (적어도 천연 형태에서)는 아라비돕시스 탈리아나 생태형 (Arabidopsis thaliana ecotype) Cvi-0에서 과민성 반응을 유도한다 (Kim 등, J. Bacterid. 185, 3155-3166, 2003).
다르게는, HpaG 단백질의 상동체는 서열번호 2로 표시된 아미노산에 증가하는 순으로 선호되는 적어도 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 또는 99%의 전체적인 서열 동일성을 가지며, 단, 상기 상동 단백질은 상기 기재된 보존된 모티프를 포함한다. 전체적인 서열 동일성은 프로그램 GAP (GCG Wisconsin Package, Accelrys)의 Needleman Wunsch 알고리즘과 같은 총체적인 정렬 알고리즘(global alignment algorithm)을 사용하여, 바람직하게는 디폴트 매개변수(default parameters)를 이용하여 결정되었다. 서열 동일성은 전체적인 서열 동일성에 비해 일반적으로 보존된 도메인 또는 모티프만이 고려되었을 때 더 높을 것이다.
용어 "도메인" 및 "모티프"는 본 발명의 "정의" 섹션에 정의된 바 있다. 도메인 동정을 위한 전문가 데이터베이스, 예를 들면 SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95, 5857-5864; Letunic et al. (2002) Nucleic Acids Res 30, 242- 244), InterPro (Mulder et al., (2003) Nucl. Acids. Res. 31, 315-318), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecular sequences motifs and its function in automatic sequence interpretation. (In) ISMB-94; Proceedings 2nd International Conference on Intelligent Systems for Molecular Biology. Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp53-61, AAAIPress, Menlo Park; Hulo et al., Nucl. Acids. Res. 32:D134-D137, (2004)), 또는 Pfam (Bateman et al., Nucleic Acids Research 30(1): 276-280 (2002))이 존재한다. 단백질 서열의 인 실리코 분석용 도구 세트가 ExPASY 프로테오믹스 서버에서 유용하다 (hosted by the Swiss Institute of Bioinformatics (Gasteiger et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31: 3784-3788 (2003)). 도메인은 또한 서열정렬과 같은 상투적인 기술을 사용하여서도 동정될 수 있다.
비교를 위한 서열정렬 방법은 당업계에 주지되어 있으며, 상기 방법은 GAP, BESTFIT, BLAST, FASTA 및 TFASTA를 포함한다. GAP은 일치되는(matches) 수는 최대로, 공백(gaps)의 수는 최소로 되는 두 서열의 전체적인 (즉, 전체 서열에 걸쳐) 정렬을 찾기 위해 Needleman 및 Wunsch ((1970) J MoI Biol 48: 443-453)의 알고리즘을 사용한다. BLAST 알고리즘 (Altschul 등 (1990) J MoI Biol 215: 403-10)은 서열 동일성의 백분율을 계산하여, 두 서열 간에 유사도의 통계적 분석을 수행한다. BLAST 분석을 수행하는 소프트웨어는 NCBI (National Centre for Biotechnology Information)를 통해 공개적으로 이용 가능하다. 상동체는 예를 들면, ClustalW 복수 서열정렬 알고리즘 (multiple sequence alignment algorithm; version 1.83)을 사용하여, 디폴트 페어와이즈 정렬 변수(default pairwise alignment parameters) 및 백분율로 스코링(scoring)하는 방법으로 용이하게 동정된다. 유사성 및 동일성의 전체 백분율은 MatGAT 소프트웨어 패키지 (Campanell et al., BMC Bioinformatics. 2003 Jul 10; 4:29. MatGAT: 단백질 또는 DNA 서열을 사용하여 유사성/동일성 매트릭스를 생성하는 적용)에서 유용한 방법 중의 하나를 사용하여 결정될 수 있다. 당업자에게 명백한 것으로서 보존된 모티프 간에 정렬을 최적화하기 위하여 약간의 수작업의 편집을 행할 수 있다. 더욱이, 상동체 동정을 위하여 전체 길이의 서열을 사용하는 대신에, 특정 도메인이 또한 사용될 수 있다. 서열 동일성 값은 핵산 또는 아미노산 전체 서열에 걸쳐, 또는 선정된 도메인 또는 보존된 모티프(들)에 걸쳐 상기 기재된 프로그램으로 디폴트 매개변수(default parameters)를 사용하여 결정될 수 있다.
본 발명은 서열번호 2의 폴리펩티드 서열을 암호화하는 서열번호 1로 표시된 핵산 서열로 식물체를 형질전환함으로써 예시된다. 그러나, 본 발명의 수행은 상기 서열에 제한되지 않으며; 본 발명의 방법은 본 발명에서 정의된 임의의 HpaG 암호화 핵산 또는 HpaG 유사 폴리펩티드를 사용하여 수행될 수 있다.
HpaG 폴리펩티드를 암호화하는 핵산의 예는 본 발명의 실시예 1의 표 A에 제시되어 있다. 제시된 핵산이 본 발명의 방법의 수행에 유용하다. 실시예 1의 표 A에 제시된 아미노산 서열은 서열번호 2로 표시된 HpaG 폴리펩티드의 오쏘로그(orthologue) 및 패럴로그(paralogue)의 서열의 예이며, 용어 "오쏘로그" 및 "패럴로그"는 본 발명에서 정의된 바 있다. 오쏘로그 및 패럴로그는 소위 상호간 블라스트(Reciprocal blast) 탐색을 수행하면 용이하게 동정될 수 있다. 전형적으로 공개적으로 유용한 NCBI 데이터베이스 같은 임의의 서열 데이터베이스에 대해 조회 서열 (예를 들면, 실시예 1의 표 A에 열거된 서열 이용)을 BLASTing하는 것을 포함하는 첫 번째 BLAST를 포함한다. BLASTN 또는 TBLASTX (표준 디폴트값 사용)은 일반적으로 뉴클레오티드 서열로부터 시작할 때, BLASTP 또는 TBLASTN (표준 디폴트값 사용)은 단백질 서열로부터 시작할 때 사용된다. BLAST 결과를 선택적으로 필터할 수도 있다. 필터한 결과물 또는 필터하지 않은 결과물의 전체 길이의 서열을 조회 서열 (조회 서열은 서열번호 1 또는 서열번호 2, 두 번째 BLAST는 따라서 잔토모나스(Xanthomonas)서열과 대조하는 것이다)이 유래한 생물체의 서열과 대조하여 BLAST한다 (두 번째 BLAST). 첫 번째와 두 번째 BLAST의 결과물을 비교한다. 첫 번째 BLAST로부터의 높은 ranking hit이 조회 서열이 유래한 것과 동종으로부터라면 패럴로그가 동정되고, 후에 BLAST back을 하면 이상적으로는 조회 서열이 가장 높은 hit을 보일 것이며; 첫 번째 블라스트로부터의 높은 ranking hit이 조회 서열이 유래한 것과 동종으로부터가 아니라면 오쏘로그가 동정되며, 바람직하게는 BLAST back을 하면 가장 높은 hits 중에 조회 서열이 있다.
높은 ranking hits은 낮은 E-값을 가진 것이다. E-값이 낮을수록, 점수가 의미있다 (또는 다른 말로, 우연히 hit이 발견될 기회가 적다). E-값의 계산은 당업계에 주지되어 있다. E-값에다가, 비교는 또한 백분율 동일성에 의하여 점수화된다. 백분율 동일성은 특정 길이에 걸쳐 두 비교되는 핵산 (또는 폴리펩티드) 서열 간에 동일한 뉴클레오티드 (또는 아미노산)의 수를 말한다. 큰 패밀리의 경우, 연관 유전자의 클러스터링을 보여주고 오쏘로그 및 패럴로그를 동정하는데 도움이 되므로 ClustalW 다음에 neighbour joining tree가 사용된다.
핵산 변이체도 본 발명의 방법 수행에 유용할 수 있다. 상기 핵산 변이체의 예는 본 발명의 실시예 1의 표 A에 제시된 아미노산 서열 중 임의의 하나의 상동체 및 유도체를 암호화하는 핵산을 포함하며, 용어 "상동체" 및 "유도체"는 본 발명에 정의되어 있다. 본 발명의 방법에는 실시예 1의 표 A에 제시된 아미노산 서열 중 임의의 하나의 오쏘로그 또는 패럴로그의 상동체 및 유도체를 암호화하는 핵산도 유용하다. 본 발명의 방법에 유용한 상동체 및 유도체는 상기 상동체 및 유도체가 유래된 변형되지 않은 단백질과 실질적으로 동일한 생물학적 및 기능적 활성을 가진다.
본 발명의 방법 수행에 유용한 또 다른 핵산 변이체는 HpaG 폴리펩티드를 암호화하는 핵산의 일부, HpaG 폴리펩티드를 암호화하는 핵산에 혼성화 되는 핵산, 및 유전자 셔플링에 의해 얻은 HpaG 폴리펩티드를 암호화하는 핵산의 변이체를 포함한다. 용어 혼성화 되는 서열 및 유전자 셔플링은 본 발명에 기재된 바 있다.
본 발명의 방법의 수행은 전장 핵산 서열의 사용에 의존하지 않으므로, HpaG 폴리펩티드를 암호화하는 핵산은 전장 핵산일 필요는 없다. 본 발명에서는, 실시예 1의 표 A에 제시된 핵산 서열 중 임의의 하나의 일부, 또는 실시예 1의 표 A에 제시된 임의의 아미노산 서열의 오쏘로그, 패럴로그 또는 상동체를 암호화하는 핵산의 일부를 식물에 도입 및 발현하는 것을 포함하는, 식물의 수확량 관련 형질을 향상시키는 방법을 제공한다.
핵산의 일부분은 예를 들면, 핵산에 하나 이상의 결실을 만들어서 제조될 수 있다. 그 부분은 분리된 형태로 사용될 수 있거나, 또는 예를 들면, 몇 가지 활성을 조합한 단백질을 생산하기 위하여 다른 암호화 (또는 비암호화) 서열에 융합될 수도 있다. 다른 암호화 서열에 융합될 경우, 해독으로 생성된 결과적인 폴리펩티드는 단백질 부분에 대해 예측된 것보다 클 것이다.
본 발명의 방법에 유용한 일부분은 본 발명에 정의된 HpaG 폴리펩티드를 암호화하며, 실시예 1의 표 A에 제시된 아미노산 서열과 실질적으로 동일한 생물학적 활성을 가진다. 바람직하게는, 상기 일부분은 실시예 1의 표 A에 제시된 핵산 중의 임의의 하나의 일부분, 또는 실시예 1의 표 A에 제시된 아미노산 서열 중 임의의 하나의 오쏘로그(orthologue) 또는 패럴로그(paralogue)를 암호화하는 핵산의 일부분이다. 바람직하게는 상기 일부분은 증가하는 순으로 선호되는 적어도 길이 70, 90, 110, 130 개의 연속적인 뉴클레오티드이며, 상기 연속적인 뉴클레오티드는 실시예 1의 표 A에 제시된 핵산 서열 중 임의의 하나, 또는 실시예 1의 표 A에 제시된 아미노산 서열 중 임의의 하나의 오쏘로그 또는 패럴로그를 암호화하는 핵산일 수 있다. 가장 바람직하게는, 상기 일부분은 서열번호 1의 핵산의 일부분이다. 바람직하게는, 상기 일부분은 도 2에 도시된 바와 같이 계통수 구축에 사용 시, 임의의 다른 그룹과 보다는 서열번호 2로 표시된 아미노산 서열을 포함하는 HpaG 폴리펩티드 그룹과 클러스터되는 경향이 있는 아미노산 서열을 암호화한다.
본 발명의 방법에 유용한 또 다른 핵산 변이체는 감소된 스트린전시 조건하에서, 바람직하게는 스트린전트 조건하에서, 본 발명에서 정의된 HpaG 폴리펩티드를 암호화하는 핵산, 또는 본 발명에서 정의된 일부와 혼성화가 가능한 핵산이다.
본 발명에 따라, 실시예 1의 표 A에 제시된 핵산 서열 중 임의의 하나와 혼성화가 가능한 핵산, 또는 실시예 1의 표 A에 제시된 임의의 핵산 서열의 오쏘로그(orthologue), 패럴로그(paralogue) 또는 상동체를 암호화하는 핵산과 혼성화가 가능한 핵산의 식물에의 도입 및 발현을 포함하는, 식물의 수확량 관련 형질을 향상시키는 방법을 제공한다
본 발명의 방법에 유용한 혼성화 서열은 본 발명에서 정의된 HpaG 폴리펩티드를 암호화하며, 실시예 1의 표 A에에 제시된 아미노산 서열과 실질적으로 동일한 생물학적 활성을 가진다. 바람직하게는, 상기 혼성화 서열은 실시예 1의 표 A에 제시된 핵산 중의 임의의 하나에 또는 상기 정의된 일부인 임의의 이들 서열 중 일부에, 또는 실시예 1의 표 A에에 제시된 임의의 아미노산 서열 중의 임의의 하나의 오쏘로그 또는 패럴로그를 암호화하는 핵산과 혼성화가 가능하다. 가장 바람직하게는, 상기 혼성화 서열은 서열번호 1로 표시된 핵산에 또는 그 일부에 혼성화가 가능하다.
바람직하게는, 상기 혼성화 서열은 도 2에 도시된 것과 같은 계통수 구축에 사용 시 임의의 다른 그룹보다 서열번호 2로 표시된 아미노산 서열을 포함하는 HpaG 폴리펩티드의 그룹과 클러스터되는 경향이 있는 아미노산 서열을 암호화한다.
유전자 셔플링 또는 방향진화는 또한 상기 정의된 HpaG 폴리펩티드를 암호화하는 핵산의 변이체 생성에 사용될 수 있으며, 용어 "유전자 셔플링"은 본 발명에서 정의된 바 있다.
본 발명에 따라, 실시예 1의 표 A에 제시된 핵산 서열 중 임의의 하나의 변이체를 식물에의 도입 및 발현, 또는 실시예 1의 표 A에 제시된 임의의 아미노산 서열의 오쏘로그, 패럴로그 또는 상동체를 암호화하는 핵산의 변이체를 식물에의 도입 및 발현을 포함하는, 식물의 수확량 관련 형질을 향상시키는 방법을 제공하며, 상기 변이체는 유전자 셔플링으로 얻어진다.
바람직하게는, 유전자 셔플링으로 얻어진 변이체 핵산에 의해 암호화되는 아미노산 서열은 도 2에 도시된 바와 같은 계통수 구축에 사용 시, 임의의 다른 그룹보다는 서열번호 2로 표시된 아미노산 서열을 포함하는 HpaG 폴리펩티드 그룹과 클러스터되는 경향이 있다.
더욱이, 핵산 변이체는 또한 자리지정 돌연변이유발에 의해서도 얻을 수 있다. 몇 가지 방법이 자리지정 돌연변이를 유발하는데 유용하며, 가장 흔한 것은 PCR에 근거한 방법이다 (Current Protocols in Molecular Biology. Wiley Eds).
HpaG 폴리펩티드를 암호화하는 핵산은 임의의 자연적 또는 인위적 출처로부터 유래될 수 있다. 핵산은 고의적인 인간의 조작을 통하여 조성 및/또는 게놈 환경에 있어 자연적 형태로부터 변형될 수 있다. 바람직하게는 HpaG 폴리펩티드를 암호화하는 핵산은 원핵생물로부터, 바람직하게는 TTSS를 가진 그람음성 세균으로부터, 더욱 바람직하게는 슈도모나스 과(Pseudomonaceae)로부터, 더더욱 바람직하게는 잔토모나스 속 (Xanthomonas)으로부터, 가장 바람직하게는 잔토모나스 악소노포디스(Xanthomonas axonopodis)로부터의 핵산이다.
본 발명의 방법의 수행으로 수확량 관련 형질이 향상된 식물을 제공한다. 특히 본 발명의 방법의 수행으로 대조구 식물에 비해 수확량이 증가된 식물, 특히 생물량(biomass)이 증가된 및/또는 종자 수확량이 증가된 식물을 제공한다. 용어 "수확량" 및 "종자 수확량"은 본 발명의 "정의" 섹션에 보다 더 상세하게 기재된 바 있다.
본 발명에서 향상된 수확량 관련 형질은 식물체의 한 부분 이상의 생물량 (중량)에 있어서의 증가를 의미하며, 상기 한 부분은 지상부 (수확 가능한) 일부분 및/또는 (수확 가능한) 지하부의 일부분을 포함한다. 특히, 상기 수확 가능한 부분은 종자이며, 본 발명의 방법의 수행으로 적절한 대조구 식물의 종자 수확량에 비해 증가된 종자 수확량을 가진 식물을 제공한다.
옥수수를 예로 들면, 수확량 증가는 다음 중의 하나 이상으로 표시된다: 헥타르 또는 에이커당 식물체의 수 증가; 식물체당 이삭 (열매) 수의 증가; 낱알 줄의 수, 줄당 낱알의 수, 낱알 중량, 천립중량, 열매 길이/직경의 증가; 종자 충만도 (충만된 종자 수/전체 종자 수 x 100)의 증가. 벼를 예로 들면, 수확량 증가는 다음 중의 하나 이상의 증가로 표시된다: 헥타르 또는 에이커당 식물체의 수, 식물체당 원추화서의 수, 원추화서당 작은 이삭의 수, 원추화서당 소화의 수 (일차 원추화서에 대한 충만된 종자의 수의 비율로 표시된다); 종자 충만도 (충만된 종자 수/전체 종자 수 x 100)의 증가; 천립중량의 증가.
본 발명은 대조구 식물에 비하여 수확량을, 특히 식물의 생물량 및/또는 종자 수확량을 증가시키는 방법을 제공하는데, 상기 방법은 본 발명에서 정의된 HpaG 폴리펩티드를 암호화하는 핵산의 식물에서의 발현을 조절하여, 바람직하게는 발현을 증가시키는 것을 포함한다. 관찰된 수확량 증가는 증가된 생물적 스트레스 저항성의 결과는 아니라는 것을 주목해야 한다.
본 발명에 따른 형질전환 식물은 수확량이 증가하므로, 이들 식물은 생활사 중의 해당 단계에서 대조구 식물의 생장 속도에 비하여 증가된 생장 속도를 나타낼 것 같다 (생활사 중 적어도 일부에서). 증가된 수확량 외에, 증가된 양분 흡수 효율도 수확량 증가에 기여할 수 있다. 본 발명에 따른 식물이 양분 흡수에서 더 높은 효율을 보여준다는 것이 관찰되었다. 증가된 양분 흡수 효율은 식물이 보다 나은 생장을 하게 한다.
증가된 생장 속도는 식물체의 하나 이상의 부분 (종자 포함)에 특이적이거나, 또는 실질적으로 전체 식물에 걸쳐서일 수도 있다. 증가된 생장 속도를 가진 식물은 보다 짧은 생활사를 가질 수 있다. 식물의 생활사는 성숙된 종자로부터 식물체가 출발 물질과 유사한 성숙한 종자를 생산하는 단계까지 자라는데 필요한 시간을 의미하는 것일 수 있다. 상기 생활사는 초기 활력, 생장 속도, 녹색 지수, 개화 시기 및 종자 성숙 속도와 같은 요인에 의해 영향을 받을 수 있다. 증가된 생장 속도는 생활사 중의 하나 이상의 단계에서 또는 실질적으로 전체 식물 생활사 중에 나타날 수 있다. 식물의 생활사 중의 초기 단계 중에 증가된 생장 속도는 향상된 활력을 반영한다. 생장 속도의 증가는 그렇지 않았으면 가능했을 시기보다 식물을 늦게 파종하고/하거나 이르게 수확하게 함으로써 식물의 수확 주기를 변경할 수도 있다 (비슷한 효과는 보다 이른 개화시기로 얻을 수 있다). 만일 생장 속도가 충분히 증가하면 동일 식물 종의 잇따른 파종이 가능하다 (예를 들면, 한 생장기간 내에 벼의 파종 및 수확 후에 잇따라 벼의 파종 및 수확). 유사하게 만일 생장 속도가 충분히 증가하면 다른 식물 종의 잇따른 파종이 가능하다 (예를 들면, 옥수수 식물의 파종 및 수확 후에 예를 들면, 대두, 감자 또는 임의의 다른 적절한 식물의 파종 및 선택적 수확). 일부 작물의 경우 동일한 근경으로부터 부가적인 횟수의 수확도 가능하다. 식물의 수확 주기 변경은 에이커당 년간 생물량 생산의 증가로 이끈다 ((말하자면 일년 내) 임의의 식물을 재배하여 수확하는 횟수의 증가로 인하여). 작물 생육에 대한 영역 제한은 이식기에(초기 시기) 또는 수확기에(후기 시기) 흔히 불리한 환경 조건에 의해 결정되므로, 생장 속도 증가는 야생형에 비하여 보다 넓은 지리적 지역에 형질전환 식물이 재배되게 한다. 상기 불리한 조건은 수확 주기가 짧아지면 피할 수 있다. 생장 속도는 생장 곡선으로부터 다양한 매개변수를 유도함으로써 결정될 수 있으며, 상기 매개변수는 T-Mid (식물이 최대 크기의 50%에 이를 때까지 걸린 시간) 및 T-90 (식물이 최대 크기의 90%에 이를 때까지 걸린 시간)이다.
본 발명의 바람직한 특징에 따라, 본 발명의 방법의 수행으로 대조구 식물에 비해 생장 속도가 증가된 식물을 제공한다. 따라서, 본 발명에 따라 식물의 생장 속도를 증가시키는 방법을 제공하며, 상기 방법은 본 발명에 정의된 HpaG 폴리펩티드를 암호화하는 핵산의 식물에서의 발현의 조절, 바람직하게는 발현의 증가를 포함한다. 관찰된 생장 속도의 증가는 생물적 스트레스 저항성의 결과는 아니라는 것을 주목해야 한다.
