[go: up one dir, main page]

KR101439668B1 - Solid oxide fuel cell and method for manufacturing the same - Google Patents

Solid oxide fuel cell and method for manufacturing the same Download PDF

Info

Publication number
KR101439668B1
KR101439668B1 KR1020120150131A KR20120150131A KR101439668B1 KR 101439668 B1 KR101439668 B1 KR 101439668B1 KR 1020120150131 A KR1020120150131 A KR 1020120150131A KR 20120150131 A KR20120150131 A KR 20120150131A KR 101439668 B1 KR101439668 B1 KR 101439668B1
Authority
KR
South Korea
Prior art keywords
anode
control layer
electrolyte
support
shrinkage control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020120150131A
Other languages
Korean (ko)
Other versions
KR20140080927A (en
Inventor
박영민
배홍열
안진수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020120150131A priority Critical patent/KR101439668B1/en
Publication of KR20140080927A publication Critical patent/KR20140080927A/en
Application granted granted Critical
Publication of KR101439668B1 publication Critical patent/KR101439668B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8857Casting, e.g. tape casting, vacuum slip casting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC) 및 이를 제조하는 방법에 관한 것으로서, 본 발명에서는 연료극 지지체의 일면에 수축 제어층을 형성시킴으로써, 대면적 단위전지의 제조를 가능하게 할 수 있다.The present invention relates to a solid oxide fuel cell (SOFC) and a method of manufacturing the same. In the present invention, a shrinkage control layer is formed on one surface of a fuel electrode support, have.

Description

고체산화물 연료전지 및 이의 제조방법 {SOLID OXIDE FUEL CELL AND METHOD FOR MANUFACTURING THE SAME}SOLID OXIDE FUEL CELL AND METHOD FOR MANUFACTURING THE SAME

본 발명은 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC) 및 이를 제조하는 방법에 관한 것이다.
The present invention relates to a solid oxide fuel cell (SOFC) and a method of manufacturing the same.

고체산화물 연료전지(SOFC: Solid Oxide Fuel Cell)는 일반적으로 연료전지 중 가장 높은 온도(700~1000℃)에서 작동하며, 단위전지(unit cell)와 분리판(separator)으로 이루어진 전기 생성 유닛이 복수개 적층된 구조로 이루어진다. 이때, 상기 단위전지는 연료극(anode), 전해질막, 공기극(cathode) 등을 포함한다.
Solid oxide fuel cells (SOFCs) generally operate at the highest temperature (700-1000 ° C) of fuel cells, and a plurality of electricity generating units, each consisting of a unit cell and a separator, Stacked structure. At this time, the unit cell includes an anode, an electrolyte membrane, a cathode, and the like.

단위전지를 구성하는 공기극에 산소를 공급하고 연료극에 수소를 공급하면, 공기극에서 산소의 환원 반응으로 생성된 산소 이온의 전해질막을 지나 연료극으로 이동한 후 연료극에 공급된 수소와 반응하여 물이 생성된다. 이때, 연료극에서 생성된 전자가 공기극으로 전달되어 소모되는 과정에서 외부 회로로 전자가 흐르며, 단위전지는 이러한 전자 흐름을 이용하여 전기 에너지를 생산한다. 단위전지에서의 전지 에너지 생산 중, 전해질과 공기극 사이에서 반응이 일어나는 것을 방지하기 위해 버퍼층(buffer layer)을 구비할 수도 있다.
When oxygen is supplied to the air electrode constituting the unit cell and hydrogen is supplied to the fuel electrode, the electrolyte moves from the air electrode to the anode through the electrolyte membrane of the oxygen ion generated by the reduction reaction of oxygen, and then reacts with the hydrogen supplied to the anode to generate water . At this time, electrons generated in the anode are transferred to the cathode and consumed, and electrons flow to the external circuit, and the unit cell generates electric energy using the electron flow. A buffer layer may be provided to prevent the reaction between the electrolyte and the air electrode during the production of the battery energy in the unit cell.

