KR101473085B1 - Preparation Method of Polyethylene Polyester based Polymer - Google Patents
Preparation Method of Polyethylene Polyester based Polymer Download PDFInfo
- Publication number
- KR101473085B1 KR101473085B1 KR1020130013881A KR20130013881A KR101473085B1 KR 101473085 B1 KR101473085 B1 KR 101473085B1 KR 1020130013881 A KR1020130013881 A KR 1020130013881A KR 20130013881 A KR20130013881 A KR 20130013881A KR 101473085 B1 KR101473085 B1 KR 101473085B1
- Authority
- KR
- South Korea
- Prior art keywords
- ethylene glycol
- slurry
- temperature
- reactor
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/88—Post-polymerisation treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/02—Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
본 발명은 직접 에스테르 반응기의 환류탑 하부 리보일러(Reboiler)부에 연결된 배수관으로부터 추출된 고온의 에틸렌글리콜을 테레프탈산 또는 2,6-나프탈렌디카르복실산과 혼합하여 프리폴리머 슬러리를 조제하는 단계를 포함하는 폴리에스테르계 중합물의 제조방법에 관한 것으로, 본 발명에 의하면 리보일러 하부에서 추출된 고온의 에틸렌글리콜을 슬러리 조제시 재사용하여 공정 효율이 향상될 뿐 아니라, 축중합이 완료된 중합물내의 부반응 생성물이 최대한 억제되어 고품질의 폴리에스테르계 중합물을 수득할 수 있다. The present invention relates to a process for the preparation of a polyol comprising the steps of preparing a prepolymer slurry by mixing ethylene glycol of high temperature extracted from a drain pipe connected to a reflux portion of a refluxing column of a direct ester reactor with terephthalic acid or 2,6-naphthalenedicarboxylic acid, The present invention relates to a method for producing an ester-based polymer, wherein the high-temperature ethylene glycol extracted from the bottom of the reboiler is reused at the time of slurry preparation to improve process efficiency, and the side reaction products in the polymerized polymer A high-quality polyester-based polymer can be obtained.
Description
본 발명은 폴리에스테르계 중합물의 제조방법에 관한 것으로, 더욱 상세하게는 직접 에스테르 반응기의 환류탑 하부 리보일러(Reboiler)부에 연결된 배수관으로부터 추출된 고온의 에틸렌글리콜을 사용하여 프리폴리머 슬러리를 조제함으로써 슬러리성이 개선되고 부반응 생성물이 최대한 억제되어 고품질의 폴리에스테르계 중합물을 수득할 수 있는 폴리에스테르계 중합물의 제조방법에 관한 것이다.
The present invention relates to a process for producing a polyester polymer, and more particularly, to a process for producing a polyester polymer by preparing a prepolymer slurry using high-temperature ethylene glycol extracted from a drain pipe connected to a reflux portion of a reflux column of a direct ester reactor, And the side reaction products are suppressed to the utmost, so that a high quality polyester-based polymer can be obtained.
폴리에틸렌테레프탈레이트(Polyethylene Terephthalate) 및 폴리에틸렌나프탈레이트(PolyEthylene Naphthalate) 중합물과 같은 폴리에스테르계 중합물의 제조시에는, 액체상의 에틸렌글리콜(Ethylene Glycol)과 고체상의 테레프탈산(Terephthalic Acid) 또는 나프탈렌디카르복실산 (Naphthalene Dicarboxylic Acid)을 슬러리상으로 조제하여 직접 에스테르화(Direct Esterification)반응시키는 공정이 필요하다. In the preparation of polyester polymers such as polyethylene terephthalate and polyEthylene Naphthalate polymers, a mixture of ethylene glycol (ethylene glycol) in liquid form and terephthalic acid (terephthalic acid) or naphthalene dicarboxylic acid Naphthalene Dicarboxylic Acid) is slurried and subjected to direct esterification reaction.