식물이 스트레스가 없는 조건 하에 있든지 식물이 대조구 식물에 비하여 다양한 비생물적 스트레스에 노출되든지 간에 수확량 및/또는 생장 속도의 증가는 있다. 식물은 전형적으로 보다 느리게 성장함으로써 비생물적 스트레스에 대한 노출에 반응한다. 심각한 스트레스 하에서 식물의 생장이 중단되기도 한다. 다른 한편으로 본 발명에서 순한 스트레스는 식물이 노출됨으로써 생장을 재개하는 능력 없이 생장을 중단하게 하지 않는 임의의 스트레스로 정의된다. 본 발명이 의미하는 순한 스트레스는 스트레스 받은 식물의 생장 감소가 스트레스가 없는 조건하의 대조구 식물에 비하여 40%, 35% 또는 30% 미만, 바람직하게는 25%, 20% 또는 15% 미만, 더욱 바람직하게는 14%, 13%, 12%, 11% 또는 10% 미만이다. 실제로는 농업상의 진척 (관개, 시비, 살충제 처리)으로 인하여 심각한 스트레스가 재배 작물에 가해지지는 않는다. 결과적으로 순한 스트레스에 의해 유도되는 손상된 생장은 흔히 농업에서는 바람직하지 않은 특징이다. 용어 "순한 스트레스"는 식물이 노출되는 매일의 비생물적 (환경) 스트레스이다. 비생물적 스트레스는 가뭄 또는 과도한 수분, 혐기적 스트레스, 염분 스트레스, 화학적 독성, 산화적 스트레스 및 더운, 추운 또는 결빙 온도에 의한 것이다. 비생물적 스트레스는 수분 스트레스 (특히 가뭄으로 인한)로 인한 삼투 스트레스, 염 스트레스, 산화적 스트레스 또는 이온 스트레스이다.
본 발명에서 정의된 용어 "비생물적 스트레스"는 하기 중 임의의 하나 이상을 의미하는 것이다: 수분 스트레스 (가뭄 또는 과도한 수분으로 인한), 혐기적 스트레스, 염분 스트레스, 온도 스트레스 (더운, 추운 또는 결빙 온도에 의한), 화학적 독성 스트레스 및 산화적 스트레스. 본 발명의 한 양상에 있어서, 비생물적 스트레스는 수분 스트레스, 염분 스트레스, 산화적 스트레스 및 이온 스트레스로부터 선택된 삼투 스트레스이다. 바람직하게는, 상기 수분 스트레스는 가뭄 스트레스이다. 용어 염분 스트레스는 통상적인 소금 (NaCl)에 제한되는 것이 아니라, 무엇보다도 NaCl, KCl, LiCl, MgCl2, CaCl2 중 임의의 하나 이상이다.
비생물적 환경 스트레스의 또 다른 예는 생장 및 발달을 위해 식물에 의해 동화되는 하나 이상의 양분의 감소된 이용능력이다. 식물의 수확량 및 생산품의 품질에 미치는 양분 이용 효율의 강력한 영향으로 인해, 식물 생장 및 품질을 최적화하기 위해 다량의 비료가 필드에 뿌려진다. 식물의 생산성은 보통 3 가지 주요 양분, 인, 칼륨 및 질소에 인해 제한되며, 질소가 상기 3 가지 중 식물 생장에 있어 속도 제한 요소이다. 따라서 식물 생장에 필요한 주요 양분 요소는 질소 (N) 이다. 질소는 살아있는 세포에서 발견되는 아미노산, 단백질 (효소), 핵산, 및 엽록소를 포함한 수많은 중요한 화합물의 구성성분이다. 식물 건량의 1.5% 내지 2%가 질소이며, 총 식물 단백질의 약 16%이다. 따라서, 질소 이용능력이 작물 생장 및 생산에 있어 주요 제한 요인이며 (Frink 등 (1999) Proc Natl Acad Sci USA 96(4): 1175-1180), 단백질 축적 및 아미노산 조성에 주요한 영향을 미친다. 따라서, 질소 제한 조건하에서 자랄 때 수확량이 증가된 작물은 관심의 대상이 된다.
생물적 스트레스는 전형적으로 병원균, 예를 들면, 세균, 바이러스, 균류, 선충류 및 곤충에 의한 스트레스이다.
특히, 본 발명의 방법은 대조구 식물에 비하여 증가된 수확량을 갖는 식물을 제공하기 위하여, 스트레스가 없는 조건하에서 또는 가뭄 조건하에서 수행될 수 있다. Wang 등 (Planta (2003) 218: 1-14)에 보고된 바와 같이, 비생물적 스트레스는 일련의 형태적, 생리적, 생화학적 및 분자적 변화를 이끌어 식물 생장 및 생산성에 불리한 영향을 미친다. 가뭄, 염분, 극단적인 온도 및 산화적 스트레스는 상호 연관된 것으로 알려져 있으며, 유사한 기작을 통하여 생장 및 세포 손상을 유도할 수 있다. Rabbani 등 (Plant Physiol (2003) 133: 1755-1767)은 특히 가뭄 스트레스와 고염도 스트레스 간에 고도의 "혼선"을 기재하고 있다. 예를 들면, 가뭄 및/또는 염분은 일차적으로 삼투 스트레스로 나타나서 세포 내 항상성 및 이온 분포를 파괴한다. 흔히 고온 또는 저온을 동반하는 산화적 스트레스, 염분 또는 가뭄 스트레스는 기능적 및 구조 단백질의 변성을 야기한다. 결국 이들 다양한 환경적 스트레스는 흔히 유사한 세포 신호전달 경로 및 스트레스 단백질 생산, 항산화제 상향조절, 친화성 용질 축적 및 생장 정지 같은 세포 반응을 활성화한다.
본 발명에서 사용된 용어 "스트레스가 없는" 조건은 식물의 최적 생장을 허용하는 환경 조건이다. 당업자는 주어진 위치에서 정상적인 토양 조건 및 기후 조건을 인식하고 있다.
본 발명의 방법의 수행으로 스트레스가 없는 조건하에서 또는 가뭄 스트레스 조건하에서 자란 식물이 비교되는 조건하에서 자란 적절한 대조구 식물에 비해 수확량이 증가된 식물로 된다. 따라서, 본 발명에 따라 스트레스가 없는 조건하에서 또는 가뭄 스트레스 조건하에서 키운 식물의 수확량을 증가시키는 방법을 제공하며, 상기 방법은 HpaG 폴리펩티드를 암호화하는 핵산의 식물에서의 발현의 증가를 포함한다.
더욱이, 본 발명의 방법 수행은 양분결핍 조건하에서, 특히 질소 결핍 조건하에서 키운 식물이 동등한 조건하에서 키운 대조구 식물에 비하여 증가된 수확량을 갖게 한다. 따라서, 본 발명에 따라, 양분결핍 조건하에서 키운 식물의 수확량을 증가시키는 방법을 제공하며, 그 방법은 HpaG 폴리펩티드를 암호화하는 핵산의 식물에서의 발현을 증가시키는 것을 포함한다.
본 발명의 방법 수행은 초기 활력으로 이끄는 특히 식물 발달의 초기 단계 (전형적으로 벼 및 옥수수의 경우에 발아 후 3, 4 주, 그러나 이는 종에 따라 다르다) 중에 대조구 식물에 비하여 활력이 증가된 식물을 제공한다. 따라서, 본 발명에 따라, 식물의 초기 활력을 증가시키는 방법이 제공되며, 상기 방법은 HpaG 폴리펩티드를 암호화하는 핵산의 식물에서의 발현의 조절, 바람직하게는 발현의 증가를 포함한다. 바람직하게는 실생 활력의 증가는 신초(shoot) 특이적 프로모터의 통제 하에서 HpaG 폴리펩티드를 암호화하는 핵산의 발현에 의해 얻어진다. 본 발명은 또한 대조구 식물에 비하여 초기 활력을 가진 식물을 생산하는 방법을 제공하며, 상기 방법은 HpaG 폴리펩티드를 암호화하는 핵산의 식물에서의 발현의 조절, 바람직하게는 발현의 증가를 포함한다.
초기 활력은 또한 예를 들면, 식물이 환경에 보다 잘 적응 (즉, 에너지 자원 사용의 최적화, 및 신초 및 뿌리간의 분배)함으로 인한 식물 적응성의 증가의 결과일 수 있다. 초기 활력을 가진 식물은 실생 생존력의 증가 및 매우 균일한 필드 (균일한 양상으로 자라는 작물, 즉 대다수의 식물이 다양한 발달단계에 실질적으로 거의 동시에 도달함)를 초래하는 작물의 보다 나은 확립, 및 보다 양호한 생장 및 흔히 보다 양호한 수확량을 보여준다. 초기 활력은 천립중량, 발아율, 출현율, 실생 생장, 실생 높이, 뿌리 길이, 뿌리 및 신초(shoot) 생물량 등과 같은 다양한 요인들을 측정함으로써 결정될 수 있다.
본 발명은 본 발명에 따른 방법으로 얻을 수 있는 식물 또는 그 일부분 (종자 포함)을 포함한다. 상기 식물 또는 그 일부분은 상기 정의된 HpaG 폴리펩티드를 암호화하는 핵산 외래도입유전자(transgene)를 포함한다.
본 발명은 또한 HpaG 폴리펩티드를 암호화하는 핵산의 식물에의 도입 및/또는 발현을 용이하게 하는 유전자 구축물 및 벡터를 제공한다. 유전자 구축물은 상업적으로 유용하고, 식물에의 형질전환에 적절하며, 형질전환된 세포에서 목적 유전자의 발현에 적절한 벡터에 삽입될 수 있다. 본 발명은 또한 본 발명의 방법에 있어 상기 정의된 유전자 구축물의 용도를 제공한다.
더욱 구체적으로, 본 발명은 하기를 포함하는 구축물을 제공한다:
(a) 상기 정의된 HpaG 폴리펩티드를 암호화하는 핵산;
(b) (a)의 핵산 서열의 발현을 이끌 수 있는 하나 이상의 조절 서열; 및 선택적으로
(c) 전사 종결 서열.
바람직하게는, 상기 HpaG를 암호화하는 핵산은
(i) 서열번호 1로 표시된 핵산 또는 그의 상보체,
(ii) 상기 정의된 HpaG 폴리펩티드를 암호화하는 핵산.
용어 "조절 서열" 및 "전사 종결 서열"은 본 발명에서 정의된 바와 같다.
식물은 상기 기재된 임의의 핵산을 포함하는 벡터로 형질전환된다. 당업자는 목적 서열을 함유하는 숙주 세포를 성공적으로 형질전환, 선발 및 증식시키기 위하여 벡터 내에 존재해야 하는 유전적 요소를 잘 알고 있다. 목적 서열은 하나 이상의 조절 서열 (적어도 프로모터)에 작동가능하게 연결된다.
유리하게, 자연적이든 인공적이든 임의의 유형의 프로모터가 핵산 서열의 발현을 추진하기 위하여 사용될 수 있다. 구성적 프로모터 또는 녹색 조직 특이적 프로모터가 본 발명의 방법에 특히 유용하다. 다양한 유형의 프로모터에 관해 "정의" 섹션에 정의되어 있다.
바람직하게는, HpaG 핵산 또는 그 변이체는 구성적 프로모터에 작동가능하게 연결된다. 바람직한 구성적 프로모터는 실질적으로 어디에서나 발현된다. 더욱 바람직하게는, 프로모터는 식물 유래이며, 보다 더 바람직하게는 단자엽 식물 유래이다. 가장 바람직한 것은 (벼의) GOS2 프로모터 (서열번호 5)의 사용이다. 본 발명의 적용범위가 서열번호 1로 표시된 HpaG 핵산에만 제한된 것이 아니며, 본 발명의 적용범위가 GOS2 프로모터에 의한 구동 시의 HpaG 핵산의 발현에 제한된 것이 아님은 분명하다. HpaG 핵의 추진에 사용될 수 있는 다른 구성적 프로모터의 예는 본 발명의 "정의" 섹션의 표 2a에 제시되어 있다.
바람직하게는, 연속적인 프로모터는 중간 강도이며, CaMV 35S 프로모터보다 더 약한 활성을 가질 수 있다.
다르게는, HpaG 핵산 또는 그의 변이체는 녹색 조직 특이적 프로모터에 작동가능하게 연결된다. 본 발명에서 정의된 어린 녹색 조직 특이적 프로모터는 사실상 식물체의 임의의 다른 부분은 제외하고, 이들 다른 식물 부분에 어떤 누설된 발현은 있더라도 녹색 조직에서 우세하게 전사적으로 활성인 프로모터이다. 녹색 조직 특이적 프로모터는 바람직하게는 프로토클로로필리드 환원효소(protochlorophylid reductase) 프로모터, 더욱 바람직하게는 서열번호 6에 실질적으로 유사한 핵산 서열로 표시된 프로토클로로필리드 환원효소 프로모터, 가장 바람직하게는 서열번호 6으로 표시된 프로모터이다. 본 발명의 적용범위가 서열번호 1로 표시된 HpaG 암호화 핵산에만 제한된 것이 아니며, 본 발명의 적용범위가 프로토클로로필리드 환원효소 프로모터에 의한 구동 시의 HpaG 암호화 핵산의 발현에 제한된 것이 아님은 분명하다. 본 발명의 방법 수행에 사용될 수 있는 다른 녹색 조직 특이적 프로모터의 예는 본 발명의 "정의" 섹션에 제시되어 있다.
기능적으로 동등한 프로모터의 동정을 위해, 후보 프로모터의 프로모터 강도 및/또는 발현 양상은 예를 들면, 리포터 유전자에 프로모터를 작동하게 연결하여 다양한 식물 조직에서 리포터 유전자의 발현 수준 및 양상을 검정함으로써 분석할 수 있다. 적절한 주지된 리포터 유전자는 예를 들면 베타-글루쿠로니다제(beta-glucuronidase) 또는 베타-갈락토시다제(beta-galactosidase)를 포함한다. 프로모터 활성은 베타-글루쿠로니다제 또는 베타-갈락토시다제의 효소 활성을 측정함으로써 검정된다. 프로모터 강도 및/또는 발현 양상은 기준 프로모터 (본 발명의 방법에 사용된 것과 같은 것)의 것에 비교된다. 다르게는, 프로모터 강도는 방사선 사진의 농도계 분석을 이용한 노던 블럿, 정량적 실시간 PCR 또는 RT-PCR 같은 당업계에 공지된 방법을 사용하여, mRNA 수준을 정량화하거나 본 발명의 방법에 사용된 핵산의 mRNA 수준과 18S rRNA 같은 housekeeping 유전자의 mRNA 수준을 비교함으로써 분석될 수 있다 (Heid 등, 1996 Genome Methods 6: 986-994). 일반적으로 "약한 프로모터"는 암호화 서열의 발현을 낮은 수준으로 이끄는 것이다. "낮은 수준"은 세포당 약 1/10,000 전사체 내지 약 1/100,000 전사체, 약 1/500,0000 전사체까지의 수준을 말한다. 역으로, "강력한 프로모터" 는 암호화 서열의 발현을 높은 수준으로 또는 세포당 약 1/10 전사체 내지 약 1/100 전사체 내지 약 1/1000 전사체로 이끄는 것이다.
선택적으로, 하나 이상의 종결신호 서열이 식물에 도입된 구축물에 사용될 수 있다. 부가적인 조절 인자는 해독뿐 아니라 전사 인핸서를 포함한다. 본 발명을 수행함에 있어 사용하기에 적절한 종결신호 및 인핸서 서열이 당업자에게 공지되어 있다. 상기 서열은 알려져 있거나, 당업자는 쉽게 얻을 수 있다.
세포질 내에 축적되는 성숙한 메세지의 양 증가를 위하여 인트론 서열이 또한 5' 비해독 영역 (UTR) 또는 암호화 서열에 첨가될 수 있다. 식물 및 동물 양자의 발현 구축물에 있어 전사 단위 내에 스플라이스 가능한 인트론이 포함되면 mRNA 및 단백질 수준에서 유전자 발현이 1000 배까지 증가함이 보였다 (Buchman and Berg (1988) Mol. Cell biol. 8: 4395-4405; Callis et al. (1987) Genes Dev 1:1183-1200). 인트론에 의한 유전자 발현의 상승효과는 전형적으로 전사 단위의 5' 말단 가까이에 위치하였을 때 가장 컸다. 옥수수 인트론 Adh1-S 인트론 1, 2, 및 6, Bronze-1 인트론의 사용은 당업계에 주지되어 있다. 전반적인 정보는 하기를 참고한다: Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).
다른 조절 서열 (프로모터, 인핸서, 사일런서, 인트론 서열, 3'UTR 및/또는 5'UTR 영역 외에)은 단백질 및/또는 RNA 안정화 인자들일 수 있다. 상기 서열은 알려져 있거나, 당업자가 쉽게 얻을 수 있다. 더욱이, 구축물에 도입될 수 있는 암호화 서열의 코돈 이용성(codon usage)은 구축물이 도입될 숙주 세포에 맞게 최적화될 수 있다. 유전자 암호는 축퇴되어 있으며, 생물체는 한 아미노산에 대해 동일 아미노산에 대한 다른 코돈보다 특정 코돈을 사용하는 경향이 있다. 다양한 생물체에 대한 바람직한 코돈 사용의 표는 당업계에 주지되어 있다.
본 발명의 유전자 구축물은 특정 세포 유형에서 유지 및/또는 복제에 필요한 복제 서열의 원점을 포함한다. 한 예는 에피좀 유전자 요소 (예를 들면, 플라스미드 또는 코스미드 분자)로서 유전자 구축물이 세균 세포 내에 유지되어야 할 때이다. 바람직한 복제 원점은 f1-ori 및 colE1를 포함하나, 이들에 제한되는 것은 아니다.
본 발명의 방법에 사용된 핵산 서열이 성공적으로 전달되었는지 검출 및/또는 이들 핵산을 포함하는 형질전환 식물의 선발을 위해서 마커 유전자 (또는 리포터 유전자)를 사용하는 것이 유리하다. 따라서, 유전자 구축물은 선택적으로 선발 마커 유전자를 포함한다. 선발 마커는 본 발명의 "정의" 섹션에서 더 상세히 기재된다.
식물 세포로 핵산의 안정적인 또는 일시적인 통합시, 소수의 세포만이 외래 DNA를 취하여, 필요 시 사용된 발현벡터 및 사용된 감염 기술에 따라 게놈 내로 이를 통합한다는 것이 알려져 있다. 통합체를 동정하고 선발하기 위하여, 선발 마커를 암호화하는 유전자 (상기 기재된 것과 같은)가 보통 목적 유전자와 함께 숙주 세포에 도입된다. 이들 마커는 예를 들면 이들 마커 유전자가 예를 들면 전통적인 방법에 의한 결실에 의하여 기능이 없는 돌연변이체에 사용될 수 있다. 더욱이, 선발 마커를 암호화하는 핵산분자는 본 발명의 또는 본 발명의 방법에 사용된 폴리펩티드를 암호화하는 서열을 포함하는 동일한 벡터 또는 그 외 별개 백터 상에서 숙주 세포로 도입될 수 있다. 도입된 핵산으로 안정적으로 감염된 세포는 예를 들면 선발에 의해서 동정될 수 있다 (예를 들면, 통합된 선발 마커를 갖는 세포는 생존하는 반면, 다른 세포는 사멸한다).
마커 유전자, 특히 항생제 및 제초제에 저항성이 있는 유전자는 일단 핵산이 성공적으로 도입되면 형질전환 숙주 세포에서 더 이상 필요하지 않거나, 바람직하지 않으므로, 핵산 도입을 위한 본 발명의 방법에서는 이들 마커 유전자가 제거 또는 절단되게 하는 기술을 사용한다. 하나의 상기 방법이 동시형질전환 (co-transformation)으로 알려진 것이다. 동시형질전환 방법은 형질전환을 위해 두 벡터를 동시에 사용하여, 하나의 벡터에는 본 발명에 따른 핵산이 있고, 둘째 벡터에는 마커 유전자(들)이 있다. 대부분의 형질전환체는 양 벡터를 받거나, 식물의 경우 (형질전환체의 40% 이상까지) 포함한다. 아그로박테리아로 형질전환한 경우, 형질전환체는 보통 벡터의 일부, 즉 보통 발현 카세트인 T-DNA에 의해 플랭킹된 서열만을 받는다. 마커 유전자는 연이어 교배를 하여 형질전환 식물체로부터 제거된다. 다른 방법에서는, 트랜스포존(transposon)에 통합되는 마커 유전자는 원하는 핵산과 함께 형질전환에 사용된다 (Ac/Ds 기술로 알려짐). 형질전환체는 트랜스포사제(transposase) 공급원과 교배될 수 있거나 또는 트랜스포사제가 발현되게 하는 핵산 구축물로 일시적으로 또는 안정적으로 형질전환된다. 어떤 경우에 (약 10%), 일단 형질전환이 성공적으로 되면 트랜스포존은 숙주 세포의 게놈 밖으로 튀어나가 소실된다. 더 많은 경우에, 트랜스포존은 다른 영역으로 튄다. 이들 경우에 마커 유전자는 교배에 의하여 제거되어야 한다. 미생물학에서 상기 일이 있어났는지 검출을 가능하게 하거나 용이하게 하는 기술이 개발되었다. 더욱 유리한 방법은 재조합 시스템이라 알려진 것에 의존하는 것으로; 이점은 교배에 의한 제거가 면제될 수 있다는 것이다. 이 유형의 가장 잘 알려진 시스템은 Cre/lox 시스템이다. Cre1은 loxP 서열 사이에 위치한 서열을 제거하는 리콤비나아제이다. 만일 마커 유전자가 loxP 서열 사이에 통합되면, 형질전환이 성공적으로 일어나면, 리콤비나아제의 발현에 의해서 마커 유전자는 제거된다. 다른 재조합 시스템은 HIN/HIX, FLP/FRT 및 REP/STB 시스템 (Tribble et al., J. Biol. Chem., 275, 2000: 22255-22267; Velmurugan et al., J. Cell Biol., 149, 2000: 553-566)이다. 본 발명에 따른 핵산 서열의 식물 게놈 내로 위치 특이적 통합이 가능하다. 자연적으로, 이들 방법은 또한 효모, 균류 또는 세균 같은 미생물에 응용될 수 있다.
본 발명은 상기에서 정의된 HpaG 폴리펩티드를 암호화하는 임의의 핵산의 식물에서의 도입 및 발현을 포함하는, 대조구 식물에 비해 향상된 수확량 관련 형질을 가진 형질전환 식물을 생산하는 방법을 제공한다.
더욱 상세하게, 본 발명은 증가된 향상된 수확량, 특히 증가된 생물량 및/또는 종자 수확량 관련 형질을 가진 형질전환 식물을 생산하는 방법을 제공하며, 상기 방법은 하기를 포함한다:
(i) HpaG 폴리펩티드를 암호화하는 핵산을 식물 또는 식물 세포에의 도입 및 발현; 및
(ii) 식물의 생장 및 발달을 촉진하는 조건하에서 식물 세포를 배양.
