KR101229377B1 - Process for Preparing 2-Pyrrolidone Using Biomass - Google Patents
Process for Preparing 2-Pyrrolidone Using Biomass Download PDFInfo
- Publication number
- KR101229377B1 KR101229377B1 KR1020110042255A KR20110042255A KR101229377B1 KR 101229377 B1 KR101229377 B1 KR 101229377B1 KR 1020110042255 A KR1020110042255 A KR 1020110042255A KR 20110042255 A KR20110042255 A KR 20110042255A KR 101229377 B1 KR101229377 B1 KR 101229377B1
- Authority
- KR
- South Korea
- Prior art keywords
- pyrrolidone
- acid
- reaction
- aminobutyl
- aminobutyl acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 title claims abstract description 143
- 238000004519 manufacturing process Methods 0.000 title abstract description 56
- 239000002028 Biomass Substances 0.000 title abstract description 13
- 239000002253 acid Substances 0.000 claims abstract description 135
- 125000004042 4-aminobutyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H] 0.000 claims abstract description 106
- 238000000034 method Methods 0.000 claims abstract description 77
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims abstract description 52
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000004220 glutamic acid Substances 0.000 claims abstract description 38
- 235000013922 glutamic acid Nutrition 0.000 claims abstract description 38
- 244000005700 microbiome Species 0.000 claims abstract description 38
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- 102000008214 Glutamate decarboxylase Human genes 0.000 claims abstract description 18
- 108091022930 Glutamate decarboxylase Proteins 0.000 claims abstract description 18
- 229930195712 glutamate Natural products 0.000 claims abstract description 14
- 238000001914 filtration Methods 0.000 claims abstract description 11
- 238000012258 culturing Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 107
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 67
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 58
- 239000003960 organic solvent Substances 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 23
- 150000003951 lactams Chemical class 0.000 claims description 12
- 238000007363 ring formation reaction Methods 0.000 claims description 12
- 230000002209 hydrophobic effect Effects 0.000 claims description 9
- 239000000049 pigment Substances 0.000 claims description 7
- 239000000872 buffer Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 20
- 238000000746 purification Methods 0.000 abstract description 4
- 238000002425 crystallisation Methods 0.000 abstract description 3
- 230000008025 crystallization Effects 0.000 abstract description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 57
- 210000004027 cell Anatomy 0.000 description 47
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 46
- 241000186660 Lactobacillus Species 0.000 description 34
- 229940039696 lactobacillus Drugs 0.000 description 34
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 33
- -1 2-aminobutyl Chemical group 0.000 description 31
- 241000193403 Clostridium Species 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- 241000228212 Aspergillus Species 0.000 description 20
- 238000004821 distillation Methods 0.000 description 20
- 238000003756 stirring Methods 0.000 description 20
- 239000002609 medium Substances 0.000 description 19
- 241000588724 Escherichia coli Species 0.000 description 18
- 241000588722 Escherichia Species 0.000 description 14
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 13
- 235000013923 monosodium glutamate Nutrition 0.000 description 13
- 229940073490 sodium glutamate Drugs 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 239000007853 buffer solution Substances 0.000 description 11
- 229940049906 glutamate Drugs 0.000 description 11
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 11
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 11
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 11
- 229960001327 pyridoxal phosphate Drugs 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 230000000813 microbial effect Effects 0.000 description 9
- 230000035699 permeability Effects 0.000 description 9
- 241000186781 Listeria Species 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 241001147746 Lactobacillus delbrueckii subsp. lactis Species 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 230000006837 decompression Effects 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 241000194036 Lactococcus Species 0.000 description 5
- 241000186779 Listeria monocytogenes Species 0.000 description 5
- 210000000170 cell membrane Anatomy 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 4
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 240000001929 Lactobacillus brevis Species 0.000 description 4
- 244000199866 Lactobacillus casei Species 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 244000057717 Streptococcus lactis Species 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000007810 chemical reaction solvent Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000011112 process operation Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000008223 sterile water Substances 0.000 description 4
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 3
- 241000272525 Anas platyrhynchos Species 0.000 description 3
- 240000006439 Aspergillus oryzae Species 0.000 description 3
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 241001507865 Aspergillus fischeri Species 0.000 description 2
- 241000228197 Aspergillus flavus Species 0.000 description 2
- 241000351920 Aspergillus nidulans Species 0.000 description 2
- 241000228245 Aspergillus niger Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 241000193163 Clostridioides difficile Species 0.000 description 2
- 241000193454 Clostridium beijerinckii Species 0.000 description 2
- 241000193155 Clostridium botulinum Species 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000588720 Escherichia fergusonii Species 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 235000013957 Lactobacillus brevis Nutrition 0.000 description 2
- 241000186679 Lactobacillus buchneri Species 0.000 description 2
- 235000013958 Lactobacillus casei Nutrition 0.000 description 2
- 240000002605 Lactobacillus helveticus Species 0.000 description 2
- 240000006024 Lactobacillus plantarum Species 0.000 description 2
- 241000186612 Lactobacillus sakei Species 0.000 description 2
- 241000194039 Lactococcus piscium Species 0.000 description 2
- 241000186780 Listeria ivanovii Species 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- 241000193157 Paraclostridium bifermentans Species 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 241000588717 Shimwellia blattae Species 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 244000126014 Valeriana officinalis Species 0.000 description 2
- 235000013832 Valeriana officinalis Nutrition 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229940017800 lactobacillus casei Drugs 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 235000016788 valerian Nutrition 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- APQIUTYORBAGEZ-UHFFFAOYSA-N 1,1-dibromoethane Chemical compound CC(Br)Br APQIUTYORBAGEZ-UHFFFAOYSA-N 0.000 description 1
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- SQCZQTSHSZLZIQ-UHFFFAOYSA-N 1-chloropentane Chemical compound CCCCCCl SQCZQTSHSZLZIQ-UHFFFAOYSA-N 0.000 description 1
- JSZOAYXJRCEYSX-UHFFFAOYSA-N 1-nitropropane Chemical compound CCC[N+]([O-])=O JSZOAYXJRCEYSX-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000228215 Aspergillus aculeatus Species 0.000 description 1
- 241000134821 Aspergillus caesiellus Species 0.000 description 1
- 241000131314 Aspergillus candidus Species 0.000 description 1
- 241000131965 Aspergillus carneus Species 0.000 description 1
- 241000228193 Aspergillus clavatus Species 0.000 description 1
- 241000133597 Aspergillus deflectus Species 0.000 description 1
- 241000132177 Aspergillus glaucus Species 0.000 description 1
- 241000588732 Atlantibacter hermannii Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000193401 Clostridium acetobutylicum Species 0.000 description 1
- 241000186542 Clostridium baratii Species 0.000 description 1
- 241000193171 Clostridium butyricum Species 0.000 description 1
- 241000193455 Clostridium cadaveris Species 0.000 description 1
- 241000206044 Clostridium chauvoei Species 0.000 description 1
- 241000788977 Clostridium colicanis Species 0.000 description 1
- 241000688734 Clostridium estertheticum Species 0.000 description 1
- 241000186571 Clostridium fallax Species 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 101100229963 Drosophila melanogaster grau gene Proteins 0.000 description 1
- 241001240954 Escherichia albertii Species 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 241000186717 Lactobacillus acetotolerans Species 0.000 description 1
- 241000110061 Lactobacillus acidifarinae Species 0.000 description 1
- 241000028630 Lactobacillus acidipiscis Species 0.000 description 1
- 240000001046 Lactobacillus acidophilus Species 0.000 description 1
- 241000186716 Lactobacillus agilis Species 0.000 description 1
- 241001507052 Lactobacillus algidus Species 0.000 description 1
- 241000186715 Lactobacillus alimentarius Species 0.000 description 1
- 241001647783 Lactobacillus amylolyticus Species 0.000 description 1
- 241000186714 Lactobacillus amylophilus Species 0.000 description 1
- 241000933456 Lactobacillus composti Species 0.000 description 1
- 241000186842 Lactobacillus coryniformis Species 0.000 description 1
- 241000861211 Lactobacillus crustorum Species 0.000 description 1
- 241000500356 Lactobacillus dextrinicus Species 0.000 description 1
- 241000790171 Lactobacillus diolivorans Species 0.000 description 1
- 241001026944 Lactobacillus equigenerosi Species 0.000 description 1
- 241000186840 Lactobacillus fermentum Species 0.000 description 1
- 241000509544 Lactobacillus gallinarum Species 0.000 description 1
- 241000950383 Lactobacillus ghanensis Species 0.000 description 1
- 235000013967 Lactobacillus helveticus Nutrition 0.000 description 1
- 241000186685 Lactobacillus hilgardii Species 0.000 description 1
- 241001324870 Lactobacillus iners Species 0.000 description 1
- 241001468157 Lactobacillus johnsonii Species 0.000 description 1
- 241001134654 Lactobacillus leichmannii Species 0.000 description 1
- 241001635183 Lactobacillus nagelii Species 0.000 description 1
- 241000186605 Lactobacillus paracasei Species 0.000 description 1
- 241001647418 Lactobacillus paralimentarius Species 0.000 description 1
- 241000186604 Lactobacillus reuteri Species 0.000 description 1
- 241000186868 Lactobacillus sanfranciscensis Species 0.000 description 1
- 241000194040 Lactococcus garvieae Species 0.000 description 1
- 241000194041 Lactococcus lactis subsp. lactis Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 241000186806 Listeria grayi Species 0.000 description 1
- 241000186805 Listeria innocua Species 0.000 description 1
- 241000186807 Listeria seeligeri Species 0.000 description 1
- 241001084338 Listeria sp. Species 0.000 description 1
- 241000186814 Listeria welshimeri Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000588733 Pseudescherichia vulneris Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 235000014969 Streptococcus diacetilactis Nutrition 0.000 description 1
- 235000014897 Streptococcus lactis Nutrition 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241001509492 [Clostridium] aerotolerans Species 0.000 description 1
- 241000186561 [Clostridium] clostridioforme Species 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940124277 aminobutyric acid Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000011894 couscous Nutrition 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 229940039403 glutamic-500 Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- ULYZAYCEDJDHCC-UHFFFAOYSA-N isopropyl chloride Chemical compound CC(C)Cl ULYZAYCEDJDHCC-UHFFFAOYSA-N 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 235000021109 kimchi Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940054346 lactobacillus helveticus Drugs 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- BCVXHSPFUWZLGQ-UHFFFAOYSA-N mecn acetonitrile Chemical compound CC#N.CC#N BCVXHSPFUWZLGQ-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- UOHDQQRXTGKZDG-UHFFFAOYSA-N pent-1-ene Chemical compound CCCC=C.CCCC=C UOHDQQRXTGKZDG-UHFFFAOYSA-N 0.000 description 1
- KYCHOKPOTWUZLE-UHFFFAOYSA-N pent-2-ene Chemical compound CCC=CC.CCC=CC KYCHOKPOTWUZLE-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/18—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D207/22—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/24—Oxygen or sulfur atoms
- C07D207/26—2-Pyrrolidones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
- C12P7/38—Cyclopentanone- or cyclopentadione-containing products
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 (a) 글루타민산(glutamic acid) 또는 글루타민산염을 포함하는 배지에서 전세포 촉매로서 글루타민산 디카르복실라제(glutamate decarboxylase)를 보유하고 있는 미생물을 배양하여 4-아미노부틸산을 제조하는 단계; (b) 상기 4-아미노부틸산을 상기 배지로부터 여과하여 수득하는 단계; 및 (c) 상기 4-아미노부틸산을 2-피롤리돈으로 전환하는 단계를 포함하는 바이오매스를 이용한 2-피롤리돈의 제조방법에 관한 것이다. 본 발명은 바이오매스를 이용하여 글루타민산 또는 글루타민산염으로부터 2-피롤리돈을 제조하는 일련의 공정을 제공한다. 본 발명에 따르면, 미생물을 전세포로 이용하여 4-아미노부틸산을 제조하고 바람직하게는 결정화와 같은 복잡한 정제 과정을 거치지 않은 4-아미노부틸산을 직접적으로 이용하여 2-피롤리돈을 높은 수율로 경제적으로 제조할 수 있다. 본 발명에 따르면, 대량으로 2-피롤리돈을 높은 수율 및 낮은 생산 비용으로 제조할 수 있다. 본 발명은 2-피롤리돈의 제조에 대한 공정의 단순화를 통하여 산업적 스케일의 대량생산에 적합하다.The present invention comprises the steps of (a) culturing a microorganism containing glutamate decarboxylase as a whole-cell catalyst in a medium containing glutamic acid or glutamate to prepare 4-aminobutyl acid; (b) obtaining the 4-aminobutyl acid from the medium by filtration; And (c) relates to a method for producing 2-pyrrolidone using biomass comprising the step of converting the 4-aminobutyl acid to 2-pyrrolidone. The present invention provides a series of processes for preparing 2-pyrrolidone from glutamic acid or glutamate using biomass. According to the present invention, 2-pyrrolidone is produced in high yield using 4-aminobutyl acid directly using microorganisms as whole cells, and preferably directly using 4-aminobutyl acid which is not subjected to complicated purification processes such as crystallization. It can be manufactured economically. According to the present invention, 2-pyrrolidone can be produced in large quantities with high yield and low production cost. The present invention is suitable for mass production on an industrial scale through the simplification of the process for the production of 2-pyrrolidone.
Description
본 발명은 2-피롤리돈의 제조방법에 관한 것으로서, 바이오매스를 이용하여 글루타민산 또는 글루타민산염으로부터 2-피롤리돈을 제조하는 방법에 관한 것이다.
The present invention relates to a method for producing 2-pyrrolidone, and to a method for producing 2-pyrrolidone from glutamic acid or glutamate using biomass.
2-피롤리돈은 폴리머의 제조, 화학 반응의 용매, 특수 잉크 등 다양한 영역에서 산업용 소재로 사용되는 유용한 화학물질이다. 2-pyrrolidone is a useful chemical that is used as an industrial material in a variety of fields, including the manufacture of polymers, solvents in chemical reactions, and special inks.
기존에 알려진 대표적인 2-피롤리돈 제조방법으로는 BASF의 특허출원(WO 03/022811)에 기재된 방법으로서, 석유화학 물질인 감마-부틸로락톤을 액상에서 암모니아와 고온 고압 반응조건으로 하여 연속적으로 제조하는 방법이 있다. 또한, 숙신산 또는 숙신산 무수물을 출발물질(미국특허 제4,904,804호)로 하거나 말레익산(미국특허 제5,912,358호) 또는 숙시노니트릴(미국특허 제4,325,872호, 제4,193,925호, 제4,181,662호 및 제4,123,438호)을 출발물질로 하여 2-피롤리돈을 제조하는 방법 등이 알려져 있으며, 이들 원료는 원유 의존형으로 가격 변동이 심하며 석유자원의 부족으로 인해 지속적인 가격 상승이 예상된다.Representative known methods for preparing 2-pyrrolidone are described in a BASF patent application (WO 03/022811), in which a petrochemical gamma-butyrolactone is continuously reacted with ammonia and high temperature and high pressure in a liquid phase. There is a method of manufacturing. Further, succinic acid or succinic anhydride may be used as starting materials (US Pat. No. 4,904,804) or maleic acid (US Pat. No. 5,912,358) or succinonitrile (US Pat. Nos. 4,325,872, 4,193,925, 4,181,662 and 4,123,438). It is known to manufacture 2-pyrrolidone as a starting material, and these raw materials are oil-dependent, and the price fluctuates severely, and the price is expected to rise continuously due to the lack of petroleum resources.
이러한 예상 때문에 최근에는 저가의 바이오매스로부터 화학 물질을 얻으려는 연구가 활발히 전개되고 있으며, 그 실 예로 바이오매스로부터 발효를 통해 글루탐산을 얻고 효소반응으로 아미노산의 한 종류이며 건강기능식품 소재인 4-아미노부틸산(또는 ‘가바’, 'GABA')을 제조하는 방법이 많이 알려져 있으며, 또한 4-아미노부틸산으로부터 2-피롤리돈을 제조하는 방법도 일부 알려져 있다.Because of this expectation, researches to obtain chemicals from inexpensive biomass have been actively conducted. For example, glutamic acid is obtained through fermentation from biomass. Many methods for preparing butyric acid (or 'gaba', 'GABA') are known, and some are also known for preparing 2-pyrrolidone from 4-aminobutyl acid.