한편, 2,6-나프탈렌디카르복실산과 에틸렌글리콜을 이용하여 폴리에틸렌나프탈레이트를 제조하는 방법에 있어서, 테레프탈산 공정(Terephthalic Acid Process)을 적용하는 것이 가능하다. 이 때, 슬러리의 고체상의 원료가 액체상의 에틸렌글리콜에 젖음성이 좋아야하며, 반응기로 이송이 원활하게 이루어질 수 있는 적정 점도를 확보해야만 한다. 슬러리 특성은 2,6-나프탈렌디카르복실산의 분자량(216g/mol)과 테레프탈산의 분자량(166g/mol)에 기인한 에틸렌글리콜과의 젖음성(wetting) 차이인 것으로 생각된다. 이러한 슬러리의 특성은 직접 에스테르화 반응의 반응율, 반응 속도에 영향을 미칠 뿐 아니라 반응 후 올리고머 내에 잔류하는 디에틸렌글리콜의 중량비(wt%) 증가 등 부반응물의 생성에도 영향을 미치는 공정 변수로 작용하게 된다. On the other hand, in the method for producing polyethylene naphthalate using 2,6-naphthalene dicarboxylic acid and ethylene glycol, it is possible to apply a terephthalic acid process (Terephthalic Acid Process). At this time, the solid raw material of the slurry must have a good wettability with ethylene glycol of the liquid phase, and it is necessary to ensure an appropriate viscosity for smooth transfer to the reactor. The slurry characteristics are thought to be the wetting difference between ethylene glycol due to the molecular weight of 2,6-naphthalene dicarboxylic acid (216 g / mol) and the molecular weight of terephthalic acid (166 g / mol). The characteristics of this slurry not only affect the reaction rate and reaction rate of the direct esterification reaction, but also act as process variables influencing the formation of byproducts such as increasing the weight ratio (wt%) of diethylene glycol remaining in the oligomer after the reaction do.
종래의 테레프탈산 공정은 슬러리를 상온에서 조제하여 직접 에스테르화 반응기로 투입하는 방식으로 구성되는데, 테레프탈산과 에틸렌글리콜 슬러리 제조시에는 반응계에 잔류하는 에틸렌글리콜/ 테레프탈산의 몰비를 1.1 내지 1.2로 유지한다. 그러나, 2,6-나프탈렌디카르복실산은 불용성이고, 비중이 테레프탈산보다 크고, 에틸렌글리콜에 대한 용해도가 낮기 때문에, 슬러리 점도(poise)가 매우 높아 직접 에스테르화 반응기로의 이송이 어려운 문제점이 발생한다. 또한, 일반적인 직접 에스테르화 반응기의 에스테르 전환율은 97% 수준이나 에스테르화 전환율이 상기 수준 이하로 저하된다는 문제점도 있다.
In the conventional terephthalic acid process, a slurry is prepared at room temperature and directly introduced into an esterification reactor. In the preparation of terephthalic acid and ethylene glycol slurry, the molar ratio of ethylene glycol / terephthalic acid remaining in the reaction system is maintained at 1.1 to 1.2. However, since 2,6-naphthalene dicarboxylic acid is insoluble, has a specific gravity larger than terephthalic acid and has a low solubility in ethylene glycol, the slurry has a very high poise, which makes it difficult to transfer it directly to the esterification reactor . In addition, the ester conversion of the general direct esterification reactor is 97%, but the esterification conversion is lowered to the above level.
본 발명의 목적은 테레프탈산 또는 2,6-나프탈렌디카르복실산과The object of the present invention is to provide a process for the preparation of terephthalic acid or 2,6-naphthalene dicarboxylic acid
에틸렌글리콜을 이용하여 폴리에스테르계 중합물을 제조시, 슬러리 점도가 개선되고 에스테르화 반응의 반응율 및 반응속도를 증가시키며, 축중합이 완료된 중합물에서의 부반응물을 억제하여 고품질의 폴리에스테르계 중합물을 제조하는 방법을 제공하는 것이다.
In the production of polyester polymeric materials using ethylene glycol, the slurry viscosity is improved, the reaction rate and the reaction rate of the esterification reaction are increased, and the side reaction products in the condensation polymerized polymer are inhibited to produce a high quality polyester polymer To provide a method to do so.
상술한 목적을 달성하기 위한 본 발명의 양상은, According to an aspect of the present invention,
고체상의 모노머인 테레프탈산 또는 2,6-나프탈렌디카르복실산과 액체상의 에틸렌글리콜을 직접 에스테르화하여 폴리에스테르계 중합물을 제조하는 방법에 있어서, 에틸렌글리콜을 테레프탈산 또는 2,6-나프탈렌디카르복실산과 혼합하여 프리폴리머 슬러리를 조제하는 단계를 포함하되, 상기 에틸렌글리콜은 직접 에스테르 반응기의 환류탑 하부 리보일러(Reboiler)부에 연결된 배수관으로부터 추출된 에틸렌글리콜인 것을 특징으로 하는 폴리에스테르계 중합물의 제조방법에 관한 것이다.
A process for producing a polyester-based polymer by directly esterifying terephthalic acid or 2,6-naphthalenedicarboxylic acid, which is a solid phase monomer, or ethylene glycol in a liquid phase, wherein ethylene glycol is mixed with terephthalic acid or 2,6-naphthalenedicarboxylic acid Wherein the ethylene glycol is ethylene glycol extracted from a water pipe connected to a reflux portion of a reflux tower of a direct ester reactor, and a method for producing the polyester polymer will be.