상기 (i)의 핵산은 본 발명에서 정의된 HpaG 폴리펩티드를 암호화할 수 있는 임의의 핵산일 수 있다.
상기 핵산은 식물 세포로 또는 식물체 자체 (조직, 기관, 또는 식물체의 임의의 다른 부분으로 도입 포함)로 직접적으로 도입될 수 있다. 본 발명의 바람직한 특징에 따르면, 핵산은 바람직하게는 형질전환에 의하여 식물체 내로 도입된다. 용어 "형질전환"은 본 발명의 "정의" 섹션에 보다 더 상세하게 기재되어 있다.
유전적으로 변형된 식물 세포는 당업자에게 친숙한 모든 방법을 통해서 재분화될 수 있다. 적절한 방법은 상기 언급된 S.D. Kung 및 R. Wu, Potrykus 또는 Hofgen 및 Willmitzer의 문헌에 있다.
일반적으로 형질전환 후, 식물 세포 또는 세포 집단은 목적 유전자와 함께 전달된 식물에서 발현 가능한 유전자에 의해 암호화되는 하나 이상의 마커의 존재에 대하여 선발되어, 형질전환된 물질은 온전한 식물로 재분화된다. 형질전환 식물을 선발하기 위하여, 형질전환에서 얻은 식물 재료는 대체로 선택적 조건 하에 두어, 형질전환 식물이 형질전환되지 않은 식물과 구분될 수 있게 한다. 예를 들면, 상기 기재된 방식으로 얻은 종자를 심고, 초기 생장기간 후, 분무에 의해 적절한 선발을 하게 된다. 추가의 가능한 방법으로는, 종자를 멸균하여 적절한 선발물질을 사용하여 한천판에 키우면, 형질전환된 종자만 식물체로 자랄 수 있다. 다르게는, 형질전환 식물은 상기 기재된 것과 같은 선발 마커의 존재에 대하여 가려진다.
DNA 전달 및 재분화에 이어, 형질전환된 것으로 추정되는 식물은 또한 예를 들면, 목적 유전자의 존재, 카피 수 및/또는 게놈 조직에 대하여 서던 분석을 사용하여 평가될 수 있다. 다르게는 또는 부가적으로, 새로이 도입된 DNA의 발현수준을 노던 및/또는 웨스턴 분석으로 측정할 수 있으며, 두 기술은 당업자에게 주지되어 있다.
생성된 형질전환된 식물은 클론 번식 또는 전통적인 육종 기술 같은 다양한 수단으로 증식될 수 있다. 예를 들면, 제1세대 (또는 T1) 형질전환 식물은 자가교배되고, 동형접합 제2세대 (또는 T2) 형질전환체가 선발되어, T2 식물은 전통적인 육종 기술로 더 증식된다.
생성된 형질전환된 생물체는 다양한 형태를 취할 수 있다. 예를 들면, 형질전환된 세포 및 형질전환되지 않은 세포의 키메라; 클론 형질전환체 (예를 들면, 발현카세트를 함유하도록 형질전환된 모든 세포); 형질전환된 및 형질전환되지 않은 조직의 그라프트(graft) (예를 들면, 식물에 있어 형질전환되지 않은 접순에 접목된 형질전환된 대목)일 수 있다.
본 발명은 분명히 본 발명에서 기재된 임의의 방법으로 생산된 임의의 식물 세포 또는 식물 및 모든 식물 부분 및 그의 번식체로 확장된다. 본 발명은 상기 언급한 임의의 방법으로 생산된 일차 형질전환된 또는 감염된 세포, 조직, 기관 또는 전체식물의 자손을 포함하기 위해 더 확장될 수 있으며, 자손이 본 발명에 따른 방법으로 양친이 생산한 것과 동일한 유전형적 및/또는 표현형적 특징(들)을 나타내는 것만이 요구된다.
본 발명은 또한 상기에 정의된 HpaG 폴리펩티드를 암호화하는 분리된 핵산을 포함하는 숙주 세포를 포함한다. 본 발명에 따른 바람직한 숙주 세포는 식물 세포이다. 본 발명의 방법에 따라 사용된 핵산 또는 벡터, 발현 카세트(cassette) 또는 구축물 또는 벡터에 대한 기주 식물은 원칙적으로 유리하게, 본 발명의 방법에 사용된 폴리펩티드를 합성하는 것이 가능한, 모든 식물이다.
본 발명의 방법은 유리하게 임의의 식물에 적용될 수 있다.
본 발명의 방법에 특히 유용한 식물은 수퍼패밀리 비리디플란태 (Viridiplantae)에 속하는 모든 식물, 특히 사료 또는 마초용 콩, 관상 식물, 식량 작물, 교목 또는 관목을 포함하는 단자엽 및 쌍자엽 식물을 포함한다. 본 발명의 바람직일 구현예에 있어서, 식물은 작물이다. 작물 식물의 예는 대두, 해바라기, 캐놀라, 알팔파, 유채, 목화, 토마토, 감자 및 담배를 포함한다. 더욱 바람직하게는, 식물은 단자엽 식물이다. 단자엽 식물의 예는 사탕수수를 포함한다. 더욱 바람직하게는 식물은 곡물이다. 곡물의 예는 벼, 옥수수, 밀, 보리, 기장, 라이밀, 호밀, 수수 및 귀리를 포함한다.
본 발명은 또한 종자, 잎, 열매, 꽃, 줄기, 지하경, 괴경 및 인경 같은 식물의 수확가능한 부분에까지 확장되나, 이 부분에 제한되지는 않는다. 본 발명은 더욱이 건조 펠렛 또는 분말, 기름, 지방 및 지방산, 전분 또는 단백질 같은 식물의 수확 가능한 부분으로부터 바람직하게는 직접적으로 유래된 생산물에 관련된다.
본 발명의 바람직한 특징에 따라, 조절된 발현은 증가된 발현이다. 핵산 또는 유전자, 또는 유전자 산물의 발현을 증가시키는 방법은 당업계에 잘 문헌화되어 있으며, 예를 들면, 적절한 프로모터에 의한 과발현, 전사 인핸서 또는 해독 인핸서의 사용을 포함한다. 프로모터 또는 인핸서서 인자로 작용하는 분리된 핵산은 비 이질성(non-heterologous) 형태의 폴리뉴클레오티드의 적절한 위치 (전형적으로 업스트림)에 도입되어 발현을 상향 조절한다. 예를 들면, 내재적 프로모터는 돌연변이, 결실, 및/또는 치환에 의해 생체 내에서 변할 수 있거나 (Kmiec, U.S. Pat. No. 5,565,350; Zarling et al., PCT/US93/03868 참고), 또는 분리된 프로모터는 본 발명의 유전자로부터 적절한 거리와 방향으로 식물 세포 내에 도입될 수 있어 해당 유전자의 발현을 조절한다.
폴리펩티드 발현을 원한다면, 일반적으로 폴리뉴클레오티드 암호화 영역의 3'-말단에 폴리아데닐화 영역을 포함하는 것이 바람직하다. 폴리아데닐화 영역은 천연 유전자, 다양한 다른 식물 유전자, 또는 T-DNA로부터 유래될 수 있다. 부가된 3' 말단 서열은 예를 들면, 노팔린 신타아제 또는 옥토파인 신타아제 유전자, 또는 또 다른 식물 유전자, 또는 덜 바람직하게는 임의의 다른 진핵세포 유전자로부터 유래된다.
본 발명은 또한 본 발명에 기재된 HpaG 폴리펩티드를 암호화하는 핵산의 용도, 및 식물의 임의의 전술한 수확량 관련 형질을 향상시키는 상기 HpaG 폴리펩티드의 용도를 포함한다.
본 발명에 따른 방법은 본 발명에서 기재된 바와 같이 수확량 관련 형질이 향상된 식물을 초래한다. 상기 형질은 또한 추가적인 수확량 증가 형질, 다른 비생물적 및 생물적 스트레스에 대한 내성, 다양한 외형적 특질 및/또는 생화학적 및/또는 생리적 특질을 변형시키는 형질과 같은 다른 경제적으로 유용한 형질과 조합될 수도 있다.
II
.
SNF2
첫 번째 구현예에 따라, 본 발명은 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 식물에서 발현의 증가를 포함하는, 대조구 식물에 비해 식물의 수확량 관련 형질을 향상시키는 방법을 제공한다.
SWI2/SNF2 폴리펩티드를 암호화하는 핵산의 발현을 증가시키는 바람직한 방법은 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 식물에의 도입 및 발현이다.
이후 "본 발명의 방법에 유용한 단백질"은 본 발명에서 정의된 SWI2/SNF2 폴리펩티드를 의미한다. 이후 "본 발명의 방법에 유용한 핵산 서열"은 상기 SWI2/SNF2 폴리펩티드를 암호화하는 것이 가능한 핵산 서열을 의미한다. 식물에 도입되는 핵산 서열은 (따라서 본 발명의 방법 수행에 유용한) 하기에 기술될 유형의 단백질을 암호화하는 임의의 핵산 서열이며, 이후 또한 "SWI2/SNF2 핵산 서열" 또는 "SWI2/SNF2 유전자"라 칭한다.
본 발명에서 정의된 "SWI2/SNF2 폴리펩티드"는 N-말단으로부터 C-말단으로 하기 모티프 중 적어도 5 개, 바람직하게는 6 개, 보다 바람직하게는 7 개, 가장 바람직하게는 8 개의 ATPase 도메인을 포함하는 임의의 폴리펩티드를 말한다:
(i) 서열번호 103으로 표시된 모티프 I LADDMGLGK(T/S), 또는 모티프 I의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(ii) 서열번호 104로 표시된 모티프 Ia L(L/V/I)(V/I/L)(A/C)P(T/M/V)S(V/I/L)(V/I/L)XNW, 또는 모티프 Ia의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(iii) 서열번호 105로 표시된 모티프 II DEAQ(N/A/H)(V/I/L)KN, 또는 모티프 II의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(iv) 서열번호 106으로 표시된 모티프 III A(L/M)TGTPXEN, 또는 모티프 III의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(v) 서열번호 107로 표시된 모티프 IV (L/I)XF(T/S)Q(F/Y), 또는 모티프 IV의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(vi) 서열번호 108로 표시된 모티프 V S(L/V)KAGG(V/T/L)G(L/I)(N/T)LTXA(N/S/T)HV, 또는 모티프 V의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(vii) 서열번호 109로 표시된 모티프 Va DRWWNPAVE, 또는 모티프 Va의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프; 및
(viii) 서열번호 110으로 표시된 모티프 VI QA(T/S)DR(A/T/V)(F/Y)R(I/L)GQ, 또는 모티프 VI의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프,
모티프 Ia, 모티프 III, 모티프 IV, 및 모티프 V에서 상기 X는 임의의 아미노산이다.
다르게는 또는 부가적으로, 본 발명에서 정의된 "SWI2/SNF2 폴리펩티드"는 도 7 (Flaus 등 (2006)에 기재된, supra)에 도시된 것과 같은 계통수 구축에 사용 시, 임의의 다른 SWI2/SNF2 집단(clade)보다는 서열번호 30으로 표시된 폴리펩티드 서열을 포함하는 SWI2/SNF2 폴리펩티드의 SSO1653 집단(clade)과 클러스터링(clustering)되는 경향이 있는 임의의 폴리펩티드 서열을 의미한다.
다르게는 또는 부가적으로, 본 발명에서 정의된 "SWI2/SNF2 폴리펩티드"는 서열번호 30에 포함된, 서열번호 111로 표시된 ATPase 도메인에 증가하는 순으로 선호되는 적어도 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 ATPase 도메인을 포함하는 임의의 폴리펩티드 서열을 의미한다.
다르게는 또는 부가적으로, 본 발명에서 정의된 "SWI2/SNF2 폴리펩티드"는 서열번호 30으로 표시된 SWI2/SNF2 폴리펩티드 또는 본 발명 표 E에 제시된 임의의 폴리펩티드 서열에 증가하는 순으로 선호되는 적어도 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 임의의 폴리펩티드를 의미한다.
용어 "도메인" 및 "모티프"는 본 발명의 "정의" 섹션에 정의된 바 있다. 도메인 동정을 위한 전문가 데이터베이스, 예를 들면 SMART (Schultz 등 (1998) Proc. Natl. Acad. Sci. USA 95, 5857-5864; Letunic 등 (2002) Nucleic Acids Res 30, 242-244), InterPro (Mulder 등, (2003) Nucl. Acids. Res. 31, 315-318), Prosite (Bucher 및 Bairoch (1994), A generalized profile syntax for biomolecular sequences motifs and its function in automatic sequence interpretation. (In) ISMB-94; Proceedings 2nd International Conference on Intelligent Systems for Molecular Biology. Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp53-61, AAAIPress, Menlo Park; Hulo 등, Nucl. Acids. Res. 32:D134-D137, (2004)), 또는 Pfam (Bateman 등, Nucleic Acids Research 30(1): 276-280 (2002))가 존재한다. 단백질 서열의 인 실리코(in silico) 분석을 위한 도구 세트는 ExPASY 단백질체 서버 (hosted by the Swiss Institute of Bioinformatics (Gasteiger et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31 :3784-3788(2003))에서 이용할 수 있다. 도메인은 또한 서열 정렬과 같은 통상적인 기술을 사용하여서도 동정될 수 있다. 서열번호 30의 폴리펩티드 서열의 분석은 하기 실시예 9 및 11에 기재되어 있다.
비교를 위한 서열 정렬 방법은 당업계에 주지되어 있으며, 상기 방법은 GAP, BESTFIT, BLAST, FASTA 및 TFASTA를 포함한다. GAP은 일치되는(matches) 수는 최대로, 공백(gaps)의 수는 최소로 되는 두 서열의 전체적인 (즉, 전체 서열에 걸쳐) 정렬을 찾기 위해 Needleman 및 Wunsch ((1970) J MoI Biol 48: 443-453)의 알고리즘(algorithm)을 사용한다. BLAST 알고리즘 (Altschul 등 (1990) J MoI Biol 215: 403-10)은 서열 동일성의 백분율을 계산하여, 두 서열 간에 유사도의 통계적 분석을 수행한다. BLAST 분석을 수행하는 소프트웨어는 NCBI (National Centre for Biotechnology Information)를 통해 공개적으로 이용 가능하다. 상동체는 예를 들면, ClustalW 복수 서열 정렬 알고리즘 (multiple sequence alignment algorithm; version 1.83)을 사용하여, 디폴트값 페어와이즈 정렬방식(default pairwise alignment parameters) 및 백분율로 스코링(scoring)하는 방법으로 용이하게 동정된다. 유사성 및 동일성의 전체 백분율은 MatGAT 소프트웨어 패키지 (Campanell et al., BMC Bioinformatics. 2003 Jul 10; 4:29. MatGAT: 단백질 또는 DNA 서열을 사용하여 유사성/동일성 매트릭스를 생성하는 적용)에서 유용한 방법 중의 하나를 사용하여 결정될 수 있다. 당업자에게 명백한 것으로서 보존된 모티프 간에 정렬을 최적화하기 위하여 약간의 수작업의 편집을 행할 수 있다. 더욱이, 상동체 동정을 위하여 전체 길이의 서열을 사용하는 대신에, 특정 도메인이 또한 사용될 수 있다. 하기 실시예 3에 백분율로 표시된 서열 동일성 값은 핵산 또는 폴리펩티드 전체 서열 (표 F)에 걸쳐, 및/또는 선정된 도메인 (서열번호 30에 포함된, 서열번호 111로 표시된 ATPase 도메인과 같은; 표 F1) 또는 보존된 모티프(들)에 걸쳐 상기 기재된 프로그램으로 디폴트 매개변수(default parameters)를 사용하여 결정될 수 있다.
본 발명은 서열번호 30의 폴리펩티드 서열을 암호화하는, 서열번호 29로 표시된 핵산 서열로 식물체를 형질전환하는 것에 의해 예시된다. 그러나, 본 발명의 수행은 상기 서열에 제한되지 않으며; 본 발명의 방법은 본 발명에서 정의된 것과 같은 임의의 SWI2/SNF2 암호화 핵산 서열 또는 SWI2/SNF2 폴리펩티드를 사용하여 유리하게 수행될 수 있다.
식물의 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 예는 본 발명의 실시예 8의 표 E에 제시되어 있다. 상기 핵산 서열은 본 발명의 방법의 수행에 유용하다. 실시예 8의 표 E에 제시된 폴리펩티드 서열은 서열번호 30으로 표시된 SWI2/SNF2 폴리펩티드의 오쏘로그 및 패럴로그 서열의 예이며, 용어 "오쏘로그" 및 "패럴로그"는 본 발명에서 정의된 바 있다. 오쏘로그 및 패럴로그는 소위 상호간 블라스트(Reciprocal blast) 탐색을 수행하면 용이하게 동정된다. 전형적으로 상기 과정은 공개적으로 유용한 NCBI 데이터베이스 같은 임의의 서열 데이터베이스에 대해 조회 서열(예를 들면, 실시예 8의 표 E에 열거된 임의의 서열 이용)을 BLASTing하는 것을 포함하는 첫 번째 BLAST를 포함한다. BLASTN 또는 TBLASTX (표준 디폴트값 사용)은 일반적으로 뉴클레오티드 서열로부터 시작할 때, BLASTP 또는 TBLASTN (표준 디폴트값 사용)은 단백질 서열로부터 시작할 때 사용된다. BLAST 결과를 선택적으로 필터할 수도 있다. 필터한 결과물 또는 필터하지 않은 결과물의 전체 길이의 서열을 조회 서열 (조회 서열은 서열번호 29 또는 서열번호 30, 두 번째 BLAST는 따라서 시네코시스티스(Synechocystis) 서열과 대조하는 것이다)이 유래한 생물체의 서열과 대조하여 BLAST한다 (두 번째 BLAST). 첫 번째와 두 번째 BLAST의 결과물을 비교한다. 첫 번째 BLAST로부터의 높은 ranking hit이 조회 서열이 유래한 것과 동종으로부터라면 패럴로그가 동정되고, 후에 BLAST back을 하면 이상적으로는 조회 서열이 가장 높은 hit을 보일 것이며; 첫 번째 블라스트로부터의 높은 ranking hit이 조회 서열이 유래한 것과 동종으로부터가 아니라면 오쏘로그가 동정되며, 바람직하게는 BLAST back을 하면 가장 높은 hits 중에 조회 서열이 있다.
높은 ranking hits은 낮은 E-값을 가진 것이다. E-값이 낮을수록, 점수가 의미있다 (또는 다른 말로 우연히 hit이 발견될 기회가 적다). E-값의 계산은 당업계에 주지되어 있다. E-값에 부가적으로, 비교는 또한 백분율 동일성에 의하여 점수화된다. 백분율 동일성은 특정 길이에 걸쳐 두가지 비교되는 핵산 (또는 폴리펩티드) 서열 간에 동일한 뉴클레오티드 (또는 아미노산)의 수를 말한다. 큰 패밀리의 경우, 연관 유전자의 클러스터링을 보여주고 오쏘로그 및 패럴로그를 동정하는데 도움이 되므로 ClustalW 후에 neighbour joining tree가 사용된다 (도 7 참고).
핵산 변이체도 본 발명의 방법 수행에 유용할 수 있다. 상기 핵산 변이체의 예는 본 발명의 실시예 8의 표 E에 제시된 폴리펩티드 서열 중 임의의 하나의 상동체 및 유도체를 암호화하는 핵산 서열을 포함하며, 용어 "상동체" 및 "유도체"는 본 발명에 정의된다. 본 발명의 방법에는 실시예 8의 표 E에 제시된 폴리펩티드 서열 중 임의의 하나의 오쏘로그 또는 패럴로그의 상동체 및 유도체를 암호화하는 핵산도 유용하다. 본 발명의 방법에 유용한 상동체 및 유도체는 상기 상동체 및 유도체가 유래된 변형되지 않은 단백질과 실질적으로 동일한 생물학적 및 기능적 활성을 가진다
본 발명의 방법 수행에 유용한 추가적인 핵산 변이체는 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 일부분, SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열에 혼성화되는 핵산 서열, SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 스플라이스 변이체, SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 대립인자 변이체 및 유전자 셔플링에 의해 얻은 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 변이체를 포함한다. 용어 혼성화되는 서열, 스플라이스 변이체, 대립인자 변이체 및 유전자 셔플링은 본 발명에 기재된 것과 같다.
본 발명의 방법의 수행은 전장 핵산 서열의 사용에 의존하지 않으므로, SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열은 전장 핵산 서열일 필요는 없다. 본 발명에서는, 실시예 8의 표 E에 제시된 핵산 서열 중 임의의 하나의 일부, 또는 실시예 8의 표 E에 제시된 임의의 폴리펩티드 서열의 오쏘로그, 패럴로그 또는 상동체를 암호화하는 핵산 서열의 일부를 식물에의 도입 및 발현을 포함하는, 식물의 수확량 관련 형질을 향상시키는 방법을 제공한다.
핵산 서열의 일부분은 예를 들면, 핵산 서열에 하나 이상의 결실을 만들어서 제조될 수 있다. 상기 일부분은 분리된 형태로 사용될 수 있거나, 또는 예를 들면, 몇 가지 활성을 조합한 단백질을 생산하기 위하여 다른 암호화 (또는 비암호화) 서열에 융합될 수도 있다. 다른 암호화 서열에 융합될 경우, 해독으로 생성된 결과적인 폴리펩티드는 단백질 일부분에 대해 예측된 것보다 클 것이다.