4-아미노부틸산으로부터 2-피롤리돈을 제조하는 공지의 방법으로는 1990년 Pathak 등(Tetrahedron 46(5):1733-1744(1990))이 발암성 물질의 전구체 합성의 중간과정에서 4-아미노부틸산과 과량의 중성 알루미나 존재 하에서 톨루엔을 반응 용매로 하여 환류 온도에서 약 10시간 반응하여 2-피롤리돈을 합성한 방법을 보고하였으며, 또 2009년 한국화학연구원(대한민국 특허출원공개 제2009-0128767호)에서는 4-아미노부틸산에 촉매 또는 탈수제를 첨가하여 톨루엔을 반응 용매로 하여 상기의 Pathak와 동일한 방법으로 2-피롤리돈을 제조하였다. 그러나 이러한 방법은 반응 후 촉매를 제거하는 여과 공정과 추가 원료 비용의 발생, 반응 용매로부터 2-피롤리돈를 분리 정제해야 하는 단점이 있다. Known methods for preparing 2-pyrrolidone from 4-aminobutyl acid include Pathak et al. ( Tetrahedron 46 (5): 1733-1744 (1990)) in 1990. A method of synthesizing 2-pyrrolidone by reacting toluene as a reaction solvent in the presence of aminobutyric acid and excess neutral alumina for about 10 hours at reflux temperature was reported. In 2009, the Korea Research Institute of Chemical Technology In 0128767), 2-pyrrolidone was prepared in the same manner as Pathak described above using toluene as a reaction solvent by adding a catalyst or a dehydrating agent to 4-aminobutyl acid. However, this method has disadvantages in that a filtration process for removing the catalyst after the reaction, generation of additional raw material costs, and separation and purification of 2-pyrrolidone from the reaction solvent are required.
한편, 일본특허출원공개 제2002-121183은 4-아미노부틸산과 물을 200-300℃의 고온, 고압수(15-30 메가파스칼)에서 반응시켜 2-피롤리돈을 제조하는 방법을 제시하고 있다. 그러나 이 방법도 고온 고압 반응으로 불필요한 유틸리티 비용의 상승과 대량 생산에 막대한 설비투자가 수반되는 단점이 있다. 일본특허출원공개제2009-159840호는 4-아미노부틸산을 이용하여 피롤리돈을 제조하는 방법에서 여러 가지 반응용매 조건을 제시하였으며, 특히 4-아미노부틸산에 피롤리돈을 혼합하면 반응 온도를 낮출 수 있다고 주장하고 있으며, 이때 바람직한 반응 온도로 180℃를 제시하고 있다. 그러나 이 특허 또한 너무 높은 반응온도에서 오는 비용 문제와 180℃의 반응 온도에서 폭발적으로 생성되는 물(수증기) 때문에 발생되는 공정 운전의 어려움 등, 대량 생산 시 발생할 수 있는 문제점에 대한 해결안을 제시하지 못하고 있다.On the other hand, Japanese Patent Application Laid-Open No. 2002-121183 discloses a method for preparing 2-pyrrolidone by reacting 4-aminobutyl acid and water in high temperature, high pressure water (15-30 megapascal) at 200-300 ° C. . However, this method also has the disadvantage of unnecessary utility cost increase and enormous capital investment in mass production due to high temperature and high pressure reaction. Japanese Patent Application Laid-Open No. 2009-159840 discloses various reaction solvent conditions in a method for preparing pyrrolidone using 4-aminobutyl acid, and especially when pyrrolidone is mixed with 4-aminobutyl acid, reaction temperature It is claimed that can be lowered at this time, suggesting 180 ℃ as the preferred reaction temperature. However, this patent also does not provide solutions to problems that may arise during mass production, such as cost problems at reaction temperatures that are too high and difficulty in process operation due to explosive water (water vapor) generated at reaction temperatures of 180 ° C. have.
또한, 4-아미노부틸산은 녹는점의 온도(202℃)에서 2-피롤리돈과 물로 분해된다는 공지의 사실도 알려져 있지만(Merck index 430), 이 방법을 대량 생산에 이용하는 것은 한 번에 많은 양의 4-아미노부틸산을 교반하면서 녹는점의 온도(202℃)에서 녹여 2-피롤리돈과 물을 생성하기에는 불가능하며 또한 이때 발생되는 많은 양의 물(수증기)이 폭발적으로 생성되면서 공정액이 넘치는 등, 공정 운전에 상당한 어려움이 있다.It is also known that 4-aminobutyl acid decomposes into 2-pyrrolidone and water at the melting point temperature (202 ° C.) (Merck index 430), but using this method for mass production is a large amount at one time. It is not possible to produce 2-pyrrolidone and water by melting 4-aminobutyl acid at the melting point (202 ° C) while stirring. Also, a large amount of water (water vapor) generated at this time is exploded to generate a process solution. There is considerable difficulty in process operation such as overflow.
한편, 출발물질은 글루타민산(glutamic acid) 또는 글루타민산염으로부터 바이오매스를 이용하여 최종적으로 피롤리돈을 제조하는 전체적인 공정에 대한 선행기술은 전무한 실정이다. 만일, 바이오매스를 이용하여 글루타민산 또는 글루타민산염으로부터 피롤리돈을 제조할 수 있는 효율적인 공정이 개발된다면 이는 피롤리돈 생산 분야에서 경제성을 크게 향상시킬 수 있을 것이다.
On the other hand, there is no prior art for the entire process of finally producing pyrrolidone using biomass from glutamic acid or glutamate. If an efficient process for producing pyrrolidone from glutamic acid or glutamate using biomass is developed, it will greatly improve the economics in the field of pyrrolidone production.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.
본 발명자들은 대량으로 높은 수율 및 낮은 생산 비용으로 2-피롤리돈을 제조할 수 있는 방법을 개발하고자 노력하였다. 그 결과, 본 발명자들은 바이오매스를 직접적으로 이용하여 글루타민산 또는 글루타민산염으로부터 대량으로 2-피롤리돈을 높은 수율 및 낮은 생산 비용으로 제조할 수 있는 공정 프로토콜을 개발함으로써, 본 발명을 완성하게 되었다.The inventors have sought to develop a method that can produce 2-pyrrolidone in high yield and low production costs in large quantities. As a result, the present inventors have completed the present invention by developing a process protocol capable of producing 2-pyrrolidone in large quantities from glutamic acid or glutamate using biomass directly in high yield and low production cost.
따라서 본 발명의 목적은 2-피롤리돈의 제조방법을 제공하는 데 있다.It is therefore an object of the present invention to provide a method for preparing 2-pyrrolidone.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.
본 발명의 양태에 따르면, 본 발명은 다음 단계를 포함하는 2-피롤리돈의 제조방법을 제공한다:According to an aspect of the present invention, the present invention provides a method for preparing 2-pyrrolidone, comprising the following steps:
(a) 글루타민산(glutamic acid) 또는 글루타민산염을 포함하는 배지에서 전세포 촉매로서 글루타민산 디카르복실라제(glutamate decarboxylase)를 보유하고 있는 미생물을 배양하여 4-아미노부틸산을 제조하는 단계; (a) culturing a microorganism containing glutamate decarboxylase as a whole-cell catalyst in a medium containing glutamic acid or glutamate to produce 4-aminobutyl acid;
(b) 상기 4-아미노부틸산을 상기 배지로부터 여과하여 수득하는 단계; 및 (b) obtaining the 4-aminobutyl acid from the medium by filtration; And
(c) 상기 4-아미노부틸산을 2-피롤리돈으로 전환하는 단계.
(c) converting the 4-aminobutyl acid to 2-pyrrolidone.
본 발명자들은 대량으로 높은 수율 및 낮은 생산 비용으로 2-피롤리돈을 제조할 수 있는 방법을 개발하고자 노력하였다. 그 결과, 본 발명자들은 바이오매스를 직접적으로 이용하여 글루타민산 또는 글루타민산염으로부터 대량으로 2-피롤리돈을 높은 수율 및 낮은 생산 비용으로 제조할 수 있는 공정 프로토콜을 개발하였다.
The inventors have sought to develop a method that can produce 2-pyrrolidone in high yield and low production costs in large quantities. As a result, the inventors have developed a process protocol capable of producing 2-pyrrolidone in large quantities from glutamic acid or glutamate using biomass directly in high yield and low production cost.
본 발명의 방법을 각각의 단계 별로 상세하게 설명하면 다음과 같다: The method of the present invention will be described in detail in each step as follows:
단계 (a): 바이오매스를 이용한 4-아미노부틸산의 제조 Step (a): Preparation of 4-Aminobutyl Acid Using Biomass
본 발명에 따르면, 미생물을 파쇄하지 않고 미생물 자체를 전세포 촉매로 이용하여 4-아미노부틸산을 제조한다.According to the present invention, 4-aminobutyl acid is prepared using microorganisms as whole-cell catalysts without disrupting microorganisms.
전세포 촉매로서의 미생물은 어떠한 물리/화학적 변형이 되지 않은 것을 이용할 수 있다. 바람직하게는, 본 발명에서 전세포 촉매로 이용되는 글루탐산 디카르복실라아제를 보유하고 있는 미생물은, 세포막의 선택적 투과성을 파괴하기 위하여 유기용매(바람직하게는, 소수성 유기용매)로 전처리된 미생물이다.Microorganisms as whole-cell catalysts can be used without any physical / chemical modification. Preferably, the microorganism having glutamic acid decarboxylase used as a whole cell catalyst in the present invention is a microorganism pretreated with an organic solvent (preferably hydrophobic organic solvent) in order to destroy the selective permeability of the cell membrane. .
본 발명에서 이용되는 미생물은 글루탐산 디카르복실라아제를 보유하고 있는 미생물로서, 바람직하게는 아스퍼질러스 속, 클로스트리듐 속, 에스체리치어 속, 락토바실러스속, 락토코쿠스 속 또는 리스테리아 속 미생물이고, 보다 바람직하게는 에스체리치어 속, 락토바실러스속 또는 락토코쿠스 속이며, 가장 바람직하게는 에스체리치어 속 미생물을 이용할 수 있다. The microorganism used in the present invention is a microorganism having a glutamic acid decarboxylase, preferably the genus Aspergillus, Clostridium, Escherichia, Lactobacillus, Lactococcus or Listeria. And, more preferably, the genus Escherichia, Lactobacillus or Lactococcus, and most preferably the genus Escherichia can be used.
상기 아스퍼질러스 속 미생물로는 바람직하게는 아스퍼질러스 아큐리투스 ( Aspergillus aculeatus ), 아스퍼질러스 카시루스 ( Aspergillus caesiellus ), 아스퍼질러스 캔디두스 ( Aspergillus candidus ), 아스퍼질러스 카니우스 ( Aspergillus carneus ), 아스퍼질러스 크레바투스 ( Aspergillus clavatus ), 아스퍼질러스 디플렉투스 ( Aspergillus deflectus ), 아스퍼질러스 피셔리아누스( Aspergillus fischerianus), 아스퍼질러스 플라부스 ( Aspergillus flavus ), 아스퍼질러스 오리자에( Aspergillus oryzae), 아스퍼질러스 퍼미가투스 ( Aspergillus fumigatus ), 아스퍼질러스 그라우쿠스( Aspergillus glaucus), 아스퍼질러스 니듈란스 ( Aspergillus nidulans ), 아스퍼질러스 니거 ( Aspergillus niger ) 또는 아스퍼질러스 오크라시우스 ( Aspergillus ochraceus ) 를 사용할 수 있고, 보다 바람직하게는 아스퍼질러스 피셔리아누스 ( Aspergillus fischerianus ), 아스퍼질러스 플라부스( Aspergillus flavus) 또는 아스퍼질러스 오리자에(Aspergillus oryzae)를 사용할 수 있으며, 가장 바람직하게는 아스퍼질러스 오리자에(Aspergillus oryzae)를 사용할 수 있다. Aspergillus genus microorganisms are preferably Aspergillus Accuritus ( Aspergillus aculeatus), Aspergillus shi Ruth (Aspergillus caesiellus ), Aspergillus Candiceus ( Aspergillus candidus), Aspergillus Kani-house (Aspergillus carneus ), Aspergillus Crebatus ( Aspergillus clavatus), Aspergillus deploy rack tooth (Aspergillus deflectus), Aspergillus Fisher valerian (Aspergillus fischerianus), Aspergillus Flavus ( Aspergillus (Aspergillus oryzae) on flavus), Aspergillus Duck characters, Aspergillus Perigatus ( Aspergillus) fumigatus), Aspergillus Grau kusu (Aspergillus glaucus), Aspergillus Nidulans ( Aspergillus nidulans ), Aspergillus Niger ( Aspergillus niger ) or Aspergillus Okracius ( Aspergillus can be used. ochraceus), more preferably from Aspergillus Fisher valerian (Aspergillus fischerianus), Aspergillus Playa booth (Aspergillus flavus) or Aspergillus It is used in duck chair (Aspergillus oryzae), and may be used most preferably (Aspergillus oryzae) to the Aspergillus duck characters.
상기 클로스트리듐 속 미생물에는 바람직하게는 클로스트리듐 아세토부틸리큠 (C. acetobutylicum ), 클로스트리듐 아세토레란스(C. aerotolerans ), 클로스트리듐 바라티 (C. baratii ), 클로스트리듐 베이저린키(C. beijerinckii ), 클로스트리듐 비퍼멘탄스 (C. bifermentans ), 클로스트리듐 퍼프린진스( Clostridium perfingens ), 클로스트리듐 보튤리늄 (C. botulinum ), 클로스트리듐 부틸리큠(C. butyricum), 클로스트리듐 카다베리스 (C. cadaveris ), 클로스트리듐 차우보이 (C. chauvoei ), 클로스트리듐 클로스트리디오폼(C. clostridioforme ), 클로스트리듐 콜리카니스 (C. colicanis ), 클로스트리듐 디피사일(C. difficile ), 클로스트리듐 에스터더티움 (C. estertheticum ), 클로스트리듐 팔락스(C. fallax ) 또는 클로스트리듐 페세리 (C. feseri ) 를 사용할 수 있으며, 보다 더 바람직하게는 클로스트리듐 베이저린키(C. beijerinckii ), 클로스트리듐 비퍼멘탄스 (C. bifermentans ), 클로스트리듐 퍼프린진스( Clostridium perfingens ) 또는 클로스트리듐 보튤리늄(C. botulinum)를 사용할 수 있으며, 가장 바람직하게는 클로스트리듐 퍼프린진스( Clostridium perfingens )를 사용할 수 있다. The Clostridium spp are preferably Clostridium acetonitrile part Tilly kyum (C. acetobutylicum), Clostridium acetonitrile Le Lance (C. aerotolerans), Clostridium at tea (C. baratii), Clostridium Bay tingling key (C. beijerinckii), Clostridium non peomen Tansu (C. bifermentans), Clostridium puff Lin Jeans (Clostridium perfingens), Clostridium botyul dimethylanilinium (C. botulinum), Clostridium portion Tilly kyum (C. butyricum), Clostridium cadaverine Berry's (C. cadaveris), Clostridium Chow Boy (C. chauvoei), chloride host lithium Claus tree audio form (C. clostridioforme), Clostridium coli car varnish (C. colicanis), Clostridium difficile four days (C. difficile), Clostridium ester dirty Titanium (C. estertheticum), Clostridium Majorca Rocks (C. fallax) or Clostridium page serie (C. feseri) can be used for, and more preferably Clostridium Bay tingling key (C. beijerinckii), Clostridium non peomen Tansu (C. bifermentans ), Clostridium puff Lin Jeans (Clostridium perfingens) or dimethylanilinium botyul Clostridium (C. botulinum) a can be used, and most preferably from Clostridium puff Lin Jeans (Clostridium The perfingens) can be used.
상기 에스체리치어 속 미생물에는 에스케리치어 알베르티 (E. albertii ), 에스케리치어 블라태(E. blattae), 에스케리치어 콜라이 (E. coli ), 에스케리치어 페르구소니 (E. fergusonii ), 에스케리치어 헤르마니(E. hermannii ) 또는 에스케리치어 벌너리스(E. vulneris)를 사용할 수 있으며, 보다 더 바람직하게는 에스케리치어 블라태 (E. blattae ), 에스케리치어 콜라이 (E. coli ) 또는 에스케리치어 페르구소니(E. fergusonii)를 사용할 수 있으며, 가장 바람직하게는 에스케리치어 콜라이(E. coli)를 사용할 수 있다. 상기 에스케리치어 콜라이(E. coli)는 일반적인 에스케리치어 콜라이(E. coli)를 이용할 수도 있으나, 글루탐산 디카르복실라아제가 대량 생산되도록 유전자 조작이 이루어진 에스케리치어 콜라이(E. coli)를 이용하는 것이 바람직하다.The Escherichia coli microorganisms include Escherichia Alberti (E. albertii), Escherichia fry Blossom state (E. blattae), Escherichia pom Coli (E. coli), Escherichia pom Fernand old Sony (E. fergusonii), Escherichia cheer Manny Hernandez (E. hermannii) or Escherichia E. vulneris may be used, and more preferably, Escherichia Blind state (E. blattae), Escherichia pom Coli (E. coli) or Escherichia fry Pere old can use the Sony (E. fergusonii), most preferably Escherichia fry E. coli can be used. The Escherichia Coli (E. coli) is a general Escherichia coli fry (E. coli), but to be used, glutamic acid decarboxylase is Escherichia fry the genetic modification made to be mass-produced E. coli is preferably used.