본 발명에 의한 폴리에스테르계 중합물의 제조방법에 의하면, 리보일러 하부에서 추출된 고온의 에틸렌글리콜을 슬러리 제조시 직접 사용함으로써 슬러리성이 개선되어 공정 효율이 향상되며, 과량의 에틸렌글리콜을 사용할 필요가 없어 부반응 생성물이 최대한 억제되어 고품질의 폴리에스테르계 중합물을 수득할 수 있다.
According to the process for producing a polyester polymer according to the present invention, the high-temperature ethylene glycol extracted from the bottom of the reboiler is used directly in the preparation of the slurry, thereby improving the slurry property and improving the process efficiency, and it is necessary to use an excess amount of ethylene glycol The side reaction products are suppressed as much as possible and a high quality polyester polymer can be obtained.
이하에서 폴리에스테르계 중합물의 제조방법에 대하여 실시예를 참조하여 상세하게 설명한다.
Hereinafter, a method for producing a polyester-based polymer is described in detail with reference to examples.
본 발명의 폴리에틸렌나프탈레이트 중합물의 제조방법에 의하면 일정량의 고체상 테레프탈산 또는 2,6-나프탈렌디카르복실산과 액체상 에틸렌글리콜이 50 내지 140℃의 온도에서 프리폴리머 슬러리로 조제된다 According to the process for producing a polyethylene naphthalate polymer of the present invention, a certain amount of solid terephthalic acid or 2,6-naphthalenedicarboxylic acid and liquid ethylene glycol are prepared as prepolymer slurries at a temperature of 50 to 140 ° C
본 발명에서는 직접 에스테르화 반응기의 환류탑 하부 리보일러(Reboiler)부에 연결된 배수관으로부터 과량의 에틸렌글리콜을 추출하여 슬러리 조제시 이를 재사용한다. 상기 리보일러부에 연결된 배수관을 통과한 과량의 에틸렌글리콜은 추가 열원을 통한 가열 작업을 거치지 않고도 130 내지 160℃의 온도를 유지하여, 이송 라인(상온 이송 라인)을 통해 슬러리 조제조에서 초기의 2,6-나프탈렌디카르복실산 또는 테레프탈산 슬러리 제조 공정에 직접 재사용할 수 있다. 따라서, 원료의 손실을 줄일 수 있을 뿐 아니라 고온의 액체상 에틸렌글리콜을 사용함으로써 에틸렌글리콜에 대한 젖음성을 개선할 수 있다.
In the present invention, an excessive amount of ethylene glycol is extracted from a drain pipe connected to the reflux portion of the reflux tower of the direct esterification reactor to reuse the slurry when preparing the slurry. Excess ethylene glycol passed through the drain pipe connected to the reboiler unit is maintained at a temperature of 130 to 160 ° C without heating through an additional heat source, and the initial 2 , 6-naphthalene dicarboxylic acid or terephthalic acid slurry. Thus, not only the loss of raw materials can be reduced, but also the wettability to ethylene glycol can be improved by using hot liquid ethylene glycol.
본 발명의 구현예들에서, 상기 리보일러부의 반응 온도는 180 내지 190℃인 것이 바람직하다. 상기 온도가 180℃ 미만이면 반응기 내에 잔류하는 에틸렌글리콜의 몰비가 높아지게 되어 부반응물의 생성이 높아지며, 190℃를 초과하면 직접 에스테르화 반응에 사용되는 에틸렌글리콜의 손실이 커져 반응에 필요한 최소한의 몰비를 유지하기 어렵다. 또한, 일반적으로 환류탑 중간부 및 상부에서 냉각 과정을 거쳐 물을 제외한 에틸렌글리콜을 반응기 내로 유입시키는데, 상기 리보일러부의 온도 범위를 벗어나게 되면 반응기 내에서의 2,6-나프탈렌디카르복실산과 에틸렌글리콜과의 반응 몰비가 분균일해진다.
In embodiments of the present invention, the reaction temperature of the reboiler portion is preferably 180 to 190 ° C. If the temperature is lower than 180 ° C, the molar ratio of ethylene glycol remaining in the reactor becomes higher and the formation of side reactants becomes higher. When the temperature exceeds 190 ° C, the loss of ethylene glycol used for the direct esterification reaction becomes larger, It is difficult to maintain. In general, ethylene glycol except water is introduced into the reactor through a cooling process at a middle portion and an upper portion of the refluxing column. When the temperature of the reboiler portion is out of the range, the amount of 2,6-naphthalenedicarboxylic acid and ethylene glycol And the reaction molar ratio with respect to the total amount becomes uniform.