본 발명의 방법에 유용한 일부분은 본 발명에 정의된 SWI2/SNF2 폴리펩티드를 암호화하며, 실시예 8의 표 E에 제시된 폴리펩티드 서열과 실질적으로 동일한 생물학적 활성 (즉, 향상된 수확량 관련 형질)을 가진다. 바람직하게는, 상기 일부분은 실시예 8의 표 E에 제시된 핵산 서열 중 임의의 하나의 일부분, 또는 실시예 8의 표 E에 제시된 폴리펩티드 서열 중 임의의 하나의 오쏘로그 또는 패럴로그를 암호화하는 핵산 서열의 일부분이다. 바람직하게는 상기 일부분은 증가하는 순으로 선호되는 적어도 길이 1000, 1100, 1200, 1300 또는 1400 개의 연속적인 뉴클레오티드이며, 상기 연속적인 뉴클레오티드는 실시예 8의 표 E에 제시된 핵산 서열 중 임의의 하나, 또는 실시예 8의 표 E에 제시된 폴리펩티드 서열 중 임의의 하나의 오쏘로그 또는 패럴로그를 암호화하는 핵산 서열이다. 가장 바람직하게는 상기 일부분은 서열번호 29의 핵산의 일부분이다. 바람직하게는, 상기 일부분은 본 발명에서 정의된 임의의 하나 이상의 도메인 또는 모티프를 포함하는 폴리펩티드 서열을 암호화한다. 바람직하게는, 상기 일부분은 도 7에 도시된 바와 같은 계통수 구축에 사용 시, 임의의 다른 SWI2/SNF2 그룹보다는 서열번호 30로 표시된 폴리펩티드 서열을 포함하는 SWI2/SNF2 폴리펩티드의 SSO1653 그룹과 클러스터되는 경향이 있는 폴리펩티드 서열을 암호화한다.
본 발명의 방법에 유용한 또 다른 핵산 변이체는 감소된 스트린전시 조건하에서, 바람직하게는 스트린전트 조건하에서, 본 발명에서 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열, 또는 본 발명에서 정의된 그 일부와 혼성화가 가능한 핵산 서열이다.
본 발명에서 따라, 실시예 8의 표 E에 제시된 핵산 서열 중 임의의 하나와 혼성화가 가능한 핵산 서열, 또는 실시예 8의 표 E에 제시된 임의의 핵산 서열의 오쏘로그, 패럴로그 또는 상동체를 암호화하는 핵산 서열과 혼성화가 가능한 핵산 서열의 식물에의 도입 및 발현을 포함하는, 식물의 수확량 관련 형질을 향상시키는 방법을 제공한다.
본 발명의 방법에 유용한 혼성화 서열은 본 발명에서 정의된 SWI2/SNF2 폴리펩티드를 암호화하며, 실시예 8의 표 E에에 제시된 폴리펩티드 서열과 실질적으로 동일한 생물학적 활성 (즉, 향상된 수확량 관련 형질)을 가진다. 바람직하게는, 상기 혼성화 서열은 실시예 8의 표 E에 제시된 핵산 서열 중의 임의의 하나에 또는 상기 정의된 일부인 임의의 이들 서열 중 일부에, 또는 실시예 8의 표 E에에 제시된 폴리펩티드 서열 중의 임의의 하나의 오쏘로그 또는 패럴로그를 암호화하는 핵산 서열과 혼성화가 가능하다. 가장 바람직하게는, 상기 혼성화 서열은 서열번호 29로 표시된 핵산 서열 또는 그 일부에 혼성화가 가능하다. 바람직하게는, 상기 혼성화 서열은 본 발명에서 정의된 임의의 하나 이상의 도메인 또는 모티프를 포함하는 폴리펩티드 서열을 암호화한다. 바람직하게는, 상기 혼성화 서열은 도 7에 도시된 바와 같은 계통수 구축에 사용 시 임의의 다른 SWI2/SNF2 그룹보다 서열번호 30으로 표시된 폴리펩티드 서열을 포함하는 SWI2/SNF2 폴리펩티드의 SSO1653 그룹과 클러스터되는 경향이 있는 폴리펩티드 서열을 암호화한다.
본 발명의 방법에 유용한 또 다른 핵산 변이체는 본 발명에서 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 스플라이스 변이체이며, 상기 스플라이스 변이체는 본 발명에서 정의된 바 있다.
본 발명에서 따라, 실시예 8의 표 E에 제시된 핵산 서열 중의 임의의 하나의 스플라이스 변이체의, 또는 실시예 8의 표 E에 제시된 임의의 폴리펩티드 서열의 오쏘로그, 패럴로그 또는 상동체를 암호화하는 핵산의 스플라이스 변이체의 식물에의 도입 및 발현을 포함하는, 식물에서의 수확량 관련 형질을 향상시키는 방법을 제공한다.
본 발명의 방법에 유용한 스플라이스 변이체는 서열번호 30의 SWI2/SNF2 폴리펩티드 및 실시예 8의 표 E에 제시된 임의의 폴리펩티드 서열과 실질적으로 동일한 생물학적 활성 (즉, 향상된 수확량 관련 형질)을 가진다. 바람직하게는, 스플라이스 변이체에 의해 암호화되는 폴리펩티드 서열은 본 발명에서 정의된 임의의 하나 이상의 도메인 또는 모티프를 포함한다. 바람직하게는 스플라이스 변이체에 의해 암호화되는 폴리펩티드 서열은 도 7에 도시된 바와 같은 계통수 구축에 사용 시 임의의 다른 SWI2/SNF2 그룹보다 서열번호 30으로 표시된 폴리펩티드 서열을 포함하는 SWI2/SNF2 폴리펩티드의 SSO1653 그룹과 클러스터되는 경향이 있다.
본 발명의 방법 수행에 유용한 또 다른 핵산 변이체는 상기에 정의된 것과 같은 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 대립인자 변이체이며, 대립인자 변이체는 본 발명에서 정의된 바 있다.
본 발명에서 따라, 실시예 8의 표 E에 제시된 핵산 서열 중의 임의의 하나의 대립인자 변이체의 식물에의 도입 및 발현을 포함하는, 또는 실시예 8의 표 E에 제시된 임의의 폴리펩티드 서열의 오쏘로그, 패럴로그 또는 상동체를 암호화하는 핵산 서열의 대립인자 변이체의 식물에의 도입 및 발현을 포함하는, 식물에서의 수확량 관련 형질을 향상시키는 방법을 제공한다.
본 발명의 방법에 유용한 대립인자 변이체는 서열번호 30의 SWI2/SNF2 폴리펩티드 및 실시예 8의 표 E에 제시된 임의의 폴리펩티드 서열과 사실상 동일한 생물학적 활성 (즉, 향상된 수확량 관련 형질)을 갖는다. 대립인자 변이체는 자연계에 존재하며, 본 발명의 방법 내에 포함된 것은 이들 자연적인 대립인자의 용도이다. 바람직하게는 대립인자 변이체는 서열번호 29의 대립인자 변이체 또는 서열번호 30의 오쏘로그 또는 패럴로그를 암호화하는 핵산 서열의 대립인자 변이체이다. 바람직하게는, 대립인자 변이체에 의해 암호화되는 폴리펩티드 서열은 본 발명에서 정의된 도메인 또는 모티프 중 임의의 하나 이상을 포함한다. 바람직하게는 대립인자 변이체에 의해 암호화되는 폴리펩티드 서열은 도 7에 도시된 것과 같은 계통수 구축에 사용 시, 임의의 다른 SWI2/SNF2 그룹보다 서열번호 30으로 표시된 폴리펩티드 서열을 포함하는 SWI2/SNF2 폴리펩티드의 SSO1653 그룹과 클러스터되는 경향이 있다.
유전자 셔플링 또는 방향진화는 또한 상기 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 변이체 생성에 사용될 수 있으며, 용어 "유전자 셔플링"은 본 발명에서 정의된 바 있다.
본 발명에서 따라, 실시예 8의 표 E에 제시된 핵산 서열 중의 임의의 하나의 변이체의 식물에의 도입 및 발현을 포함하는, 또는 실시예 8의 표 E에 제시된 임의의 폴리펩티드 서열의 오쏘로그, 패럴로그 또는 상동체를 암호화하는 핵산 서열의 변이체의 식물에의 도입 및 발현을 포함하는 식물에서의 수확량 관련 형질을 향상시키는 방법을 제공하며, 상기 변이체 핵산 서열은 유전자 셔플링에 의해 얻어진다.
본 발명의 방법에 유용한 유전자 셔플링에 의해 얻어진 변이체 핵산 서열은 서열번호 30의 SWI2/SNF2 폴리펩티드 및 실시예 8의 표 E에 제시된 임의의 폴리펩티드 서열과 사실상 동일한 생물학적 활성을 갖는다. 바람직하게는, 유전자 셔플링에 의해 얻어진 변이체 핵산 서열은 본 발명에서 정의된 임의의 하나 이상의 도메인 또는 모티프를 포함하는 폴리펩티드 서열을 암호화한다. 바람직하게는 유전자 셔플링에 의해 얻어진 변이체 핵산 서열에 의해 암호화되는 폴리펩티드 서열은 도 7에 도시된 것과 같은 계통수 구축에 사용 시 임의의 다른 SWI2/SNF2 그룹보다 서열번호 30으로 표시된 폴리펩티드 서열을 포함하는 SWI2/SNF2 폴리펩티드의 SSO1653 그룹과 클러스터되는 경향이 있다.
더욱이, 핵산 서열 변이체는 또한 자리지정 돌연변이유발에 의해서도 얻을 수 있다. 몇 가지 방법이 자리지정 돌연변이유발에 유용하며, 가장 흔한 것은 PCR에 근거한 방법이다 (Current Protocols in Molecular Biolog. Wiley Eds).
SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열은 임의의 자연적 또는 인위적 출처로부터 유래될 수 있다. 핵산 서열은 고의적인 인간의 조작으로 조성 및/또는 게놈 환경에 있어서 자연적인 형태로부터 변형될 수 있다. 바람직하게는 SWI2/SNF2 폴리펩티드 암호화 핵산 서열은 미생물 게놈으로부터, 더욱 바람직하게는 고세균(archea) (하기와 같은 문으로부터: 크레나케오타(Crenarcheaota), 유리아케오타(Euryarchaeota) (할로박테리아(Halobacteria), 메타노박테리아(Methanobacteria), 메타노코키(Methanococci), 메타노피리(Methanopyri), 알케오글로비(Archaeoglobi), 써모플라스마타(Thermoplasmata), 및 써모코키(Thermococci) 강을 포함), 코라케오타(Korarchaeota), 또는 나노알케오타(Nanoarchaeota)) 또는 세균 (하기와 같은 문으로부터: 악티노박테리아(Actinobacteria), 아퀴피카에(Aquificae), 박테로이데테스/클로로비(Bacteroidetes/Chlorobi), 클라미디에(Chlamydiae), 클로로플렉시(Chloroflexi), 크리시오게네테스(Chrysiogenetes), 남세균, 데페리박테레스(Deferribacteres), 데이노코쿠스-써무스(Deinococcus-Thermus), 딕티오글로미(Dictyoglomi), 피브로박테레스/아시도박테리아(Fibrobacteres/Acidobacteria), 퍼미쿠테스(Firmicutes), 푸소박테리아(Fusobacteria), 겜마티모나데테스(Gemmatimonadetes), 렌티스페레(Lentisphaerae), 니트로스피레(Nitrospirae), 플란크토미세테스(Planctomycetes), 프로테오박테리아(Proteobacteria), 스피로케테스(Spirochaetes), 써모데술포박테리아(Thermodesulfobacteria), 써모미크로비아(Thermomicrobia), 써모토게(Thermotogae), 베루코미크로비아(Verrucomicrobia)으로부터), 보다 더 바람직하게는 시네코시스티스 (Synechocystis sp.), 노스톡(Nostoc sp.), 시네코코쿠스(Synechococcus sp.), 프로클로로코쿠스(Prochlorococcus sp.), 아나베나(Anaebena sp.), 글로에오박터(Gloeobacter sp.), 또는 써모시네코코쿠스(Thermosynechococcus sp.) 속의 종과 같은 남세균으로부터, 보다 더 바람직하게는 시네코시스티스(Synechocystis sp.)로부터, 가장 바람직하게는 시네코시스티스(Synechocystis) sp. PCC6803 유래이다.
본 발명의 방법의 수행은 대조구 식물에 비해 향상된 수확량 관련 형질을 가진 식물을 제공한다.
본 발명의 "향상된 수확량 관련 형질"은 지상부 (수확 가능한)의 일부분 및/또는 지하부 (수확 가능한)의 일부분을 포함하는, 식물체의 한 부분 이상에 있어 생물량 (중량)의 증가를 의미한다. 특히, 상기 수확 가능한 일부분은 종자이며, 본 발명의 방법의 수행으로 대조구 식물에 비해 종자 수확량이 향상된 식물이 초래된다.
옥수수를 예로 들면, 수확량 증가는 하기 중의 하나 이상으로 표시된다: 헥타르 또는 에이커당 식물체 수의 증가; 식물체당 이삭 (열매) 수의 증가; 낱알 줄의 수, 줄당 낱알의 수, 낱알 중량, 천립중량, 열매 길이/직경의 증가; 종자 충만도 (충만된 종자 수/전체 종자 수 x 100)의 증가. 벼를 예로 들면, 수확량 증가는 하기 중의 하나 이상의 증가로 표시된다: 헥타르 또는 에이커당 식물체의 수, 식물체당 원추화서의 수, 원추화서당 작은 이삭의 수, 원추화서당 소화의 수 (일차 원추화서 수에 대한 충만된 종자의 수의 비율로 표시된다); 종자 충만도 (충만된 종자 수/전체 종자 수 x 100)의 증가; 천립중량의 증가.
본 발명은 대조구 식물에 비해 식물의 수확량 관련 형질을 향상시키는 방법을 제공하며, 상기 방법은 본 발명에서 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산의 식물에서의 발현의 증가를 포함한다. 바람직하게는 향상된 수확량 관련 형질은 하기 중 하나 이상이다: (i) 원추화서당 증가된 꽃의 수; (ii) 식물체당 증가된 총 종자 중량; (iii) (충만된) 종자의 증가된 수; 또는 (iv) 증가된 수확 지수.
본 발명에 따른 형질전환 식물은 향상된 수확량 관련 형질을 가지므로, 이들 식물은 생활사 중의 해당 단계에서 대조구 식물의 생장 속도에 비하여 증가된 생장 속도 (생활사 중 적어도 일부에서)를 나타낼 것 같다. 증가된 수확량 외에, 증가된 양분 흡수 효율도 수확량 증가에 기여할 수 있다. 본 발명에 따른 식물이 양분 흡수에서 더 높은 효율을 보여준다는 것이 관찰되었다. 증가된 양분 흡수 효율은, 스트레스 하에서 자라든 또는 스트레스가 없는 조건에서 자라든, 식물이 보다 나은 생장을 하게 한다.
증가된 생장 속도는 식물체의 하나 이상의 부분 (종자 포함)에 특이적이거나, 또는 실질적으로 전체 식물에 걸쳐서일 수도 있다. 증가된 생장 속도를 가진 식물은 보다 짧은 생활사를 가질 수 있다. 식물의 생활사는 건조된 성숙된 종자로부터 식물체가 출발 물질과 유사한 건조된 성숙된 종자를 생산하는 단계까지 자라는데 필요한 시간을 의미하는 것일 수 있다. 상기 생활사는 초기 활력, 생장 속도, 녹색 지수, 개화 시기 및 종자 성숙 속도와 같은 요인에 의해 영향을 받을 수 있다. 생장 속도의 증가는 식물의 생활사 중의 하나 이상 단계에 또는 실질적으로 전체 식물 생활사 중에 일어날 수 있다. 식물의 생활사 중의 초기 단계 중에 증가된 생장 속도는 향상된 활력을 반영한다. 생장 속도의 증가는 그렇지 않았으면 가능했을 시기보다 식물을 늦게 파종하고/하거나 이르게 수확하게 함으로써 식물의 수확 주기를 변경할 수도 있다 (비슷한 효과는 보다 이른 개화시기로 얻을 수 있다). 만일 생장 속도가 충분히 증가되면 동일 식물 종의 잇따른 파종이 가능하다 (예를 들면, 한 생장기간 내에 벼의 파종 및 수확 후에 잇따라 벼의 파종 및 수확). 유사하게 만일 생장 속도가 충분히 증가되면 다른 식물 종의 잇따른 파종이 가능하다 (예를 들면, 옥수수 식물의 파종 및 수확 후에 예를 들면, 대두, 감자 또는 임의의 다른 적절한 식물의 파종 및 선택적 수확). 일부 작물의 경우 동일한 근경으로부터 부가적인 횟수의 수확도 가능하다. 식물의 수확 주기 변경은 에이커당 일년 생물량 생산의 증가로 이끈다 ((말하자면 일년 내) 어떤 식물을 재배하여 수확하는 횟수의 증가로 인하여). 작물 생육에 대한 영역 제한은 이식기에(초기 시기) 또는 수확기에(후기 시기) 흔히 불리한 환경 조건에 의해 결정되므로, 생장 속도 증가는 야생형에 비하여 보다 넓은 지리적 지역에 형질전환 식물이 재배되게 한다. 상기 불리한 조건은 수확 주기가 짧아지면 피할 수 있다. 생장 속도는 생장 곡선으로부터 다양한 매개변수를 유도함으로써 결정될 수 있으며, 상기 매개변수는 T-Mid (식물이 최대 크기의 50%에 이를 때까지 걸린 시간) 및 T-90 (식물이 최대 크기의 90%에 이를 때까지 걸린 시간)이다.
본 발명의 바람직한 특징에 따라, 본 발명의 방법의 수행으로 대조구 식물에 비해 생장 속도가 증가된 식물을 제공한다. 따라서, 본 발명에 따라, 식물의 생장 속도를 증가시키는 방법을 제공하며, 상기 방법은 본 발명에서 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 식물에서의 발현의 증가를 포함한다.
식물이 스트레스가 없는 조건 하에 있든지 식물이 대조구 식물에 비하여 다양한 스트레스에 노출되든지 간에 수확량 및/또는 생장 속도의 증가는 있다. 식물은 전형적으로 보다 느리게 성장함으로써 스트레스에 대한 노출에 반응한다. 심각한 스트레스 하에서 식물의 생장이 중단되기도 한다. 다른 한편으로 본 발명에서 순한 스트레스는 식물이 노출됨으로써 생장을 재개하는 능력 없이 생장을 중단하게 하지 않는 임의의 스트레스로 정의된다. 본 발명이 의미하는 순한 스트레스는 스트레스 받은 식물의 생장 감소가 스트레스가 없는 조건하에서 키운 대조구 식물에 비하여 40%, 35% 또는 30% 미만, 바람직하게는 25%, 20% 또는 15% 미만, 더욱 바람직하게는 14%, 13%, 12%, 11% 또는 10% 미만이다. 실제로는 농업상의 진척 (관개, 시비, 살충제 처리)으로 인하여 심각한 스트레스가 재배 작물에 가해지지는 않는다. 결과적으로 순한 스트레스에 의해 유도되는 손상된 생장은 흔히 농업에서는 바람직하지 않은 특징이다. 순한 스트레스는 식물이 노출되는 매일의 생물적 및/또는 비생물적 (환경) 스트레스이다. 비생물적 스트레스는 가뭄 또는 과도한 수분, 혐기적 스트레스, 염분 스트레스, 화학적 독성, 산화적 스트레스 및 더운, 추운 또는 결빙 온도에 의한 것이다. 비생물적 스트레스는 수분 스트레스 (특히 가뭄으로 인한)로 인한 삼투 스트레스, 염 스트레스, 산화적 스트레스 또는 이온 스트레스이다. 생물적 스트레스는 전형적으로 병원균, 예를 들면, 세균, 바이러스, 균류, 선충 및 곤충에 의한 스트레스이다. 본 발명에서 정의된 용어 "스트레스가 없는" 조건은 바람직하게는 식물이 마주치는 일상적인 기후 및 다른 비생물적 조건의 범위를 크게 벗어나지 않는 환경 조건이며, 가장 바람직하게는 식물의 최적 생장을 허용하는 조건이다. 당업자는 소정의 입지에 대한 정상적인 토양 조건 및 기후 조건을 주지하고 있다 .
본 발명의 방법의 수행으로 스트레스가 없는 조건하에서 또는 순한 가뭄 스트레스 조건하에서 자란 식물이 비교되는 스트레스 조건하에서 자란 적절한 대조구 식물에 비해 수확량 관련 형질의 향상을 가진다. 따라서, 본 발명에 따라 스트레스가 없는 조건하에서 또는 순한 가뭄 스트레스 조건하에서 키운 식물의 수확량 관련 형질을 향상시키는 방법을 제공하며, 상기 방법은 상기 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 식물에서의 발현의 증가를 포함한다.
본 발명의 방법 수행으로 동등한 스트레스 조건하에서 자란 대조구 식물에 비해 향상된 수확량 관련 형질을 가진 비생물적 스트레스 조건하에서 자란 식물을 제공한다. Wang 등 (Planta (2003) 218: 1-14)에 보고된 바와 같이, 비생물적 스트레스는 일련의 형태적, 생리적, 생화학적 및 분자적 변화를 이끌어 식물 생장 및 생산성에 불리한 영향을 미친다. 가뭄, 염분, 극단적인 온도 및 산화적 스트레스는 상호 연관된 것으로 알려져 있으며, 유사한 기작을 통하여 생장 및 세포 손상을 유도할 수 있다. 예를 들면, 가뭄 및/또는 염분은 일차적으로 삼투 스트레스로 나타나서 세포 내 항상성 및 이온 분포를 파괴한다. 흔히 고온 또는 저온을 동반하는 산화적 스트레스, 염분 또는 가뭄 스트레스는 기능적 및 구조 단백질의 변성을 야기한다. 결국 상기 다양한 환경적 스트레스는 흔히 유사한 세포 신호전달 경로 및 스트레스 단백질 생산, 항산화제 상향조절, 친화성 용질 축적 및 생장 정지 같은 세포 반응을 활성화한다. 다양한 환경 스트레스는 비슷한 경로를 활성화시키므로, 가뭄 스트레스로 수행한 본 발명의 실시예는, 일반적으로 비생물적 스트레스에 있어서 동등한 스트레스 조건하에서 자란 대조구 식물에 비해 수확량 관련 형질의 향상에 있어, 가뭄 스트레스에 대한 제한으로 보여지지 않아야 하며, 상기 정의된 SWI2/SNF2 폴리펩티드가 관여됨을 나타내는 스크린으로서이다.
가뭄 스트레스와 고염도 스트레스 간에 특히 고도의 "혼선"이 보고된 바 있다 (Rabbani 등, Plant Physiol (2003) 133: 1755-1767). 따라서, SWI2/SNF2 폴리펩티드는 가뭄 스트레스 조건하에서 자란 대조구 식물에 비해 식물의 수확량 관련 형질의 향상에 있어서의 유용성과 함께, 다양한 다른 비생물적 스트레스 조건하에서 자란 대조구 식물에 비해 식물의 수확량 관련 형질의 향상에도 용도가 있음은 명백하다.