이와 같은, 단위전지 1개가 생산하는 전기에너지의 양은 매우 제한적이기 때문에, 연료전지 발전에 이용하기 위해서는 단위전지를 직렬로 연결해 놓은 형태인 적층체(스택, stack)를 제작하여 사용한다. 스택을 형성하기 위해 각각의 단위전지의 공기극과 연료극을 전기적으로 연결하면서 연료와 공기의 혼합을 막기 위해 분리판을 이용한다. 또한, 상기 공기극 또는 연료극과 분리판 사이에는 집전체(current collector)가 구비되어 공기극 또는 연료극이 분리판과 전기적으로 균일하게 접촉할 수 있게 한다. 이러한 집전체로는 세라믹 재질의 재료나 은 또는 백금이 사용될 수 있다.
Since the amount of electrical energy produced by one unit cell is very limited, a stack (stack) in which unit cells are connected in series is used for fuel cell power generation. A separation plate is used to electrically connect the air electrode and the fuel electrode of each unit cell to form a stack while preventing mixing of fuel and air. Further, a current collector is provided between the air electrode or the fuel electrode and the separator plate so that the air electrode or the fuel electrode can electrically and uniformly contact the separator plate. Such a current collector may be made of a ceramic material, silver or platinum.

한편, 금속 지지체형 고체산화물 연료전지는 지지체로서 금속물질을 이용하고, 상기 지지체와 접하는 전극(연료극 또는 공기극)을 형성하고, 상기 전극과 접하여 전해질막을 형성하고, 상기 전해질막과 접하여 나머지 전극을 형성하는 구조를 갖는다. 이와 같이, 강도가 높은 금속을 지지체로 사용함으로써, 적층체(스택) 조립시 단위전지가 견딜 수 있는 응력이 크다는 장점이 있다.
Meanwhile, a metal-supported solid oxide fuel cell uses a metal material as a support, forms an electrode (a fuel electrode or an air electrode) in contact with the support, forms an electrolyte membrane in contact with the electrode, forms a remaining electrode in contact with the electrolyte membrane . As described above, by using a metal having high strength as a support, there is an advantage that a unit cell can withstand a large stress when assembling a stack (stack).

그러나, 이러한 금속 지지체형 고체산화물 연료전지를 제조함에 있어서, 금속으로 이루어진 금속 지지체와 전해질막 또는 연료극과의 수축률 차이로 동시소성 공정을 이용하여 대면적 단위전지를 제조할 시, 전지가 휘어지거나 파괴되는 문제가 있다.
However, in manufacturing such a metal-supported solid oxide fuel cell, when a large-sized unit cell is manufactured using a co-firing process due to a difference in shrinkage ratio between a metal support made of metal and an electrolyte membrane or a fuel electrode, There is a problem.

본 발명의 일 측면은, 대면적 단위전지의 제조가 가능한 고체산화물 연료전지 및 이의 제조방법을 제공하고자 하는 것이다.
One aspect of the present invention is to provide a solid oxide fuel cell capable of manufacturing a large-area unit cell and a method of manufacturing the same.

본 발명의 일 측면은, 수축 제어층; 상기 수축 제어층의 일면에 형성된 연료극 지지체; 상기 연료극 지지체의 일면에 형성된 연료극; 상기 연료극의 일면에 형성된 전해질; 및 상기 전해질의 일면에 형성된 공기극을 포함하고, 상기 연료극 지지체는 금속인 고체산화물 연료전지를 제공한다.
According to an aspect of the present invention, A fuel electrode support formed on one surface of the shrinkage control layer; A fuel electrode formed on one surface of the fuel electrode support; An electrolyte formed on one surface of the anode; And a cathode formed on one surface of the electrolyte, wherein the anode support is a metal.

본 발명의 다른 일 측면은, 수축 제어층, 연료극 지지체, 연료극 및 전해질을 제조하는 단계; 상기 수축 제어층, 금속 지지체, 연료극 및 전해질을 순차적으로 적층하여 적층체를 형성하는 단계; 및 상기 적층체를 소결하는 단계를 포함하는 고체산화물 연료전지의 제조방법을 제공한다.
According to another aspect of the present invention, there is provided a method of manufacturing a fuel cell, comprising the steps of: preparing a shrinkage control layer, an anode support, an anode, and an electrolyte; Forming a laminate by laminating the shrinkage control layer, the metal support, the anode, and the electrolyte sequentially; And sintering the laminate. The present invention also provides a method of manufacturing a solid oxide fuel cell including the steps of:

본 발명에 의하면, 고체산화물 연료전지의 제조시 금속 지지체와 전해질 또는 연료극과의 수축률 차이를 최소화할 수 있으므로, 대면적 단위전지의 제조가 가능하다.
According to the present invention, since the difference in shrinkage rate between the metal support and the electrolyte or the anode can be minimized during the production of the solid oxide fuel cell, it is possible to manufacture a large-area unit cell.