상기 락토바실러스 속 미생물에는 락토바실러스 앙세토토러란스 (L. acetotolerans ), 락토바실러스 에시디파리내(L. acidifarinae ), 락토바실러스 에시디피시스 (L. acidipiscis ), 락토바실러스 에시디필루스(L. acidophilus ), 락토바실러스 아질리스 (L. agilis ), 락토바실러스 알지두스(L. algidus), 락토바실러스 알리멘타리우스 (L. alimentarius ), 락토바실러스 아밀로리티쿠스(L. amylolyticus), 락토바실러스 아밀로필루스 (L. amylophilus ), 락토바실러스 콤포스티(L. composti), 락토바실러스 크루스토룸 (L. crustorum ), 락토바실러스 덱스트리니쿠스(L. dextrinicus), 락토바실러스 디오리보란스 (L. diolivorans ), 락토바실러스 에퀴제네로시(L. equigenerosi), 락토바실러스 퍼멘툼 (L. fermentum ), 락토바실러스 갈리나룸 (L. gallinarum ), 락토바실러스 가넨시스 (L. ghanensis ), 락토바실러스 힐가르디 (L. hilgardii ), 락토바실러스 이너스(L. iners), 락토바실러스 존스니(L. johnsonii ), 락토바실러스 라이츠마니 (L. leichmannii ), 락토바실러스 나젤리 (L. nagelii ), 락토바실러스 헬베티쿠스 (L. helveticus ), 락토바실러스 브레비스(L. brevis), 락토바실러스 부츠너리 (L. buchneri ), 락토바실러스 락티스 ( Lactobacillus lactis ), 락토바실러스 카제이 (L. casei ), 락토바실러스 김치(L. kimchii ), 락토바실러스 플란타룸(L. plantarum), 락토바실러스 레우터리 (L. reuteri ), 락토바실러스 센프란사이시스(L. sanfranciscensis) 또는 락토바실러스 사케 (L. sakei ) 를 사용할 수 있으며, 보다 더 바람직하게는 락토바실러스 브레비스 (L. brevis ), 락토바실러스 부츠너리 (L. buchneri ), 락토바실러스 락티스( Lactobacillus lactis ) 또는 락토바실러스 카제이(L. casei)를 사용할 수 있으며, 가장 바람직하게는 락토바실러스 락티스(Lactobacillus lactis)를 사용할 수 있다.The microorganisms of the genus Lactobacillus include Lactobacillus Anse Toto multiple lance (L. acetotolerans), CD in Paris (L. acidifarinae) to Lactobacillus, Lactobacillus Sidipi the sheath (L. acidipiscis), in Lactobacillus CD loose fill (L. acidophilus), Lactobacillus Oh jilriseu (L. agilis), Lactobacillus know Douce (L. algidus), Lactobacillus Ali menta Julius (L. alimentarius), Lactobacillus amyl utility in Syracuse (L. amylolyticus), Lactobacillus Amyl with loose fill (L. amylophilus), Lactobacillus composite stitcher (L. composti), Lactobacillus Crew dwelling rooms (L. crustorum), Lactobacillus index Trinidad kusu (L. dextrinicus), Lactobacillus Video ribonucleic lance (L. diolivorans), when a Lactobacillus ekwi Geneva (L. equigenerosi), Lactobacillus Fur lactofermentum (L. fermentum), Lactobacillus Galina room (L. gallinarum ), Lactobacillus Ganen System (L. ghanensis), Lactobacillus Hill teaches di (L. hilgardii), minus Lactobacillus (L. iners), Lactobacillus Jones you (L. johnsonii), Lactobacillus Rights Mani (L. leichmannii), Lactobacillus N. jelly (L. nagelii ), Lactobacillus Helveticus (L. helveticus), Lactobacillus brevis (L. brevis), Lactobacillus Nourishing Boots (L. buchneri), Lactobacillus Lactis (Lactobacillus lactis ), Lactobacillus Casei (L. casei), Kimchi Lactobacillus (L. kimchii), Lactobacillus Planta Room (L. plantarum), Lactobacillus Leu battery (L. reuteri), Lactobacillus senpeuran between the sheath (L. sanfranciscensis) or Lactobacillus Sake (L. sakei) a can be used, and more preferably, Lactobacillus brevis (L. brevis), Lactobacillus Nourishing Boots (L. buchneri), Lactobacillus lactis (Lactobacillus lactis ) or Lactobacillus L. casei may be used, most preferably Lactobacillus casei Lactobacillus lactis may be used.
상기 락토코쿠스 속 미생물에는 락토코쿠스 가비에 (L. garvieae ), 락토코쿠스 락티스 (L. lactis ), 락토코쿠스 피시움 (L. piscium ), 락토코쿠스 플란타룸 (L. plantarum ) 또는 락토코쿠스 라피놀크티스(L. raffinolctis)를 사용할 수 있으며, 보다 더 바람직하게는 락토코쿠스 락티스 (L. lactis ) 또는 락토코쿠스 피시움(L. piscium)를 사용할 수 있으며, 가장 바람직하게는 락토코쿠스 락티스(L. lactis)를 사용할 수 있다. The lactococcus microorganism includes lactococcus The garbage (L. garvieae), Lactobacillus nose kusu Lactis (L. lactis), Lactobacillus Nose Fish Couscous Stadium (L. piscium), Lactobacillus nose Syracuse Planta room (L. plantarum ) or Lactococcus lactis lactis (L. raffinolctis) may be used, more preferably Lactococcus Lactis (L. lactis) or Lactococcus You can use the help fish (L. piscium), and may be most preferred to use Lactobacillus lactis nose Syracuse (L. lactis).
상기 리스테리아 속 미생물에는 리스테리아 그레이 (L. grayi ), 리스테리아 이노쿠아 (L. innocua ), 리스테리아 이바노비 (L. ivanovii ), 리스테리아 모노사이토진스 (L. monocytogenes ), 리스테리아 시링게리(L. seeligeri ), 리스테리아 무타이 (L. muttayi ) 또는 리스테리아 웰시메리 (L. welshimeri ) 를 사용할 수 있으며, 보다 더 바람직하게는 리스테리아 이바노비 (L. ivanovii ) 또는 리스테리아 모노사이토진스(L. monocytogenes)를 사용할 수 있으며, 가장 바람직하게는 리스테리아 모노사이토진스(L. monocytogenes)를 사용할 수 있다.The Listeria sp. Microorganism includes Listeria Gray (L. grayi ), Listeria Eno Kuah (L. innocua), a non-Listeria Ivanovic (L. ivanovii), Listeria Jeans monocytogenes (L. monocytogenes), Gary L. siring (L. seeligeri), Listeria Non Thai (L. muttayi) or Listeria It is possible to use L. welshimeri , and more preferably Listeria Ivanovich ratio (L. ivanovii) or Can be used for L. monocytogenes Jeans (L. monocytogenes), it can be used and most preferably L. monocytogenes Jeans (L. monocytogenes).
미생물의 선택적투과성(selective permeability)이란 미생물의 세포막을 구성하는 이중 인지질(Lipid bilayer)의 수용성 기질에 대한 환경적 요인에 영향을 받는 세포 내외부 간의 운송을 말하는 것으로, 세포막은 분자가 큰 수용성 물질을 투과시키지 않는 반투과성막이지만, 지용성 물질은 세포막의 지질 부분에 녹아서 투과되므로 분자의 크기와 관계없이 지질에 대한 용해도가 큰 물질일수록 쉽게 투과시키는 성질을 가지고 있다. 세포막이 소수성 유기용매와 반응할 경우, 반투과성막이 파괴되어, 세포의 선택적 투과성을 상실하게 된다.The selective permeability of microorganisms refers to the transport between inside and outside of cells affected by environmental factors to the water-soluble substrate of the lipid bilayer, which constitutes the cell membrane of the microorganism. It is a semi-permeable membrane that is not made, but since the fat-soluble substance is dissolved in the lipid portion of the cell membrane and permeated, the substance having a high solubility in lipids is easily permeable regardless of the size of the molecule. When the cell membrane reacts with the hydrophobic organic solvent, the semipermeable membrane is destroyed, thereby losing the selective permeability of the cell.
본 발명에서 미생물과 반응하는 소수성 유기용매의 종류 및 농도는 미생물의 선택적투과성을 파괴하여 2-아미노부틸산의 함유량을 높이고, 전세포 촉매의 재활용을 가능하게 한다는 점에서 중요하다. 상기 미생물과 반응하여 선택적 투과성을 파괴하는 유기용매는 바람직하게는 소수성 유기용배를 사용할 수 있고, 보다 바람직하게는 펜탄(Pentanes), 헥산(Hexane), 데칸(Decane), 시클로헥산(Cyclohexane), 시클로펜탄(Cyclopentane), 1-부틸렌(1-Butylene), 2-부틸렌(2-Butylene), 1-펜틴(1-Pentene), 2-펜틴(2-Pentene), 이소부틸렌(Isobutylene), 카본테트라클로라이드(Carbon tetrachloride), 1-클로로부텐(1-Chlorobutane), 1-클로로펜텐(1-Chloropentane), 2-클로로프로판(2-Chloropropane), 1-클로로프로판(1-Chloropropane), 브로모에탄(Bromoethane), 클로로폼(Chloroform), 디클로로메탄(Dichloromethane), 1-니트로프로판(1-Nitropropane), 니트로메탄(Nitromethane), 벤젠(Benzene), 톨루엔(Toluene), 자일렌(Xylene), 클로로벤젠(Chlorobenzene), 아닐린(Aniline), 디에틸에테르(Diethyl ether), 디아이소프로필에테르(Diisopropyl ether), 테트라하이드로퓨란(Tetrahydrofuran), 에틸아세테이트(Ethyl acetate), 메틸아세테이트(Methyl acetate), 카본디설파이드(Carbon disulfide), 디에틸설파이드(Diethyl sulfide), 디메틸설폭사이드(Dimethyl sulfoxide), 디에틸아민(Diethylamine), 아세토니트릴(Acetonitrile), 피리딘(Pyridine)을 사용할 수 있으며, 보다 더 바람직하게는 톨루엔(Toluene), 클로로폼(Chloroform), 자일렌(Xylene), 시클로헥산(Cyclohexane)을 사용할 수 있으며, 가장 바람직하게는 톨루엔(Toluene)을 사용할 수 있다.In the present invention, the type and concentration of the hydrophobic organic solvent reacting with the microorganism is important in that the selective permeability of the microorganism is destroyed to increase the content of 2-aminobutyl acid and to allow the recycling of the whole cell catalyst. The organic solvent that reacts with the microorganism and destroys the selective permeability may be preferably a hydrophobic organic solvent, more preferably pentane, hexane, decane, cyclohexane, cyclo Pentane (Cyclopentane), 1-butylene (1-Butylene), 2-butylene (2-Butylene), 1-Pentene (1-Pentene), 2-Pentene (2-Pentene), isobutylene, Carbon tetrachloride, 1-Chlorobutane, 1-Chloropentane, 2-Chloropropane, 1-Chloropropane, 1-Chloropropane, Bromo Bromoethane, Chloroform, Dichloromethane, 1-Nitropropane, Nitromethane, Benzene, Toluene, Xylene, Chloro Chlorobenzene, Aniline, Diethyl ether, Diisopropyl ether, Tetrahydrofuran (Te trahydrofuran, Ethyl acetate, Methyl acetate, Carbon disulfide, Diethyl sulfide, Dimethyl sulfoxide, Diethylamine, Acetonitrile Acetonitrile) and pyridine may be used, and more preferably toluene, chloroform, xylene, and cyclohexane, and most preferably toluene (Pyridine) may be used. Toluene) can be used.
본 발명에서, 상기 유기용매의 농도는 바람직하게는 0.01-20%(v/v)이고, 보다 바람직하게는 0.01-5%(v/v)이며, 보다 더 바람직하게는 0.1-1%(v/v)이며, 가장 바람직하게는 0.2-0.5%(v/v)이다. 상기‘(v/v)’는 소수성 유기용매의 부피/미생물 현탁액의 부피를 표시한 것으로서, 20%(v/v) 이상의 유기용매를 사용할 경우 촉매 활성 저해 및 균체 회수에 어려움이 발생하게 되는 문제가 발생하고, 0.01%(v/v) 이하의 유기용매를 사용할 경우 세포막의 선택적 투과성이 잘 파괴되지 않는 문제가 발생한다.In the present invention, the concentration of the organic solvent is preferably 0.01-20% (v / v), more preferably 0.01-5% (v / v), even more preferably 0.1-1% (v). / v), most preferably 0.2-0.5% (v / v). '(V / v)' represents the volume of the hydrophobic organic solvent / volume of microbial suspension, and when the organic solvent is used at 20% (v / v) or more, problems of inhibition of catalyst activity and recovery of cells are generated. When the organic solvent of 0.01% (v / v) or less is used, the selective permeability of the cell membrane is not easily destroyed.
상기 글루탐산 디카르복실라아제를 보유하고 있는 미생물과 상기 소수성 유기용매를 교반하여 미생물을 전처리 한다. 상기 교반 시 교반 속도는 바람직하게는 100-600 rpm이고, 보다 바람직하게는 200-400 rpm이며, 가장 바람직하게는 200-300 rpm이다. The microorganisms containing the glutamic acid decarboxylase and the hydrophobic organic solvent are stirred to pretreat the microorganisms. The stirring speed during the stirring is preferably 100-600 rpm, more preferably 200-400 rpm, most preferably 200-300 rpm.
상기 교반시 교반 시간은 바람직하게는 1-60분이고, 보다 바람직하게는 3-30분이며, 가장 바람직하게는 5-15분이다. The stirring time during the stirring is preferably 1-60 minutes, more preferably 3-30 minutes, most preferably 5-15 minutes.
또한 상기 교반시 교반 온도는 바람직하게는 4-40℃이고, 보다 바람직하게는 15-35℃이며, 가장 바람직하게는 25-30℃이다.In addition, the stirring temperature at the time of the stirring is preferably 4-40 ℃, more preferably 15-35 ℃, most preferably 25-30 ℃.
본 발명의 바람직한 구현예에 따르면, 상기 과정에 의해 전세포 촉매가 제조된 이후, 물 또는 완충용액에 현탁하는 단계를 추가적으로 포함할 수 있다. 왜냐하면 글루탐산 디카르복실라아제가 활성을 갖는 pH의 범위는 3.5-6.0 이며, 상기 범위를 벗어날 경우 활성이 급격히 저하되는데, 글루탐산 디카르복실라아제에 의해 글루타민산이 감마아미노부틸산으로 전환되는 과정에서 수용액의 양성자가 소비되면서 pH가 상승하게 되어, 이를 조절해줄 필요가 있기 때문이다.According to a preferred embodiment of the present invention, after the whole cell catalyst is prepared by the above process, the method may further include suspending in water or a buffer solution. Because the range of pH of glutamic acid decarboxylase activity is 3.5-6.0, if the range is out of the range, the activity is sharply lowered, in the process of glutamic acid is converted to gammaaminobutyl acid by glutamic acid decarboxylase This is because the pH is increased as the protons in the aqueous solution are consumed, and thus it is necessary to adjust it.
보다 구체적으로 본 발명에서 이용되는 글루타민산의 pKa 값이 2.2 정도임에 착안하여, 용해도를 초과하는 양의 글루타민산을 전세포 촉매 수용액에 첨가하되, 초기 pH가 3.5 이하로 떨어지지 않도록 완충용액을 사용한다. 본 발명에 이용되는 완충용액의 pH는 바람직하게는 3.8-8.0이고, 보다 바람직하게는 4.0-8.0, 보다 더 바람직하게는 4.0-7.0, 보다 더욱 더 바람직하게는 4.0-6.0이다. pH가 4.5인 완충용액의 제조는 초산을 사용하고, pH가 6.0, 7.0 및 8.0인 완충용액의 제조는 인산을 사용하나 이에 제한되는 것은 아니다. More specifically, considering that the pKa value of glutamic acid used in the present invention is about 2.2, glutamic acid in excess of solubility is added to the whole cell catalyst aqueous solution, but the buffer is used so that the initial pH does not drop below 3.5. The pH of the buffer solution used in the present invention is preferably 3.8-8.0, more preferably 4.0-8.0, even more preferably 4.0-7.0, even more preferably 4.0-6.0. The preparation of a buffer solution having a pH of 4.5 uses acetic acid, and the preparation of a buffer solution having a pH of 6.0, 7.0 and 8.0 uses, but is not limited to, phosphoric acid.
한편, 기질로서 글루타민산이 이용되는 경우, 본 발명에 이용되는 완충용액의 pH는 바람직하게는 4.0-8.0이고, 보다 바람직하게는 4.5-7.0 보다 더 바람직하게는 5.0-6.0, 가장 바람직하게는 6.0이다. 하기 단계 (b)에서 기질로서 글루타민산나트륨이 이용되는 경우, 본 발명에 이용되는 완충용액의 pH는 바람직하게는 3.8-6.5이고, 보다 바람직하게는 3.8-6.0, 보다 더 바람직하게는 3.8-5.5, 보다 더욱 더 바람직하게는 3.8-5.0이고, 가장 바람직하게는 4.0이다.On the other hand, when glutamic acid is used as the substrate, the pH of the buffer solution used in the present invention is preferably 4.0-8.0, more preferably 5.0-6.0, more preferably 4.5-6.0, and most preferably 6.0. . When sodium glutamate is used as the substrate in step (b) below, the pH of the buffer solution used in the present invention is preferably 3.8-6.5, more preferably 3.8-6.0, even more preferably 3.8-5.5, Even more preferably 3.8-5.0, most preferably 4.0.