본 발명에 의하면, 상기 배수관 중간부에 유량계를 장착하여 에스테르화 반응 중 변화하는 에틸렌글리콜의 배수량을 조절하는 것이 가능하다. 예를 들어, 과량의 에틸렌글리콜을 사용한 중합물의 제조시 직접 에스테르화 반응 초기부터 슬러리 투입이 완료될 때까지 에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리의 몰비가 1.6 내지 1.8이 되도록 배수관으로부터 에틸렌글리콜을 추출하고, 상기 슬러리 투입이 완료되는 시점부터 직접 에스테르화 반응 종료시까지 에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리의 몰비가 1.1 내지 1.4가 되도록 배수관으로부터 에틸렌글리콜을 추출할 수 있다.
According to the present invention, it is possible to control the displacement of ethylene glycol, which changes during the esterification reaction, by installing a flow meter in the middle of the drain pipe. For example, in the production of a polymerized product using an excessive amount of ethylene glycol, the molar ratio of the ethylene glycol / 2,6-naphthalenedicarboxylic acid slurry is 1.6 to 1.8 until the slurry introduction is completed from the beginning of the direct esterification reaction. Ethylene glycol is extracted and ethylene glycol can be extracted from the drain pipe so that the molar ratio of the ethylene glycol / 2,6-naphthalene dicarboxylic acid slurry is 1.1 to 1.4 from the completion of the slurry addition to the completion of the esterification reaction directly .
이와 같이 제조된 프리폴리머 슬러리는 슬러리 저장조로 이동된 후 일정량이 직접 에스테르 반응기에 투입된다. 이 때, 반응기 내부의 온도를 240 내지 260℃로 유지하면서 슬러리 저장조에서 슬러리 이송 펌프를 이용하여 프리폴리머 슬러리를 적량씩 직접 에스테르 반응기 내로 투입할 수 있다. 이와 같이 직접 에스테르 반응기 내부의 프리폴리머 온도가 240 내지 260℃도 수준으로 유지되기 때문에 종래의 상온 슬러리를 투입하는 경우에는 200℃ 이상의 온도차이에 의한 열쇼크 현상이 발생하고 액체상 에틸렌글리콜의 급격한 증발에 의한 미반응 모노머가 형성되어 반응물성이 저하되지만, 슬러리 제조시의 에틸렌글리콜 온도를 130 내지 160℃로 유지하는 경우 반응기 내부의 프리폴리머와의 온도차이가 작아 상온 투입에 비해 슬러리에 가해지는 열쇼크 문제점을 개선할 수 있다.
The prepolymer slurry thus prepared is transferred to a slurry reservoir and a certain amount is directly fed to the ester reactor. At this time, the prepolymer slurry can be directly injected into the ester reactor directly by using the slurry transfer pump in the slurry storage tank while maintaining the temperature inside the reactor at 240 to 260 ° C. Since the temperature of the prepolymer in the direct ester reactor is maintained at a level of 240 to 260 ° C., when a conventional room temperature slurry is introduced, a heat shock due to a temperature difference of 200 ° C. or more occurs and the ethylene glycol However, when the ethylene glycol temperature during the slurry production is maintained at 130 to 160 ° C., the temperature difference between the prepolymer and the prepolymer in the reactor is small, so that there is a problem of heat shock applied to the slurry Can be improved.
본 발명에서는 상기 프리폴리머 슬러리의 에틸렌글리콜/2,6-나프탈렌디카르복실산의 비율을 1.2 내지 1.4로 조절하여 직접 에스테르화 반응기로 이송하는 것이 액체상 에틸렌글리콜과의 젖음성에 유리하다. 또한, 테레프탈산을 사용하는 경우 프리폴리머 슬러리의 에틸렌글리콜/테레프탈산의 비율을 1.2로 조절하여 직접 에스테르화 반응기로 이송하는 것이 액체상 에틸렌글리콜과의 젖음성에 유리하다. In the present invention, the prepolymer slurry is fed to the direct esterification reactor at a ratio of ethylene glycol / 2,6-naphthalene dicarboxylic acid of 1.2 to 1.4, which is advantageous in wettability with liquid ethylene glycol. In the case of using terephthalic acid, it is advantageous to transfer the prepolymer slurry to the direct esterification reactor by adjusting the ratio of ethylene glycol / terephthalic acid to 1.2, to the wettability with the liquid ethylene glycol.