도 1은 본 발명의 일 구현례에 따른 고체산화물 연료전지를 나타내는 개략도이다.
도 2는 본 발명의 제조방법의 공정을 일 예로서 나타낸 공정도이다.
1 is a schematic diagram illustrating a solid oxide fuel cell according to an embodiment of the present invention.
Fig. 2 is a process drawing showing the process of the production method of the present invention as an example.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

먼저, 본 발명의 고체산화물 연료전지에 대하여 도 1을 참고하여 상세히 설명한다. 일반적으로 고체산화물 연료전지는 단위전지가 적층된 구조를 지칭하는 것이나, 본 발명에서는 이해를 돕기 위해 '고체산화물 연료전지'가 '단위전지'를 지칭한다.
First, the solid oxide fuel cell of the present invention will be described in detail with reference to FIG. In general, a solid oxide fuel cell refers to a structure in which unit cells are stacked, but in the present invention, a 'solid oxide fuel cell' refers to a 'unit cell'.

도 1은 본 발명의 일 구현례에 따른 고체산화물 연료전지를 나타내는 개략도이다.
1 is a schematic diagram illustrating a solid oxide fuel cell according to an embodiment of the present invention.

도 1을 참조하여 보면, 본 발명의 고체산화물 연료전지는 수축 제어층(101)을 포함한다. 상기 수축 제어층(101)은 전이금속 산화물과 Zr 또는 Ce을 주성분으로 하는 다공성 복합체로 이루어질 수 있는데, 바람직하게는 중량%로 40~60%의 NiO 및 40~60%의 YSZ로 구성될 수 있다. 이러한 수축 제어층(101)은 단위전지를 구성하는 전해질(107)과 비슷한 수축률을 가지며, 평균두께 10~20μm를 갖는다.Referring to FIG. 1, the solid oxide fuel cell of the present invention includes a shrinkage control layer 101. The shrinkage control layer 101 may be composed of a transition metal oxide and a porous composite containing Zr or Ce as a main component, preferably 40 to 60% NiO and 40 to 60% YSZ in terms of weight% . The shrinkage control layer 101 has a shrinkage rate similar to that of the electrolyte 107 constituting the unit cell, and has an average thickness of 10 to 20 mu m.

일반적으로 소결이 일어날 때 수축하는 힘은 셀을 구성하는 각 층의 두께에 따라 달라지며, 수축률이 상이한 층을 적층하여 소결할 때, 대칭 구조를 이루면 소결체의 캠버(camber)가 감소한다. 이러한 원리에 착안하여, 본 발명에서는 연료극(103)과 조성 및 두께가 동일 또는 유사한 시트를 금속 지지체(연료극 지지체)(102)의 바닥면에 구비하여 수축 제어층(101)/금속 지지체(연료극 지지체)(102)/연료극(103) 순으로 대칭구조를 이루도록 하였다. 따라서, 본 발명에 따른 수축 제어층(101)은 후술하는 연료극(103)과 동일한 평균두께를 갖는 것이 바람직하며, 통상 10~20μm의 평균두께로 연료극을 제작하므로, 상기 수축 제어층(101)도 10~20μm의 평균두께를 갖도록 할 수 있다.
Generally, the shrinkage force at the time of sintering depends on the thickness of each layer constituting the cell. When the layers having different shrinkage rates are laminated and sintered, the camber of the sintered body is reduced when the symmetrical structure is formed. In view of such a principle, in the present invention, a sheet having the same or similar composition and thickness as the fuel electrode 103 is provided on the bottom surface of a metal support (anode support) 102 to form a shrinkage control layer 101 / metal support ) 102 / fuel electrode 103 in this order. Therefore, it is preferable that the shrinkage control layer 101 according to the present invention has the same average thickness as that of the fuel electrode 103 described later, and the fuel electrode is usually formed with an average thickness of 10 to 20 μm. An average thickness of 10 to 20 mu m can be obtained.