본 발명에서 정의된 용어 "비생물적 스트레스"는 하기 중 임의의 하나 이상을 의미하는 것이다: 수분 스트레스 (가뭄 또는 과도한 수분으로 인한), 혐기적 스트레스, 염분 스트레스, 온도 스트레스 (더운, 추운 또는 결빙 온도에 의한), 화학적 독성 스트레스 및 산화적 스트레스. 본 발명의 한 양상에 있어서, 비생물적 스트레스는 수분 스트레스, 염분 스트레스, 산화적 스트레스 및 이온 스트레스로부터 선택된 삼투 스트레스이다. 바람직하게는, 상기 수분 스트레스는 가뭄 스트레스이다. 용어 염분 스트레스는 통상적인 소금 (NaCl)에 제한되는 것이 아니라, 무엇보다도 NaCl, KCl, LiCl, MgCl2, CaCl2 중 임의의 하나 이상이다.
특히, 비생물적 스트레스 조건 (바람직하게는 가뭄 스트레스 조건) 하에서 자란 식물의, 동등한 스트레스 조건하에서 자란 대조구 식물에 비해 향상된 수확량 관련 형질은 하기 중 하나 이상을 포함한다: (i) 증가된 지상부 면적; (ii) 증가된 총 뿌리 생물량; (iii) 증가된 굵은 뿌리 생물량; (iv) 증가된 가는 뿌리 생물량; (v) 증가된 원추화서당 꽃의 수; (vi) 증가된 종자 충만도; (vii) 식물체당 증가된 총 종자 중량; (viii) 증가된 (충만된) 종자 수; 또는 (ix) 증가된 수확 지수.
본 발명의 방법의 수행으로 동등한 스트레스 조건하에서 자란 대조구 식물에 비해 비생물적 스트레스 조건하에서 향상된 수확량 관련 형질을 가진 식물을 제공한다. 따라서, 본 발명에 따라, 비생물적 스트레스 조건하에서 키운 식물의 수확량 관련 형질을 향상시키는 방법을 제공하며, 상기 방법은 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 식물에서의 발현의 증가를 포함한다. 본 발명의 한 양상에 따라, 비생물적 스트레스는 하기 중 하나 이상으로부터 선택된 삼투 스트레스이다: 수분 스트레스, 염 스트레스, 산화적 스트레스 및 이온 스트레스. 바람직하게는, 상기 수분 스트레스는 가뭄 스트레스이다.
비생물적 환경 스트레스의 또 다른 예는 생장 및 발달을 위해 식물에 의한 동화에 필요한 하나 이상의 양분의 감소된 이용능력이다. 식물의 수확량 및 생산품의 품질에 미치는 양분 이용 효율의 강력한 영향으로 인해, 식물 생장 및 품질을 최적화하기 위해 다량의 비료가 필드에 뿌려진다. 식물의 생산성은 보통 3 가지 주요 양분, 인, 칼륨 및 질소에 인해 제한되며, 질소가 상기 3 가지 중 식물 생장에 있어 속도 제한 요소이다. 따라서 식물 생장에 필요한 주요 양분 요소는 질소 (N) 이다. 질소는 살아있는 세포에서 발견되는 아미노산, 단백질 (효소), 핵산, 및 엽록소를 포함한 수많은 중요한 화합물의 구성성분이다. 식물 건량의 1.5% 내지 2%는 질소이며 및 총 식물 단백질의 약 16%이다. 따라서, 질소 이용능력이 작물 생장 및 생산에 있어 주요 제한 요인이며 (Frink 등 (1999) Proc Natl Acad Sci USA 96(4): 1175-1180), 단백질 축적 및 아미노산 조성에 주요한 영향을 미친다. 따라서, 질소 제한 조건하에서 자랄 때 수확량이 증가된 작물은 관심의 대상이 된다.
본 발명은 본 발명에 따른 방법으로 얻을 수 있는 식물 또는 그 일부분 (종자 포함), 또는 식물 세포를 포함한다. 상기 식물, 그 일부분 또는 식물 세포는 상기 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 분리된 핵산 외래도입유전자를 포함한다.
본 발명은 또한 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 식물에의 도입 및/또는 발현을 추진하는 유전자 구축물 및 벡터를 제공한다. 유전자 구축물은 상업적으로 유용하고, 식물에의 형질전환에 적절하며, 형질전환된 세포에서 목적 유전자의 발현에 적절한 벡터에 삽입될 수 있다. 본 발명은 또한 본 발명의 방법에 있어 상기 정의된 유전자 구축물의 용도를 제공한다.
더욱 구체적으로, 본 발명은 하기를 포함하는 구축물을 제공한다:
(d) 상기 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열;
(e) (a)의 핵산 서열의 발현을 이끌 수 있는 하나 이상의 조절 서열; 및 선택적으로
(f) 전사 종결 서열.
용어 "조절 서열" 및 "전사 종결 서열"은 본 발명에서 정의된 바와 같다.
일 구현예에 있어서, 구축물의 조절 서열 중의 하나는 조직 특이적 프로모터이며, 바람직하게는 어린 확장성 조직에서의 발현을 위한 프로모터이다. 어린 확장성 조직에서의 발현을 위한 조직 특이적 프로모터의 예는 베타 익스팬신(beta-expansin) 프로모터, 예를 들면 서열번호 112로 표시된 벼 베타 익스팬신 프로모터이다.
식물은 상기 기재된 임의의 핵산 서열을 포함하는 벡터로 형질전환된다. 당업자는 목적 서열을 포함하는 숙주 세포를 성공적으로 형질전환, 선발 및 증식시키기 위하여 벡터 내에 존재해야 하는 유전적 요소를 주지하고 있다. 목적 서열은 하나 이상의 조절 서열 (적어도 프로모터)에 작동가능하게 연결된다.
유리하게, 임의의 유형의 프로모터가 핵산 서열의 발현을 추진하기 위하여 사용될 수 있다. 상기 프로모터는 구성적 프로모터일 수 있으며, 상기 구성적 프로모터는 반드시 항상은 아니더라도 생장 및 발달의 대부분 기간 중에 그리고 대부분의 환경적 조건하에서 적어도 하나의 세포, 조직 또는 기관에서 전사적으로 활성인 프로모터를 말한다. 다르게는, 상기 프로모터는 화학적 (검토 위해 Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108 참고), 환경적 또는 물리적 자극에 반응하여 전사 개시가 유도되거나 증가되는 유도성 프로모터일 수 있다. 유도성 프로모터의 또 다른 예는 식물이 다양한 스트레스 조건에 노출될 때 활성화되는 프로모터인 스트레스-유도성 프로모터, 또는 병원균 유도성 프로모터이다.
부가적으로 또는 다르게는, 상기 프로모터는 잎, 뿌리, 종자조직 등과 같이 특정 기관 또는 조직에서 우선적으로 전사의 개시가 가능한, 기관 특이적 또는 조직 특이적 프로모터일 수 있으며; 또는 상기 프로모터는 생물체의 모든 조직 또는 세포에서 실질적으로 활성이 있는 편재하는 프로모터일 수 있으며, 또는 발달적으로 조절되어, 그로 인해 임의의 발달 단계 중에 또는 발달적 변화의 수행 중에 식물체의 일부분에서 활성으로 되는 프로모터일 수 있다. 임의의 기관 또는 조직에서만 전사를 개시할 수 있는 프로모터를 본 발명에서는 각각 "기관 특이적" 또는 "조직 특이적"이라 칭하며, 비슷하게, 임의의 세포에서만 전사를 개시할 수 있는 프로모터를 "세포 특이적"이라 칭한다.
일 구현예에 있어, 서열번호 29로 표시된 핵산 서열과 같은, 상기 정의된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열은 조직 특이적 프로모터에, 바람직하게는 어린 확장성 조직, 또는 정단 분열조직에서 핵산 서열을 우선적으로 발현시키는 것이 가능한 프로모터에 작동가능하게 연결된다. 바람직하게는, 어린 확장성 조직에서 핵산 서열을 우선적으로 발현시키는 것이 가능한 프로모터는 베타 익스팬신(beta-expansin) 프로모터와 동등한 발현 프로파일(profile)을 가진다. 더욱 상세하게는, 어린 확장성 조직에서 핵산 서열을 우선적으로 발현하는 것이 가능한 프로모터는 신초 또는 뿌리의 세포 신장 구간(expansion zone)에서 발현을 추진하는 것이 가능한 프로모터이다. 가장 바람직하게는, 어린 확장성 조직에서 핵산 서열을 우선적으로 발현하는 것이 가능한 프로모터는 베타 익스팬신 프로모터, 예를 들면 서열번호 112로 표시된 벼 베타 익스팬신 프로모터이다.
기능적으로 동등한 프로모터 동정을 위해, 후보 프로모터의 프로모터 강도 및/또는 발현 양상은 예를 들면, 리포터 유전자에 프로모터를 작동하게 연결하여 다양한 식물 조직에서 리포터 유전자의 발현 수준 및 양상을 검정함으로써 분석할 수 있다. 적절한 주지된 리포터 유전자는 예를 들면 베타-글루쿠로니다제 또는 베타-갈락토시다제를 포함한다. 프로모터 활성은 베타-글루쿠로니다제 또는 베타-갈락토시다제의 효소 활성을 측정함으로써 검정된다. 프로모터 강도 및/또는 발현 양상은 기준 프로모터의 것에 비교된다 (본 발명의 방법에 사용된 것과 같은 것). 다르게는, 프로모터 강도는 방사선 사진의 농도계 분석을 이용한 노던 블럿, 정량적 실시간 PCR 또는 RT-PCR 같은 당업계에 공지된 방법을 사용하여, mRNA 수준을 정량화하거나 본 발명의 방법에 사용된 핵산의 mRNA 수준과 18S rRNA 같은 housekeeping 유전자의 mRNA 수준을 비교함으로써 분석될 수 있다 (Heid et al., 1996 Genome Methods 6: 986-994). 일반적으로 "약한 프로모터"는 암호화 서열의 발현을 낮은 수준으로 이끄는 것이다. "낮은 수준"은 세포당 약 1/10,000 전사체 내지 약 1/100,000 전사체, 약 1/500,000 전사체까지의 수준을 말한다. 역으로, "강력한 프로모터" 는 암호화 서열의 발현을 높은 수준으로 또는 세포당 약 1/10 전사체 내지 약 1/100 전사체 내지 약 1/1,000 전사체로 이끄는 것이다.
선택적으로, 하나 이상의 종결신호 서열이 식물에 도입된 구축물에 사용될 수 있다. 부가적인 조절 인자는 해독뿐 아니라 전사 인핸서를 포함한다. 본 발명을 수행함에 있어 용도에 적절한 종결신호 및 인핸서 서열이 당업계에 공지되어 있다. 상기 서열은 알려져 있거나, 당업자가 쉽게 얻을 수 있다.
세포질 내에 축적하는 성숙한 메세지의 양 증가를 위하여 인트론 서열이 또한 5' 비해독 영역 (UTR) 또는 암호화 서열에 첨가될 수 있다. 식물 및 동물 양자의 발현 구축물에 있어 전사 단위 내에 스플라이스 가능한 인트론이 포함되면 mRNA 및 단백질 양자의 수준에서 유전자 발현이 1,000 배까지 증가함이 보였다 (Buchman and Berg (1988) Mol. Cell biol. 8: 4395-4405; Callis et al. (1987) Genes Dev 1:1183-1200). 인트론에 의한 유전자 발현의 상승효과는 전형적으로 전사 단위의 5' 말단 가까이에 위치하였을 때 가장 컸다. 옥수수 인트론 Adh1-S 인트론 1, 2, 및 6, Bronze-1 인트론의 사용은 당업계에 주지되어 있다. 전반적인 정보는 하기를 참고한다: Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).
다른 조절 서열 (프로모터, 인핸서, 사일런서, 인트론 서열, 3'UTR 및/또는 5'UTR 영역 외에)은 단백질 및/또는 RNA 안정화 인자들일 수 있다. 상기 서열은 알려져 있거나, 당업자가 쉽게 얻을 수 있다.
본 발명의 유전자 구축물은 특정 세포 유형에서 유지 및/또는 복제에 필요한 복제 서열의 원점을 포함한다. 한 예는 에피좀 유전자 요소 (예를 들면, 플라스미드 또는 코스미드 분자)로서 유전자 구축물이 세균 세포 내에 유지되어야 할 때이다. 바람직한 복제 원점은 f1-ori 및 colE1를 포함하나, 이들에 제한되는 것은 아니다.
본 발명의 방법에 사용된 핵산 서열이 성공적으로 전달되었는지 검출 및/또는 이들 핵산 서열을 포함하는 형질전환 식물의 선발을 위해서 마커 유전자 (또는 리포터 유전자)를 사용하는 것이 유리하다. 따라서, 유전자 구축물은 선택적으로 선발 마커 유전자를 포함한다. 선발 마커는 본 발명의 "정의" 섹션에서 더 상세히 기재된다.
식물 세포로 핵산 서열의 안정적인 또는 일시적인 통합시, 소수의 세포만이 외래 DNA를 취하여, 필요 시 사용된 발현벡터 및 사용된 감염 기술에 따라 게놈 내로 이를 통합한다는 것이 알려져 있다. 통합체를 동정하고 선발하기 위하여, 선발 마커를 암호화하는 유전자 (상기 기재된 것과 같은)가 보통 목적 유전자와 함께 숙주 세포에 도입된다. 이들 마커는 예를 들면 이들 마커 유전자가 예를 들면 전통적인 방법에 의한 결실에 의하여 기능이 없는 돌연변이체에 사용될 수 있다. 더욱이, 선발 마커를 암호화하는 핵산 서열은 본 발명의 또는 본 발명의 방법에 사용된 폴리펩티드를 암호화하는 서열을 포함하는 동일한 벡터 또는 그 외 별개 백터 상에서 숙주 세포로 도입될 수 있다. 도입된 핵산 서열로 안정적으로 감염된 세포는 예를 들면 선발에 의해서 동정될 수 있다 (예를 들면, 통합된 선발 마커를 갖는 세포는 생존하는 반면, 다른 세포는 사멸한다).
마커 유전자, 특히 항생제 및 제초제에 저항성이 있는 유전자는 일단 핵산 서열이 성공적으로 도입되면 형질전환 숙주 세포에서 더 이상 필요하지 않거나, 바람직하지 않으므로, 핵산 서열 도입을 위한 본 발명의 방법에서는 이들 마커 유전자가 제거 또는 절단되게 하는 기술을 사용한다. 하나의 상기 방법이 동시형질전환 (co-transformation)으로 알려진 것이다. 동시형질전환 방법은 형질전환을 위해 두 벡터를 동시에 사용하여, 하나의 벡터에는 본 발명에 따른 핵산이 있고, 둘째 벡터에는 마커 유전자(들)이 있다. 대부분의 형질전환체는 양 벡터를 받거나, 식물의 경우 (형질전환체의 40% 이상까지) 포함한다. 아그로박테리아로 형질전환한 경우, 형질전환체는 보통 벡터의 일부, 즉 보통 발현 카세트인 T-DNA에 의해 플랭킹된 서열만을 받는다. 마커 유전자는 연이어 교배를 하여 형질전환 식물체로부터 제거된다. 다른 방법에서는, 트랜스포존에 통합된 마커 유전자는 원하는 핵산 서열과 함께 형질전환에 사용된다 (Ac/Ds 기술로 알려짐). 형질전환체는 트랜스포사제(transposase) 공급원과 교배될 수 있거나 또는 트랜스포사제가 발현되게 하는 핵산 구축물로 일시적으로 또는 안정적으로 형질전환된다. 어떤 경우에 (약 10%), 일단 형질전환이 성공적으로 되면 트랜스포존은 숙주 세포의 게놈 밖으로 튀어나가 소실된다. 더 많은 경우에, 트랜스포존은 다른 영역으로 튄다. 이들 경우에 마커 유전자는 교배에 의하여 제거되어야 한다. 미생물학에서 상기 일이 있어났는지 검출을 가능하게 하거나 용이하게 하는 기술이 개발되었다. 더욱 유리한 방법은 재조합 시스템이라 알려진 것에 의존하는 것으로; 이점은 교배에 의한 제거가 면제될 수 있다는 것이다. 이 유형의 가장 잘 알려진 시스템은 Cre/lox 시스템이다. Cre1은 loxP 서열 사이에 위치한 서열을 제거하는 리콤비나아제이다. 만일 마커 유전자가 loxP 서열 사이에 통합되면, 형질전환이 성공적으로 일어나면, 리콤비나아제의 발현에 의해서 마커 유전자는 제거된다. 다른 재조합 시스템은 HIN/HIX, FLP/FRT 및 REP/STB 시스템 (Tribble et al., J. Biol. Chem., 275, 2000: 22255-22267; Velmurugan et al., J. Cell Biol., 149, 2000: 553-566)이다. 본 발명에 따른 핵산 서열의 식물 게놈 내로 위치 특이적 통합이 가능하다. 자연적으로, 이들 방법은 또한 효모, 균류 또는 세균 같은 미생물에 응용될 수 있다.
본 발명은 상기에서 정의된 것과 같은 SWI2/SNF2 폴리펩티드를 암호화하는 임의의 핵산 서열의 식물에서의 도입 및 발현을 포함하는, 대조구 식물에 비해 향상된 수확량 관련 형질을 가진 형질전환 식물을 생산하는 방법을 제공한다.
더욱 상세하게, 본 발명은 대조구 식물에 비해 향상된 수확량 관련 형질을 가진 형질전환 식물을 생산하는 방법을 제공하며, 상기 방법은 하기를 포함한다:
(i) SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열을 식물 또는 식물 세포에의 도입 및 발현; 및
(ii) 식물의 생장 및 발달을 촉진하는 조건하에서 식물 세포를 배양.
핵산 서열은 식물 세포로 또는 식물체 자체 (조직, 기관, 또는 식물체의 임의의 다른 부분으로 도입 포함)로 직접적으로 도입될 수 있다. 본 발명의 바람직한 특징에 따라, 핵산 서열은 바람직하게는 형질전환에 의해 식물체 내로 도입된다. 용어 "형질전환"은 본 발명의 "정의" 섹션에 보다 더 상세하게 기재되어 있다.
유전적으로 변형된 식물 세포는 당업자에게 친숙한 모든 방법을 통해서 재분화될 수 있다. 적절한 방법은 상기 언급된 S.D. Kung 및 R. Wu, Potrykus 또는 Hofgen 및 Willmitzer의 문헌에 있다.
일반적으로 형질전환 후, 식물 세포 또는 세포 집단은 목적 유전자와 함께 전달된 식물에서 발현 가능한 유전자에 의해 암호화되는 하나 이상의 마커의 존재에 대하여 선발되어, 형질전환된 물질은 온전한 식물로 재분화된다. 형질전환 식물을 선발하기 위하여, 형질전환에서 얻은 식물 재료는 대체로 선택적 조건 하에 두어, 형질전환 식물이 형질전환되지 않은 식물과 구분될 수 있게 한다. 예를 들면, 상기 기재된 방식으로 얻은 종자를 심고, 초기 생장기간 후, 분무에 의해 적절한 선발을 하게 된다. 추가의 가능한 방법으로는, 종자를 멸균하여 적절한 선발물질을 사용하여 한천판에 키우면, 형질전환된 종자만 식물체로 자랄 수 있다. 다르게는, 형질전환 식물은 상기 기재된 것과 같은 선발 마커의 존재에 대하여 가려진다.
DNA 전달 및 재분화에 이어, 형질전환된 것으로 추정되는 식물은 또한 예를 들면, 목적 유전자의 존재, 카피 수 및/또는 게놈 조직에 대하여 서던 분석 또는 정량 PCR을 사용하여 평가될 수 있다. 다르게는 또는 부가적으로, 새로이 도입된 DNA의 발현수준을 노던 및/또는 웨스턴 분석으로 측정할 수 있으며, 양 기술은 당업자에게 주지되어 있다.
생성된 형질전환된 식물은 클론 번식 또는 전통적인 육종 기술 같은 다양한 수단으로 증식될 수 있다. 예를 들면, 제1세대 (또는 T1) 형질전환 식물은 자가교배되고, 동형접합 제2세대 (또는 T2) 형질전환체가 선발되어, T2 식물은 전통적인 육종 기술로 더 증식된다.
생성된 형질전환된 생물체는 다양한 형태를 취할 수 있다. 예를 들면, 형질전환된 세포 및 형질전환되지 않은 세포의 키메라; 클론 형질전환체 (예를 들면, 발현카세트를 함유하도록 형질전환된 모든 세포); 형질전환된 및 형질전환되지 않은 조직의 그라프트(graft) (예를 들면, 식물에 있어 형질전환되지 않은 접순에 접목된 형질전환된 대목)일 수 있다.
본 발명은 분명히 본 발명에서 기재된 임의의 방법으로 생산된 임의의 식물 세포 또는 식물 및 모든 식물 부분 및 그의 번식체로 확장된다. 본 발명은 상기 언급한 임의의 방법으로 생산된 일차 형질전환된 또는 감염된 세포, 조직, 기관 또는 전체식물의 자손을 포함하기 위해 더 확장될 수 있으며, 자손이 본 발명에 따른 방법에서 양친에 의해 생산된 것과 동일한 유전형적 및/또는 표현형적 특징(들)을 나타내는 것만이 요구된다.
본 발명은 또한 상기에 정의된 것과 같은 분리된 SWI2/SNF2 폴리펩티드를 암호화하는 분리된 핵산 서열을 포함하는 숙주 세포를 포함한다. 본 발명에 따른 바람직한 숙주 세포는 식물 세포이다. 본 발명의 방법에 따라 사용된 핵산 서열 또는 벡터, 발현 카세트(cassette) 또는 구축물 또는 벡터에 대한 기주 식물은 원칙적으로 유리하게, 본 발명의 방법에 사용된 폴리펩티드를 합성하는 것이 가능한, 모든 식물이다.
본 발명의 방법은 유리하게 임의의 식물에 적용할 수 있다.