한편, 반응기내로 투입된 2,6-나프탈렌디카르복실산 또는 테레프탈산과 에틸렌글리콜의 직접 에스테르화 반응이 일어나는 동안 반응기 내부 온도는 240 내지 260℃로 유지되고 반응기 환류탑의 상부 온도는 95 내지 120℃로 유지하는 것이 에스테르 반응성 향상 및 반응시간 단축면에서 바람직하다.Meanwhile, during the direct esterification reaction of 2,6-naphthalene dicarboxylic acid or terephthalic acid and ethylene glycol introduced into the reactor, the internal temperature of the reactor is maintained at 240 to 260 ° C and the upper temperature of the reactor reflux column is 95 to 120 ° C Is preferable in view of improvement in ester reactivity and shortening of reaction time.
이와 같이 직접 에스테르화 반응에 의해 얻어진 전구체 조성물은 축중합 반응기에서 열안정제 및 축중합 촉매를 첨가하여 270 내지 300℃의 반응 온도에서 축중합된다. 열안정제로는 이 분야에서 공지된 포스페이트 계열의 안정제가 바람직하게 사용될 수 있고, 종류는 특별히 제한되지 않는다. 첨가량은 100 내지 300ppm 범위가 바람직하다. 축중합 촉매로는 안티몬(Sb), 리튬(Li), 티타늄(Ti), 아연(Zn), 납(Pb), 망간(Mn) 및 칼슘(Ca) 등을 함유하는 금속화합물로 이루어진 군에서 선택되는 1종의 화합물이 사용될 수 있다. 또한 축중합시 압력은 0.5 내지 1 torr로 감압하고 반응온도는 275 내지 290 ℃로 조절하여 최종 폴리에스테르계 중합물을 제조할 수 있다.
The precursor composition thus obtained by the direct esterification reaction is subjected to condensation polymerization at a reaction temperature of 270 to 300 ° C by adding a heat stabilizer and a condensation polymerization catalyst in a condensation polymerization reactor. As the thermal stabilizer, a phosphate stabilizer known in the art can be preferably used, and the kind is not particularly limited. The addition amount is preferably in the range of 100 to 300 ppm. The condensation polymerization catalyst is selected from the group consisting of metal compounds containing antimony (Sb), lithium (Li), titanium (Ti), zinc (Zn), lead (Pb), manganese (Mn) Can be used. Also, the pressure at the time of condensation polymerization may be reduced to 0.5 to 1 torr, and the reaction temperature may be adjusted to 275 to 290 ° C to produce the final polyester polymer.
본 발명을 하기에서 구체적인 실시예를 참조하여 상세하게 설명한다. 제시된 실시예는 단지 본 발명을 구체적으로 예시하기 위한 것일 뿐이며, 본 발명의 청구범위를 제한하는 것은 아니다.
The present invention will be described in detail below with reference to specific examples. The embodiments shown are merely illustrative of the present invention and are not intended to limit the scope of the present invention.
실시예 1 내지 4의 경우 하기 제조예 1에 의해 회수된 에틸렌글리콜을 재사용하였다.
In the case of Examples 1 to 4, the ethylene glycol recovered by the following Production Example 1 was reused.
<제조예 1>≪ Preparation Example 1 &
에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리의 몰비가 2.5인 2,6-나프탈렌디카르복실산과 에틸렌글리콜 슬러리를 직접 에스테르화 반응기로 투입하고 직접 에스테르화 반응기 내부의 온도를 250℃로 유지하였다. 직접 에스테르화 반응 초기 30분 이후부터 반응 종료시까지 에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리의 몰비가 1.2가 되도록 환류탑 하부 리보일러부에 설치된 배수관으로부터 140℃의 에틸렌글리콜을 추출하였다.2,6-naphthalenedicarboxylic acid and ethylene glycol slurry having a molar ratio of ethylene glycol / 2,6-naphthalenedicarboxylic acid slurry of 2.5 were directly fed into the esterification reactor and the temperature inside the esterification reactor was maintained at 250 ° C Respectively. Ethylene glycol was extracted at 140 ° C from a drainage pipe provided at the bottom of the refluxing tower so that the molar ratio of the ethylene glycol / 2,6-naphthalenedicarboxylic acid slurry to the molten ratio of the ethylene glycol / 2,6-naphthalenedicarboxylic acid slurry became 1.2 from the initial 30 minutes after the direct esterification reaction to the end of the reaction.
< 실시예 1 >≪ Example 1 >
50℃에서 제조되고 에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리의 몰비(G value)가 1.2인 2,6-나프탈렌디카르복실산과 에틸렌글리콜 슬러리를 직접 에스테르화 반응기로 투입하고 직접 에스테르화 반응기 내부의 온도를 250℃로 유지하였다. 슬러리의 투입이 종료된 후 260 ℃의 온도로 후반응을 진행하여 전구체 조성물을 형성하였다. 상기 전구체 조성물에 최초 혼합된 2,6-나프탈렌디카르복실산 모노머 대비 300 ppm의 Sb2O3 중합촉매, 200 ppm의 인(P)계 열안정제를 첨가하였다. 상기 중합촉매, 인(P)계 열안정제가 첨가된 전구체 조성물을 0.5 torr로 감압하고 275 내지 290 ℃의 반응온도로 중축합하여 폴리에틸렌나프탈레이트 중합물을 제조하였다.