본 발명에서는 금속 지지체의 일면에 수축 제어층(101)을 형성함으로써, 단위전지의 소결시 수축률 차이로 인해 발생하는 전지의 휨 또는 파괴를 억제할 수 있다. In the present invention, the shrinkage control layer (101) is formed on one surface of the metal support, thereby suppressing the warpage or breakage of the battery due to the difference in shrinkage ratio during sintering of the unit cell.

일반적으로 금속 지지체의 수축률은 금속의 소결 활성도가 산화물 대비 높기 때문에, 산화물인 전해질의 수축률과 동일 또는 유사하게 제어하기 어려우며, 이로 인해 대면적 금속 지지체형 고체산화물 연료전지를 소결 방식으로 생산하는데에 문제가 있었다. 그러나, 본 발명에서는 금속 지지체의 일면에 수축 제어층(101)을 더 포함함으로써 대면적 금속 지지체형 고체산화물 연료전지의 제조를 가능하게 할 수 있다.
Generally, since the sintering activity of the metal support is higher than that of the oxide, it is difficult to control the shrinkage of the metal support to be the same as or similar to the shrinkage of the electrolyte, which is an oxide, . However, in the present invention, it is possible to manufacture a solid oxide fuel cell having a large area by supporting the shrinkage control layer 101 on one side of the metal support.

상기 수축 제어층(101) 일면에는 금속 지지체를 포함한다. 상기 금속 지지체는 다공질의 구조를 가지는 것이 바람직하다. 이와 같이, 다공질의 금속 지지체는 금속 분말을 환원 분위기에서 소결 또는 세라믹 분말을 산화 분위기에서 소결 후 강온과정에서 환원하여 제조할 수 있으며, 재질은 스테인레스 스틸, 철 합금 또는 니켈계 합금이 바람직하다. 상기 금속 지지체는 Zr, Ce, Ti, Mg, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Nb, Sn, La, Ta, V 및 Nd 산화물 중 1종 이상을 20중량% 이하로 포함하는 것이 바람직하다. 상기 산화물을 20 중량% 초과하여 첨가하게 되면, 금속 지지체의 탄성이 감소하여, 연료전지가 충격에 약해지는 문제가 있다.
On one surface of the shrinking control layer 101, a metal support is included. The metal support preferably has a porous structure. As described above, the porous metal support may be manufactured by sintering the metal powder in a reducing atmosphere or sintering the ceramic powder in an oxidizing atmosphere, and reducing the metal powder during the cooling down process, and the material is preferably stainless steel, iron alloy, or nickel alloy. At least one of the oxides of Zr, Ce, Ti, Mg, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Nb, Sn, La, Ta, By weight or less. When the oxide is added in an amount exceeding 20% by weight, the elasticity of the metal support decreases, and the fuel cell is vulnerable to impact.

상기 금속 지지체의 일면에 연료극(103)을 포함한다. 상기 연료극(103)으로는 Ni-YSZ(Yttria Stabilized Zirconia)인 것이 바람직하다. 이와 같이, 금속 지지체의 일면에 연료극(103)을 포함하므로, 상기 금속 지지체는 연료극 지지체(102)라 칭할 수 있다.
And a fuel electrode 103 on one side of the metal support. The fuel electrode 103 may be Ni-YSZ (Yttria Stabilized Zirconia). Since the fuel electrode 103 is included on one side of the metal support, the metal support may be referred to as the anode support 102.

상기 연료극(103) 일면에는 전해질(107)을 포함한다. 상기 전해질(107)은 Zr을 주성분으로 하는 산소이온 전도체를 포함하는 것이 바람직하다.
The fuel electrode 103 includes an electrolyte 107 on one surface thereof. The electrolyte 107 preferably includes an oxygen ion conductor containing Zr as a main component.

상기 전해질(107) 일면에는 공기극(109)을 포함한다. 상기 공기극(109)은 페로브스카이트 구조인 LSM(LaxSr1 - xMnO3 ) 또는 LSCF(LaxSr1 - xCoyFe1 - yO3 )인 것이 바람직하다.
And an air electrode 109 is formed on one surface of the electrolyte 107. The air electrode 109 has a perovskite structure, the LSM is preferably a - (y O 3 -δ La x Sr 1 - - x Co y Fe 1) (La x Sr 1 x MnO 3 -δ) or LSCF.