본 발명에 따르면, 전세포 촉매에 의해 글루타민산 또는 글루타민산염(바람직하게는, 글루타민산나트륨)이 4-아미노부틸산으로 전환된다.According to the invention, glutamic acid or glutamate (preferably sodium glutamate) is converted to 4-aminobutyl acid by whole cell catalyst.
본 발명에 이용되는 글루타민산은 20가지 단백질 아미노산 가운데 하나이고, 글루타민산나트륨은 구조식 HOOC(CH2)2CH(NH2)COONa, 분자량은 169.11의 글루타민산의 나트륨염이다.Glutamic acid used in the present invention is one of 20 protein amino acids, sodium glutamate is the sodium salt of glutamic acid of the structural formula HOOC (CH 2 ) 2 CH (NH 2 ) COONa, molecular weight 169.11.
본 발명의 가장 큰 특징은 4-아미노부틸산을 제조하기 위해 글루타민산나트륨을 사용하는 것 이외에 글루타민산을 이용할 수 있다는 점이다. 글루타민산은 글루타민산나트륨에 비하여 가격이 저렴하여 글루타민산을 이용하여 감마아미노부틸산을 제조할 경우 제품의 단가를 낮출 수 있다.The biggest feature of the present invention is that in addition to using sodium glutamate to prepare 4-aminobutyl acid, glutamic acid can be used. The price of glutamic acid is lower than that of sodium glutamate, so that the product cost can be lowered when gamma aminobutyric acid is produced using glutamic acid.
전세포 촉매의 농도는 촉매가 보유하고 있는 글루탐산 디카르복실라아제의 양에 따라 조절한다. 본 발명의 바람직한 구현예에 따르면, 대장균의 경우, 인위적인 유전자 조작이 가해지지 않은 균주의 경우 농도는 바람직하게는 1-30 g/L의 균주이고, 보다 바람직하게는 5-20 g/L의 균주이며, 가장 바람직하게는 10-15 g/L의 균주를 사용한다. 또한 글루탐산 디카르복실라아제가 대량 생산되도록 유전자 조작이 이루어진 대장균 균주의 경우 농도는 바람직하게는 1-30 g/L의 균주이고, 보다 바람직하게는 1-10 g/L의 균주이며, 가장 바람직하게는 1-5 g/L의 균주를 사용한다.The concentration of whole cell catalyst is controlled by the amount of glutamic acid decarboxylase possessed by the catalyst. According to a preferred embodiment of the present invention, in the case of Escherichia coli, in the case of a strain not subjected to artificial genetic manipulation, the concentration is preferably 1 to 30 g / L, more preferably 5 to 20 g / L And most preferably 10-15 g / L. In addition, in the case of E. coli strains genetically engineered to produce large amounts of glutamic acid decarboxylase, the concentration is preferably 1-30 g / L, more preferably 1-10 g / L, and most preferably Preferably 1-5 g / L of strain.
상기 전세포 촉매와 반응하는 글루타민산 또는 글루타민산 나트륨은 바이오매스로부터 생물학적으로 제조가 되며, 분말 형태 또는 수용액 상태로 전세포 촉매가 포함되어 있는 반응조에 투입될 수 있다. 첨가되는 글루타민산 또는 글루타민산 나트륨의 양은 미생물 현탁액 무게 대비 바람직하게는 15-55 중량%이고, 보다 바람직하게는 30-50 중량%이며, 가장 바람직하게는 35-45 중량%이다. 15 중량% 미만은 생성되는 감마아미노부틸산의 농도가 낮아 농축 비용 등의 측면에서 산업적 가치가 떨어지고 55 중량%를 초과할 경우 교반에 어려움이 따르고, 전환율이 90% 이하로 감소하게 되는 문제가 있다. 첨가되는 글루타민산 또는 글루타민산나트륨은 분말 혹은 현탁액 형태로 주입될 수 있으며, 반드시 모든 글루타민산이 용해될 필요는 없다.The glutamic acid or sodium glutamate reacting with the whole cell catalyst is biologically prepared from biomass, and may be added to a reaction tank containing the whole cell catalyst in powder form or in an aqueous solution. The amount of glutamic acid or sodium glutamate added is preferably 15-55% by weight, more preferably 30-50% by weight, and most preferably 35-45% by weight, based on the weight of the microbial suspension. If the concentration is less than 15% by weight, the concentration of the resulting gamma aminobutyric acid is low, the industrial value in terms of concentration costs, etc., if the content exceeds 55% by weight is difficult to stir, there is a problem that the conversion rate is reduced to 90% or less . The glutamic acid or sodium glutamate added may be injected in the form of a powder or suspension, and not all glutamic acid necessarily need to be dissolved.
본 발명의 바람직한 구현예에 따르면, 전세포 촉매와 글루타민산 또는 글루타민산나트륨을 반응함에 있어서 피리독살-5-인산(Pyridoxal 5-phosphate, PLP)을 추가적으로 포함하여 반응을 진행할 수 있다. 피리독살-5-인산은 아미노산의 라세미화, 아미노기 전이반응, 카복시이탈반응, 수소이탈반응, 알데히드이탈반응, 세린과 인돌로부터의 트립토판의 합성반응 등 생체 내에 있어서의 각종 효소 반응에 작용하는 조효소 중 하나로서, 반응을 촉진하는 역할을 수행하기 때문이다.
According to a preferred embodiment of the present invention, in the reaction between the whole-cell catalyst and glutamic acid or sodium glutamate, the reaction may further include pyridoxal 5-phosphate (PLP). Pyridoxal-5-phosphate is a coenzyme that acts on various enzyme reactions in vivo, such as racemization of amino acids, amino group transfer reactions, carboxylation reactions, hydrogen release reactions, aldehyde release reactions, and the synthesis of tryptophan from serine and indole. As one, it plays a role in promoting the reaction.
단계 (b): 배지의 여과 Step (b): Filtration of Media
글루타민산 또는 글루타민산염을 기질로 포함하는 배지 및 전세포 촉매를 이용하여 4-아미노부틸산을 제조한 다음, 배지를 여과하여 배지의 미생물 세포 및 불용성 성분으로부터 4-아미노부틸산을 분리시킨다.4-aminobutyl acid is prepared using a medium containing glutamic acid or glutamate as a substrate and a whole cell catalyst, and then the medium is filtered to separate 4-aminobutyl acid from the microbial cells and insoluble components of the medium.
상기 여과는 배지로부터 미생물 세포 및 불용성 성분을 제거하기 위한 것이다. 상기 여과는 당업계에 공지된 다양한 방법, 예컨대 원심분리, 여과 프레스, 여과막 또는 여과지를 이용하여 실시할 수 있다.The filtration is for removing microbial cells and insoluble components from the medium. The filtration can be carried out using a variety of methods known in the art, such as centrifugation, filter presses, filtration membranes or filter paper.
본 발명의 바람직한 구현예에 따르면, 단계 (a) 및 (b) 사이에 상기 배지에 활성탄을 처리하여 배지의 색소를 제거하는 단계를 추가적으로 포함한다.According to a preferred embodiment of the present invention, the method further comprises the step of removing activated pigment from the medium by treating activated carbon in the medium between steps (a) and (b).
활성탄 처리는 당업계에 공지된 다양한 방법을 통하여 실시할 수 있으며, 크게는 활성탄을 배지에 직접적으로 처리하는 방법과 활성탄이 패킹되어 있는 컬럼을 이용하는 방법 두 가지가 있다. 생산 비용 및 공정의 편의성을 고려하면, 활성탄을 배지에 직접적으로 처리하는 방법이 본 발명에 보다 적합하다.Activated carbon treatment can be carried out through a variety of methods known in the art, there are largely two methods of treating activated carbon directly to the medium and a method using a column packed with activated carbon. In consideration of the production cost and the convenience of the process, a method of treating activated carbon directly with the medium is more suitable for the present invention.
활성탄을 배지에 직접적으로 처리하는 방법에 따르면, 배지에 처리되는 활성탄의 양은 배지 내 4-아미노부틸산의 중량 대비 1-10 중량%, 바람직하게는 1.5-4.0 중량%, 보다 바람직하게는 2.0-4.0 중량%이다. 하기의 실시예에서 볼 수 있듯이, 활성탄의 처리량이 4.0 중량%를 초과하면, 배지 내 4-아미노부틸산의 손실률이 증가하여 최종적으로 제조되는 2-피롤리돈의 수율이 감소되는 문제점이 있으며, 활성탄의 처리량이 1.5 중량% 미만이면, 배지 내 색소 불순물이 충분히 제거되지 않아, 2-피롤리돈의 수율이 감소되는 문제점이 있다. According to the method of treating activated carbon directly with the medium, the amount of activated carbon treated with the medium is 1-10% by weight, preferably 1.5-4.0% by weight, more preferably 2.0- with respect to the weight of 4-aminobutyl acid in the medium. 4.0 wt%. As can be seen in the following examples, when the throughput of activated carbon exceeds 4.0% by weight, there is a problem that the yield of 2-pyrrolidone is finally reduced by increasing the loss rate of 4-aminobutyl acid in the medium, If the amount of activated carbon is less than 1.5% by weight, the pigment impurities in the medium are not sufficiently removed, resulting in a decrease in yield of 2-pyrrolidone.
선택적으로, 활성탄 처리는 활성탄이 패킹되어 있는 컬럼을 이용하여 실시할 수 있다. 예를 들어, 활성탄이 패킹되어 있는 컬럼에 배지를 로딩하고 컬럼으로부터 용출액(eluant)을 얻으면 색소가 제거된 4-아미노부틸산 용액을 얻을 수 있다. 컬럼을 이용하는 경우에는, 색소의 제거와 배지의 여과가 동시에 이루어질 수 있다.Alternatively, activated carbon treatment can be carried out using a column packed with activated carbon. For example, loading a medium on a column packed with activated carbon and obtaining an eluant from the column can yield a 4-aminobutyl acid solution from which the pigment is removed. In the case of using a column, the removal of the pigment and the filtration of the medium can be performed simultaneously.
본 발명의 바람직한 구현예에 따르면, 본 발명은 단계 (a)의 결과물을 원심분리하여 균체를 분리하고, 분리된 용액에 활성탄을 처리하여 색소를 제거한 다음 결과물을 여과하여 4-아미노부틸산을 얻는다. 바람직하게는, 활성탄을 처리하기 전제 균체가 분리된 배지를 가열 처리한다.According to a preferred embodiment of the present invention, the present invention centrifuged the resultant of step (a) to isolate the cells, treated with activated carbon in the separated solution to remove the pigment and then filtered to obtain 4-aminobutyl acid . Preferably, the medium in which the whole cells are separated from the activated carbon is heat treated.
본 발명의 바람직한 구현예에 따르면, 여과를 통하여 얻어진 4-아미노부틸산을 포함하는 용액을 농축하여 2-피롤리돈 합성에 이용한다.According to a preferred embodiment of the present invention, the solution containing 4-aminobutyl acid obtained through filtration is concentrated and used for 2-pyrrolidone synthesis.
본 발명의 바람직한 구현예에 따르면, 단계 (b) 이후 상기 전세포 촉매를 분리하고 분리된 전세포 촉매를 재사용하는 단계를 추가적으로 포함한다. 본 발명에서 제공하는 방법이 미생물의 파쇄과정을 거치지 않고 미생물 자체를 사용하기 때문에 글루탐산 디카르복실라아제를 보유하고 있는 미생물을 원심분리를 통해 쉽게 회수하여 다시 사용할 수 있다. 회수된 미생물을 이용하여 상기 단계 (a)를 반복할 수 있으며, 이미 4-아미노부틸산 제조 반응이 시작된 반응조에 회수된 미생물을 추가로 주입하여 4-아미노부틸산을 제조할 수도 있다.
According to a preferred embodiment of the present invention, after step (b), the method further comprises the step of separating the whole cell catalyst and reusing the separated whole cell catalyst. Since the method provided by the present invention uses the microorganisms themselves without undergoing the microbial disruption process, microorganisms having glutamic acid decarboxylase can be easily recovered and used again by centrifugation. Step (a) may be repeated using the recovered microorganisms, and 4-aminobutyl acid may be prepared by further injecting the recovered microorganisms into the reactor in which the 4-aminobutyl acid production reaction has already started.
단계 (c): 4-아미노부틸산으로부터 2- 피롤리돈의 제조 Step (c): Preparation of 2-pyrrolidone from 4-amino-butyric acid
상기 과정에서 수득한 4-아미노부틸산을 이용하여 2-피롤리돈을 얻는다.2-Pyrrolidone is obtained using 4-aminobutyl acid obtained in the above process.
본 발명의 바람직한 구현예에 따르면, 단계 (c)에서 이용되는 4-아미노부틸산은 전-정제(pre-purification)되지 않은 것이다. 본 명세서에서 표현 “전-정제 되지 않은 4-아미노부틸산은 상술한 여과 및/또는 활성탄 처리 이외에 다른 정제 과정(예컨대, 결정화)을 거치지 않은 크루드(crude) 4-아미노부틸산을 의미한다.According to a preferred embodiment of the present invention, the 4-aminobutyl acid used in step (c) is not pre-purified. The expression “pre-purified 4-aminobutyl acid” herein refers to crude 4-aminobutyl acid that has not undergone other purification processes (eg, crystallization) in addition to the filtration and / or activated carbon treatment described above.
4-아미노부틸산의 2-피롤리돈으로의 전환은 기본적으로 락탐 고리화 반응이다. 4-아미노부틸산을 이용하여 2-피롤리돈을 합성하는 것은 당업계에 공지된 다양한 방법을 통하여 실시할 수 있다.The conversion of 4-aminobutyl acid to 2-pyrrolidone is basically a lactam cyclization reaction. Synthesis of 2-pyrrolidone using 4-aminobutyl acid can be carried out through various methods known in the art.
본 발명의 바람직한 구현예에 따르면, 4-아미노부틸산의 2-피롤리돈으로의 전환은 본 발명자들에 의해 개발된 방법으로서, "DPSP"(Daesang Pyrrolidone Synthesis Protocol)로 명명된 방법이다. 이 DPSP 방법은 효율적이면서 경제적(cost-effective)인 방법이다.According to a preferred embodiment of the present invention, the conversion of 4-aminobutyl acid to 2-pyrrolidone is a method developed by the inventors, which is named "DPSP" (Daesang Pyrrolidone Synthesis Protocol). This DPSP method is an efficient and cost-effective method.
DPSP 방법은 기본적으로 다음의 단계를 포함한다:The DPSP method basically includes the following steps:
(c-1) 4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물을 형성하는 단계; (c-1) forming a reaction composition in which 4-aminobutyl acid and 2-pyrrolidone are mixed;
(c-2) 상기 반응 조성물을 가열 처리하여 락탐 고리화 반응을 실시하여 2-피롤리돈 및 물을 생성시키는 단계; 및 (c-2) heat treating the reaction composition to perform a lactam cyclization reaction to produce 2-pyrrolidone and water; And
(c-3) 상기 2-피롤리돈을 분리하는 단계.(c-3) separating the 2-pyrrolidone.
보다 구체적으로, DPSP 방법은 상술한 기본적인 프로세스에서 온도의 조절에중점을 두는 DPSP-T 방법과 압력의 조절에 중점을 두는 DPSP-P 방법이 있다.More specifically, the DPSP method includes the DPSP-T method which focuses on temperature control and the DPSP-P method which focuses on pressure control.
본 발명의 바람직한 구현예에 따르면, DPSP-T 방법은 다음의 단계를 포함한다:According to a preferred embodiment of the invention, the DPSP-T method comprises the following steps:
(a) 4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물을 형성하는 단계; (a) forming a reaction composition in which 4-aminobutyl acid and 2-pyrrolidone are mixed;
(b) 상기 반응 조성물을 118℃-148℃의 온도에서 가열 처리하여 락탐 고리화 반응을 실시하여 2-피롤리돈 및 물을 생성시키는 단계; 및 (b) heat treating the reaction composition at a temperature of 118 ° C.-148 ° C. to perform a lactam cyclization reaction to produce 2-pyrrolidone and water; And
(c) 상기 2-피롤리돈을 분리하는 단계.(c) separating the 2-pyrrolidone.
본 발명의 바람직한 구현예에 따르면, DPSP-P 방법은 다음의 단계를 포함한다:According to a preferred embodiment of the invention, the DPSP-P method comprises the following steps:
(a) 4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물을 형성하는 단계; (a) forming a reaction composition in which 4-aminobutyl acid and 2-pyrrolidone are mixed;
(b) 감압 조건에서 상기 반응 조성물을 가열 처리하여 락탐 고리화 반응을 실시하여 2-피롤리돈 및 물을 생성시키고 상기 물을 제거하는 단계; 및 (b) subjecting the reaction composition to heat treatment under reduced pressure to perform a lactam cyclization reaction to produce 2-pyrrolidone and water and to remove the water; And
(c) 상기 2-피롤리돈을 분리하는 단계.(c) separating the 2-pyrrolidone.