The 2,6-naphthalenedicarboxylic acid and ethylene glycol slurry, prepared at 50 ° C and having a molar ratio (G value) of ethylene glycol / 2,6-naphthalenedicarboxylic acid slurry of 1.2, were directly fed into an esterification reactor and directly esterified The temperature inside the reactor was maintained at 250 占 폚. After the addition of the slurry was completed, the post-reaction was carried out at a temperature of 260 DEG C to form a precursor composition. 300 ppm of an Sb 2 O 3 polymerization catalyst and 200 ppm of a phosphorus (P) -based thermal stabilizer were added to the precursor composition to which 2,6-naphthalene dicarboxylic acid monomer had been initially mixed. The precursor composition to which the polymerization catalyst, phosphorus (P) series heat stabilizer was added was reduced in pressure to 0.5 torr and polycondensed at a reaction temperature of 275 to 290 ° C to prepare a polyethylene naphthalate polymer.
<실시예 2>≪ Example 2 >
에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리 제조 온도가 80℃인 것을 제외하고는 실시예 2와 동일하게 폴리에틸렌나프탈레이트 중합물을 제조하였다.
Polyethylene naphthalate polymer was prepared in the same manner as in Example 2, except that the ethylene glycol / 2,6-naphthalene dicarboxylic acid slurry production temperature was 80 ° C.
<실시예 3>≪ Example 3 >
에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리 제조 온도가 100℃인 것을 제외하고는 실시예 2와 동일하게 폴리에틸렌나프탈레이트 중합물을 제조하였다.
A polyethylene naphthalate polymer was prepared in the same manner as in Example 2, except that the ethylene glycol / 2,6-naphthalene dicarboxylic acid slurry production temperature was 100 ° C.
<실시예 4><Example 4>
에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리 제조 온도가 140℃인 것을 제외하고는 실시예 2와 동일하게 폴리에틸렌나프탈레이트 중합물을 제조하였다.
Polyethylene naphthalate polymer was prepared in the same manner as in Example 2 except that the ethylene glycol / 2,6-naphthalene dicarboxylic acid slurry production temperature was 140 ° C.
<비교예 1>≪ Comparative Example 1 &
25℃에서 제조되고 에틸렌글리콜/2,6-나프탈렌디카르복실산 슬러리의 몰비(G value)가 1.2인 2,6-나프탈렌디카르복실산과 에틸렌글리콜 슬러리를 직접 에스테르화 반응기로 투입하고 직접 에스테르화 반응기 내부의 온도를 250℃로 유지하였다. 슬러리의 투입이 종료된 후 260 ℃의 온도로 후반응을 진행하여 전구체 조성물을 형성하였다. 상기 전구체 조성물에 최초 혼합된 2,6-나프탈렌디카르복실산 모노머 대비 300 ppm의 Sb2O3 중합촉매, 200 ppm의 인(P)계 열안정제를 첨가하였다. 상기 중합촉매, 인(P)계 열안정제가 첨가된 전구체 조성물을 0.5 torr로 감압하고 275 내지 290 ℃의 반응온도로 중축합하여 폴리에틸렌나프탈레이트 중합물을 제조하였다.
The 2,6-naphthalenedicarboxylic acid and ethylene glycol slurry, prepared at 25 ° C and having a molar ratio (G value) of ethylene glycol / 2,6-naphthalenedicarboxylic acid slurry of 1.2, were directly fed into an esterification reactor and directly esterified The temperature inside the reactor was maintained at 250 占 폚. After the addition of the slurry was completed, the post-reaction was carried out at a temperature of 260 DEG C to form a precursor composition. 300 ppm of an Sb 2 O 3 polymerization catalyst and 200 ppm of a phosphorus (P) -based thermal stabilizer were added to the precursor composition to which 2,6-naphthalene dicarboxylic acid monomer had been initially mixed. The precursor composition to which the polymerization catalyst, phosphorus (P) series heat stabilizer was added was reduced in pressure to 0.5 torr and polycondensed at a reaction temperature of 275 to 290 ° C to prepare a polyethylene naphthalate polymer.
상기와 같이 시행된 실시예 및 비교예에 의한 폴리에스테르계 중합물의 슬러리 점도 및 반응속도를 다음의 표 1에 나타낸다.The slurry viscosity and the reaction rate of the polyester based polymer according to the examples and comparative examples thus conducted are shown in Table 1 below.