상기 연료극(103)과 전해질(107) 사이에는 확산 방지층(105)을 더 포함할 수 있다. 상기 확산 방지층(105)은 Ce을 주성분으로 하는 산소이온 전도체를 포함함이 바람직하다. 이때, 확산 방지층(105)은 그 위에 형성되는 전해질(107)과 연료극(103)간의 반응을 방지하는 역할을 한다.
A diffusion preventing layer 105 may further be formed between the anode 103 and the electrolyte 107. The diffusion preventing layer 105 preferably includes an oxygen ion conductor containing Ce as a main component. At this time, the diffusion preventing layer 105 serves to prevent the reaction between the electrolyte 107 and the fuel electrode 103 formed thereon.

이하, 본 발명에 따른 고체산화물 연료전지의 제조방법에 대하여 도 2를 참조하여 상세히 설명한다. 도 2는 본 발명의 제조방법의 공정을 일 예로서 나타낸 공정도이다.
Hereinafter, a method of manufacturing a solid oxide fuel cell according to the present invention will be described in detail with reference to FIG. Fig. 2 is a process drawing showing the process of the production method of the present invention as an example.

먼저, 수축 제어층, 연료극 지지체, 연료극 및 전해질을 제조한다(S200). 연료극 지지체는 테이프 캐스팅법 또는 압출법으로 제조할 수 있으며, 수축 제어층과 연료극 및 전해질은 테이프 캐스팅법, 스크린 인쇄법 및 습식 스프레이법 중 어느 하나의 방법으로 각각 제조할 수 있다.
First, a shrinkage control layer, a fuel electrode support, a fuel electrode, and an electrolyte are prepared (S200). The anode support can be produced by a tape casting method or an extrusion method, and the shrinkage control layer, the anode and the electrolyte can be produced by any one of tape casting method, screen printing method and wet spraying method.

이후, 상기 수축 제어층, 연료극 지지체, 연료극 및 전해질의 제조가 완료되면, 이들을 순차적으로 적층(stacking)하여 적층체를 형성한다(S210).
After the production of the shrinkage control layer, the anode support, the anode, and the electrolyte are completed, the assembly is sequentially stacked to form a laminate (S210).

다음으로, 상기 형성된 적층체를 소결한다(S220). 상기 소결은 질소 또는 환원 분위기에서는 행하는 것이 바람직하다. 상기 소결온도는 1300~1400℃가 바람직하며, 가스 분위기는 질소, 아르곤, 수소 또는 각 가스의 비율을 조절하여 결정한다.
Next, the formed laminate is sintered (S220). The sintering is preferably performed in a nitrogen or reducing atmosphere. The sintering temperature is preferably 1300 to 1400 DEG C, and the gas atmosphere is determined by controlling the ratio of nitrogen, argon, hydrogen or each gas.

한편, 크롬을 포함하지 않은 금속 산화물을 사용하는 경우에는 공기 분위기에서 소결한 후 800~1000℃에서 환원하여 전지를 제작할 수도 있다. 이와 같은 금속 산화물을 원료로 사용할 경우, 공기중에서 소결하고 환원하면, 연료극 기능층의 Ni입자 조대화를 억제할 수 있으므로, 전지 성능을 향상시키는데 도움이 된다.
On the other hand, when a metal oxide not containing chromium is used, the battery may be manufactured by sintering in an air atmosphere and then reducing it at 800 to 1000 ° C. When such a metal oxide is used as a raw material, sintering and reduction in the air can suppress the coarsening of the Ni particles in the anode function layer, thereby helping improve battery performance.

101.....수축 제어층 102.....연료극 지지체
103.....연료극 105.....확산 방지층
107.....전해질 109.....공기극
101 ..... shrinkage control layer 102 ..... anode electrode support
103 ..... anode 105 ..... diffusion barrier layer
107 ..... electrolyte 109 ..... cathode

Claims (10)

