[go: up one dir, main page]

KR101421559B1 - Organic devices comprising doped organic semiconductor - Google Patents

Organic devices comprising doped organic semiconductor Download PDF

Info

Publication number
KR101421559B1
KR101421559B1 KR1020100005174A KR20100005174A KR101421559B1 KR 101421559 B1 KR101421559 B1 KR 101421559B1 KR 1020100005174 A KR1020100005174 A KR 1020100005174A KR 20100005174 A KR20100005174 A KR 20100005174A KR 101421559 B1 KR101421559 B1 KR 101421559B1
Authority
KR
South Korea
Prior art keywords
organic
doped
semiconductor
organic semiconductor
charge mobility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020100005174A
Other languages
Korean (ko)
Other versions
KR20110085402A (en
Inventor
김영규
남성호
박지호
신민정
김화정
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020100005174A priority Critical patent/KR101421559B1/en
Publication of KR20110085402A publication Critical patent/KR20110085402A/en
Application granted granted Critical
Publication of KR101421559B1 publication Critical patent/KR101421559B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/1307Organic Field-Effect Transistor [OFET]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 전하이동도가 향상된 유기 소자에 관한 것으로, 보다 구체적으로는 반도체성 고분자에 유기산기를 포함하는 유도체를 도핑한 유기반도체를 포함하는 유기소자에 관한 것이다.

본 발명에 의하면, 도핑된 유기반도체를 유기소자에 포함시킴으로써, 전하이동도를 현저히 높일 수 있어, 유기태양전지, 유기트랜지스터 또는 유기발광다이오드 등과 같은 유기소자들의 효율을 증대시킬 수 있는 효과가 있다.
The present invention relates to an organic device having improved charge mobility and, more particularly, to an organic device comprising an organic semiconductor doped with a derivative containing an organic acid group in a semiconducting polymer.

According to the present invention, by including a doped organic semiconductor in an organic device, the charge mobility can be remarkably increased, and the efficiency of organic devices such as organic solar cells, organic transistors, organic light emitting diodes and the like can be increased.

Description

도핑된 유기반도체를 포함하는 유기소자{Organic devices comprising doped organic semiconductor}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic device comprising a doped organic semiconductor,

본 발명은 전하이동도가 향상된 유기 소자에 관한 것으로, 보다 구체적으로는 반도체성 고분자에 유기산기를 포함하는 유도체를 도핑한 유기반도체를 포함하는 유기소자에 관한 것이다.The present invention relates to an organic device having improved charge mobility and, more particularly, to an organic device comprising an organic semiconductor doped with a derivative containing an organic acid group in a semiconducting polymer.

일반적으로 유기 반도체 소자는 유기물의 전자적인 에너지 준위인 HOMO(highest occupied molecular orbital) 준위와 LUMO(lowest unoccupied molecular orbital) 준위에 연관된 전기적인 반도체성을 이용한 소자로서, 유기 다이오드 소자(organic diode device)와 유기 트랜지스터 소자(organic transistor device) 등이 이에 포함된다. 구체적인 유기 다이오드 소자의 예로는 유기 전계 발광 다이오드(Organic Light Emitting Diode 또는 Organic Electroluminescent diode)가 있으며, 유기 트랜지스터 소자로는 그 구조에 따라 유기 FET (Field Effect Transistor), 유기 TFT(Thin Film Transistor), 유기 SIT(Static Induction Transistor), 유기 탑게이트SIT(Top Gate SIT), 유기 트라이오드(Triode), 유기 그리드 트랜지스터(Grid Transistor), 유기 싸이리스터(Thyristor), 유기 바이폴라트랜지스터(Bipolar Transistor) 등이 있다.
In general, an organic semiconductor device is an element using electrical semiconductivity associated with the highest occupied molecular orbital (HOMO) level and the lowest unoccupied molecular orbital (HUMO) level, which are electronic energy levels of organic materials. Organic transistor devices and the like. Examples of specific organic diode devices include organic light emitting diodes (OLED) or organic electroluminescent diodes. Organic transistor devices include organic FETs (Field Effect Transistors), organic TFTs (Thin Film Transistors), organic A top gate SIT, an organic triode, an organic grid transistor, an organic thyristor, and an organic bipolar transistor.