<표 1><Table 1>
* 상기 실시예 및 비교예에서 2,6-나프탈렌디카르복실산은 620g을 기준으로 하며, 베이스 올리고머는 50wt%임.
In the above Examples and Comparative Examples, 2,6-naphthalene dicarboxylic acid is based on 620 g, and the base oligomer is 50% by weight.
표 1을 참조하면, 기존의 슬러리 점도가 높고 젖음성이 테레프탈산 대비 열세인 2,6-나프탈렌디카르복실산으로 폴리에틸렌나프탈레이트 중합물을 제조한 실시예 1 내지 4의 경우, 반응속도가 슬러리 조제 온도가 증가할수록 최대 1.34 mol/hr까지 향상됨을 확인할 수 있으며, 슬러리 조제조에서 직접 에스테르화 반응기로의 이송 문제를 발생시키는 슬러리 점도의 경우에도, 평균값 10.5 poise까지 감소함을 확인할 수 있다. 이에 의해, 실시예 1 내지 4에 의한 폴리에틸렌나프탈레이트 중합물이 본 발명에 의한 효과가 극대화될 수 있음을 알 수 있다. 이는 테레프탈산 분자량(166g/mol) 대비 2,6-나프탈렌디카르복실산 분자량(216g/mol)이 높아, 상대적으로 불리한 액체상 에틸렌글리콜과의 젖음성을 개선할 수 있기 때문이다.
In Table 1, in the case of Examples 1 to 4 in which the polyethylene naphthalate polymer was prepared from 2,6-naphthalene dicarboxylic acid having a high slurry viscosity and a poor wettability with respect to terephthalic acid, It can be confirmed that the slurry viscosity is increased up to 1.34 mol / hr as the slurry viscosity increases, and the slurry viscosity, which causes the transfer problem from the slurry preparation to the direct esterification reactor, also decreases to an average value of 10.5 poise. As a result, it can be seen that the polyethylene naphthalate polymer according to Examples 1 to 4 can maximize the effect of the present invention. This is because the molecular weight of 2,6-naphthalenedicarboxylic acid (216 g / mol) is higher than the molecular weight of terephthalic acid (166 g / mol) and the wettability with the relatively unfavorable liquid ethylene glycol can be improved.
또한, 슬러리 조제 온도가 증가할수록 반응속도가 빨라지고 슬러리 점도가 낮아짐을 알 수 있다. 따라서, 이론적으로는 에틸렌글리콜의 끓는점인 195℃에서 조제하는 것이 반응 속도나 점도면에서 가장 좋은 결과를 나타낼 것으로 예상되지만 추가적인 열량 소모 등을 방지하기 위해서는 50 내지 140℃ 사이에서 슬러리를 조제하는 것이 바람직하다.
Also, it can be seen that as the slurry preparation temperature increases, the reaction rate becomes faster and the slurry viscosity becomes lower. Therefore, it is theoretically expected that the preparation at 195 ° C, which is the boiling point of ethylene glycol, is expected to exhibit the best results in terms of reaction rate and point, but it is preferable to prepare the slurry at 50 to 140 ° C in order to prevent additional heat consumption Do.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였으나, 본 발명은 상술한 실시예에 국한되는 것은 아니고, 본 발명의 취지 또는 범위를 벗어나지 않고 본 발명의 구조를 다양하게 변경하고 변형할 수 있다는 사실은 당업자에게 자명할 것이다. 따라서, 본 발명의 보호범위는 첨부한 특허청구범위 및 그와 균등한 범위로 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, The facts will be apparent to those skilled in the art. Accordingly, the scope of protection of the present invention should be defined in the appended claims and their equivalents.
Claims (6)
In a method for directly esterifying 2,6-naphthalenedicarboxylic acid, which is a solid monomer, and ethylene glycol in a liquid phase to prepare a polyester-based polymer, ethylene glycol is mixed with 2,6-naphthalenedicarboxylic acid to prepare a prepolymer slurry Wherein the ethylene glycol is ethylene glycol extracted from a drain pipe connected to the reflux portion of the reflux tower of the direct ester reactor and the step of preparing the prepolymer slurry is performed at a temperature of 80 to 140 ° C By weight based on the total weight of the polyester polymer.
The method according to claim 1, wherein the temperature of the ethylene glycol extracted from the drain pipe connected to the reboiler unit is 130 to 160 ° C.
The method according to claim 1, wherein the reboiler portion has a reaction temperature of 180 to 190 ° C.