우선, DPSP-T 방법을 상세하게 설명하면 다음과 같다: First, the DPSP-T method is described in detail as follows:
DPSP-T 방법에 따르면, 우선 4-아미노부틸산의 전환 반응에 대한 적합한 환경을 제공하기 위하여 4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물을 형성한다.According to the DPSP-T method, a reaction composition is first formed in which 4-aminobutyl acid and 2-pyrrolidone are mixed to provide a suitable environment for the conversion reaction of 4-aminobutyl acid.
4-아미노부틸산의 반응물에 2-피롤리돈이 공존하는 반응 조성물을 제공하는 경우, 하기의 실시예에서 입증된 바와 같이 4-아미노부틸산의 녹는점(202℃)보다 낮은 온도, 예컨대 118℃-120℃에서 4-아미노부틸산이 2-피롤리돈과 물로 전환된다.When providing a reaction composition in which 2-pyrrolidone coexists in a reactant of 4-aminobutyl acid, a temperature lower than the melting point (202 ° C.) of 4-aminobutyl acid, such as 118, is demonstrated in the examples below. 4-aminobutyl acid is converted to 2-pyrrolidone and water at < RTI ID = 0.0 >
4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물의 제공은 다양한 방법에 의해 이루어질 수 있다.Providing the reaction composition in which 4-aminobutyl acid and 2-pyrrolidone are mixed can be accomplished by various methods.
첫 번째, 단계 (a)는 반응기에서 4-아미노부틸산 및 2-피롤리돈을 교반하여 실시할 수 있다.즉, 반응기에 4-아미노부틸산 및 2-피롤리돈을 투입하고 이를 교반함으로써 4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물을 형성한다.이러한 반응 조성물은, 비교적 낮은 온도, 예컨대 118℃-148℃에서 4-아미노부틸산의 락탐 고리화반응을 진행시킬 수 있다.First, step (a) can be carried out by stirring 4-aminobutyl acid and 2-pyrrolidone in the reactor, i.e. by adding 4-aminobutyl acid and 2-pyrrolidone to the reactor and stirring it A reaction composition is formed in which 4-aminobutyl acid and 2-pyrrolidone are mixed. Such a reaction composition may be subjected to lactam cyclization of 4-aminobutyl acid at a relatively low temperature, such as 118 ° C-148 ° C. Can be.
첫 번째 방식에서 4-아미노부틸산에 혼합되는 2-피롤리돈의 양은 특별하게 제한되지 않는다.그러나, 4-아미노부틸산에 혼합되는 2-피롤리돈의 양이 너무 적으면 반응을 위해 교반하는데 문제가 있으며, 너무 많으면 반응 종료 후 2-피롤리돈을 증류하는 비용이 높아지는 문제점이 있다.따라서 원활한 공정 운전과 제조비용을 고려했을 때, 4-아미노부틸산 대 2-피롤리돈의 혼합양은 중량비로 1:0.1-1:10이 바람직하며, 보다 바람직하게는 1:0.2-1:5, 보다 더 바람직하게는 1:0.5-1:2이다.The amount of 2-pyrrolidone mixed with 4-aminobutyl acid in the first manner is not particularly limited. However, if the amount of 2-pyrrolidone mixed with 4-aminobutyl acid is too small, it is stirred for reaction. However, if too much, the cost of distilling 2-pyrrolidone after the end of the reaction becomes high. Therefore, in consideration of smooth process operation and manufacturing cost, the mixture of 4-aminobutyl acid and 2-pyrrolidone The amount is preferably 1: 0.1-1: 10 by weight, more preferably 1: 0.2-1: 5, even more preferably 1: 0.5-1: 2.
두 번째, 단계 (a)는 반응기에 4-아미노부틸산을 투입하고 상기 반응기의 온도를 승온시켜 4-아미노부틸산을 2-피롤리돈 및 물로 전환시킨 다음 이어 4-아미노부틸산을 추가적으로 상기 반응기에 투입하여 실시할 수 있다.예를 들어, 반응기에 4-아미노부틸산을 투입하고 반응기의 온도를 4-아미노부틸산의 녹는점(202℃)까지 승온시켜 4-아미노부틸산을 2-피롤리돈 및 물로 전환시킨다.이어, 반응기를 자연 냉각하면서 추가적으로 4-아미노부틸산을 투입하고 용해시킨다.필요한 경우에는, 4-아미노부틸산의 추가 투입을 2회에 걸쳐 실시할 수 있다.Second, step (a) is added 4-aminobutyl acid to the reactor and the temperature of the reactor is heated to convert 4-aminobutyl acid to 2-pyrrolidone and water, and then 4-aminobutyl acid is further added For example, 4-aminobutyl acid may be added to the reactor, and the temperature of the reactor may be raised to the melting point (202 ° C.) of 4-aminobutyl acid, thereby yielding 2-aminobutyl acid. Conversion to pyrrolidone and water. Then, additional 4-aminobutyl acid is added and dissolved while the reactor is naturally cooled. If necessary, additional addition of 4-aminobutyl acid can be carried out twice.
세 번째, 단계 (a)는 반응기에 4-아미노부틸산을 투입하고 상기 반응기의 온도를 승온시켜 4-아미노부틸산의 일부를 2-피롤리돈 및 물로 전환시켜 실시할 수 있다.두 번째 방식과 다른 점은, 2-피롤리돈으로 전환시킬 4-아미노부틸산을 초기부터 전부 사용하는 것이다. Third, step (a) may be carried out by introducing 4-aminobutyl acid into the reactor and raising the temperature of the reactor to convert some of the 4-aminobutyl acid into 2-pyrrolidone and water. The difference from this is that all of 4-aminobutyl acid to be converted to 2-pyrrolidone is used from the beginning.
상기 세 가지 방식 중에서 어떠한 방식을 채택하는지에 무관하게, 이러한 과정에 의해 4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물이 제공된다.Regardless of which of the three modes is adopted, this procedure provides a reaction composition in which 4-aminobutyl acid and 2-pyrrolidone are mixed.
이어, 118℃-148℃의 온도에서 상기 반응 조성물을 가열 처리하여 락탐 고리화 반응을 실시하여 2-피롤리돈 및 물을 생성시킨다.The reaction composition is then heat treated at a temperature of 118 ° C.-148 ° C. to carry out a lactam cyclization reaction to produce 2-pyrrolidone and water.
적합한 온도에서 단계 (a)의 반응 조성물을 유지하면, 락탐 고리화 반응이 발생되어 4-아미노부틸산이 2-피롤리돈 및 물로 전환된다.Maintaining the reaction composition of step (a) at a suitable temperature causes a lactam cyclization reaction to convert 4-aminobutyl acid to 2-pyrrolidone and water.
종래기술(예컨대, 일본특허출원공개 제2002-121183호 및 일본특허출원공개 제2009-159840호)에 따르면, 고온(예를 들어, 200-300℃ 또는 180℃)에서 4-아미노부틸산을 2-피롤리돈으로 전환시킨다. 본 발명은 종래기술에서 제시하고 있는 반응 온도보다 상당히 낮은 온도, 즉 118℃-148℃의 온도에서 4-아미노부틸산과 2-피롤리돈의 혼합 반응 조성물을 이용하여 락탐 고리화 반응을 진행시켜 2-피롤리돈 및 물을 생성시킨다.만일, 반응 온도가 118℃ 미만인 경우에는, 락탐 고리화 반응이 거의 진행되지 않아 2-피롤리돈이 거의 생성되지 않으며, 반응 온도가 148℃를 초과하는 경우(예컨대, 200-300℃ 또는 180℃)에는, 폭발적으로 생성되는 물(수증기) 때문에 발생되는 공정 운전의 어려움 등이 있어 2-피롤리돈의 대량 생산에 적합하지 않다. 본 발명에서 제시하고 있는 118℃-148℃의 반응온도는 4-아미노부틸산의 전환반응을 효율적으로 진행시키면서도, 고온 및/또는 고압의 유티릴티를 요구하지 않는 조건이며 대량생산에 적합한 조건이다.According to the prior art (e.g., Japanese Patent Application Laid-Open No. 2002-121183 and Japanese Patent Application Laid-Open No. 2009-159840), 2-aminobutyl acid is added at high temperature (for example, 200-300 ° C or 180 ° C). Convert to pyrrolidone. The present invention proceeds to the lactam cyclization reaction using a mixed reaction composition of 4-aminobutyl acid and 2-pyrrolidone at a temperature significantly lower than the reaction temperature proposed in the prior art, that is 118 ℃-148
선택적으로, 단계 (b)는 감압 하에서 실시될 수 있으며, 이러한 감압에 의해 반응 중 생성된 물을 제거할 수 있다.본 발명에 있어서 감압 조건은 바람직하게는 750 mmHg 이하, 보다 바람직하게는 120 mmHg 이하, 보다 더 바람직하게는 10-120 mmHg, 보다 더욱 더 바람직하게는 10-60 mmHg, 가장 바람직하게는 20-60 mmHg이다.Optionally, step (b) can be carried out under reduced pressure, by means of which the reduced pressure can remove the water produced during the reaction. In the present invention, the reduced pressure conditions are preferably 750 mmHg or less, more preferably 120 mmHg. Hereinafter, even more preferably 10-120 mmHg, even more preferably 10-60 mmHg, most preferably 20-60 mmHg.
최종적으로, 단계 (b)의 반응 결과물로부터 2-피롤리돈을 분리하여 적합한 순도 및 수율로 2-피롤리돈을 수득한다.Finally, 2-pyrrolidone is separated from the reaction product of step (b) to give 2-pyrrolidone in suitable purity and yield.
2-피롤리돈의 분리는 당업계에 공지된 다양한 방법을 이용하여 실시할 수 있다.바람직하게는, 2-피롤리돈의 분리는 감압 증류에 의해 실시된다.2-피롤리돈을 분리하기 위한 감압 증류는 바람직하게는 0.1-250 mmHg이며, 보다 바람직하게는 1-90 mmHg이고, 보다 더 바람직하게는 1-50 mmHg, 보다 더욱 더 바람직하게는 1-20 mmHg이다.Separation of 2-pyrrolidone can be carried out using a variety of methods known in the art. Preferably, the separation of 2-pyrrolidone is carried out by distillation under reduced pressure. The distillation under reduced pressure is preferably 0.1-250 mmHg, more preferably 1-90 mmHg, even more preferably 1-50 mmHg, even more preferably 1-20 mmHg.
본 발명의 DPSP-T 방법에 의해 최종적으로 고수율 및 고순도로 2-피롤리돈을 수득한다. 바람직하게는, 본 발명의 방법은 2-피롤리돈에 대하여 최대 99%의 수율 및 최대 99.8%의 순도를 나타내며, 보다 바람직하게는 90-99%의 수율, 99.0-99.8%의 순도, 보다 더 바람직하게는 96-99%의 수율, 99.5-99.8%의 순도를 나타낸다.Finally, 2-pyrrolidone is obtained by high yield and high purity by the DPSP-T method of the present invention. Preferably, the process of the present invention exhibits a yield of up to 99% and a purity of up to 99.8% for 2-pyrrolidone, more preferably a yield of 90-99%, a purity of 99.0-99.8%, even more Preferably a yield of 96-99% and a purity of 99.5-99.8%.
DPSP-P 방법을 상세하게 설명하면 다음과 같다: The DPSP-P method is described in detail as follows:
DPSP-P 방법에 따르면, 우선 4-아미노부틸산의 전환 반응에 대한 적합한 환경을 제공하기 위하여 4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물을 형성한다. 반응 조성물을 형성을 형성하는 과정은 상술한 DPSP-T 방법에 기재된 내용을 참조하여 설명될 수 있다.According to the DPSP-P method, a reaction composition is first formed in which 4-aminobutyl acid and 2-pyrrolidone are mixed to provide a suitable environment for the conversion reaction of 4-aminobutyl acid. The process of forming the reaction composition can be described with reference to the contents described in the DPSP-T method described above.
이어, 감압 조건에서 상기 반응 조성물을 가열 처리하여 락탐 고리화 반응을 실시하여 2-피롤리돈 및 물을 생성시키고 상기 물을 제거한다. 적합한 온도에서 단계 (a)의 반응 조성물을 감압 하에서 유지하면, 락탐 고리화 반응이 발생되어 4-아미노부틸산이 2-피롤리돈 및 물로 전환되고, 물은 반응 결과물로부터 제거된다.Subsequently, the reaction composition is subjected to a heat treatment under reduced pressure to carry out a lactam cyclization reaction to generate 2-pyrrolidone and water and to remove the water. If the reaction composition of step (a) is maintained under reduced pressure at a suitable temperature, a lactam cyclization reaction takes place, converting 4-aminobutyl acid to 2-pyrrolidone and water, and water is removed from the reaction product.
DPSP-P 공정의 특징 중 하나는, 4-아미노부틸산의 전환 반응에서 감압의 조건을 부여하여 반응 중 생성된 물을 제거하는 것이다.이러한 물의 제거에 의해 반응속도가 크게 증가할 뿐만 아니라, 보다 낮은 온도에서 반응을 진행시킬 수 있으며, 전체적으로 2-피롤리돈에 대한 생산성을 크게 개선할 수 있다. 본 발명에 있어서 감압 조건은 바람직하게는 750 mmHg 이하, 보다 바람직하게는 120 mmHg 이하, 보다 더 바람직하게는 10-120 mmHg, 보다 더욱 더 바람직하게는 10-60 mmHg, 가장 바람직하게는 20-60 mmHg이다. 단계 (b)에서의 반응 온도는 바람직하게는 110℃ 이상(예컨대, 110℃-150℃), 보다 바람직하게는 118℃ 이상, 보다 더 바람직하게는 118℃-150℃이다.선택적으로, 118℃-148℃의 온도 범위에서도 본 발명은 2-피롤리돈에 대하여 우수한 수율 및 정제도를 나타낸다.본 발명에 따르면, 예를 들어 118℃의 낮은 온도에서도 4-아미노부틸산이 2-피롤리돈으로 전환될 수 있다. 단계 (b)에서 물의 제거가 이루어진다. 본 발명의 바람직한 구현예에 따르면, 단계 (b)에서의 물의 제거는 단계 (b)를 실시하는 과정에서 동시에 이루어진다. 즉, 4-아미노부틸산이 2-피롤리돈과 물로 전환되고, 물은 생성된 즉시 감압 조건에서 제거된다.이러한 물의 제거는 연속된 공정으로 실시되는 것이 바람직하다. 선택적으로, 단계 (b)에서의 물의 제거는 단계 (b)를 실시하는 과정 중 중간에 이루어질 수 있다.선택적으로, 단계 (b)에서의 물의 제거는 단계 (b)를 실시한 이후에 이루어질 수 있다.One of the characteristics of the DPSP-P process is the removal of water generated during the reaction by applying a reduced pressure condition in the conversion reaction of 4-aminobutyl acid. Not only does the removal of water significantly increase the reaction rate, The reaction can proceed at low temperatures and can significantly improve the productivity for 2-pyrrolidone as a whole. In the present invention, the reduced pressure conditions are preferably 750 mmHg or less, more preferably 120 mmHg or less, even more preferably 10-120 mmHg, even more preferably 10-60 mmHg, most preferably 20-60 mmHg. The reaction temperature in step (b) is preferably at least 110 ° C. (eg 110 ° C.-150 ° C.), more preferably at least 118 ° C., even more preferably 118 ° C.-150 ° C. Optionally, 118 ° C. Even in the temperature range of -148 ° C, the present invention shows excellent yield and purity for 2-pyrrolidone. According to the present invention, 4-aminobutyl acid is converted to 2-pyrrolidone even at low temperatures of 118 ° C, for example. Can be. In step (b) the removal of water takes place. According to a preferred embodiment of the invention, the removal of water in step (b) takes place simultaneously in the course of carrying out step (b). That is, 4-aminobutyl acid is converted to 2-pyrrolidone and water, and water is removed under reduced pressure immediately after it is generated. It is preferable that such water is removed in a continuous process. Optionally, the removal of water in step (b) may be in the middle of the process of carrying out step (b). Optionally, the removal of water in step (b) may occur after carrying out step (b). .
최종적으로, 단계 (b)의 반응 결과물로부터 2-피롤리돈을 분리하여 적합한 순도 및 수율로 2-피롤리돈을 수득한다. 2-피롤리돈의 분리는 상술한 DPSP-T 방법에 기재된 내용을 참조하여 설명될 수 있다. Finally, 2-pyrrolidone is separated from the reaction product of step (b) to give 2-pyrrolidone in suitable purity and yield. Separation of 2-pyrrolidone can be described with reference to the contents described in the DPSP-T method described above.
DPSP-P 공정에 의해 최종적으로 고수율 및 고순도로 2-피롤리돈을 수득한다.바람직하게는, 본 발명의 DPSP-P 공정은 2-피롤리돈에 대하여 최대 99%의 수율 및 최대 99.8%의 순도를 나타내며, 보다 바람직하게는 90-99%의 수율, 99.0-99.8%의 순도, 보다 더 바람직하게는 96-99%의 수율, 99.5-99.8%의 순도를 나타낸다.