종래에 유기 반도체 소자는 기존에 널리 사용되는 무기 반도체 소자에 비해 전하이동도가 낮아 반도체 소자로서의 그 활용성이 떨어진다고 여겨졌으나, 최근에 들어서는 유기 반도체의 전하 이동도를 높이는 기술을 개발하여 유기 반도체 소자의 효율을 향상 시키려는 연구가 활발하게 이루어지고 있다.
Conventionally, it has been considered that organic semiconductor devices have lower charge mobility than conventional inorganic semiconductor devices, and their utilization as a semiconductor device is lowered. However, recently, a technology for increasing the charge mobility of organic semiconductors has been developed, Researches have been actively carried out to improve the efficiency of the system.

하지만, 기존의 기술들은 유기 반도체 소자의 전하이동도를 높일 수는 있었으나, 동시에 반도체적인 특성을 유지하지 못하는 문제가 있다.
However, the conventional techniques can increase the charge mobility of the organic semiconductor device, but at the same time, the semiconductor characteristics can not be maintained.

본 발명의 본 발명자들 역시 유기 반도체의 전하이동도를 향상 시켜 유기 반도체 소자의 효율을 개선하기 위한 연구를 진행하던 중 본 발명에 이르게 되었다.
The inventors of the present invention have also made efforts to improve the efficiency of the organic semiconductor device by improving the charge mobility of the organic semiconductor, and have come to the present invention.

본 발명은 기존 유기 반도체 소자가 무기 반도체 소자에 비해 전하이동도가 낮아 그 효율이 낮게 나오는 문제점을 개선하기 위해서, 간편하면서도 경제적인 방법으로 전하이동도를 높여 그 효율을 증대시킬 수 있는 유기소자를 제공하는 데 그 목적이 있다.In order to solve the problem that conventional organic semiconductor devices have lower charge mobility than inorganic semiconductor devices, the present invention provides an organic device capable of increasing the charge mobility by a simple and economical method, The purpose is to provide.

본 발명은 전하이동도가 향상된 유기 소자에 관한 것으로, 보다 구체적으로는 반도체성 고분자에 유기산기를 포함하는 유도체를 도핑한 유기반도체를 포함하는 유기소자에 관한 것이다. 상기 유기산기에는 술폰산기(sulfonic acid) , 인산기(phosphoric acid)등이 있다.
The present invention relates to an organic device having improved charge mobility and, more particularly, to an organic device comprising an organic semiconductor doped with a derivative containing an organic acid group in a semiconducting polymer. The organic acid groups include sulfonic acid groups, phosphoric acid groups, and the like.

본 발명은 유기소자의 전하이동도를 높이기 위하여, 유기소자에 전하이동도를 높이는 물질을 도핑한 유기반도체를 유기활성층으로 포함하는 것을 특징으로 한다. 본 발명에서는 전하이동도를 높이기 위해 도핑하는 물질로서, 술폰산기, 인산기 등 유기산기가 포함된 유도체를 사용한다.
The present invention is characterized in that an organic semiconductor doped with a material for increasing charge mobility is included as an organic active layer in order to increase the charge mobility of the organic device. In the present invention, a derivative containing an organic acid group such as a sulfonic acid group or a phosphoric acid group is used as a doping substance for increasing charge mobility.

상기 술폰산기를 포함하는 유도체로는 예를 들면, 에틸벤젠술폰산(Ethylbenzenesulfonic acid, EBSA), 옥틸벤젠술폰산 (octylbezenesulfonic acid , OBSA), 도데실벤젠술폰산 (dodecylbenzenesulfonic acid, DBSA), 캠퍼술폰산(camphor sulfonic acid ,CSA) 등이 있다.
Examples of the sulfonate group-containing derivatives include ethylbenzenesulfonic acid (EBSA), octylbezenesulfonic acid (OBSA), dodecylbenzenesulfonic acid (DBSA), camphor sulfonic acid, CSA).