The process according to claim 1, wherein the ratio of ethylene glycol / 2,6-naphthalene dicarboxylic acid in the prepolymer slurry is 1.2 to 1.4.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020130013881A KR101473085B1 (en) | 2013-02-07 | 2013-02-07 | Preparation Method of Polyethylene Polyester based Polymer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020130013881A KR101473085B1 (en) | 2013-02-07 | 2013-02-07 | Preparation Method of Polyethylene Polyester based Polymer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20140100754A KR20140100754A (en) | 2014-08-18 |
| KR101473085B1 true KR101473085B1 (en) | 2014-12-15 |
Family
ID=51746456
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020130013881A Expired - Fee Related KR101473085B1 (en) | 2013-02-07 | 2013-02-07 | Preparation Method of Polyethylene Polyester based Polymer |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR101473085B1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101947491B1 (en) | 2017-01-20 | 2019-02-14 | 효성티앤씨 주식회사 | Method of manufacturing polyethyleneterephthalate copolymer |
| WO2025183441A1 (en) * | 2024-02-29 | 2025-09-04 | 에스케이케미칼 주식회사 | Method for producing terephthalic acid, and terephthalic acid produced therefrom |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102766336B1 (en) * | 2021-11-25 | 2025-02-12 | 롯데케미칼 주식회사 | Method of producing chemically recycled pet |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09151247A (en) * | 1995-11-30 | 1997-06-10 | Fuji Photo Film Co Ltd | Production of polyethylene naphthalate |
| KR20000022207A (en) * | 1997-05-06 | 2000-04-25 | 야스이 쇼사꾸 | Method for continuously manufacturing polyesters |
-
2013
- 2013-02-07 KR KR1020130013881A patent/KR101473085B1/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09151247A (en) * | 1995-11-30 | 1997-06-10 | Fuji Photo Film Co Ltd | Production of polyethylene naphthalate |
| KR20000022207A (en) * | 1997-05-06 | 2000-04-25 | 야스이 쇼사꾸 | Method for continuously manufacturing polyesters |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101947491B1 (en) | 2017-01-20 | 2019-02-14 | 효성티앤씨 주식회사 | Method of manufacturing polyethyleneterephthalate copolymer |
| WO2025183441A1 (en) * | 2024-02-29 | 2025-09-04 | 에스케이케미칼 주식회사 | Method for producing terephthalic acid, and terephthalic acid produced therefrom |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20140100754A (en) | 2014-08-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI523886B (en) | Producing method of polyester composition | |
| US9714320B2 (en) | Process for preparing a high molecular weight heteroaromatic polyester or copolyester | |
| EP2857431B1 (en) | Preparation method of polyester resin | |
| KR20130136777A (en) | Polyester resin and preparation method of the same | |
| CN104004170B (en) | Industrial preparation method of high-performance thermotropic liquid crystal polyester with uniform segment structure | |
| CN104017194B (en) | The method of TLCP is prepared in the mass-producing of two still tandem process | |
| CN107915833B (en) | A kind of fiber grade bio-based polyester and preparation method thereof | |
| KR101473085B1 (en) | Preparation Method of Polyethylene Polyester based Polymer | |
| CN103724606A (en) | Copolyester and preparation method thereof | |
| TW561163B (en) | Process for preparing polypropylene terephthalate/polyethylene terephthalate copolymers | |
| JP3690768B2 (en) | Continuous production method of polyester | |
| KR101386222B1 (en) | Preparation method of aliphatic polyester resin | |
| CN101796095B (en) | Process for preparing polyethylenenaphthalate with 2,6-naphthalenedicarboxylic acid | |
| KR101473082B1 (en) | Preparation Method of Polyethylene Naphthalate Polymer | |
| JP3385735B2 (en) | Polyester production method | |
| CN104650329B (en) | The preparation method of low extraction polyester | |
| JP2010174207A (en) | Method for producing liquid crystal polyester | |
| JP2009167343A (en) | Method for producing polyester | |
| CN106574043B (en) | Batch process for preparing polybutylene terephthalate | |
| CN103980674A (en) | Polyester powder with high inorganic substance content and preparation method thereof | |
| KR20200027923A (en) | Method for manufacturing polyester using additives | |
| KR20230167966A (en) | Method for manufacturing flame retardant polyester resin having high viscosity | |
| JP2016020482A (en) | Production method of polyester resin | |
| KR100616100B1 (en) | Prepolymer for Manufacturing High Molecular Weight Polyethylene Terephthalate | |
| JP2009167322A (en) | Method for producing aromatic polyester |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20171113 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R14-asn-PN2301 |
|
| FPAY | Annual fee payment |
Payment date: 20181113 Year of fee payment: 5 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| FPAY | Annual fee payment |
Payment date: 20191112 Year of fee payment: 6 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20211210 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20211210 |