본 발명의 방법에 특히 유용한 식물은 수퍼패밀리 비리디플란태 (Viridiplantae)에 속하는 모든 식물, 특히 사료 또는 마초용 콩, 관상 식물, 식량 작물, 교목 또는 관목을 포함하는 단자엽 및 쌍자엽 식물을 포함한다. 본 발명의 바람직일 구현예에 있어서, 식물은 작물이다. 작물 식물의 예는 대두, 해바라기, 캐놀라, 알팔파, 유채, 목화, 토마토, 감자 및 담배를 포함한다. 더욱 바람직하게는, 식물은 단자엽 식물이다. 단자엽 식물의 예는 사탕수수를 포함한다. 더욱 바람직하게는 식물은 곡물이다. 곡물의 예는 벼, 옥수수, 밀, 보리, 기장, 라이밀, 호밀, 수수 및 귀리를 포함한다.
본 발명은 또한 종자, 잎, 열매, 꽃, 줄기, 지하경, 괴경 및 인경 같은 식물의 수확가능한 부분에까지 확장되나, 이 부분에 제한되지는 않는다. 본 발명은 더욱이 건조 펠렛 또는 분말, 기름, 지방 및 지방산, 전분 또는 단백질 같은 식물의 수확 가능한 부분으로부터 바람직하게는 직접적으로 유래된 생산물에 관련된다.
핵산 서열 또는 유전자, 또는 유전자 산물의 발현을 증가시키는 방법은 당업계에 잘 문헌화되어 있으며, 예를 들면, 적절한 프로모터에 의한 과발현, 전사 인핸서 또는 해독 인핸서의 사용을 포함한다. 프로모터 또는 인핸서 인자로서 작용하는 분리된 핵산 서열은 비이질성(non-heterologous) 형태의 폴리뉴클레오티드의 적절한 위치 (전형적으로 업스트림)에 도입되어 발현을 상향 조절한다. 예를 들면, 내재적 프로모터는 돌연변이, 결실, 및/또는 치환에 의해 생체 내에서 변할 수 있거나 (Kmiec, U.S. Pat. No. 5,565,350; Zarling et al., PCT/US93/03868), 또는 분리된 프로모터는 본 발명의 유전자로부터 적절한 거리와 방향으로 식물 세포 내에 도입될 수 있어 해당 유전자의 발현을 조절한다.
폴리펩티드 발현을 원한다면, 일반적으로 폴리뉴클레오티드 암호화 영역의 3'-말단에 폴리아데닐화 영역을 포함하는 것이 바람직하다. 폴리아데닐화 영역은 자연 유전자, 다양한 다른 식물 유전자, 또는 T-DNA로부터 유래할 수 있다. 부가된 3' 말단 서열은 예를 들면, 노팔린 신타아제 또는 옥토파인 신타아제 유전자, 또는 또 다른 식물 유전자, 또는 덜 바람직하게는 임의의 다른 진핵세포 유전자로부터 유래된다.
상기에 언급된 바와 같이, SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 발현을 증가시키는 바람직한 방법은 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 식물에의 도입 및 발현이나; 상기 방법의 수행, 즉 수확량 관련 형질의 향상 효과는 또한 다른 잘 알려진 기술을 사용하여서도 얻을 수 있다. 상기 기술의 일부의 기재는 하기에 있다.
상기 기술 중 하나는, 보통 프로모터 (또한 해독 인핸서 또는 인트론)를 함유하는 T-DNA를, 프로모터가 표적 유전자의 발현을 지시하게 배치되어 관심 유전자의 게놈 영역 내로 또는 유전자 암호화 영역의 10 kb 업스트림 또는 다운스트림으로 삽입하는 것을 포함하는 T-DNA 활성화 태깅 (Hayashi et al. Science (1992) 1350-1353)이다. 전형적으로, 자체의 자연 프로모터에 의한 표적 유전자 발현의 조절은 붕괴되어 유전자는 새로 도입된 프로모터의 조절하에 있게 된다. 프로모터는 전형적으로 T-DNA 내에 끼워져 있다. 이 T-DNA는 식물 게놈 내에 예를 들면, 아그로박테리움 감염을 통하여 무작위로 삽입되며 삽입된 T-DNA 인근의 유전자의 발현이 변형되게 된다. 결과적인 형질전환 식물은 도입된 프로모터에 가까운 유전자의 변형된 발현으로 인하여 우성 표현형을 보인다.
본 발명의 효과는 또한 TILLING (Targeted Induced Local Lesions In Genomes) 기술을 이용하여 재현될 수 있으며; 동일 내용에 대해 "정의" 섹션에 기재되어 있다.
본 발명의 효과는 또한 상동 재조합을 이용하여 재현될 수 있으며; 동일 내용에 대해 "정의" 섹션에 기재되어 있다.
본 발명은 또한 본 발명에 기재된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 용도 및 대조구 식물에 비해 식물의 수확량 관련 형질의 향상에 상기 SWI2/SNF2 폴리펩티드의 용도를 포함한다. 바람직하게는, 향상된 수확량 관련 형질은 하기 중 하나 이상이다: (i) 원추화서당 증가된 꽃의 수; (ii) 식물체당 증가된 총 종자 중량; (iii) 증가된 (충만된) 종자 수; 또는 (iv) 증가된 수확 지수.
본 발명은 또한 본 발명에 기재된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열의 용도 및 동등한 스트레스 조건하에서 자란 대조구 식물에 비해 비생물적 스트레스 조건 (바람직하게는 가뭄 스트레스 조건) 하에서 자란 식물의 수확량 관련 형질의 향상에 상기 SWI2/SNF2 폴리펩티드의 용도를 포함한다. 바람직하게는, 향상된 수확량 관련 형질은 하기 중 하나 이상이다: (i) 증가된 지상부 면적; (ii) 증가된 총 뿌리 생물량; (iii) 증가된 굵은 뿌리 생물량; (iv) 증가된 가는 뿌리 생물량; (v) 원추화서당 증가된 꽃의 수; (vi) 증가된 종자 충만도; (vii) 식물체당 증가된 총 종자 중량; (viii) 증가된 (충만된) 종자의 수; 또는 (ix) 증가된 수확 지수.
본 발명에서 기재된 SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열, 또는 SWI2/SNF2 폴리펩티드 그 자체는, SWI2/SNF2 폴리펩티드를 암호화하는 유전자에 유전적으로 연결될 수 있는, DNA 마커가 동정된 육종 프로그램에 사용된다. 유전자/핵산 서열 또는 SWI2/SNF2 폴리펩티드 그 자체는 분자 마커의 정의에 사용될 수 있다. 상기 DNA 또는 단백질 마커는 본 발명의 방법에서 정의된 향상된 수확량 관련 형질을 가진 식물체를 선발하는 육종 프로그램에 사용될 수 있다.
SWI2/SNF2 폴리펩티드를 암호화하는 유전자/핵산 서열의 대립인자 변이체 또한 마커 보조 육종 프로그램에 사용된다. 상기 육종 프로그램은 때때로 예를 들면, EMS 돌연변이 유발을 사용하여 식물에 돌연변이 유발 처리로 대립인자 변이의 도입을 필요로 하며; 다르게는, 상기 프로그램은 자연발생적으로 생성된 "자연적인" 대립인자 변이체의 수집물로부터 시작될 수도 있다. 그러면 예를 들면, PCR로 대립인자 변이체를 동정한다. 문제되는 서열의 우수한 대립인자 변이체의 선발 단계로 증가된 수확량 관련 형질을 얻는다. 선발은 전형적으로 문제되는 서열의 다른 대립인자 변이체를 함유하는 식물의 생장 능력을 관찰함으로써 이루어진다. 생장 능력은 온실 또는 야외에서 관찰할 수 있다. 추가의 선택적인 단계는 우수한 대립인자 변이체가 동정된 식물과 또 다른 식물의 교배를 포함한다. 이는 예를 들면, 흥미로운 표현형적 특징의 조합을 만드는데 사용될 수 있다.
SWI2/SNF2 폴리펩티드를 암호화하는 핵산 서열은 또한 이 유전자를 유전적으로 및 물리적으로 맵핑하기 위한 탐침으로서 및 그 유전자에 연관된 형질에 대한 마커로서 사용될 수 있다. 상기 정보는 원하는 표현형을 갖는 라인 개발을 위한 식물 육종에 유용하다. 상기 SWI2/SNF2 폴리펩티드 암호화 핵산 서열의 사용에는 적어도 길이 15 뉴클레오티드의 핵산 서열만이 필요하다. SWI2/SNF2 폴리펩티드 암호화 핵산 서열은 RFLP(restriction fragment length polymorphism) 마커로 사용될 수 있다. 제한효소 절단된 식물 게놈 DNA의 서던 블럿 (Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning, A Laboratory Manual)은 SWI2/SNF2 폴리펩티드 암호화 핵산 서열이 프로브로 사용된다. 결과로 나온 밴드 분포 양상으로 유전자지도 제작을 위하여 MapMaker (Lander et al. (1987) Genomics 1: 174-181) 같은 컴퓨터 프로그램을 사용하여 유전적 분석을 하게 된다. 또한, 핵산 서열은 지정된 유전적 교배의 양친 및 자손을 나타내는 개체들의 제한 효소 처리된 게놈 DNAs를 포함하는 서던 블럿에 탐침으로 사용될 수 있다. DNA 다형의 분리를 기록하여, 이 집단을 이용하여 이전에 얻었던 유전자 지도상에 SWI2/SNF2 폴리펩티드 암호화 핵산 서열의 위치 계산에 사용한다 (Botstein et al. (1980) Am. J. Hum. Genet. 32:314-331).
유전자 지도 제작에 사용하기 위한 식물 유전자 유래 탐침의 생산 및 사용은 [Bematzky and Tanksley (1986) Plant Mol. Biol. Reporter 4: 37-41]에 기재되어 있다. 수많은 공개문헌이 상기 개설된 방법론 또는 이의 변형을 사용하여 특정 cDNA 클론의 유전자 지도 제작을 기술한다. 예를 들면, F2 이종교배 개체군, 역교배 개체군, 무작위 교배 개체군, 근동질유전자계통, 및 다른 세트의 개체가 유전자 지도 제작에 사용될 수 있다. 상기 방법론은 당업자에게 주지되어 있다.
핵산 탐침은 또한 물리 지도에 제작 사용될 수 있다 (즉, 물리 지도상에 서열의 위치; Hoheisel et al. In: Non-mammalian Genomic Analysis: A Practical Guide, Academic press 1996, pp. 319-346, 인용된 문헌 참조).
또 다른 구현예에 있어서, 핵산 탐침은 직접적인 FISH(fluorescence in situ hybridisation) 지도 제작에 사용될 수 있다 (Trask (1991) Trends Genet. 7:149-154). 비록 현 FISH 지도 제작 방법이 큰 클론에 유리하지만 (수 kb 내지 몇 백 kb; Laan et al. (1995) Genome Res. 5:13-20 참고), 감도가 향상되면 보다 짧은 탐침으로 FISH 지도 제작이 가능해진다.
유전자지도 및 물리지도 작성을 위한 핵산증폭에 근거한 다양한 방법이 핵산 서열을 사용하여 수행될 수 있다. 예는 대립인자 특이적 증폭 (allele-specific amplification, Kazazian (1989) J. Lab. Clin. Med 11:95-96), CAPS (polymorphism of PCR-amplified fragments; Sheffield 등 (1993) Genomics 16:325-332), 대립인자 특이적 라이게이션 (allele-specific ligation, Landegren 등 (1988) Science 241:1077-1080), 뉴클레오티드 신장 반응 (nucleotide extension reactions, Sokolov (1990) Nucleic Acid Res. 18:3671), Radiation Hybrid Mapping (Walter et al. (1997) Nat. Genet. 7:22-28) 및 Happy Mapping (Dear and Cook (1989) Nucleic Acid Res. 17:6795-6807)을 포함한다. 이들 방법을 위해서 증폭 반응 또는 프라이머 연장 반응에 사용하기 위한 프라이머 쌍을 고안하고 제작하기 위해 핵산 서열이 사용된다. 상기 프라이머의 고안은 당업자에게는 주지되어 있다. PCR에 근거한 유전자 지도 제작에 사용하는 방법에서는 핵산 서열에 해당하는 영역에서 교배 양친 간의 DNA 서열 차이를 알 필요가 있다. 그러나 이는 일반적으로 지도제작 방법에는 필요하지 않다.
본 발명의 방법에 따라, 대조구 식물에 비해 상기에서 기재된 수확량 관련 형질이 향상된 식물이 초래된다. 상기 형질은 또한 추가적인 수확량 향상 형질 (정상적인 또는 스트레스 생장 조건하에서), 다른 비생물적 및 생물적 스트레스에 대한 내성, 다양한 외형적 특질 및/또는 생화학적 및/또는 생리적 특질을 변형시키는 형질과 같은 다른 경제적으로 유용한 형질과 조합될 수도 있다.
본 발명은 단지 예시인 하기 실시예를 참고하여 기재될 것이다. 하기 실시예는 본 발명의 범위를 완전히 한정하거나 제한할 의도는 아니다.
실시예
1:
HpaG
서열의 동정
서열번호 1에 관련된 서열 (전장 cDNA, ESTs 또는 게놈) 및/또는 서열번호 2에 관련된 단백질 서열이 Basic Local Alignment Tool (BLAST) 같은 데이터베이스 서열 탐색 도구를 사용하여 National Center for Biotechnology Information (NCBI)의 Entrez 뉴클레오티드 데이터베이스 (Altschul et al . (1990) J. Mol. Biol. 215:403-410; 및 Altschul et al . (1997) Nucleic Acids Res. 25:3389-3402)에 보유된 것 중에서 동정되었다. 이 프로그램은 핵산 또는 폴리펩티드 서열을 서열 데이터 베이스에 비교하거나 필적하는 것의 통계적 유의성을 계산하여 서열 간에 국부적인 유사성이 있는 영역을 발견하는 데 사용된다. 서열번호 1에 의해 암호화되는 폴리펩티드는 낮은 복잡성 서열 세트 오프를 무시하기 위해, 디폴트 셋팅 및 필터를 갖는 TBLASTN 알고리즘에 대해 이용되었다. 분석 결과는 pairwise 비교 로 보이게 하였으며, 확률 점수 (E-값)에 따라 순위를 매겼으며, 여기서 점수는 특정 정렬이 우연히 발생할 가능성을 반영한다 (E-값이 낮을수록 hit가 보다 유의하다). E-값 외에, 비교는 동일성 백분율에 의해서도 점수가 매겨진다. 동일성 백분율은 특정 길이에 걸쳐 두가지 비교되는 핵산 (또는 폴리펩티드) 서열 간에 동일한 뉴클레오티드 (또는 아미노산)의 수를 말한다. 특정 경우에, 탐색의 엄격성을 변경하기 위하여 디폴트 매개변수를 조절할 수도 있다.
표 A는 서열번호 1로 표시된 핵산 서열 및 서열번호 2로 표시된 단백질 서열에 연관있는 핵산 및 단백질 서열의 목록이다.
표 A: 본 발명의 방법에 유용한 HpaG 암호화 핵산 서열 및 HpaG 폴리펩티드.
실시예
2:
HpaG
폴리펩티드 서열의 정렬(
alignment
)
폴리펩티드 서열의 정렬 (도 1)은 점진적 정렬의 대중적인 Clustal 알고리즘에 근거한 ClustlW 프로그램을 사용하여 수행되었다 (Thompson et al . (1997) Nucleic Acids Res 25:4876-4882; Chenna et al . (2003). Nucleic Acids Res 31:3497-3500). Gap open penalty에 대한 디폴트 값은 10, gap extension penalty에 대한 디폴트 값은 0.1이고, 선택된 가중치 행렬은 Blosum 62 (만일 폴리펩티드가 정렬되면)이다. 정렬(alignment)을 최적화하기 위해 약간의 편집이 수작업으로 가해졌다.
HpaG 폴리펩티드의 계통수 (도 2)는 벡터 NTI (Invitrogen)의 AlignX 프로그램에 제공된 neighbour-joining clustering algorithm을 이용하여 구축되었다 .
실시예
3: 본 발명의 방법 수행에 유용한 폴리펩티드 서열 간에 전체적인 동일성 백분율 계산
본 발명의 방법 수행에 유용한 전장 폴리펩티드 서열 간에 동일성 및 유사성의 전체적인 백분율은 당업계에 유용한 방법 중의 하나인 MatGAT (Matrix Global Alignment Tool) 소프트웨어 (Campanella 등, BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences)를 사용하여 결정되었다. MatGAT 소프트웨어는 데이타의 사전 정렬의 필요없이 DNA 또는 단백질 서열에 대한 유사성/동일성 행렬을 생성한다. 상기 프로그램은 Myers 및 Miller 전체적인 정렬 알고리즘 (gap opening penalty 12, 및 gap extension penalty 2로)을 사용하여 일련의 pair-wise 정렬을 수행하고, 예를 들면, Blosum 62 (폴리펩티드에 대하여)를 사용하여 유사성 및 동일성을 계산하여, 결과를 거리 행렬로 배열한다. 서열 유사성은 구분선 아래 반쪽에 보여지며, 서열 동일성은 대각선 구분선 위 반쪽에 보여진다.
비교에 사용된 매개변수는:
Scoring matrix: Blosum62
첫째 갭: 12
연장 갭: 2
소프트웨어 분석의 결과는 전장 폴리펩티드 서열 (부분적인 폴리펩티드 서열 제외하고)에 걸쳐 전체적인 유사성 및 동일성에 대하여 표 B에 보여진다. 동일성 백분율은 대각선 상부에 볼드체로, 유사성 백분율은 대각선 하부에 있다.
본 발명의 방법을 수행하는데 유용한 HpaG 폴리펩티드 서열 간의 동일성 백분율은 서열번호 9에 비교 시 37% 아미노산 동일성만큼 낮을 수도 있다.
표 B: 폴리펩티드 서열 전장에 걸친 전체적인 유사성 및 동일성에 대한 MatGAT 결과
실시예
4:
클로닝
및 벡터 구축
달리 기술되지 않는 한, 재조합 DNA 기술은 (Sambrook (2001) Molecular Cloning: a laboratory manual, 3rd Edition Cold Spring Harbor Laboratory Press, CSH, New York) 또는 [Ausubel 등 (1994), Current Protocols in Molecular Biology, Current Protocols]의 Volumes 1 및 2에 기재된 표준 프로토콜에 따라 수행된다. 식물 분자 연구에 대한 표준 재료 및 방법은 BIOS Scientific Publications Ltd (UK) 및 BIOS Scientific Publications (UK)에서 출판된 R.D.D. Croy의 Plant Molecular Biology Labfax (1993)에 기재되어 있다.
잔토모나스(Xanthomonas) HpaG 암호화 서열은 잔토모나스 악소노포디스 DNA 라이브러리로부터 PCR에 의해 증폭되었다. 기대된 길이의 PCR 단편이 정제되어, 표준 기술을 사용하여 연이어 Gateway?벡터로 클론되었다. 서열번호 1을 포함하는 엔트리 클론이 오리자 사티바 형질전환에 사용된 destination 벡터와의 LR 반응에 사 용되었다. 이 벡터는 T-DNA 경계 내에 기능적 요소로서 하기의 것을 함유한다: 식물 선발 마커; 스크린가능한 마커 발현 카세트; 및 엔트리 클론에 이미 클론된 목적 핵산 서열과 LR 생체 내 재조합 의도된 Gateway 카세트. 구성적 발현을 위한 벼 GOS2 프로모터 (서열번호 5)는 이 Gateway 카세트의 업스트림에 위치한다. 다르게는, 프로토클로로필리드 환원효소 프로모터 (서열번호 6)와 같은 녹색 조직 특이적 프로모터가 동일하게 유용하다.
LR 재조합 단계 후, 생성된 발현벡터 pGOS2::HpaG로 당업계에 주지되어 있는 방법에 따라 아그로박테리움 균주 LBA4044를 형질전환하였다.
실시예
5: 식물 형질전환
벼 형질전환
발현 벡터를 함유하는 아그로박테리움이 오리자 사티바 식물의 형질전환에 사용되었다. 벼 야포니카 재배 품종 니폰바레의 성숙한 건조 종자의 껍질을 벗겼다. 70% 에탄올에 1 분, 0.2% HgCl2에 30 분, 멸균된 증류수로 6 회, 15분 세척하여 멸균하였다. 멸균된 종자를 2,4-D 함유 배지 (캘러스 유도배지)에서 발아시켰다. 암소에서 4주간 배양 후, 배, 배반-유래 캘러스를 절단하여 동일한 배지에서 번식시켰다. 2주 후, 캘러스는 계대배양에 의해 동일한 배지 상에서 또 다른 2주간 증식되거나 번식되었다. 배 캘러스 단편은 (세포 분열 활성을 증대시키기 위하여) 공동배양 3일 전에 신선한 배지 상에서 계대배양 되었다.
발현 벡터 함유 아그로박테리움 균주 LBA4404가 공동배양에 사용되었다. 아그로박테리움은 적절한 항생제가 포함된 AB 배지에 접종되어, 28℃에서 3일간 배양되었다. 세균을 수집하여 밀도 (OD600) 약 1이 되게 액체 공동배양 배지에 현탁액을 만들었다. 이 현탁액을 페트리디쉬에 옮겨 캘러스를 현탁액에 15 분간 침지하였다. 캘러스 조직을 필터 페이퍼 상에 옮겨 건조시킨 후, 굳힌 공동배양 배지에 옮겨 25℃, 암소에서 3일간 배양하였다. 공동배양된 캘러스를 선발제의 존재 하에 2,4-D-함유 배지에서 28℃, 암소에서 4주간 키웠다. 이 기간 중에, 급속히 자라는 저항성 캘러스 섬이 발달되었다. 이를 재분화 배지에 옮겨 명소에서 배양 후, 배가 방출되었으며 다음 4 내지 5주 후에 어린 줄기가 발달되었다. 어린 줄기를 캘러스에서 절단하여 옥신 함유 배지에서 2 내지 3주간 배양하여 토양으로 이식하였다. 강해진 어린 줄기를 온실 내 고습도 및 단일에서 키웠다.
약 35 개의 독립적인 T0 벼 형질전환체가 한 구축물당 생성되었다. 일차 형질전환체를 조직 배양실에서 온실로 옮겼다. T-DNA 삽입물의 카피 수를 확인하기 위한 정량적 PCR 분석 후, 선발제에 내성을 보이는 한 카피 형질전환 식물을 T1 종자 수확을 위하여 유지하였다. 이식 3 내지 5 개월 후 종자를 수확하였다. 본 방법으로 한 좌위 형질전환체가 50% 넘는 비율로 생산되었다 (Aldemita and Hodges 1996, Chan 등 1993, Hiei 등 1994).