본 발명에 따른 유기소자에서 도핑된 유기반도체로 이루어진 유기활성층의 형성은, 도핑하는 물질과 반도체성 고분자로 이루어진 유기반도체가 녹아있는 용액을 코팅하고, 용매를 증발시켜 유기박막을 형성시킴으로써 가능하다. 상기 반도체성 고분자는 고분자 단독 또는 고분자와 단분자 등의 혼합 형태 등 특별히 제한되는 것은 아니다.
In the organic device according to the present invention, the organic active layer made of the doped organic semiconductor can be formed by coating a solution containing a doping material and an organic semiconductor made of a semiconductive polymer, and evaporating the solvent to form an organic thin film. The semiconducting polymer is not limited to a polymer alone or a mixed form of a polymer and a single molecule.

본 발명에서 도핑(doping)은 기존의 고분자를 도핑한 후 반도체가 아닌 전도체가 되는 도핑방법과는 달리 반도체적인 특성을 유지하면서 전하의 이동도를 높이기 위해 부분 도핑(Partial Doping)방법을 사용하는 것이 바람직하다. 상기 부분 도핑은 고분자 사슬에 도핑하는 물질이 부분적으로 결합을 이루는 것을 특징으로 하며, 고분자 사슬 전부에 도핑하는 것과는 차이가 있다.
In the present invention, the doping is performed by using a partial doping method in order to increase the mobility of the charge while maintaining the characteristics of the semiconductor, unlike the doping method in which the conventional polymer is doped and the semiconductor is not a semiconductor. desirable. The partial doping is characterized in that the substance to be doped in the polymer chain is partially bonded, and differs from doping in the entire polymer chain.

상기 도핑은 도핑율(doping ratio)을 0.01 ~ 20%로 하는 것이 바람직하나, 특별히 제한되는 것은 아니다.
The doping is preferably performed at a doping ratio of 0.01 to 20%, but is not particularly limited.

본 발명에 따른 유기 소자는 유기반도체를 이용하는 유기반도체 소자로서, 유기물의 전자적인 에너지 준위인 HOMO(highest occupied molecular orbital) 준위와 LUMO(lowest unoccupied molecular orbital) 준위에 연관된 전기적인 반도체성을 이용한 소자라면 어떠한 것이든 가능하며, 그 종류에 있어 특별히 제한되는 것은 아니다. 유기 소자의 종류로는 대표적으로 유기태양전지, 유기트랜지스터, 유기발광다이오드 등이 있다.
An organic device according to the present invention is an organic semiconductor device using an organic semiconductor. When an organic semiconductor device that utilizes the highest occupied molecular orbital (HOMO) level and the lowest unoccupied molecular orbital (LUMO) Any type is possible and is not particularly limited in its kind. Organic solar cells, organic transistors, organic light emitting diodes and the like are typical examples of organic devices.

상기 유기태양전지는 가령 유리, 금속 또는 플라스틱 등으로 이루어진 기판 상에 하부전극을 형성하고, 상기 하부전극 위에 정공 수송층이 되는 고분자를 코팅한 후, 상기 정공 수송층 위에 전하이동성을 향상 시키기 위하여 도핑된 유기활성층을 형성한 다음, 상기 도핑된 유기활성층 위에 상부전극을 형성하여 제조될 수 있다.
The organic solar cell is formed by forming a lower electrode on a substrate made of, for example, glass, metal or plastic, coating a polymer as a hole transporting layer on the lower electrode, Forming an active layer, and then forming an upper electrode on the doped organic active layer.

또한, 상기 유기트랜지스터는 예를 들면, 유리, 금속 또는 플라스틱 등으로 이루어진 기판 위에 하부전극을 형성하고, 상기 하부전극 상에 절연체(Insulator)를 300nm 내지 1㎛ 의 두께로 코팅한 다음, 상기 절연체 위에 도핑된 유기반도체를 코팅한 후 용매를 증발시켜 도핑된 유기반도체로 이루어진 정공운반층을 형성한 후, 마지막으로 진공상태에서 상부전극(Ag 또는 Au)을 형성함으로써 제조될 수 있다.
The organic transistor may be formed, for example, by forming a lower electrode on a substrate made of glass, metal or plastic, coating an insulator on the lower electrode to a thickness of 300 nm to 1 μm, A hole transporting layer made of a doped organic semiconductor is formed by evaporating a solvent after coating a doped organic semiconductor, and finally, an upper electrode (Ag or Au) is formed in a vacuum state.