수축 제어층;
상기 수축 제어층의 일면에 형성된 연료극 지지체;
상기 연료극 지지체의 일면에 형성된 연료극;
상기 연료극의 일면에 형성된 전해질; 및
상기 전해질의 일면에 형성된 공기극을 포함하고,
상기 수축 제어층은 중량%로 40~60%의 NiO 및 40~60%의 YSZ로 이루어지고, 상기 연료극 지지체는 금속인 고체산화물 연료전지.
A shrinkage control layer;
A fuel electrode support formed on one surface of the shrinkage control layer;
A fuel electrode formed on one surface of the fuel electrode support;
An electrolyte formed on one surface of the anode; And
And an air electrode formed on one surface of the electrolyte,
Wherein the shrinkage control layer comprises 40 to 60% NiO and 40 to 60% YSZ by weight, and the anode support is metal.
제 1항에 있어서,
상기 수축 제어층은 평균두께가 10~20μm인 고체산화물 연료전지.
The method according to claim 1,
Wherein the shrinkage control layer has an average thickness of 10 to 20 占 퐉.
제 1항에 있어서,
상기 연료극 지지체는 스테인리스 스틸, 철 합금 및 니켈계 합금 중 어느 하나인 고체산화물 연료전지.
The method according to claim 1,
Wherein the fuel electrode support is any one of stainless steel, an iron alloy, and a nickel-based alloy.
제 1항에 있어서,
상기 연료극 지지체는 Zr, Ce, Ti, Mg, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Nb, Sn, La, Ta, V 및 Nd 산화물 중 1종 이상을 20중량% 이하로 포함하는 고체산화물 연료전지.
The method according to claim 1,
Wherein the anode support comprises at least one of Zr, Ce, Ti, Mg, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Nb, Sn, La, Ta, By weight or less.
제 1항에 있어서,
상기 연료극 지지체는 다공성 구조인 고체산화물 연료전지.
The method according to claim 1,
Wherein the anode support is a porous structure.
제 1항에 있어서,
상기 공기극과 전해질 사이에 확산 방지층을 포함하는 고체산화물 연료전지.
The method according to claim 1,
And a diffusion preventing layer between the air electrode and the electrolyte.
수축 제어층, 연료극 지지체, 연료극 및 전해질을 제조하는 단계;
상기 수축 제어층, 연료극 지지체, 연료극 및 전해질을 순차적으로 적층하여 적층체를 형성하는 단계; 및
상기 적층체를 소결하는 단계를 포함하고,
상기 수축 제어층은 중량%로 40~60%의 NiO 및 40~60%의 YSZ로 이루어지는 것인 고체산화물 연료전지의 제조방법.
A shrinkage control layer, an anode support, an anode, and an electrolyte;
Forming a laminate by sequentially laminating the shrinkage control layer, the anode support, the anode, and the electrolyte; And
And sintering the laminate,
Wherein the shrinkage control layer comprises 40 to 60% by weight of NiO and 40 to 60% by weight of YSZ.
제 7항에 있어서,
수축 제어층, 연료극 및 전해질을 제조하는 단계는 테이프 캐스팅법, 스크린 인쇄법 및 습식 스프레이 법 중 하나 이상의 방법으로 제조하는 고체산화물 연료전지의 제조방법.
8. The method of claim 7,
Wherein the step of preparing the shrinkage control layer, the anode and the electrolyte is performed by at least one of a tape casting method, a screen printing method and a wet spraying method.
제 7항에 있어서,
상기 연료극 지지체를 제조하는 단계는 테이프 캐스팅법 또는 압출법으로 제조하는 고체산화물 연료전지의 제조방법.
8. The method of claim 7,
Wherein the step of preparing the fuel electrode support is manufactured by a tape casting method or an extrusion method.
제 7항에 있어서,
상기 적층체를 소결하는 단계는 질소 또는 환원 분위기에서 이루어지는 고체산화물 연료전지의 제조방법.
8. The method of claim 7,
Wherein the step of sintering the laminate is performed in a nitrogen or reducing atmosphere.
KR1020120150131A 2012-12-21 2012-12-21 Solid oxide fuel cell and method for manufacturing the same Active KR101439668B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120150131A KR101439668B1 (en) 2012-12-21 2012-12-21 Solid oxide fuel cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120150131A KR101439668B1 (en) 2012-12-21 2012-12-21 Solid oxide fuel cell and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20140080927A KR20140080927A (en) 2014-07-01
KR101439668B1 true KR101439668B1 (en) 2014-09-12