옥수수
형질전환
옥수수 (Zea mays) 형질전환은 [Ishida 등 (1996) Nature Biotech 14(6): 745-50]에 기재된 방법을 변형하여 수행하였다. 옥수수에 있어 형질전환은 유전형에 의존하며, 특정 유전형만이 형질전환 및 재분화를 받아들인다. 근교계통 A188 (University of Minnesota) 또는 양친으로서 A188과의 교배는 형질전환을 위한 공여자의 좋은 원천이나 다른 유전형도 성공적으로 사용될 수 있다. 옥수수 알을 미성숙된 배의 길이가 약 1 내지 1.2mm일 때인 수분 후 약 11일된 옥수수 식물체로부터 수확한다. 미성숙한 배는 발현 벡터를 함유하는 아그로박테리움 투머파시엔스와 공배양 되었으며, 형질전환 식물체는 기관발생을 통해 회수된다. 절단된 배를 캘러스 유도 배지에서, 다음에는 선발제 (예를 들면 이미다졸리논, 그러나 다양한 선발 마커 사용 가능)를 함유하는 옥수수 재분화 배지에서 키운다. 페트리 플레이트를 명소, 25℃에서 2 내지 3주간, 또는 어린 줄기가 발달하기까지 배양한다. 각 배에서 녹색 어린 줄기를 옥수수 발근 배지로 옮겨 25℃에서 2 내지 3주간 뿌리가 발달하기까지 배양한다. 발근된 어린 줄기를 온실의 토양으로 이식한다. T1 종자는 선발제에 내성을 보이며 하나의 카피의 T-DNA 삽입물을 가진 식물에서 생산된다.
밀 형질전환
밀의 형질전환은 [Ishida 등 (1996) Nature Biotech 14(6): 745-50]에 기재된 방법으로 수행하였다. 재배품종 봅화이트 (Bobwhite; CIMMYT, Mexico로부터 입수 가능)가 형질전환에 흔히 사용된다. 미성숙한 배는 발현 벡터를 함유하는 아그로박테리움 투머파시엔스와 공배양 되었으며, 형질전환 식물체는 기관발생을 통해 회수된다. 아그로박테리움과의 공배양 후 배를 캘러스 유도 배지에서, 다음에는 선발제 (예를 들면 이미다졸리논, 그러나 다양한 선발 마커 사용 가능)를 함유하는 재분화 배지에서 시험관 내에서 키운다. 페트리 플레이트를 명소, 25℃에서 2 내지 3주간, 또는 어린 줄기가 발달하기까지 배양한다. 각 배에서 녹색 어린 줄기를 발근 배지로 옮겨 25℃에서 2 내지 3주간 뿌리가 발달하기까지 배양한다. 발근된 어린 줄기를 온실의 토양으로 이식한다. T1 종자는 선발제에 내성을 보이며 하나의 카피의 T-DNA 삽입물을 가진 식물에서 생산된다.
대두 형질전환
대두는 Texas A&M 특허 US 5,164,310에 기재된 방법을 변형하여 형질전환되었다. 몇 가지 상업적 대두 변종은 이 방법에 의한 형질전환을 수용한다. 재배품종 잭 (Jack; Illinois Seed foundation으로부터 입수 가능)이 흔히 형질전환에 사용된다. 대두 종자는 시험관 내 파종을 위해 멸균된다. 하배축, 유근 및 자엽 하나를 7일 된 어린 실생으로부터 잘라낸다. 상배축 및 나머지 자엽을 엽액 마디가 발달할 때까지 키운다. 이 엽액 마디를 잘라내어 발현벡터를 함유하는 아그로박테리움 투머파시엔스와 배양한다. 공배양 후 잘라낸 식물체 조각을 수세하여 선발 배지로 옮긴다. 재분화된 어린 줄기를 잘라내어 어린 줄기 신장 배지에 둔다. 1 cm가 되지 않는 어린 줄기를 뿌리가 발달하기까지 발근 배지에 둔다. 발근된 어린 줄기를 온실의 토양으로 이식한다. T1 종자는 선발제에 내성을 보이며 하나의 카피의 T-DNA 삽입물을 가진 식물에서 생산된다.
유채/
캐놀라
형질전환
5 내지 6일된 어린 실생의 자엽 엽병 및 하배축이 조직 배양을 위한 식물절편으로 사용되었으며 Babic 등 (1998, Plant Cell Rep 17: 183-188)에 따라 형질전 환되었다. 상업적 재배종 웨스타 (Westar; Agriculture Canada)가 형질전환을 위한 표준 변종으로 사용되나, 다른 변종도 사용될 수 있다. 캐놀라 종자는 시험관 내 파종을 위해 표면 멸균된다. 자엽이 붙어 있는 자엽 엽병 식물절편을 시험관 내 실생으로부터 절단하여, 엽병 절편의 잘린 끝 부분을 세균 현탁액에 담구어 아그로박테리움 (발현 벡터 포함)을 접종하였다. 식물절편을 3 mg/l BAP, 3 % 수크로스, 0.7 % Phytagar를 함유하는 MSBAP-3 배지에서 23℃에서, 16 시간의 빛 하에서 2일간 배양하였다. 아그로박테리움과의 공배양 2일 후, 엽병 식물 절편을 3mg/l BAP, 세포탁심, 카베니실린, 또는 티멘틴 (300mg/l)을 함유하는 MSBAP-3 배지에 옮겨 7일간 둔 후, 어린 줄기가 재분화될 때까지 세포탁심, 카베니실린, 또는 티멘틴 및 선발제가 든 MSBAP-3 배지에 배양하였다. 어린 줄기의 길이가 5 내지 10 mm일 때 잘라 어린 줄기 신장 배지 (0.5 mg/l BAP 함유 MSBAP-0.5)로 옮긴다. 길이 약 2 cm인 어린 줄기를 뿌리 유도를 위하여 발근 배지(MS0)로 옮긴다. 발근된 어린 줄기를 온실의 토양으로 이식한다. T1 종자는 선발제에 내성을 보이며 하나의 카피의 T-DNA 삽입물을 가진 식물에서 생산된다.
알팔파
형질전환
알팔파 (Medicago sativa)의 재생 클론이 (McKersie 등, 1999 Plant Physiol 119: 839-847)의 방법으로 형질전환된다. 알팔파의 재생 및 형질전환은 유전형 의존적이므로 재생식물이 요구된다. 재생식물을 얻는 방법이 기재된다. 예를 들면, 이들은 재배품종 랭그랜더 (Rangelander; Agriculture Canada) 또는 Brown DCW 및 A Atanassov (1985. Plant Cell Tissue Organ Culture 4: 111-112)에 의해 기재된 임의의 다른 상업적 알팔파 변종으로부터 선택할 수 있다. 다르게는, RA3 변종 (University of Wisconsin)이 조직배양에 사용하기 위해 선택되었다 (Walker 등, 1978 Am J Bot 65:654-659). 엽병 식물절편은 발현 벡터를 가진 아그로박테리움 투머파시엔스 C58C1 pMP90 (McKersie 등, 1999 Plant Physiol 119: 839-847) 또는 LBA4404와 밤새 공배양된다. 식물절편은 288 mg/L Pro, 53 mg/L 티오프롤린, 4.35 g/L K2SO4, 및 100μM 아세토시링원을 함유하는 SH 유도배지 상에서 암소에서 3일간 공배양된다. 식물절편을 절반 강도의 Murashige-Skoog 배지 (Murashige and Skoog, 1962)로 세척하여 아세토시링원은 없으나 적절한 선발제 및 아그로박테리움 생장을 저해하는 적절한 항생제를 포함하는 동일한 SH 유도배지 상에 둔다. 몇 주 후, 체세포 배를 생장조절제 및 항생제는 없고, 50g/L 수크로스가 함유된 BOi2Y 발생 배지로 옮긴다. 체세포 배는 연이어 절반 강도의 Murashige-Skoog 배지 상에서 발아된다. 발근된 실생을 온실의 토양으로 이식하여 키운다. T1 종자는 선발제에 내성을 보이며 하나의 카피의 T-DNA 삽입물을 가진 식물에서 생산된다.
목화 형질전환
목화는 US 5,159,135에 기재된 방법에 따라 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens)를 사용하여 형질전환된다. 목화 종자는 3% 차아염소산나트륨(sodium hypochlorite) 용액에서 20 분간 표면 살균되어, 500 ㎍/ml 세포탁심(cefotaxime)이 함유된 증류수로 수세되었다. 상기 종자는 발아를 위해 50㎍/ml 베노밀(benomyl)이 함유된 SH 배지로 옮겼다. 4 내지 6일 된 실생의 상배축을 제거하여, 0.5 cm 조각으로 잘라 0.8% 아가에 두었다. 아그로박테리움 현탁액 (목 적 유전자 및 적절한 선발 마커로 형질전환되어 밤새 배양된 것으로부터 약 108 세포/ml로 희석된)이 상배축 절편체의 접종에 사용되었다. 상온 및 명소에서 3일 후, 조직을 비타민 B5가 든 Murashige 및 Skoog 염 (Gamborg 등, Exp. Cell Res. 50:151-158 (1968)), 0.1 mg/l 2,4-D, 0.1 mg/l 키네틴(6-furfurylaminopurine) 및 750 ㎍/ml MgCL2, 그리고 잔존 세균을 죽이기 위해 50 내지 100 ㎍/ml 세포탁심 및 400-500 ㎍/ml 카르베니실린이 포함된 고체 배지 (1.6 g/l Gelrite) 로 옮겼다. 개개 세포 라인은 2 내지 3달 후에 (4 내지 6주마다 계대배양) 분리되어 조직 증식을 위해 선발 배지에 배양되었다 (30℃, 16 시간 광주기). 형질전환된 조직은 체세포배를 얻기 위해 2 내지 3 달간 비선발배지에서 연이어 배양되었다. 적어도 4 mm 길이의 건강해 보이는 배를 0.1 mg/l 인돌초산, 키네틴(6-furfurylaminopurine) 및 지베렐린산이 함유된, 미세한 질석의 SH 배지가 든 관상 용기로 옮겼다. 배를 30℃에서 16 시간의 광주기로 배양하여, 및 2 내지 3 장의 잎이 달린 단계에서 식물체를 질석 및 양분이 든 화분으로 옮겼다. 식물체가 튼튼해 지면 재배를 위해 온실로 옮겼다.
실시예
6: 표현형 평가 절차
6.1 평가
셋업
약 35개의 독립적인 T0 벼 형질전환체가 생성되었다. 일차 형질전환체를 조직배양실에서 온실로 옮겨 키워 T1 종자를 수확하였다. 외래도입유전자의 유/무에 대하여 3:1로 분리되는 T1 자손 중 6 events를 보유하였다. 이들 events의 각각에 대해, 외래도입유전자(이형- 및 동형접합자)를 가진 약 10 개의 T1 실생 및 외래도입유전자가 없는 (공접합자) 약 10 개의 T1 실생을 가시적 마커 발현을 관찰하여 선발하였다. 형질전환 식물 및 해당 공접합자를 무작위 위치에 나란히 키웠다. 온실 조건은 단일 (12 시간 빛), 명소에서 28℃, 암소에서 22℃, 및 상대습도 70%였다.
4 개의 T1 events는 T2 세대에서 T1 세대에 대해서와 동일한 평가 절차이나 event당 더 많은 개체로 한층 더 평가되었다. 파종 단계에서부터 성숙 단계까지 식물에 디지털 이미지 캐비닛을 몇 회 통과시켰다. 매번 각 식물의 디지털 이미지 (2048x1536 픽셀, 1,600만 가지 색)를 적어도 6 가지 다른 각도에서 촬영하였다.
가뭄 스크린
6 events (T2 종자)로부터의 식물체를 정상적인 조건에서 이삭이 나오는 단계에 이를 때까지 화분에서 키웠다. 관개가 억제된 "건조한" 곳으로 옮겼다. 토양 수분 함량 (SWC)을 모니터하기 위해 무작위로 선택한 화분에 습도 탐침을 삽입하였다. SWC가 특정 역치 밑으로 떨어질 때에는 정상적인 수준에 다시 도달할 때까지 연속적으로 자동적으로 식물에 재급수하였다. 식물체를 다시 정상적인 조건으로 옮겼다. 재배의 나머지 과정 (식물 성숙, 종자 수확)은 비생물적 스트레스 조건하에서 키우지 않은 식물과 동일하였다. 생장 및 수확량 매개변수는 정상적인 조건하의 생장에 대해서 만큼 상세하게 기록하였다.
질소 이용 효율 스크린
T2 종자로부터의 벼 식물체를 양분액을 제외하고는 정상적인 조건하에서 화 분용 상토에서 키웠다. 질소 함량이 감소된 특정 양분액으로 이식에서부터 성숙에 이를 때까지, 보통 7 내지 8 회 이하로 화분에 급수하였다. 재배 (식물 성숙, 종자 수학)의 나머지 부분은 비생물적 스트레스 하에서 키우지 않은 식물과 동일하다. 생장 및 수확량 매개변수는 정상적인 조건하의 생장에 대해서 만큼 상세하게 기록하였다.
염 스트레스 스크린
식물체를 코코넛 섬유(coco fibers) 및 아르젝스(argex) (3:1 비율)로 만들어진 기질에서 키웠다. 정상적인 양분액을 온실에 식물체를 이식 후 처음 2주간 사용하였다. 처음 2주 후, 식물을 수확할 때까지 25 mM 염 (NaCl)를 양분액에 첨가하였다. 종자 관련 매개변수를 측정하였다.
6.2 통계적 분석: F-검정
식물의 표현형적 특징의 종합적인 평가를 위한 통계적 모델로 2 인자 ANOVA (변이체의 분석)를 사용하였다. 본 발명의 유전자로 형질전환된 모든 건의 모든 식물에서 측정된 모든 매개변수에 대하여 F-검정이 수행되었다. 모든 형질전환 건에 미치는 유전자의 종합적인 효과를 점검하고 전체적인 유전자 효과로 알려진 유전자의 종합적인 효과를 확인하기 위하여 F-검정이 수행되었다. F-검정에 대하여 진정한 전체적인 유전자 효과에 대한 유의성 역치는 5% 확률 수준으로 설정하였다. 유의한 F-검정 값은 유전자 효과를 나타내는데, 이는 표현형 상의 차이를 야기한 것이 유전자의 단순한 존재나 위치만이 아니라는 의미이다.
중복적인 events의 2 회 실험이 수행되었으므로, 조합된 분석이 수행되었다. 이는 두 실험에 걸친 효과의 일관성을 확인하기에 유용하며, 그렇다면 결론에 대한 자신감을 증가시키기에 양 실험으로부터의 증거를 축적하기에 유용하다. 사용된 방법은 자료의 다층구조를 고려하는 혼합모델 접근(mixed-model approach)이다. P 값은 우도비 검정 (likelihood ratio test)을 카이 제곱 분포에 비교함으로써 구했다.
6.3 측정된 매개변수
생물량
관련 매개변수 측정
파종 단계에서부터 성숙 단계까지 식물에 디지털 이미지 캐비닛을 몇 회 통과시켰다. 매번 각 식물의 디지털 이미지 (2048x1536 픽셀, 1,600만 가지 색)를 적어도 6 가지 다른 각도에서 촬영하였다.
식물 지상부 면적 (또는 잎으로 된 생물량)은 백그라운드로부터 구분되는 지상부 식물 부분의 디지털 이미지의 픽셀의 총 수를 세어 결정하였다. 이 값은 다른 각도에서 동일한 시점에 촬영한 그림에 대해 평균을 내었으며, 보정에 의해 평방 mm로 표시된 물리적 표면 값으로 전환되었다. 실험은 이 방식으로 측정된 지상부 식물 면적이 지상부 식물 부분의 생물량과 상관관계가 있음을 보여준다. 지상부 면적은 식물의 잎으로 된 생물량이 최대에 달한 시점에서 측정된 면적이다. 초기 활력은 발아 후 3 주일 때 식물 (실생) 지상부 면적이다. 뿌리 생물량의 증가는 총 뿌리 생물량 (식물의 수명 중에 관찰된 뿌리의 최대 생물량으로 측정됨)의 증가; 또는 뿌리/어린 줄기 지수 (뿌리 및 어린 줄기의 활발한 생장기간 중에 뿌리 야과 어린 줄기 양 간의 비율로 측정됨)의 증가로 표현된다.
초기 활력은 백그라운드로부터 구분되는 지상부 식물체 부분으로부터 총 픽셀의 수를 세어 결정되었다. 이 값은 다른 각도에서 동일한 시점에 촬영한 그림에 대해 평균을 내었으며, 보정에 의해 평방 mm로 표시된 물리적 표면 값으로 전환되었다. 하기 기재된 결과는 발아 후 3 주된 식물체에 대한 것이다.
종자 관련 매개변수 측정
성숙한 일차 원추화서를 수확하여, 세고, 봉지에 넣어, 바코드로 표지하여 37℃ 오븐에서 3일간 건조하였다. 원추화서를 타작하여 모든 종자를 수집하고, 세었다. 충만된 깍지는 공기분출기를 사용하여 빈 것과 분리하였다. 빈 깍지는 버리고 나머지를 세었다. 충만된 깍지는 분석 저울로 무게를 재었다. 충만된 종자의 수는 분리 단계 후 남은 충만된 깍지의 수를 세어 결정하였다. 총 종자 수확량은 식물체로부터 수확된 모든 충만된 깍지 중량으로 측정하였다. 식물체당 총 종자수는 식물체로부터 수확된 깍지의 수를 세어 측정하였다. 천립중량 (TKW)은 숫자를 센 충만된 종자의 수와 그 총 중량으로부터 외삽하였다. 본 발명에서 수확지수 (HI)는 총 종자 수확량과 지상부 면적 (mm2) 간의 비율에 106을 곱한 것으로 정의된다. 본 발명에서 정의된 원추화서당 총 꽃의 수는 총 종자 수와 성숙한 1차 원추화서의 수 간의 비율이다. 본 발명에서 정의된 종자 충만도(fill rate)는 총 종자 (또는 소화) 수에 대한 충만된 종자 수의 비율 (%)로 표시된다.
실시예
7: 형질전환된 식물의 표현형 평가 결과
스트레스가 없는 조건하에서 HpaG 핵산을 발현하는 형질전환된 벼 식물의 평가결과는 하기와 같다. 지상부 생물량 (AreaMax), 출현 활력 (초기 활력), 총 종자 수확량, 충만된 종자의 수, 충만도, 원추화서당 꽃의 수, 수확 지수, 및 천립중량에 대해 증가가 관찰되었다 (표 C 참고).
표 C: 스트레스가 없는 조건하에서 수확량 증가에 대한 측정 결과
| 매개변수 |
전체 증가(%) |
F-검정의 p-값 |
| AreaMax |
13 |
0.0000 |
| 초기 활력 |
25 |
0.0041 |
| 총 종자 중량 |
30 |
0.0000 |
| 충만된 종자 수 |
26 |
0.0000 |
| 충만도(fill rate) |
9 |
0.0000 |
| 원추화서당 꽃 |
12 |
0.0371 |
| 수확 지수 |
18 |
0.0000 |
| 천립중량 |
4 |
0.0000 |
가뭄 스트레스 조건 하에서 HpaG 핵산을 발현하는 형질전환된 벼 식물의 평가결과는 하기에 기재되었다. 총 종자 중량, 충만된 종자의 수, 충만도, 수확 지수 및 천립중량에 대해 증가가 관찰되었다 (표 D).
표 D: 가뭄 스트레스 조건하에서 수확량 증가 측정 결과
| 매개변수 |
전체 증가(%) |
F-검정의 p-값 |
| 총 종자 중량 |
40 |
0.0000 |
| 충만된 종자 수 |
37 |
0.0000 |
| 충만도(fill rate) |
30 |
0.0000 |
| 수확 지수 |
37 |
0.0000 |
| 천립중량 |
3 |
0.0001 |
실시예
8: 서열번호 29 및 서열번호 30에 관련된 서열 동정
서열번호 29에 관련된 서열 (전장 cDNA, ESTs 또는 게놈) 및/또는 서열번호 30에 관련된 단백질 서열은 BLAST (Basic Local Alignment Tool) 같은 데이터베이스 서열 탐색 도구를 사용하여 NCBI (National Center for Biotechnology Information)의 Entrez 뉴클레오티드 데이터베이스 (Altschul et al. (1990) J. Mol. Biol. 215:403-410; 및 Altschul et al . (1997) Nucleic Acids Res. 25:3389-3402)에 보유된 것 중에서 동정되었다. 이 프로그램은 핵산 또는 폴리펩티드 서열을 서열 데이터 베이스에 비교하고 필적하는 것의 통계적 유의성을 계산하여 서열 간에 국부적인 유사성이 있는 영역을 발견하는데 사용된다. 서열번호 29에 의해 암호화되는 폴리펩티드는 낮은 복잡성 서열 세트 오프를 무시하기 위해, 디폴트 셋팅 및 필터를 갖는 TBLASTN 알고리즘에 대해 이용되었다. 분석 결과는 pairwise 비교로 보이게 하였으며, 확률 점수 (E-값)에 따라 순위를 매겼으며, 여기서 점수는 특정 정렬이 우연히 발생할 가능성을 반영한다 (E-값이 낮을수록 hit가 보다 유의하다). E-값 외에, 비교는 동일성 백분율에 의해서도 점수가 매겨진다. 동일성 백분율은 특정 길이에 걸쳐 두가지 비교되는 핵산 (또는 폴리펩티드) 서열 간에 동일한 뉴클레오티드 (또는 아미노산)의 수를 말한다. 특정 경우에, 탐색의 엄격성을 변경하기 위하여 디폴트 매개변수를 조절할 수도 있다.
표 E. 서열번호 29로 표시된 핵산 서열 및 서열번호 30으로 표시된 폴리펩티드 서열에 연관 있는 핵산 및 폴리펩티드 서열의 목록
본 발명의 방법의 수행에 유용한 SWI2/SNF2 폴리펩티드의 부가적인 출처는 Flaus 등 (2006)의 부록 표 S1C에 제시된다. 저자는 24 개의 완전한 고세균(archea) 및 269 개의 세균 게놈을 스캔하였으며, SSO1653 서브패밀리 형의 149 개의 SWI2/SNF2를 동정하였다.