또한, 상기 유기발광다이오드는 유리, 금속 또는 플라스틱 등으로 이루어진 기판 위에 하부전극을 형성한 후, 상기 하부전극 상에 도핑된 유기반도체를 코팅하고 용매를 증발시켜 도핑된 유기반도체층을 형성한 다음, 진공상태에서 상부전극(340)으로서 Ca과 Ag를 차례로 증착시킴으로써 제조될 수 있다.
The organic light emitting diode may be formed by forming a lower electrode on a substrate made of glass, metal or plastic, coating a doped organic semiconductor on the lower electrode, evaporating the solvent to form a doped organic semiconductor layer, And then depositing Ca and Ag as the upper electrode 340 in the vacuum state in this order.

본 발명에 의하면, 도핑된 유기반도체를 유기소자에 포함시킴으로써, 전하이동도를 현저히 높일 수 있어, 유기태양전지, 유기트랜지스터 또는 유기발광다이오드 등과 같은 유기소자들의 효율을 증대시킬 수 있는 효과가 있다.According to the present invention, by including a doped organic semiconductor in an organic device, the charge mobility can be remarkably increased, and the efficiency of organic devices such as organic solar cells, organic transistors, organic light emitting diodes and the like can be increased.

도 1은 본 발명에 따른 도핑된 유기반도체를 포함하는 유기태양전지의 모식도를 나타낸 것이다.
도 2는 본 발명에 따른 도핑된 유기반도체를 포함하는 유기태양전지에서 에틸벤젠술폰산(Ethylbenzenesulfonic acid ,EBSA)의 도핑 전·후(0.1%)의 UV-Vis spectrum의 변화를 나타낸 그래프이다.
도 3은 도핑된 유기반도체를 이용한 유기트랜지스터의 모식도를 나타낸 것이다.
도 4는 도핑된 유기반도체를 이용한 유기다이오드소자의 모식도를 나타낸 것이다.
1 is a schematic diagram of an organic solar cell including a doped organic semiconductor according to the present invention.
2 is a graph showing changes in UV-Vis spectrum before and after doping (0.1%) of ethylbenzenesulfonic acid (EBSA) in an organic solar cell containing a doped organic semiconductor according to the present invention.
3 is a schematic view of an organic transistor using a doped organic semiconductor.
4 is a schematic view of an organic diode device using a doped organic semiconductor.

이하, 본 발명을 실시예를 통하여 상세히 설명하도록 한다. 하기 실시예는 본 발명을 설명하기 위한 일 예에 지나지 않으며, 이에 의하여 본 발명의 범위가 제한되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. The following examples are only illustrative of the present invention, and the scope of the present invention is not limited thereby.

<실시예><Examples>

실시예Example 1:  One: EBSAEBSA To 도핑한Doped P3HTP3HT -- PCBMPCBM -- EBSAEBSA 유기태양전지( Organic solar cell OrganicOrganic SolarSolar CellCell ))

도 1은 본 발명에 따른 도핑된 유기반도체를 포함하는 유기태양전지를 나타낸 것이다. 유리 기판(100) 상에 인듐주석산화물(Indium Tin Oxide,ITO)을 코팅하여 하부전극(110)을 형성하고, 상기 하부전극(110) 위에 정공 수송층(120)이 되는 Poly (3,4-ethylenedioxy thiophene):poly(styrene sulfonate)[PEDOT:PSS] 고분자를 코팅한 후, 상기 정공 수송층(120) 위에 Poly(3-hexylthiophene) [P3HT] 및 [6,6]-phenyl-C61-butyric acid methyl ester [PCBM]의 고분자 혼합 용액을 코팅한 후 에틸벤젠술폰산(Ethylbenzenesulfonic acid ,EBSA)을 도핑하여 도핑된 유기활성층(130)을 형성한 다음, 상기 도핑된 유기활성층(130) 위에 알루미늄을 진공 열 증착하여 상부전극(140)을 형성하여 유기태양전지를 제조하였다.
1 shows an organic solar cell comprising a doped organic semiconductor according to the present invention. The lower electrode 110 is formed by coating indium tin oxide (ITO) on the glass substrate 100 and a poly (3,4-ethylenedioxy poly (3-hexylthiophene) [P3HT] and [6,6] -phenyl-C61-butyric acid methyl ester (PES) on the hole transport layer 120. The poly (styrene sulfonate) (PCBM), doped with ethylbenzenesulfonic acid (EBSA) to form a doped organic active layer 130, and then aluminum is vacuum deposited on the doped organic active layer 130 An upper electrode 140 was formed to produce an organic solar cell.