The DPSP-P process finally yields 2-pyrrolidone in high yield and high purity. Preferably, the DPSP-P process of the present invention yields up to 99% yield and up to 99.8% for 2-pyrrolidone. Purity of 90-99%, 99.0-99.8% purity, even more preferably 96-99% yield, 99.5-99.8% purity.
본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 바이오매스를 이용하여 글루타민산 또는 글루타민산염으로부터 2-피롤리돈을 제조하는 일련의 공정을 제공한다.(a) The present invention provides a series of processes for preparing 2-pyrrolidone from glutamic acid or glutamate using biomass.
(b) 본 발명에 따르면, 미생물을 전세포로 이용하여 4-아미노부틸산을 제조하고 바람직하게는 결정화와 같은 복잡한 정제 과정을 거치지 않은 4-아미노부틸산을 직접적으로 이용하여 2-피롤리돈을 높은 수율로 경제적으로 제조할 수 있다.(b) According to the present invention, 2-pyrrolidone is prepared by directly using 4-aminobutyl acid using microorganisms as whole cells, preferably 4-aminobutyl acid, which has not undergone a complicated purification process such as crystallization. It can be manufactured economically in high yield.
(c) 본 발명에 따르면, 대량으로 2-피롤리돈을 높은 수율 및 낮은 생산 비용으로 제조할 수 있다.(c) According to the present invention, 2-pyrrolidone can be produced in large quantities in high yield and low production cost.
(d) 본 발명에 따르면, 고온/고압의 유틸리티 없이 4-아미노부틸산으로부터 고수율 및 고순도로 2-피롤리돈을 수득할 수 있다.(d) According to the present invention, 2-pyrrolidone can be obtained in high yield and high purity from 4-aminobutyl acid without the utility of high temperature / high pressure.
(e) 본 발명은 2-피롤리돈의 제조에 대한 공정의 단순화를 통하여 산업적 스케일의 대량생산에 적합하다.
(e) The present invention is suitable for mass production on an industrial scale through the simplification of the process for the production of 2-pyrrolidone.
도 1은 유기용매 처리에 따른 대장균 및 유산균의 감마아미노부틸산 생산 속도 비교를 나타낸다.
도 2는 유기용매 종류에 따른 미생물의 감마아미노부틸산 생산 활성 변화를 나타낸다.
도 3은 pH에 따른 감마아미노부틸산 생산 속도의 변화를 나타낸다. 도 4에서 막대 그래프는 감마아미노부틸산 생산속도를 나타내고, 실선그래프는 초기 pH를 나타낸다.
도 4는 유기용매가 처리된 균체를 사용한 고농도 GABA 생산에서 반응에 따른 pH에 변화를 나타낸다.1 shows a comparison of gamma aminobutyl acid production rates of Escherichia coli and lactic acid bacteria according to organic solvent treatment.
Figure 2 shows the change in gamma amino butyric acid production activity of the microorganism according to the organic solvent type.
Figure 3 shows the change in gamma aminobutyl acid production rate with pH. In FIG. 4, the bar graph shows the gamma aminobutyl acid production rate, and the solid line graph shows the initial pH.
Figure 4 shows the change in pH according to the reaction in high concentration GABA production using the organic solvent treated cells.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .
실시예Example
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 “%“는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 그리고 액체/액체는 (부피/부피) %이다.
Throughout this specification, "%" used to denote the concentration of a particular substance is intended to include solids / solids (wt / wt), solid / liquid (wt / The liquid / liquid is (vol / vol)%.
실시예 1: 글루탐산 또는 글루탐산염으로부터 감마아미노부틸산의 생산Example 1 Production of Gamma Aminobutyl Acid from Glutamic Acid or Glutamate
1-1. 유기용매가 처리된 다양한 전세포 촉매를 이용한 글루탐산으로부터 감마아미노부틸산의 생산 1-1. Production of Gamma Aminobutyl Acid from Glutamic Acid Using Various Whole Cell Catalysts Treated with Organic Solvents
글루탐산 디카르복실라제를 보유하고 있는 균체, E. coli BL21(DE3), E. coli JM101, Lactobacillus paracasei 및 Lactobacillus coryniformis(KCTC)를 배양하여 회수한 뒤 유기용매 처리군과 대조군으로 나누었다. 유기용매 처리군의 경우 회수한 균체에 톨루엔 0.5 %(v/v)을 처리하고 30℃, 200 rpm 조건에서 10 분간 교반하여 미생물의 선택적 투과성을 파괴한 후에 멸균수에 현탁하였다. 대조군은 특별한 처리 과정 없이 바로 멸균수에 현탁하였다. 상기에서 준비한 각각의 미생물 현탁액에 피리독살-5-인산(Pyridoxal 5-phosphate:PLP, Sigma Aldrich) 40 μM을 첨가하고, 글루탐산(대상주식회사) 33 wt%을 첨가하여 감마아미노부틸산 생산속도를 측정하였다. 실험 결과를 비교하기 위해 유기용매가 처리된 실험군의 생산속도 값에 처리하지 않은 실험군의 생산속도 값을 나누었다. 실험 결과, 도 1과 같이 유기용매인 톨루엔이 처리된 군은 비처리군보다 약 1.2-5.5배 감마아미노부틸산의 생산 속도가 향상된 것을 알 수 있었다.
Cells containing glutamic acid decarboxylase, E. coli BL21 (DE3), E. coli JM101, Lactobacillus paracasei and Lactobacillus coryniformis (KCTC) were incubated and recovered, and then divided into organic solvent treatment groups and controls. In the case of the organic solvent treatment group, the recovered cells were treated with toluene 0.5% (v / v) and stirred at 30 ° C. and 200 rpm for 10 minutes to destroy the selective permeability of microorganisms and then suspended in sterile water. The control group was immediately suspended in sterile water without any special treatment. Pyridoxal 5-phosphate (PLP, Sigma Aldrich) 40 μM was added to each of the microbial suspensions prepared above, and 33 wt% of glutamic acid (target company) was added to measure the gamma aminobutyl acid production rate. It was. To compare the experimental results, the production rate value of the experimental group without organic solvent was divided by the production rate value of the experimental group without organic solvent. As a result, as shown in Figure 1, the group treated with the organic solvent toluene was found to improve the production rate of gamma aminobutyl acid about 1.2-5.5 times than the untreated group.
1-2. 유기용매에 따른 전세포 촉매의 글루탐산염으로부터 감마아미노부틸산의 생산1-2. Production of Gamma Aminobutyl Acid from Glutamate of Whole Cell Catalysts According to Organic Solvents
글루탐산 디카르복실라제를 보유하고 있는 균체(Escherichia coli)를 배양하고 회수 한 이후 유기용매를 사용하여 미생물의 선택적 투과성을 파괴한 뒤 글루탐산나트륨(Sigma Aldrich)으로부터 감마아미노부틸산의 생산 속도를 분석하였다. 사용된 유기 용매는 모두 소수성 유기용매로 톨루엔, 클로로포름, 자일렌 및 벤젠이었다. 처리 조건은 미생물 현탁액에 0.5%(v/v)의 각 유기용매를 처리하고 30℃, 200 rpm 조건에서 10분간 교반하였다. 상기 준비된 각각의 미생물 현탁액에 PLP 40 μM을 첨가하고, 글루탐산나트륨 1%(v/v)을 첨가하여 감마아미노부틸산 생산속도를 비교하였다. 그 결과는 도 2에서 나타내는 것과 같이 소수성 유기용매 처리 후에 감마아미노부틸산의 생산 속도가 약 5-8배 증가하였다.
After culturing and recovering Escherichia coli containing glutamic acid decarboxylase, the rate of production of gamma aminobutyl acid from sodium glutamate (Sigma Aldrich) was analyzed after destroying the selective permeability of microorganisms using an organic solvent. . The organic solvents used were all hydrophobic organic solvents, toluene, chloroform, xylene and benzene. Treatment conditions were treated 0.5% (v / v) of each organic solvent in the microbial suspension and stirred for 10 minutes at 30 ℃, 200 rpm conditions. 40 μM of PLP was added to each of the prepared microbial suspensions, and 1% (v / v) of sodium glutamate was added to compare the gammaaminobutyl acid production rate. As a result, as shown in FIG. 2, the production rate of gamma aminobutyl acid increased about 5-8 times after hydrophobic organic solvent treatment.
1-3. 유기용매 처리로 인한 균체의 GABA 생산활성 증가1-3. Increased GABA Production Activity of Cells from Organic Solvents
글루탐산 디카르복실라제를 보유하고 있는 균체(Escherichia coli)를 배양한 뒤 균체를 회수하였다. 회수한 균체를 증류수로 한 번 세척한 뒤 유기용매와 교반하여 선택적 투과성을 파괴하였다. 이 때 사용된 유기용매는 상기 실시예 1-2에서 가장 빠른 감마아미노부틸산 생산 속도를 나타낸 톨루엔을 사용하였다. 톨루엔을 처리한 실험군과 처리하지 않은 대조군으로 나누었으며, 톨루엔을 처리하는 실험군은 미생물 현탁액에 0.5%(v/v)의 톨루엔을 첨가한 뒤 37℃, 150 rpm에서 10분간 교반하였다. 교반이 끝난 후 균체를 증류수로 1회 세척하였다. 상기 준비된 균체들을 아세테이트 완충 용액(pH 4.6, 200 mM)에 현탁한 뒤 PLP 0.04 mM 및 글루타민산나트륨 1%(v/v)를 첨가하여 GABA 생산 속도를 측정하였다. 그 결과 톨루엔이 처리된 균체의 GABA 생산 활성은 5.72 μmol GABA/mg dcw/min 이었고, 처리 되지 않은 균체의 활성은 0.75 μmol GABA/mg dcw/min 이었다.
The cells were recovered after incubating the Escherichia coli containing glutamic acid decarboxylase. The recovered cells were washed once with distilled water and stirred with an organic solvent to destroy the selective permeability. The organic solvent used at this time was toluene showing the fastest gamma aminobutyl acid production rate in Example 1-2. The toluene-treated experimental group and the untreated control group were divided into two groups. Toluene-treated experimental group was added with 0.5% (v / v) of toluene to the microbial suspension and stirred at 37 ° C. and 150 rpm for 10 minutes. After stirring, the cells were washed once with distilled water. The prepared cells were suspended in acetate buffer solution (pH 4.6, 200 mM), and then 0.04 mM PLP and 1% (v / v) sodium glutamate were added to measure GABA production rate. As a result, the GABA production activity of the toluene-treated cells was 5.72 μmol GABA / mg dcw / min, and the activity of the untreated cells was 0.75 μmol GABA / mg dcw / min.
1-4. 완충용액의 pH에 따른 감마아미노부틸산 생산속도 향상1-4. Improvement of Gamma Aminobutyl Acid Production Rate According to pH of Buffer Solution
글루탐산 디카르복실라제를 보유하고 있는 균체(Escherichia coli)를 배양하고 배양된 균체에 유기용매인 톨루엔을 실시예 3에서 제시된 방법과 동일한 방법을 사용하여 처리한 뒤 처리된 균체를 각각의 완충용액과 멸균수에 현탁 하였다. 여기서 사용된 완충용액은 농도가 모두 100 mM 이며, pH는 각각 4.5, 6.0, 7.0 및 8.0이었다. pH가 4.5인 완충용액의 제조는 초산을 사용하여 이루어 졌으며, pH가 6.0, 7.0 및 8.0인 완충용액의 제조는 인산을 사용하였다. 상기와 같이 준비된 전세포 촉매의 현탁용액에 PLP 0.04 mM-첨가량를 첨가하고, 여기에 10 wt%의 글루탐산을 첨가하여 반응을 개시하였다. 이후 초기 감마아미노부틸산 생산속도를 측정하여 pH에 따른 감마아미노부틸산 생산속도 변화를 분석하였다. 실험 결과, 도 3에서 나타내는 바와 같이 pH 6의 완충용액을 사용하고, 초기 pH가 3.9가 되었을 때 반응속도가 최대를 나타내었으며, 그 값은 116 g GABA/L/h 이었다.
Cultivation of Escherichia coli containing glutamic acid decarboxylase and treatment of toluene, an organic solvent, in the cultured cells were carried out using the same method as described in Example 3. Suspended in sterile water. The buffer used here was all 100 mM in concentration and pH was 4.5, 6.0, 7.0 and 8.0, respectively. The preparation of the buffer solution having a pH of 4.5 was made using acetic acid, and the preparation of the buffer solution having a pH of 6.0, 7.0 and 8.0 was made of phosphoric acid. PLP 0.04 mM-addition amount was added to the suspension solution of the whole cell catalyst prepared as above, and 10 wt% glutamic acid was added thereto to initiate the reaction. Since the initial production rate of gamma aminobutyl acid was measured to analyze the change in gamma aminobutyl acid production rate according to pH. As a result, as shown in Figure 3 using a buffer solution of
1-5. 유기용매가 처리된 균체를 사용한 GABA 생산1-5. GABA Production Using Cells Treated with Organic Solvents
글루탐산 디카르복실라제를 보유하고 있는 균체(Escherichia coli)를 배양하여 균체를 회수하였다. 이 때 회수된 건조 균체의 양은 3.6 g이었다. 균체를 멸균수에 현탁한 뒤 톨루엔 0.5%(v/v)을 첨가하고 37℃ 에서 10분간 교반하였다. 톨루엔 처리가 끝나면 원심분리를 하여 균체를 회수하고, 증류수 이용하여 한 번 더 세척하였다. 회수된 균체를 인산 완충용액(pH 6.0, 100 mM) 2 L에 현탁한 뒤 반응조에 투입하고, 여기에 PLP 0.04 mM, 글루타민산 1 kg 및 소포제(Polyoxyalkylene Glycol) 50 ppm을 첨가하여 반응을 시작하였다. 반응조건은 30℃, 200 rpm 이었다. 반응시작 시 pH가 4.5였으며, 8 hr만에 잔류 글루타민산의 농도가 1 wt% 미만으로 감소하였고, 이 때 pH는 5.8이었다. 여기에 염산용액을 첨가하여 pH를 5.5까지 감소시킨 뒤 1 hr 더 반응시켜, 잔존한 글루타민산을 모두 GABA로 전환하였다. 생성된 GABA의 총 중량은 690 g 이었으며, 몰 전환율은 98%, 소요된 시간은 총 9 hr이었다.
The cells were recovered by culturing Escherichia coli containing glutamic acid decarboxylase. At this time, the amount of dry cells recovered was 3.6 g. The cells were suspended in sterile water and 0.5% (v / v) of toluene was added thereto, followed by stirring at 37 ° C for 10 minutes. After toluene treatment, the cells were recovered by centrifugation and washed once more with distilled water. The recovered cells were suspended in 2 L of phosphate buffer (pH 6.0, 100 mM), added to the reactor, and PLP 0.04 mM, 1 kg of glutamic acid and 50 ppm of an antifoaming agent (Polyoxyalkylene Glycol) were added to start the reaction. The reaction conditions were 30 ° C and 200 rpm. At the start of the reaction, the pH was 4.5 and the concentration of residual glutamic acid was reduced to less than 1 wt% after 8 hrs, at which time the pH was 5.8. Hydrochloric acid solution was added thereto to reduce the pH to 5.5, and then further reacted for 1 hr to convert all remaining glutamic acid to GABA. The total weight of GABA produced was 690 g, the molar conversion was 98% and the time taken was 9 hr in total.
1-6. 유기용매가 처리된 균체를 사용한 고농도 GABA 생산1-6. Production of high concentration GABA using organic solvent treated cells
글루탐산 디카르복실라제를 보유하고 있는 균체(Escherichia coli)를 배양한 뒤 배양조에 톨루엔 0.25 %(v/v)을 투입하고 30℃에서 10분간 교반하였다. 교반 후 원심분리를 통해 미생물을 회수하였으며, 이 때 회수된 건조 균체의 중량은 약 50 g이었다. 미생물을 완충 용액 또는 증류수에 현탁한 이후 반응조에 투입하고, PLP 0.04 mM, 글루타민산 8 kg 및 소포제(Polyoxyalkylene Glycol) 500 ppm을 첨가하여 반응을 시작하였다. 반응조건은 30℃, 200 rpm 이었으며, 이 외에는 어떤 요소도 조절하지 않았다. 반응시작 시의 pH는 4.0 이었으며, 반응시작 10 hr를 경과하여 잔류 글루타민산 농도가 1 wt% 미만으로 감소하였고, 이 때 pH는 5.87이었다. 이후 염산용액을 첨가하여 pH를 5.6까지 감소시킨 후 2 hr 더 반응시켜 잔존한 글루타민산을 모두 GABA로 전환하였다(도 4). 생성된 GABA의 농도는 34 wt% 이었으며, 몰 전환율은 98%, 소요된 총 시간은 12 hr이었다.