실시예
9:
SWI2
/
SNF2
폴리펩티드 서열의 정렬
폴리펩티드 서열의 정렬은 점진적 정렬의 Clustal 알고리즘 (1.83)으로 디폴트 값(default values)을 사용하여 수행되었다 (Thompson et al . (1997) Nucleic Acids Res 25:4876-4882; Chenna et al . (2003). Nucleic Acids Res 31:3497-3500). 도 8에 도시된 결과는 SWI2/SNF2 폴리펩티드가 하기에 제시된 모티프 I, Ia, II, III, IV, V, Va 및 VI (박스로 표시)에 필수적인 보존서열을 공유하는 것을 보여준다:
(i) 서열번호 103으로 표시된 모티프 I LADDMGLGK(T/S), 또는 모티프 I의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(ii) 서열번호 104로 표시된 모티프 Ia L(L/V/I)(V/I/L)(A/C)P(T/M/V)S(V/I/L)(V/I/L)XNW, 또는 모티프 Ia의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(iii) 서열번호 105로 표시된 모티프 II DEAQ(N/A/H)(V/I/L)KN, 또는 모티프 II의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(iv) 서열번호 106으로 표시된 모티프 III A(L/M)TGTPXEN, 또는 모티프 III의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(v) 서열번호 107로 표시된 모티프 IV (L/I)XF(T/S)Q(F/Y), 또는 모티프 IV의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(vi) 서열번호 108로 표시된 모티프 V S(L/V)KAGG(V/T/L)G(L/I)(N/T)LTXA(N/S/T)HV, 또는 모티프 V의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프;
(vii) 서열번호 109로 표시된 모티프 Va DRWWNPAVE, 또는 모티프 Va의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프; 및
(viii) 서열번호 110으로 표시된 모티프 VI QA(T/S)DR(A/T/V)(F/Y)R(I/L)GQ, 또는 모티프 VI의 서열에 증가하는 순으로 선호되는 적어도 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 서열 동일성을 가진 모티프,
상기 모티프 Ia, 모티프 III, 모티프 IV, 및 모티프 V에서 X는 임의의 아미 노산이다.
상기 8 개 모티프는 ATPase 도메인 내에 포함된다. ATPase 도메인은 모티프 1의 첫 번째 아미노산 잔기 및 SWI2/SNF2 폴리펩티드 C-말단의 마지막 아미노산 잔기 사이 (N에서 C-말단으로)에 포함된다. ATPase 도메인의 시작점과 종결점이 도 8에 표시되었으며, ATPase 도메인 그 자체는 정렬된 폴리펩티드 위에 검은 상자로 표시되었다. ATPase 도메인의 예는 서열번호 30의 ATPase 도메인이며, 서열번호 111로 나타내었다.
149 개의 SWI2/SNF2 SSO1653 서브패밀리 구성원의 ATPase 도메인의 서열 로고(logo)는 Flaus 등 (2006)에 제시되어 있으며, 도 6에 도시되었다. 서열 로고는 아미노산 또는 핵산의 다중 서열 정렬의 그래픽 표현이다. 각 로고는 기호의 더미(stack)로 이루어지며, 서열상의 각 위치에 대해 하나의 더미로 구성된다. 더미의 전체 높이는 해당 위치에서의 서열이 보존되어 있음을 나타내며, 더미 내에서 기호의 높이는 해당 위치에서 각 아미노산 또는 핵산의 상대 빈도를 나타낸다. 일반적으로, 서열 로고가 일치(consensus) 서열 보다 예를 들면, 결합위치(binding site)의 보다 더 풍부하며 자세한 기재를 제공한다. 이와 같은 로고를 생산하는 알고리즘 (WebLogo)은 California 대학교 (Berkeley)의 서버에서 가능하다. 서열번호 111로 표시되며, 서열번호 30에 포함된 ATPase 도메인은 도 6에 도시된 서열 로고와 일치한다.
수많은 SWI2/SNF2 서브패밀리 (SSO1653 포함)로부터 SWI2/SNF2 폴리펩티드의 unrooted radial neighbor-joining tree가 도 7에 도시된 바와 같이 Flaus 등, (2006)에 의해 구축되었다. 서열번호 30으로 표시된 폴리펩티드는 모든 고세균(archea) 및 세균 (집합적으로 미생물) SWI2/SNF2 폴리펩티드와 함께 SSO1653 집단 (그림에서 원으로 표시)에 포함된다.
실시예 10: 본 발명의 방법 수행에 유용한 폴리펩티드 서열 간에 전체적인 동일성 백분율 계산
본 발명의 방법 수행에 유용한 전장 폴리펩티드 서열 간에 동일성 및 유사성의 전체적인 백분율은 당업계에 유용한 방법 중의 하나인 MatGAT (Matrix Global Alignment Tool) 소프트웨어 (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella JJ, Bitincka L, Smalley J; software hosted by Ledion Bitincka)를 사용하여 결정되었다. MatGAT 소프트웨어는 데이타를 사전 정렬할 필요 없이 DNA 또는 단백질 서열에 대한 유사성/동일성 행렬을 생성한다. 상기 프로그램은 Myers 및 Miller 전체적인 정렬 알고리즘 (gap opening penalty 12, 및 gap extension penalty 2)을 사용하여 일련의 pair-wise 정렬을 수행하고, 예를 들면, Blosum 62 (폴리펩티드에 대하여)를 사용하여 유사성 및 동일성을 계산하여, 결과를 거리 행렬로 배열한다. 서열 유사성은 구분선 아래 반쪽에 보여지며, 서열 동일성은 대각선 구분선 위 반쪽에 보여진다.
비교에 사용된 매개변수는 하기와 같다:
Scoring matrix: Blosum62
첫째 갭: 12
연장 갭: 2
소프트웨어 분석의 결과는 전장 폴리펩티드 서열 (부분적인 폴리펩티드 서열 제외)에 걸쳐 전체적인 유사성 및 동일성에 대하여 표 F에 보여진다. 동일성 백분율은 대각선 상부에, 유사성 백분율은 대각선 하부에 있다.
본 발명의 방법을 수행하는데 유용한 SSO1653 서브패밀리의 전장 SWI2/SNF2 폴리펩티드 서열 간의 동일성 백분율은 서열번호 30에 비교 시 33% 내지 52% 범위의 아미노산 동일성이다 (표 F).
본 발명의 방법을 수행하는데 유용한 SSO1653 서브패밀리의 SWI2/SNF2 폴리펩티드 서열의 ATPase 도메인 간의 동일성 백분율은 서열번호 111로 표시되고, 서열번호 30에 포함된 ATPase 도메인에 비교 시 45% 내지 70% 범위의 아미노산 동일성이다 (표 F1).
표 F: 전장 SWI2/SNF2 폴리펩티드 서열에 걸쳐 전체적인 유사성 및 동일성에 대한 MatGAT 결과
표 F1: SWI2/SNF2 폴리펩티드 서열의 ATPase 도메인 간 전체적인 유사성 및 동일성에 대한 MatGAT 결과
실시예
11: 본 발명의 방법 수행에 유용한 폴리펩티드 서열에 포함된 도메인의 동정
InterPro (The Integrated Resource of Protein Families, Domains and Sites) 데이터베이스는 텍스트 및 서열에 근거한 탐색을 위한 통상적으로 사용되는 시그너처(signature) 데이터베이스에 대한 통합된 인터페이스이다. InterPro 데이터베이스는 단백질 시그너처를 유도하기 위해 다른 방법론 및 잘 규명된 단백질에 관한 다양한 정도의 생물학적 정보를 사용하는 이들 데이터베이스를 통합한다. 협력 데이터베이스는 SWISS-PROT, PROSITE, TrEMBL, PRINTS, ProDom 및 Pfam, Smart 및 TIGRFAMs을 포함한다. Interpro는 영국에 있는 European Bioinformatics Institute에서 호스팅된다.
서열번호 30으로 표시된 폴리펩티드 서열의 InterPro 스캔의 결과가 표 G에 제시되어 있다. SWI2/SNF2 폴리펩티드 (또는 리모델링 효소)는 ATP 가수분해를 이용하여 DNA 가닥의 분리를 촉매하는 효소인 헬리카아제 (특히 SF2 헬리카아제)와 서열 유사성을 공유한다. 상기 서열 유사성은 양 유형의 효소의 ATPase 도메인에 제한된다.
표 G: 서열번호 2로 표시된 폴리펩티드 서열의 InterPro scan 결과 (주요 등록번호).
실시예
12: 서열번호 29로 표시된 핵산 서열의
클로닝
달리 기술되지 않는 한, 재조합 DNA 기술은 (Sambrook (2001) Molecular Cloning: a laboratory manual, 3rd Edition Cold Spring Harbor Laboratory Press, CSH, New York) 또는 Ausubel 등 (1994)의 Current Protocols in Molecular Biology, Current Protocols의 Volumes 1 및 2에 기재된 표준 프로토콜에 따라 수행된다. 식물 분자 연구에 대한 표준 재료 및 방법은 BIOS Scientific Publications Ltd (UK) 및 BIOS Scientific Publications (UK)에서 출판된 R.D.D. Croy의 Plant Molecular Biology Labfax (1993)에 기재되어 있다.
시네코시스티스(Synechocystis) sp. PCC6803 SWI2/SNF2 유전자는 시네코시스티스(Synechocystis) sp. PCC6803 게놈 DNA를 주형으로 하여 PCR로 증폭되었다. Gateway 재조합을 위한 AttB 부위를 포함하는 프라이머 prmO8774 (서열번호 113; 센스,: 5'-ggggacaagtttgtacaaaaaagcaggcttaaacaatggcgactatccacggtaattgg-3') 및 prmO8779 (서열번호 114; 역방향, 상보적,: 5'-ggggaccactttgtacaagaaagctgggttcaatcggacgcttcggctt- 3')가 PCR 증폭에 사용되었다. PCR은 표준 조건에서 Hifi Taq DNA 중합효소를 사용하여 수행되었다. 예상된 길이의 PCR 단편이 (attB 부위 포함) 증폭되어, 표준 방법으로 정제되었다. Gateway 용어로 "entry clone"을 생성하기 위해, PCR 단편이 pDONR201 플라스미드로 생체 내(in vivo) 재조합되는 중에 Gateway 과정의 첫 단계인 BP 반응이 수행되었다. 플라스미드 pDONR201는 Gateway?기술의 일부로, Invitrogen으로부터 구입하였다.
실시예 13: 서열번호 29로 표시된 핵산 서열을 사용한 발현 벡터 구축
서열번호 29를 포함하는 엔트리(entry) 클론을 벼 형질전환에 사용된 destination 벡터와의 LR 반응에 사용하였다. 이 벡터는 T-DNA 경계 내에 기능적 요소로서 식물 선발 마커, 스크린가능한 마커 발현 카세트, 및 이미 엔트리 클론으로 클론된 목적 핵산 서열과 LR 생체 내 재조합에 계획된 Gateway 카세트를 포함한다. 어린 확장성 조직에서의 발현을 위해 벼 베타 익스팬신(beta-expansin) 프로모터 (서열번호 112)를 상기 Gateway 카세트의 업스트림에 두었다.
LR 재조합 단계 후, 생성된 발현 벡터 pExp::SWI2/SNF2 (도 8)는 당업계에 주지된 방법에 따라 아그로박테리움 균주(Agrobacterium strain) LBA4044로 형질전 환되었다.
실시예
14: 식물 형질전환
벼 형질전환에 대해 상기 실시예 5 참고
실시예 15:
표현형 평가 절차
15.1 평가
셋업
약 35개의 독립적인 T0 벼 형질전환체가 생성되었다. 일차 형질전환체를 조직배양실에서 온실로 옮겨 키워 T1 종자를 수확하였다. 외래도입유전자의 유/무에 대하여 3:1로 분리되는 T1 자손 중 6 events를 보유하였다. 이들 events의 각각에 대해, 외래도입유전자(이형접합자 및 동형접합자)를 가진 약 10 개의 T1 실생 및 외래도입유전자가 없는 (공접합자) 약 10 개의 T1 실생을 가시적 마커 발현을 관찰하여 선발하였다. 형질전환 식물 및 해당 공접합자를 무작위 위치에 나란히 키웠다. 온실 조건은 단일 (12 시간 빛), 명소에서 28℃, 암소에서 22℃, 및 상대습도 70%였다.
5 개의 T1 events는 T2 세대에서 T1 세대에 대해서와 동일한 평가 절차이나 event당 보다 많은 개체로 한층 더 평가되었다. 파종 단계에서부터 성숙 단계까지 식물에 디지털 이미지 캐비닛을 몇 회 통과시켰다. 매번 각 식물의 디지털 이미지 (2048x1536 픽셀, 1,600만 가지 색)를 적어도 6 가지 다른 각도에서 촬영하였다.
가뭄 스크린
5 events (T2 종자)로부터의 식물체를 정상적인 조건에서 이삭이 나오는 단계에 이를 때까지 화분에서 키웠다. 관개가 억제된 "건조한" 곳으로 옮겼다. 토양 수분 함량 (SWC)을 모니터하기 위해 무작위로 선택한 화분에 습도 탐침을 삽입하였다. SWC가 특정 역치 밑으로 떨어질 때에는 정상적인 수준에 다시 도달할 때까지 연속적으로 자동적으로 식물에 재급수하였다. 식물체를 다시 정상적인 조건으로 옮겼다. 재배의 나머지 과정 (식물 성숙, 종자 수확)은 비생물적 스트레스 조건하에서 키우지 않은 식물과 동일하였다. 생장 및 수확량 매개변수는 정상적인 조건하의 생장에 대해서 만큼 상세하게 기록하였다.
염 스트레스 스크린
벼 식물체를 코코넛 섬유(coco fibers) 및 아르젝스(argex) (3:1 비율)로 만들어진 기질에서 키웠다. 정상적인 양분액을 온실에 식물체를 이식 후 처음 2주간 사용하였다. 처음 2주 후, 25 mM 염 (NaCl)을 하기 목록의 구성분을 포함하는 양분액에 첨가하였다.
- NPK 양분 혼합물, 1 kg/m3의 농도로 20-20-20 Peters professional (Scotts, Marysville, OH, USA).
- 마그네슘 킬레이트(Magnesium chelate), 333.33 ml/m3로 Chelal Mg (BMS, Bornem, Belgium)
- 철 킬레이트(Iron chelate), 21.67 g/m3로 Libfer (CIBA, Bradford, UK)
- NaCl 1.425 kg/m3
염 농도를 매주 모니터링하여, 필요 시 첨가 하였다. 등숙(grain filling)이 시작될 때까지 상기 조건하에서 식물체를 키웠다. 종자 수확할 때까지, 신선한 물이 매일 급수되는 온실의 다른 구획으로 옮겼다. 생장 및 수확량 매개변수를 정상적인 조건의 생장에서와 같이 기록하였다.
감소된
양분 (질소) 이용률 스크린
벼 식물체를 양분액을 제외하고는 정상적인 조건하에서 화분용 상토에서 키웠다. 질소 함량이 감소된 특정 양분액으로 이식에서부터 성숙에 이를 때까지, 보통 7 내지 8 회 이하로 화분에 급수하였다. 재배의 나머지 부분 (식물 성숙, 종자 수학)은 비생물적 스트레스 하에서 키우지 않은 식물과 동일하다. 생장 및 수확량 매개변수는 정상적인 조건하의 생장에 대해서 처럼 기록하였다.
15.2 통계적 분석: F-검정
식물의 표현형적 특징의 종합적인 평가를 위한 통계적 모델로 2 인자 ANOVA (변이체의 분석)를 사용하였다. 본 발명의 유전자로 형질전환된 모든 건의 모든 식물에서 측정된 모든 매개변수에 대하여 F-검정이 수행되었다. 모든 형질전환 건에 미치는 유전자의 종합적인 효과를 점검하고 전체적인 유전자 효과로 알려진 유전자의 종합적인 효과를 확인하기 위하여 F-검정이 수행되었다. F-검정에 대하여 진정한 전체적인 유전자 효과에 대한 유의성 역치는 5% 확률 수준으로 설정하였다. 유 의한 F-검정 값은 유전자 효과를 나타내는데, 이는 표현형 상의 차이를 야기한 것이 유전자의 단순한 존재나 위치만이 아니라는 의미이다.
15.3 측정된 매개변수
생물량
관련 매개변수 측정
파종 단계에서부터 성숙 단계까지 식물에 디지털 이미지 캐비닛을 몇 회 통과시켰다. 매번 각 식물의 디지털 이미지 (2048x1536 픽셀, 1,600만 가지 색)를 적어도 6 가지 다른 각도에서 촬영하였다.
식물 지상부 면적 (또는 잎으로 된 생물량)은 백그라운드로부터 구분되는 지상부 식물 부분의 디지털 이미지의 픽셀의 총 수를 세어 결정하였다. 이 값은 다른 각도에서 동일한 시점에 촬영한 그림에 대해 평균을 내었으며, 보정에 의해 평방 mm로 표시된 물리적 표면 값으로 전환되었다. 실험은 이 방식으로 측정된 지상부 식물 면적이 지상부 식물 부분의 생물량과 상관관계가 있음을 보여준다. 지상부 면적은 식물의 잎으로 된 생물량이 최대에 달한 시점에서 측정된 면적이다. 초기 활력은 발아 후 3 주일 때 식물 (실생) 지상부 면적이다.
뿌리 관련 매개변수를 측정하기 위해, 뿌리가 보일 수 있게 하부가 투명하게 특별히 고안된 화분에서 식물체를 키웠다. 식물체 생장 중에 화분의 하부의 이미지를 디지털 카메라로 기록하였다. 뿌리 생물량의 증가는 총 뿌리 생물량 (식물체의 수명 중에 관찰된 뿌리의 최대 생물량으로서 측정된)의 증가로; 또는 뿌리/신초 지수 (뿌리 및 신초의 활발한 생장기간에 뿌리 양 및 신초 양 간의 비율로서 측정된) 의 증가로 표현된다. 더욱이, 특정 두께 역치 이하의 뿌리(가는 뿌리)의 최대 생물량 뿐만 아니라, 식물체의 수명 중에 관찰된 임의의 두께 역치 이상의 뿌리(굵은 뿌리)의 최대 생물량이 계산된다.
종자 관련 매개변수 측정
성숙한 일차 원추화서를 수확하여, 세고, 봉지에 넣어, 바코드로 표지하여 37℃ 오븐에서 3일간 건조하였다. 원추화서를 타작하여 모든 종자를 수집하고, 세었다. 충만된 깍지는 공기분출기를 사용하여 빈 것과 분리하였다. 빈 깍지는 버리고 나머지를 세었다. 충만된 깍지는 분석 저울로 무게를 재었다. 충만된 종자의 수는 분리 단계 후 남은 충만된 깍지의 수를 세어 결정하였다. 식물체당 총 종자 중량은 하나의 식물체로부터 수확된 모든 충만된 깍지 중량으로 측정하였다. 식물체당 총 종자수는 하나의 식물체로부터 수확된 깍지의 수를 세어 측정하였다. 천립중량 (TKW)은 숫자를 센 충만된 종자의 수와 그 총 중량으로부터 외삽하였다. 본 발명에서 수확지수 (HI)는 식물체당 총 종자 중량과 지상부 면적 (mm2) 간의 비율에 106을 곱한 것으로 정의된다. 본 발명에서 정의된 원추화서당 총 꽃의 수는 총 종자 수와 성숙한 1차 원추화서의 수 간의 비율이다. 본 발명에서 정의된 종자 충만도는 총 종자 (또는 소화) 수에 대한 충만된 종자 수의 비율 (%)로 표시된다.
실시예
16: 정상적인 조건하에서 자란,
SWI2
/
SNF2
핵산 서열을 발현하는 형질전환된 벼 식물체의 표현형 평가 결과
정상적인 생장 조건하에서 자란, SWI2/SNF2 핵산 서열을 발현하는 형질전환된 벼 식물의 평가 결과는 하기 표 H에 제시된다.
해당 공접합자 (대조구)에 비해 형질전환체의 원추화서당 꽃의 수, 식물체당 총 종자 중량, 총 종자 수, 충만된 종자의 수 및 수확 지수에 있어서의 증가가 있었다.
표 H. 정상적인 생장 조건하에서 자란, SWI2/SNF2 핵산 서열을 발현하는 형질전환된 벼 식물의 평가 결과.
| |
T1 세대에서 best performing events의 평균 증가(%) |
T2 세대에서 best performing events의 평균 증가(%) |
| 원추화서당 꽃 수 |
11% |
3% |
| 식물체당 총 종자 중량 |
13% |
28% |
| 총 종자 수 |
14% |
6% |
| 충만된 종자 수 |
14% |
25% |
| 수확 지수 |
10% |
25% |
실시예
17: 가뭄 스트레스 조건하에서 자란 형질전환된 벼 식물체의 표현형 평가결과
가뭄 스트레스 생장 조건하에서 자란, SWI2/SNF2 핵산 서열을 발현하는 형질전환된 벼 식물체의 평가 결과는 표 I에 제시된다.
해당 공접합자(nullizygotes; 대조구)에 비해 형질전환체의 지상부 면적, 총 뿌리 생물량, 원추화서당 꽃의 수, 종자 충만도, 식물체당 총 종자 중량, 총 종자 수, 충만된 종자의 수 및 수확 지수에 있어서의 증가가 있었다.
표 I. 가뭄 스트레스 생장 조건하에서 SWI2/SNF2 핵산 서열을 발현하는 형질전환된 벼 식물체의 평가 결과
| |
T2 세대에서 best performing events의 평균 증가(%) |
| 지상부 면적 |
16% |
| 총 뿌리 생물량 |
13% |
| 굵은 뿌리 생물량 |
10% |
| 가는 뿌리 생물량 |
13% |
| 원추화서당 꽃의 수 |
7% |
| 종자 충만도 |
28% |
| 식물체당 총 종자 중량 |
57% |
| 총 종자 수 |
44% |
| 충만된 종자의 수 |
54% |
| 수확 지수 |
31% |
실시예
18: 옥수수,
알팔파
, 목화, 대두, 유채/
캐놀라
, 밀의 형질전환의 예
상기 실시예 5 참고