상기와 같이 제조된 유기태양전지는 빛을 받아 전력을 생성하게 되는데, 특히 유기활성층(130)의 전하 이동도가 높을수록 전력 생성 효율을 높일 수 있으며, 이는 상기 유기활성층(130)에 술폰산기를 포함하는 유도체인 에틸벤젠술폰산(Ethylbenzenesulfonic acid ,EBSA)을 도핑함으로써 가능하였다. 도 2에 의하면, 술폰산기를 포함하는 유도체인 에틸벤젠술폰산(Ethylbenzenesulfonic acid ,EBSA)의 도핑 전·후의 UV-Vis spectrum의 변화를 확인할 수 있다.
In particular, as the charge mobility of the organic active layer 130 is higher, the power generation efficiency can be improved. This is because the organic active layer 130 includes a sulfonic acid group (Ethylbenzenesulfonic acid, EBSA), which is a derivative that can be used in the present invention. FIG. 2 shows changes in the UV-Vis spectrum before and after doping of ethylbenzenesulfonic acid (EBSA), which is a derivative containing a sulfonic acid group.

또한, 하기 [표 1]은 Solar simulator를 이용하여 빛에 의해 유기태양전지에서 생성되는 전력을 EBSA의 도핑율(doping ratio)에 따라 측정한 측정값을 나타낸 것이며, EBSA의 도핑율이 높을수록 유기태양전지에서 생성되는 전력이 증가함을 확인할 수 있다.
[Table 1] shows measured values of electric power generated by organic solar cells by using a solar simulator according to the doping ratio of EBSA. The higher the doping ratio of EBSA, the more organic It can be seen that the power generated from the solar cell increases.

EBSA의 도핑율에 따른 유기태양전지에서의 전력 생성 효율 Power generation efficiency in organic solar cell with doping ratio of EBSA EBSA doping ratio (%)EBSA doping ratio (%) Power Conversion EfficiencyPower Conversion Efficiency 00 0.550.55 0.10.1 0.630.63 0.50.5 0.770.77

실시예Example 2:  2: EBSAEBSA To 도핑한Doped P3HTP3HT -- EBSAEBSA 유기트랜지스터 Organic transistor

도 3은 도핑된 유기반도체를 이용한 유기트랜지스터의 모식도를 나타낸 것이다.3 is a schematic view of an organic transistor using a doped organic semiconductor.

도핑된 유기반도체를 이용한 유기트랜지스터는 다음과 같은 방법으로 제작하였다. 먼저, 유리기판(200) 위에 인듐주석산화물(Indium Tin Oxide,ITO)을 코팅하여 하부전극(210)을 형성하고, 상기 하부전극(210) 상에 절연체(Insulator)(220)를 300 내지 1㎛ 의 두께로 코팅하였다. 상기 절연체(220) 위에 에틸벤젠술폰산(Ethyl benzene sulfonic acid ,EBSA)를 도핑 시킨 poly(3-hexylthiophene) (P3HT)을 50nm 의 두께로 코팅한 후 50℃에서 약 15분간 용매를 증발시켜 도핑된 유기반도체로 이루어진 정공운반층(230)을 형성하였다. 그리고, 10-6 Torr 이하의 진공상태에서 상부전극(Ag 또는 Au)(240)을 형성하여 도핑된 유기반도체를 포함하는 유기트랜지스터를 제조하였다.
An organic transistor using a doped organic semiconductor was fabricated by the following method. First, a lower electrode 210 is formed by coating indium tin oxide (ITO) on a glass substrate 200, and an insulator 220 is formed on the lower electrode 210 in a thickness of 300 to 1 占 퐉 Lt; / RTI &gt; Poly (3-hexylthiophene) (P3HT) doped with ethyl benzene sulfonic acid (EBSA) was coated on the insulator 220 to a thickness of 50 nm and the solvent was evaporated at 50 ° C for about 15 minutes to form a doped organic Thereby forming a hole transporting layer 230 made of a semiconductor. Then, an upper electrode (Ag or Au) 240 was formed in a vacuum state of 10 -6 Torr or less to prepare an organic transistor including a doped organic semiconductor.