Family

ID=51732338

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120150131A Active KR101439668B1 (en) 2012-12-21 2012-12-21 Solid oxide fuel cell and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101439668B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160054211A (en) * 2014-11-06 2016-05-16 주식회사 엘지화학 Method of manufacturing solid oxide fuel cell and solid oxide fuel cell manufactured by the method
WO2023038167A1 (en) * 2021-09-09 2023-03-16 단국대학교 천안캠퍼스 산학협력단 Metal-supported solid oxide fuel cell comprising contact layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577459B1 (en) * 2023-01-30 2023-09-13 한국과학기술원 Solid oxide fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793155B1 (en) 2006-12-20 2008-01-10 주식회사 포스코 Manufacturing method of unit cell for solid oxide fuel cell
KR20110047849A (en) * 2009-10-30 2011-05-09 한국전력공사 Structure of Solid Oxide Fuel Cell and Manufacturing Method Thereof
KR101154506B1 (en) 2010-10-19 2012-06-13 주식회사 포스코 Unit cell for solid oxide fuel cell and manufacturing method thereof
KR20120075242A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Metal-supported solid oxide fuel cell and method for manufacturing the same and solid oxide fuel cell stack using the metal-supported solid oxide fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793155B1 (en) 2006-12-20 2008-01-10 주식회사 포스코 Manufacturing method of unit cell for solid oxide fuel cell
KR20110047849A (en) * 2009-10-30 2011-05-09 한국전력공사 Structure of Solid Oxide Fuel Cell and Manufacturing Method Thereof
KR101154506B1 (en) 2010-10-19 2012-06-13 주식회사 포스코 Unit cell for solid oxide fuel cell and manufacturing method thereof
KR20120075242A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Metal-supported solid oxide fuel cell and method for manufacturing the same and solid oxide fuel cell stack using the metal-supported solid oxide fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160054211A (en) * 2014-11-06 2016-05-16 주식회사 엘지화학 Method of manufacturing solid oxide fuel cell and solid oxide fuel cell manufactured by the method
WO2023038167A1 (en) * 2021-09-09 2023-03-16 단국대학교 천안캠퍼스 산학협력단 Metal-supported solid oxide fuel cell comprising contact layer

Also Published As

Publication number Publication date
KR20140080927A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
US20130280634A1 (en) Unit Cell of Metal-Supported Solid Oxide Fuel Cell, Preparation Method Thereof, and Solid Oxide Fuel Cell Stack Using the Unit Cell
JP5219298B2 (en) Thin solid oxide battery
TWI487183B (en) Metal-supported solid oxide fuel cell structure
KR101405477B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell and cell for a metal-supported solid oxide fuel cell
JP5671196B2 (en) Reinforced electrode-supported ceramic fuel cell and manufacturing method
JP2015088284A (en) Solid oxide fuel cell
KR101439668B1 (en) Solid oxide fuel cell and method for manufacturing the same
KR101277893B1 (en) Metal-supported solid oxide fuel cell and method for manufacturing the same and solid oxide fuel cell stack using the metal-supported solid oxide fuel cell
JP2012212541A (en) Electrolyte/electrode assembly and manufacturing method therefor
KR101857747B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell and cell for a metal-supported solid oxide fuel cell
KR20140082400A (en) Solid oxide fuel cell and method for manufacturing the same
JP2010238431A (en) Power generation cell of fuel battery
JP5955719B2 (en) Method for producing molded article for solid oxide fuel cell
KR20130050401A (en) A method of producing a cell for a metal-supported solid oxide fuel cell
KR101728451B1 (en) Solid oxide fuel cell and manufacturing method thereof
JP7330689B2 (en) Fuel cells and fuel cell stacks
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
KR20160058275A (en) Metal-supported solid oxide fuel cell and method of manufacturing the same
KR101353712B1 (en) Method for manufacturing metal supported solid oxide fuel cell
KR101669469B1 (en) Hybrid type single cell for fuel cell and fuel cell stack including the same
KR102809994B1 (en) Metal support for electrochemical device, electrochemical device, electrochemical module, electrochemical device, energy system, solid oxide type fuel cell and method for producing metal support
JP5734582B2 (en) Solid oxide fuel cell and method for producing the same
JP2012009232A (en) Method of manufacturing solid oxide fuel battery cell, solid oxide fuel battery cell and solid oxide fuel battery
KR101253956B1 (en) Method for manufacturing metal supported solid oxide fuel cell
Orui et al. Development of Anode Supported Solid Oxide Fuel Cells using LaNi (Fe) O3 for Cathodes.

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

FPAY Annual fee payment

Payment date: 20170904

Year of fee payment: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R14-asn-PN2301

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12