After incubating Escherichia coli containing glutamic acid decarboxylase, 0.25% (v / v) of toluene was added to the culture tank and stirred at 30 ° C for 10 minutes. After stirring, the microorganisms were recovered by centrifugation, and the weight of the dried cells was about 50 g. The microorganisms were suspended in a buffer solution or distilled water and then added to the reactor, and the reaction was started by adding 0.04 mM PLP, 8 kg of glutamic acid and 500 ppm of an antifoaming agent (Polyoxyalkylene Glycol). The reaction conditions were 30 ℃, 200 rpm, and no other elements were controlled. The pH at the start of the reaction was 4.0 and the residual glutamic acid concentration was reduced to less than 1 wt% after 10 hr of the start of the reaction, at which time the pH was 5.87. Then, the pH was reduced to 5.6 by adding hydrochloric acid solution, followed by further 2 hr reaction to convert all remaining glutamic acid to GABA (FIG. 4). The concentration of GABA produced was 34 wt%, the molar conversion was 98% and the total time spent was 12 hr.
1-7. 반응 종결 후 회수된 균체를 이용한 GABA 생산1-7. GABA Production Using Cells Recovered after Termination of Reaction
상기 실시예 1-2와 동일한 방법으로 미생물 3.6 g에 톨루엔 0.5 %(v/v)을 처리한 다음, 0.5 kg의 글루타민산을 기질로 하는 GABA 생성 반응을 실시하였다. 반응이 종결 된 9시간 뒤에 4000 rpm, 10 min 조건에서 원심분리를 수행하여 미생물을 회수하고, 상기 실시예 1과 같이 증류수로 세척하여 아세트산 완충용액(pH 4.6, 200 mM)에 재현탁한 다음 PLP 0.04 mM과 글루타민산나트륨 1% (v/v) 을 첨가하여 GABA 생산활성을 측정하였을 때, 그 값은 4.80 μmol GABA/mg dcw/min 이었다. 상기 GABA 전환반응에 이용된 균체를 분리 회수한 다음, 회수 균체 2 g를 새로이 준비된 균체가 들어 있는 반응조에 투입한 뒤 실시예 1-2와 같은 동일한 반응을 다시 수행하였을 때 전환율은 상기 제1차 반응과 거의 동일하였고 총 반응 시간은 6 hr로 단축되었다.
In the same manner as in Example 1-2, the microorganism was treated with 0.5% (v / v) of toluene in 3.6 g of microorganisms, and then subjected to GABA production reaction using 0.5 kg of glutamic acid as a substrate. 9 hours after the reaction was terminated, microorganisms were recovered by centrifugation at 4000 rpm and 10 min. The cells were washed with distilled water as in Example 1, resuspended in acetic acid buffer (pH 4.6, 200 mM), and then PLP 0.04. When the GABA production activity was measured by adding mM and 1% of sodium glutamate (v / v), the value was 4.80 μmol GABA / mg dcw / min. After separating and recovering the cells used in the GABA conversion reaction, 2 g of the recovered cells were added to a reactor containing freshly prepared cells, and the conversion was again performed in the same reaction as in Example 1-2. The reaction was almost identical and the total reaction time was shortened to 6 hr.
실시예Example 2: 배지로부터 감마아미노부틸산의 수득 2: Obtaining Gamma Aminobutyl Acid from the Medium
상기 실시예 1의 배양액의 균체를 제거하고, 가열 처리 후 탈색 과정을 수행하였다. 원심 분리하여 균체를 분리한 후 가열처리 한 배양액을 교반기를 이용하여 활성탄으로 탈색 처리 하였다. 탈색은 배양액에 1.0-15.0% (활성탄 중량/감마아미노부틸산 중량)의 활성탄을 첨가 하였다. 가열 처리 후 생성된 변성 단백질은 활성탄과 같이 여과 분리하였으며 농축하여 2-피롤리돈 합성에 사용하였다. 그 결과, 활성탄 양이 증가하면 배양액의 색이 투명해 지는 경향을 보였으며 표 1은 초기 농도 30.0% (감마아미노부틸산 중량/배양액 부피)의 배양액에 활성탄을 이용하여 탈색할 경우, 사용된 활성탄의 농도에 따른 피롤리돈 합성 회수율을 나타낸 것으로, 사용된 활성탄의 농도가 증가할수록 GABA의 손실률이 증가하여 회수율이 감소하였으며 활성탄이 부족할 경우 불순 색소를 충분이 제거하지 못해 합성 회수율이 감소하였다. 피롤리돈 합성은 하기 실시예 3-1에 기재된 방법에 따라 실시되었다.The cells of the culture medium of Example 1 were removed, and heat treatment was performed to decolorize. The cells were separated by centrifugation and the heat-treated culture was decolorized with activated carbon using a stirrer. Bleaching was added 1.0-15.0% of activated carbon (weight of activated carbon / weight of gamma aminobutyl acid) to the culture. Denatured protein produced after heat treatment was filtered off with activated carbon, concentrated and used for 2-pyrrolidone synthesis. As a result, as the amount of activated carbon increased, the color of the culture tended to become transparent. Table 1 shows the activated carbon used when bleaching with activated carbon in the culture medium at the initial concentration of 30.0% (gammaaminobutyl acid weight / culture volume). The recovery rate of pyrrolidone synthesis was shown according to the concentration of activated carbon. As the concentration of activated carbon was increased, the recovery rate was decreased by increasing GABA loss rate. Pyrrolidone synthesis was carried out according to the method described in Example 3-1 below.
94.8
감마아미노부틸산(4-아미노부틸산)의 손실을 최소화하면서 가장 효과적으로 배양액에 존재하는 불순색소를 제거하기 위해서는 2.0% (중량/중량) 활성탄을 이용하는 것이 바람직하다는 것을 알 수 있었다.
In order to minimize the loss of gamma aminobutyl acid (4-aminobutyl acid) and to most effectively remove the impurity pigments present in the culture, it was found that it is preferable to use 2.0% (weight / weight) activated carbon.
실시예Example 3: 감마아미노부틸산으로부터 2- 3: 2- from gamma aminobutyl acid 피롤리돈의Pyrrolidone 제조 Produce
실험예Experimental Example : 반응조건에 따른 감마아미노부틸산의 전환 효율 분석: Analysis of Conversion Efficiency of Gamma Aminobutyl Acid According to Reaction Conditions
본 발명자들은 감마아미노부틸산(4-아미노부틸산)이 202℃의 녹는점에서 2-피롤리돈과 물로 전환되는 사실로부터 다양한 실험을 진행하였으며, 그 결과 2-피롤리돈의 존재 하에서 4-아미노부틸산이 118℃-120℃에서 용해되기 시작하며 이때 용해된 용액은 2-피롤리돈과 물로 전환하는 사실을 발견하였다. 또한 반응 중에 생성되는 물을 감압 (10-110 mmHg) 하에서 제거 하면, 반응시간이 단축되고 4-아미노부틸산이 2-피롤리돈으로 전환되는 전환율도 높아지는 결과를 얻었으며, 반응 온도가 높을수록 반응 시간이 단축된다는 사실도 발견하였다(표 2-4). 아래의 표 2-4는 4-아미노부틸산과 2-피롤리돈을 중량비로 1:1 혼합하여 각각 120℃,130℃ 및 140℃에서 반응하면서 대기압과 감압 조건에서 시간별로 4-아미노부틸산의 잔류량(%)을 확인한 결과이다.4-아미노부틸산의 잔류량은 HPLC(Hewlett Packard 1050 series, Hewlett Packard)로 분석하였다.반응 중에 부반응은 없었으며, 반응액에서 4-아미노부틸산은 감소하고 2-피롤리돈이 증가하였다.The present inventors conducted various experiments from the fact that gamma aminobutyl acid (4-aminobutyl acid) is converted to 2-pyrrolidone and water at the melting point of 202 DEG C, and as a result, 4- in the presence of 2-pyrrolidone Aminobutyl acid began to dissolve at 118 ° C-120 ° C, when the dissolved solution was found to convert to 2-pyrrolidone and water. In addition, if the water produced during the reaction was removed under reduced pressure (10-110 mmHg), the reaction time was shortened and the conversion rate of 4-aminobutyl acid to 2-pyrrolidone was also increased. It was also found that the time was shortened (Table 2-4). Table 2-4 below is a mixture of 4-aminobutyl acid and 2-pyrrolidone in a weight ratio of 1: 1 to react at 120 ° C., 130 ° C. and 140 ° C., respectively. The residual amount of 4-aminobutyric acid was analyzed by HPLC (Hewlett Packard 1050 series, Hewlett Packard). Pyrrolidone increased.
조건Decompression
조건Decompression
Condition
조건Decompression
Condition
3-1. 4-아미노부틸산으로부터 2-3-1. 2- from 4-aminobutyl acid 피롤리돈의Pyrrolidone 제조(방법 1) Manufacture (method 1)
냉각 증류 장치가 부착된 2 L 반응기에 2-피롤리돈(㈜대상) 500 g를 넣고 교반하였다.여기에 4-아미노부틸산(㈜대상) 600 g를투입하였다.감압 (60-80 mmHg) 하에서 온도를 135℃-145℃로 올리고 교반하면 4-아미노부틸산이 용해되면서 2-피롤리돈과 물이 생성되었다.반응 중 생성된 물은 감압 하에서 증류 장치를 통해 제거하였다.반응액이 투명해지면 반응이 종결되었으므로 진공도를 서서히 높이면서 감압 (10-20 mmHg) 하에서 반응액 속에 남아있는 잔류 수분을 제거하였다.이후 생성된 2-피롤리돈을 감압증류(1-10 mmHg)하여 수집함으로써 무색의 액체인 고순도 2-피롤리돈 980 g(수율 98.5%, 순도 99.5%)을 얻었다.
500 g of 2-pyrrolidone (subject) was added to a 2 L reactor equipped with a cold distillation apparatus, followed by stirring. 600 g of 4-aminobutyl acid (subject) was added thereto. (60-80 mmHg) When the temperature was raised to 135 ° C-145 ° C under stirring and 4-aminobutyl acid was dissolved, 2-pyrrolidone and water were produced. Water generated during the reaction was removed through a distillation apparatus under reduced pressure. After the reaction was completed, the residual moisture remaining in the reaction solution was removed under reduced pressure (10-20 mmHg) while gradually increasing the vacuum degree. The 2-pyrrolidone produced was then collected by distillation under reduced pressure (1-10 mmHg) to obtain colorlessness. 980 g (yield 98.5%, purity 99.5%) of high purity 2-pyrrolidone as a liquid were obtained.
3-2. 4-3-2. 4- 아미노부틸산으로 부터From aminobutyl acid 2- 2- 피롤리돈의Pyrrolidone 제조(방법 2) Manufacture (method 2)
4-아미노부틸산 1200 g과 냉각 증류 장치가 부착된 2 L 반응기을 준비하였다.준비된 2 L의 반응기에 먼저 4-아미노부틸산 200 g를 투입하였다.반응기의 온도를 4-아미노부틸산의 녹는점(202℃)까지 올려 4-아미노부틸산이 녹으면서 2-피롤리돈과 물이 생성되었다.반응기의 온도를 자연 냉각하면서 여기에 4-아미노부틸산 200 g을 더 투입하고 용해시켰다.나머지 4-아미노부틸산 800 g도 반응기의 온도 135 -145℃ 에서 투입하여 용해시켰다.반응 중에 생성된 물은 대기압 또는 감압 (40-60 mmHg) 하에서 증류 장치를 통해 제거하였다.반응액이 투명해지면 반응이 종결되었으므로 진공도를 서서히 높이면서 20-30 mmHg 하에서 반응액 속에 남아있는 잔류 수분을 제거하였다.이후 생성된 2-피롤리돈을 감압증류(1-10 mmHg) 하여 무색의 액체인 고순도 2-피롤리돈 951 g(수율 96%, 순도 99.5%)을 수득하였다.반응 중에 생성된 물을 대기압에서 제거한 경우에도, 위의 수율 및 순도와 거의 유사한 값으로 2-피롤리돈을 얻을 수 있었으나, 반응시간이 감압 조건보다 2 시간이 더 길었다.
A 2 L reactor equipped with 1200 g of 4-aminobutyl acid and a cold distillation unit was prepared. 200 g of 4-aminobutyl acid was first introduced into a prepared 2 L reactor. The temperature of the reactor was changed to 4-aminobutyl acid. 2-pyrrolidone and water were produced as 4-aminobutyric acid melted up to (202 ° C.). 200 g of 4-aminobutyric acid was added and dissolved while naturally cooling the temperature of the reactor. 800 g of aminobutyl acid was also dissolved in the reactor at 135-145 ° C. The water produced during the reaction was removed through a distillation apparatus under atmospheric pressure or reduced pressure (40-60 mmHg). The residual water remaining in the reaction solution was removed under 20-30 mmHg while gradually increasing the vacuum degree. The 2-pyrrolidone produced was then distilled under reduced pressure (1-10 mmHg) to obtain a high-purity 2-pyrrolidone as a colorless liquid. 951 g (96% yield, purity 9 9.5%) was obtained. Even when the water produced during the reaction was removed at atmospheric pressure, 2-pyrrolidone was obtained with values similar to the above yields and purity, but the reaction time was 2 hours longer than the reduced pressure conditions. .
3-3. 4-3-3. 4- 아미노부틸산으로부터2From aminobutyl acid2 -- 피롤리돈의Pyrrolidone 제조(방법 3) Manufacture (method 3)
냉각 증류 장치가 부착된 2 L 반응기에 교반기를 멈춘 상태에서 4-아미노부틸산 1200 g을 투입하였다.반응기의 온도를 200℃-210℃까지 올리면 일부의 4-아미노부틸산이 녹으면서 2-피롤리돈과 물이 생성되었다.교반기를 서서히 가동하여 교반상태를 점검하여 교반이 가능하면 교반을 시작하였다.교반을 하면서 반응기의 온도를 자연냉각하고, 반응기의 온도 135-145℃에서 나머지 4-아미노부틸산을 용해시켰다.반응 중에 생성되는 물은 대기압 또는 40-60 mmHg 하에서 증류 장치를 통해 제거하였다.반응액이 투명해지면 반응이 종결되었으므로 진공도를 서서히 높이면서 감압 하에서 반응액 속에 남아있는 잔류 수분을 제거하였다.이후 생성된 2-피롤리돈을 감압증류(1-10 mmHg)하여 무색의 액체인 고순도 2-피롤리돈 960 g(수율 96.9%, 순도 99.5%)을 수득하였다.반응 중에 생성된 물을 대기압에서 제거한 경우에도, 위의 수율 및 순도와 거의 유사한 값으로 2-피롤리돈을 얻을 수 있었으나, 반응시간이 감압 조건보다 2 시간이 더 길었다.
1200 g of 4-aminobutyl acid was added to a 2 L reactor equipped with a cold distillation unit while the stirrer was stopped. When the temperature of the reactor was raised to 200 ° C-210 ° C, some 4-aminobutyl acid was dissolved and 2-pyrroli Money and water were produced. The stirrer was started slowly and the stirring condition was checked and stirring was started if possible. The stirring was allowed to naturally cool the reactor temperature, and the remaining 4-aminobutyl at the reactor temperature of 135-145 ° C. The acid was dissolved. The water produced during the reaction was removed through a distillation apparatus under atmospheric pressure or 40-60 mmHg. When the reaction solution became transparent, the reaction was terminated, so that the residual water remaining in the reaction solution under reduced pressure was gradually removed while increasing the vacuum degree. The resulting 2-pyrrolidone was distilled under reduced pressure (1-10 mmHg) to give 960 g (yield 96.9%, purity 99.5%) of a high purity 2-pyrrolidone as a colorless liquid. Even if removal of the water produced at atmospheric pressure, with approximately the same value as the yield and purity of the above obtained but a 2-pyrrolidone, the reaction time is no longer than 2 hours under reduced pressure conditions.
3-4. 4-3-4. 4- 아미노부틸산으로부터2From aminobutyl acid2 -- 피롤리돈의Pyrrolidone 제조 Produce
냉각 증류 장치가 부착된 2 L 반응기에 2-피롤리돈 500 g를 넣고 교반하였다.여기에 4-아미노부틸산 600 g를 투입하였다.온도를 118℃-120℃로 올리고 이 온도에서 약 10시간 동안 교반하였다.반응액의 샘플을 취해 HPLC로 분석하여 4-아미노부틸산의 잔류 농도 0.9%를 확인하고 반응을 종료하였다.반응 후 생성된 물은 20-30 mmHg 하에서 증류 장치를 통해 제거하였다.이후 반응기에 남아 있는 2-피롤리돈을 감압증류(1-10 mmHg) 하여 수집하여 무색의 액체인 고순도 2-피롤리돈 974 g(수율 97.9%, 순도 99.4%)을 수득하였다.
500 g of 2-pyrrolidone was added to a 2 L reactor equipped with a cold distillation apparatus and stirred. Here, 600 g of 4-aminobutyric acid was added. The temperature was raised to 118 ° C. to 120 ° C. and about 10 hours at this temperature. A sample of the reaction solution was taken and analyzed by HPLC to determine 0.9% of the residual concentration of 4-aminobutyl acid and the reaction was terminated. The resulting water was removed through a distillation apparatus under 20-30 mm Hg. Then, 2-pyrrolidone remaining in the reactor was collected by distillation under reduced pressure (1-10 mmHg) to obtain 974 g (yield 97.9%, purity 99.4%) of a high purity 2-pyrrolidone as a colorless liquid.