도핑된 유기반도체를 포함하는 유기트랜지스터의 도핑율(doping rate)에 따른 전하이동도는 하기 [표 2]에 나타난 바와 같다.
The charge mobility according to the doping rate of an organic transistor including a doped organic semiconductor is shown in Table 2 below.

도핑된 유기반도체를 포함하는 유기트랜지스터의 도핑율(doping rate)에 따른 전하이동도 변화Change in charge mobility according to the doping rate of an organic transistor including a doped organic semiconductor EBSA 도핑율 (%)EBSA doping rate (%) 전하이동도 [cm2 / Vs]Charge mobility [cm 2 / Vs] 0.00.0 2.0E-42.0E-4 0.10.1 2.3E-42.3E-4 0.30.3 2.6E-42.6E-4 0.50.5 6.9E-46.9E-4 0.70.7 2.9E-22.9E-2 1.01.0 3.0E-23.0E-2

상기 [표 2]에 의하면, 본 발명에 따른 도핑된 유기반도체를 포함하는 유기트랜지스터는 도핑율이 증가할수록, 전하이동도가 비례하여 증가함을 확인할 수 있다.
According to Table 2, it can be seen that the charge mobility increases proportionally with the doping rate of the organic transistor including the doped organic semiconductor according to the present invention.

실시예Example 3:  3: CSACSA To 도핑한Doped F8BT- F8BT- CSACSA 유기다이오드소자 Organic diode element

도 4는 도핑된 유기반도체를 이용한 유기다이오드소자의 모식도를 나타낸 것이다.4 is a schematic view of an organic diode device using a doped organic semiconductor.

도핑된 유기반도체를 이용한 유기다이오드소자는 다음과 같은 방법으로 제작하였다. 유리기판(300) 위에 인듐주석산화물(Indium Tin Oxide,ITO)을 코팅하여 하부전극(310)을 형성한 후, 상기 하부전극(310) 상에 Champhor-10-sulfonic acid (CSA)를 도핑시킨 n-type 물질인 poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT)를 코팅하고 50℃에서 약 15분간 용매를 증발시켜 도핑된 유기반도체층(330)을 형성하였다. 마지막으로, 10-6 Torr 이하의 진공상태에서 상부전극(340)으로서 Ca과 Ag를 차례로 증착시켜 도핑된 유기반도체를 포함하는 유기다이오드소자를 제조하였다.
Organic diode devices using doped organic semiconductors were fabricated by the following method. Indium tin oxide (ITO) is coated on the glass substrate 300 to form the lower electrode 310 and then n-doped with Champhor-10-sulfonic acid (CSA) -type material poly (9,9-dioctylfluorene- alt- benzothiadiazole) (F8BT), and the solvent was evaporated at 50 ° C for about 15 minutes to form a doped organic semiconductor layer 330. Finally, Ca and Ag were sequentially deposited as the upper electrode 340 in a vacuum state of 10 -6 Torr or less to prepare an organic diode device including a doped organic semiconductor.

도핑된 유기반도체를 포함하는 유기다이오드소자의 도핑율(doping rate)에 따른 전하이동도는 하기 [표 3]에 나타난 바와 같다.
The charge mobility according to the doping rate of the organic diode device including the doped organic semiconductor is shown in Table 3 below.

도핑된 유기반도체를 포함하는 유기다이오드소자의 도핑율(doping rate)에 따른 전하이동도 변화Change in charge mobility according to doping rate of organic diode device including doped organic semiconductor CSA 도핑율 (%)CSA doping rate (%) 전하이동도 [cm2 / Vs]Charge mobility [cm 2 / Vs] 0.00.0 5E-85E-8 10.010.0 1E-71E-7

상기 [표 3]에 의하면, CSA를 유기반도체에 도핑하기 전 상태(CSA 도핑율 0%)에서의 유기발광다이오드의 전하이동도는 5E-8이었으나, CSA를 도핑한 후(10%) 유기발광다이오드의 전하이동도는 1E-7로 증가함을 확인할 수 있다.
According to Table 3, the charge mobility of the organic light emitting diode in the state before the doping of CSA into the organic semiconductor (CSA doping rate of 0%) was 5E-8, but after the doping of CSA (10% The charge mobility of the diode increases to 1E-7.

이상에 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 본 발명의 범위는 상기의 상세한 설명보다는 후술할 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
As described above, those skilled in the art will understand that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It will be understood by those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention as defined by the appended claims and their equivalents. .

Claims (7)

폴리(3-헥실티오펜) 또는 폴리(9,9-디옥틸플루오렌-알트-벤조티아디아졸)를 포함하는 고분자 단독 또는 고분자와 단분자의 혼합 형태인 반도체성 고분자에,
에틸벤젠술폰산 또는 옥틸벤젠술폰산을 포함하는 유도체를,
도핑율이 0.01 내지 10%로 부분 도핑한 유기반도체를 포함하는, 유기소자
A polymer comprising a poly (3-hexylthiophene) or poly (9,9-dioctylfluorene-alt-benzothiadiazole) alone or a semiconducting polymer which is a mixture of a polymer and a monomolecule,
Ethyl benzene sulfonic acid or octyl benzene sulfonic acid,
An organic electroluminescent device comprising an organic semiconductor partially doped with a doping rate of 0.01 to 10%
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제 1항에 있어서, 상기 유기소자는 유기태양 전지, 유기트랜지스터 또는 유기다이오드소자인 것을 특징으로 하는 유기 소자.The organic device according to claim 1, wherein the organic device is an organic solar cell, an organic transistor, or an organic diode device.
KR1020100005174A 2010-01-20 2010-01-20 Organic devices comprising doped organic semiconductor Active KR101421559B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100005174A KR101421559B1 (en) 2010-01-20 2010-01-20 Organic devices comprising doped organic semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100005174A KR101421559B1 (en) 2010-01-20 2010-01-20 Organic devices comprising doped organic semiconductor

Publications (2)

Publication Number Publication Date
KR20110085402A KR20110085402A (en) 2011-07-27
KR101421559B1 true KR101421559B1 (en) 2014-07-23

Family

ID=44922206

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100005174A Active KR101421559B1 (en) 2010-01-20 2010-01-20 Organic devices comprising doped organic semiconductor

Country Status (1)

Country Link
KR (1) KR101421559B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023778A (en) * 1997-09-05 2001-01-26 Ness Co Ltd Electroluminescent element having organic thin film layer containing polyimide
JP2004527517A (en) * 2001-03-21 2004-09-09 パラ リミテッド Soluble self-aligned material and conductive polymer composition containing the same
JP2005056871A (en) 2002-07-22 2005-03-03 Ricoh Co Ltd Active element and EL display element, liquid crystal display element and arithmetic element having the same
JP2009076461A (en) 2007-09-24 2009-04-09 Osram Opto Semiconductors Gmbh Solution-processed organic electronic structure device with improved electrode layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023778A (en) * 1997-09-05 2001-01-26 Ness Co Ltd Electroluminescent element having organic thin film layer containing polyimide
JP2004527517A (en) * 2001-03-21 2004-09-09 パラ リミテッド Soluble self-aligned material and conductive polymer composition containing the same
JP2005056871A (en) 2002-07-22 2005-03-03 Ricoh Co Ltd Active element and EL display element, liquid crystal display element and arithmetic element having the same
JP2009076461A (en) 2007-09-24 2009-04-09 Osram Opto Semiconductors Gmbh Solution-processed organic electronic structure device with improved electrode layer