3-5. 4-3-5. 4- 아미노부틸산으로부터2From aminobutyl acid2 -- 피롤리돈의Pyrrolidone 제조 Produce
냉각 증류 장치가 부착된 2 L 반응기에 2-피롤리돈 500 g를 넣고 교반하였다.여기에 4-아미노부틸산 600 g를 투입하였다.감압 (20-30 mmHg) 하에서 온도를 118℃-120℃로 올리고 교반하면 4-아미노부틸산이 용해되면서 2-피롤리돈과 물이 생성되었다.생성된 물은 감압 하에서 증류 장치를 통해 제거하였다.약 8 시간 반응 후 반응액의 샘플을 취해 HPLC로 분석하여 4-아미노부틸산의 잔류 농도 0.3%를 확인하고 반응을 종료하였다.반응액의 진공도를 서서히 높이면서 남아있는 잔류 수분을 완전히 제거하였다.이후 반응기에 남아 있는 2-피롤리돈을 감압 증류(1-10 mmHg) 하여 무색의 액체인 고순도 2-피롤리돈 985 g(수율 99%, 순도 99.8%)을 수득하였다.
500 g of 2-pyrrolidone was added to a 2 L reactor equipped with a cold distillation apparatus, followed by stirring. Here, 600 g of 4-aminobutyl acid was added thereto. After the reaction was carried out, the 4-aminobutyl acid was dissolved to produce 2-pyrrolidone and water. The generated water was removed through a distillation apparatus under reduced pressure. After about 8 hours, a sample of the reaction solution was taken and analyzed by HPLC. The reaction was terminated after confirming the residual concentration of 4-aminobutyric acid 0.3%. The vacuum of the reaction solution was gradually increased to completely remove residual moisture. Thereafter, 2-pyrrolidone remaining in the reactor was distilled off under reduced pressure (1). -10 mmHg) to give 985 g (yield 99%, purity 99.8%) of a high purity 2-pyrrolidone as a colorless liquid.
3-6. 4-3-6. 4- 아미노부틸산으로부터2From aminobutyl acid2 -- 피롤리돈의Pyrrolidone 제조 Produce
냉각 증류 장치가 부착된 2 L 반응기에 2-피롤리돈 500 g를 넣고 교반하였다.여기에 4-아미노부틸산 600 g를 투입하였다.감압 (30-50 mmHg) 하에서 온도를 128℃-132℃로 올리고 교반하면 4-아미노부틸산이 용해되면서 2-피롤리돈과 물이 생성되었다.생성된 물은 감압 하에서 증류 장치를 통해 제거하였다.약 8 시간 반응 후 반응액의 샘플을 취해 HPLC로 분석하여 4-아미노부틸산의 잔류 농도 0.4%를 확인하고 반응을 종료하였다.반응액의 진공도를 서서히 높이면서 남아있는 잔류 수분을 완전히 제거하였다.이후 반응기에 남아 있는 2-피롤리돈을 감압 증류(1-10 mmHg) 수집하여 무색의 액체인 고순도 2-피롤리돈 980 g(수율 98.5%, 순도 99.6%)을 수득하였다.
500 g of 2-pyrrolidone was added to a 2 L reactor equipped with a cold distillation apparatus and stirred. Here, 600 g of 4-aminobutyric acid was added. The temperature was reduced to 128 ° C.-132 ° C. under reduced pressure (30-50 mmHg). After the reaction was carried out, the 4-aminobutyl acid was dissolved to produce 2-pyrrolidone and water. The generated water was removed through a distillation apparatus under reduced pressure. After about 8 hours, a sample of the reaction solution was taken and analyzed by HPLC. After confirming the residual concentration of 4-aminobutyl acid at 0.4%, the reaction was terminated. The remaining liquid was completely removed while gradually increasing the vacuum of the reaction solution. Thereafter, 2-pyrrolidone remaining in the reactor was distilled under reduced pressure (1). -10 mmHg) was collected to give 980 g (yield 98.5%, purity 99.6%) of high purity 2-pyrrolidone as a colorless liquid.
3-7. 4-3-7. 4- 아미노부틸산으로부터2From aminobutyl acid2 -- 피롤리돈의Pyrrolidone 제조 Produce
냉각 증류 장치가 부착된 2 L 반응기에 2-피롤리돈 500 g를 넣고 교반하였다.여기에 4-아미노부틸산 600 g를 투입하였다.감압 (60-80 mmHg) 하에서 온도를 138℃-142℃로 올리고 교반하면 4-아미노부틸산이 용해되면서 2-피롤리돈과 물이 생성되었다.생성된 물은 감압 하에서 증류 장치를 통해 제거하였다.약 3 시간 반응 후 반응액의 샘플을 취해 HPLC로 분석하여 4-아미노부틸산의 잔류 농도 0.3%를 확인하고 반응을 종료하였다.반응액의 진공도를 서서히 높이면서 남아있는 잔류 수분을 완전히 제거하였다.이후 반응기에 남아 있는 2-피롤리돈을 감압 증류 (1-10 mmHg) 수집하여 무색의 액체인 고순도 2-피롤리돈 985 g(수율 99%, 순도 99.1%)을 수득하였다.
500 g of 2-pyrrolidone was added to a 2 L reactor equipped with a cold distillation apparatus, followed by stirring. Here, 600 g of 4-aminobutyl acid was added thereto. The temperature was reduced to 138 ° C.-142 ° C. under reduced pressure (60-80 mmHg). After the reaction was carried out, the 4-aminobutyl acid was dissolved to produce 2-pyrrolidone and water. The generated water was removed through a distillation apparatus under reduced pressure. After about 3 hours, a sample of the reaction solution was taken and analyzed by HPLC. The reaction was terminated after confirming the residual concentration of 4-aminobutyric acid 0.3%. The vacuum of the reaction solution was gradually increased to completely remove residual moisture. Thereafter, 2-pyrrolidone remaining in the reactor was distilled under reduced pressure (1). -10 mmHg) was collected to obtain 985 g (yield 99%, purity 99.1%) of high purity 2-pyrrolidone as a colorless liquid.
3-8. 4-3-8. 4- 아미노부틸산으로부터2From aminobutyl acid2 -- 피롤리돈의Pyrrolidone 제조 Produce
냉각 증류 장치가 부착된 2 L 반응기에 2-피롤리돈 500 g를 넣고 교반하였다.여기에 4-아미노부틸산 600 g를 투입하였다.감압 (70-110 mmHg) 하에서 온도를 145℃-148℃로 올리고 교반하면 4-아미노부틸산이 용해되면서 2-피롤리돈과 물이 생성되었다.생성된 물은 감압 하에서 증류 장치를 통해 제거하였다.약 2 시간 반응 후 반응액의 샘플을 취해 HPLC로 분석하여 4-아미노부틸산의 잔류 농도 0.3%를 확인하고 반응을 종료하였다.반응액의 진공도를 서서히 높이면서 남아있는 잔류 수분을 완전히 제거하였다.이후 반응기에 남아 있는 2-피롤리돈을 감압 증류 (1-10mmHg) 하여 수집함으로써 무색의 액체인 고순도 2-피롤리돈 978 g(수율 98.3%, 순도 99.3%)을 수득하였다.
500 g of 2-pyrrolidone was added to a 2 L reactor equipped with a cold distillation apparatus and stirred. 600 g of 4-aminobutyl acid was added thereto. The temperature was reduced from 145 ° C to 148 ° C under reduced pressure (70 to 110 mmHg). After the reaction was carried out, the 4-aminobutyl acid was dissolved to produce 2-pyrrolidone and water. The produced water was removed through a distillation apparatus under reduced pressure. After about 2 hours, a sample of the reaction solution was taken and analyzed by HPLC. The reaction was terminated after confirming the residual concentration of 4-aminobutyric acid 0.3%. The vacuum of the reaction solution was gradually increased to completely remove residual moisture. Thereafter, 2-pyrrolidone remaining in the reactor was distilled under reduced pressure (1). -10 mmHg) was collected to give 978 g (yield 98.3%, purity 99.3%) of high purity 2-pyrrolidone as a colorless liquid.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Claims (8)
(a) 글루타민산(glutamic acid) 또는 글루타민산염을 포함하는 배지에서 전세포 촉매로서 글루타민산 디카르복실라제(glutamate decarboxylase)를 보유하고 있는 미생물을 배양하여 4-아미노부틸산을 제조하는 단계;
(b) 상기 4-아미노부틸산을 상기 배지로부터 여과하여 수득하는 단계; 및
(c) 상기 4-아미노부틸산을 2-피롤리돈으로 전환하는 단계.
Method for preparing 2-pyrrolidone, comprising the following steps:
(a) culturing a microorganism containing glutamate decarboxylase as a whole-cell catalyst in a medium containing glutamic acid or glutamate to produce 4-aminobutyl acid;
(b) obtaining the 4-aminobutyl acid from the medium by filtration; And
(c) converting the 4-aminobutyl acid to 2-pyrrolidone.
The method of claim 1, wherein the microorganism is a microorganism pretreated with a hydrophobic organic solvent.
The method of claim 1, wherein step (a) is carried out in the range of pH 3.0-8.0 buffer area.
The method of claim 1, further comprising the step of removing activated pigment from the medium by treating the medium with activated carbon between steps (a) and (b).
5. The method according to claim 4, wherein the activated carbon is added at 1.5-4.0 wt% based on the weight of 4-aminobutyl acid in the medium.
The method of claim 1, further comprising, after step (b), separating the whole cell catalyst and reusing the separated whole cell catalyst.
The method of claim 1 wherein the 4-aminobutyl acid used in step (c) is not pre-purified.
(c-1) 4-아미노부틸산 및 2-피롤리돈이 혼합되어 있는 반응 조성물을 형성하는 단계;
(c-2) 상기 반응 조성물을 가열 처리하여 락탐 고리화 반응을 실시하여 2-피롤리돈 및 물을 생성시키는 단계; 및
(c-3) 상기 2-피롤리돈을 분리하는 단계.The method of claim 1, wherein step (c) comprises the following substeps:
(c-1) forming a reaction composition in which 4-aminobutyl acid and 2-pyrrolidone are mixed;
(c-2) heat treating the reaction composition to perform a lactam cyclization reaction to produce 2-pyrrolidone and water; And
(c-3) separating the 2-pyrrolidone.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020110042255A KR101229377B1 (en) | 2011-05-04 | 2011-05-04 | Process for Preparing 2-Pyrrolidone Using Biomass |
| CN201180047545.2A CN103189520B (en) | 2010-09-30 | 2011-09-30 | Method for preparing 2-pyrrolidone using biomass |
| US13/876,926 US8728775B2 (en) | 2010-09-30 | 2011-09-30 | Method for preparing 2-pyrrolidone using a microorganism containing glutamate decarboxylase |
| EP11829626.8A EP2623608B1 (en) | 2010-09-30 | 2011-09-30 | Method for preparing 2-pyrrolidone using biomass |
| PCT/KR2011/007268 WO2012044120A2 (en) | 2010-09-30 | 2011-09-30 | Method for preparing 2-pyrrolidone using biomass |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020110042255A KR101229377B1 (en) | 2011-05-04 | 2011-05-04 | Process for Preparing 2-Pyrrolidone Using Biomass |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20120124552A KR20120124552A (en) | 2012-11-14 |
| KR101229377B1 true KR101229377B1 (en) | 2013-02-05 |
Family
ID=47509863
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020110042255A Active KR101229377B1 (en) | 2010-09-30 | 2011-05-04 | Process for Preparing 2-Pyrrolidone Using Biomass |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR101229377B1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115851843B (en) * | 2022-05-27 | 2025-09-26 | 湖北葛店人福药业有限责任公司 | An enzyme-catalyzed synthesis system of levonorgestrel intermediate and its application |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009159840A (en) | 2007-12-28 | 2009-07-23 | National Institute Of Advanced Industrial & Technology | Synthesis method of 2-pyrrolidone to polyamide 4, N-methyl-2-pyrrolidone and polyvinylpyrrolidone from biomass |
| KR20090128767A (en) * | 2008-06-11 | 2009-12-16 | 한국화학연구원 | Method for preparing nylon 4 using enzyme reaction and chemical reaction from biomass |
| KR20110039901A (en) * | 2009-10-12 | 2011-04-20 | 현대자동차주식회사 | Nylon-4 Composite Composition |
-
2011
- 2011-05-04 KR KR1020110042255A patent/KR101229377B1/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009159840A (en) | 2007-12-28 | 2009-07-23 | National Institute Of Advanced Industrial & Technology | Synthesis method of 2-pyrrolidone to polyamide 4, N-methyl-2-pyrrolidone and polyvinylpyrrolidone from biomass |
| KR20090128767A (en) * | 2008-06-11 | 2009-12-16 | 한국화학연구원 | Method for preparing nylon 4 using enzyme reaction and chemical reaction from biomass |
| KR20110039901A (en) * | 2009-10-12 | 2011-04-20 | 현대자동차주식회사 | Nylon-4 Composite Composition |
Non-Patent Citations (1)
| Title |
|---|
| 보고서 * |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20120124552A (en) | 2012-11-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11198890B2 (en) | Preparation of (R)-3-hydroxybutyric acid or its salts by one-step fermentation | |
| US8728775B2 (en) | Method for preparing 2-pyrrolidone using a microorganism containing glutamate decarboxylase | |
| JP2021098720A (en) | Preparation of caprolactam from 6-amino caproic acid obtained in fermentation process | |
| US11060118B2 (en) | Production of vanillin by fermentation | |
| JP2011522557A5 (en) | ||
| JP2009159840A (en) | Synthesis method of 2-pyrrolidone to polyamide 4, N-methyl-2-pyrrolidone and polyvinylpyrrolidone from biomass | |
| KR101229377B1 (en) | Process for Preparing 2-Pyrrolidone Using Biomass | |
| CN102433360B (en) | A method for producing α-ketobutyric acid using L-threonine as a substrate | |
| CN106011191A (en) | Method for producing 5-aminopentanoic acid by whole-cell biocatalysis | |
| FR2990696A1 (en) | TURANOSE-PRODUCING STRAIN AND USES | |
| JP2011211993A (en) | METHOD FOR PRODUCING γ-AMINOBUTYRIC ACID (GABA) BY MICROORGANISM | |
| CN113265431B (en) | A kind of method of multi-enzyme cascade preparing p-coumaric acid | |
| KR101058491B1 (en) | BAHA Manufacturing Method | |
| CN110540500B (en) | Method for extracting and purifying diamine salt-impurity crystallization | |
| KR101408103B1 (en) | Methods for Preparing High-Concentrated GABA | |
| CN119955765B (en) | L-carnosine, preparation method thereof, and aminopeptidase | |
| CN115786151B (en) | Saccharomyces cerevisiae recombinant strain for producing retinaldehyde and construction method thereof | |
| CN119604612A (en) | Variant nitrile hydratase, microorganism expressing the enzyme and use thereof in amide synthesis | |
| JP2012214496A (en) | Method for synthesizing 2-pyrrolidone or polyamide-4,n-methyl-2-pyrrolidone, or polyvinyl pyrrolidone from biomass | |
| WO2014198871A2 (en) | Method for biocatalytic synthesis of substituted or unsubstituted phenylacetic acids and ketones having enzymes of microbial styrene degradation | |
| JP2011045301A (en) | Yeast having tyrosinase gene integrated into chromosome |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20110504 |
|
| PA0201 | Request for examination | ||
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20121031 |
|
| PG1501 | Laying open of application | ||
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130129 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20130130 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| FPAY | Annual fee payment |
Payment date: 20151228 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
Payment date: 20151228 Start annual number: 4 End annual number: 4 |
|
| FPAY | Annual fee payment |
Payment date: 20170102 Year of fee payment: 5 |
|
| PR1001 | Payment of annual fee |
Payment date: 20170102 Start annual number: 5 End annual number: 5 |
|
| FPAY | Annual fee payment |
Payment date: 20171220 Year of fee payment: 6 |
|
| PR1001 | Payment of annual fee |
Payment date: 20171220 Start annual number: 6 End annual number: 6 |
|
| FPAY | Annual fee payment |
Payment date: 20191212 Year of fee payment: 8 |
|
| PR1001 | Payment of annual fee |
Payment date: 20191212 Start annual number: 8 End annual number: 8 |
|
| PR1001 | Payment of annual fee |
Payment date: 20201214 Start annual number: 9 End annual number: 9 |
|
| PR1001 | Payment of annual fee |
Payment date: 20220103 Start annual number: 10 End annual number: 10 |
|
| PR1001 | Payment of annual fee |
Payment date: 20230102 Start annual number: 11 End annual number: 11 |
|
| PR1001 | Payment of annual fee |
Payment date: 20240102 Start annual number: 12 End annual number: 12 |
|
| PR1001 | Payment of annual fee |
Payment date: 20241230 Start annual number: 13 End annual number: 13 |