Also Published As

Publication number Publication date
KR20110085402A (en) 2011-07-27

Similar Documents

Publication Publication Date Title
Tunc et al. Molecular doping of low-bandgap-polymer: fullerene solar cells: Effects on transport and solar cells
Ma et al. Self-organization of amine-based cathode interfacial materials in inverted polymer solar cells
Abdulrazzaq et al. Comparative aging study of organic solar cells utilizing polyaniline and PEDOT: PSS as hole transport layers
Pho et al. Quinacridone‐Based Electron Transport Layers for Enhanced Performance in Bulk‐Heterojunction Solar Cells
Lee et al. Tailoring PEDOT: PSS polymer electrode for solution-processed inverted organic solar cells
Kajii et al. Top-gate-type ambipolar organic field-effect transistors with indium–tin oxide drain/source electrodes using polyfluorene derivatives
EP3188251B1 (en) Active layer, thin-film transistor array substrate comprising the same, and display device comprising the same
Lee et al. Conversion efficiency improvement mechanisms of polymer solar cells by balance electron–hole mobility using blended P3HT: PCBM: pentacene active layer
Zhang et al. High efficiency arrays of polymer solar cells fabricated by spray‐coating in air
Bechara et al. PEDOT: PSS-free organic solar cells using tetrasulfonic copper phthalocyanine as buffer layer
Moon et al. Hole transport layer based on conjugated polyelectrolytes for polymer solar cells
Elfwing et al. DNA based hybrid material for interface engineering in polymer solar cells
Zakiya et al. Enhanced lifetime of organic photovoltaic diodes utilizing a ternary blend including an insulating polymer
Wang et al. Spontaneous interfacial dipole orientation effect of acetic acid solubilized PFN
Wei et al. Coordinatable and High Charge‐Carrier‐Mobility Water‐Soluble Conjugated Copolymers for Effective Aqueous‐Processed Polymer–Nanocrystal Hybrid Solar Cells and OFET Applications
Sarjidan et al. Observation of saturation transfer characteristics in solution processed vertical organic field-effect transistors (VOFETs) with high leakage current
Reshak et al. Photovoltaic characteristics of hybrid MEH-PPV-nanoparticles compound
Arbab et al. Ternary molecules blend organic bulk heterojunction solar cell
Barreto et al. Improved performance of organic light-emitting transistors enabled by polyurethane gate dielectric
Chao et al. High-performance solution-processed polymer space-charge-limited transistor
Seo et al. Characterization of perylene and tetracene-based ambipolar light-emitting field-effect transistors
Barbot et al. Cesium carbonate-doped 1, 4, 5, 8-naphthalene-tetracarboxylic-dianhydride used as efficient electron transport material in polymer solar cells
Bao et al. The effect of oxygen uptake on charge injection barriers in conjugated polymer films
Xin et al. UV‐Ozone Treatment on Cs2CO3 Interfacial Layer for the Improvement of Inverted Polymer Solar Cells
KR101421559B1 (en) Organic devices comprising doped organic semiconductor

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100120

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110422

Patent event code: PE09021S01D

PG1501 Laying open of application
AMND Amendment
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20111229

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20120724

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20111229

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110422

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20120724

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20120228

Comment text: Amendment to Specification, etc.

Patent event code: PX09012R01I

Patent event date: 20110816

Comment text: Amendment to Specification, etc.

PX0601 Decision of rejection after re-examination

Comment text: Decision to Refuse Application

Patent event code: PX06014S01D

Patent event date: 20120829

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20120823

Comment text: Decision to Refuse Application

Patent event code: PX06011S01I

Patent event date: 20120724

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20120228

Comment text: Notification of reason for refusal

Patent event code: PX06013S01I

Patent event date: 20111229

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20110816

Comment text: Notification of reason for refusal

Patent event code: PX06013S01I

Patent event date: 20110422

J201 Request for trial against refusal decision
PJ0201 Trial against decision of rejection

Patent event date: 20121026

Comment text: Request for Trial against Decision on Refusal

Patent event code: PJ02012R01D

Patent event date: 20120829

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Patent event date: 20120724

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Appeal kind category: Appeal against decision to decline refusal

Decision date: 20140422

Appeal identifier: 2012101009157

Request date: 20121026

J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20121026

Effective date: 20140422

PJ1301 Trial decision

Patent event code: PJ13011S01D

Patent event date: 20140428

Comment text: Trial Decision on Objection to Decision on Refusal

Appeal kind category: Appeal against decision to decline refusal

Request date: 20121026

Decision date: 20140422

Appeal identifier: 2012101009157

PS0901 Examination by remand of revocation
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
PS0701 Decision of registration after remand of revocation

Patent event date: 20140513

Patent event code: PS07012S01D

Comment text: Decision to Grant Registration

Patent event date: 20140428

Patent event code: PS07011S01I

Comment text: Notice of Trial Decision (Remand of Revocation)

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140715

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140715

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20170621

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20180626

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20180626

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20190627

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20200630

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20210625

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20220630

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20230705

Start annual number: 10

End annual number: 10