KR101516981B1 - Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom - Google Patents
Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom Download PDFInfo
- Publication number
- KR101516981B1 KR101516981B1 KR1020110134599A KR20110134599A KR101516981B1 KR 101516981 B1 KR101516981 B1 KR 101516981B1 KR 1020110134599 A KR1020110134599 A KR 1020110134599A KR 20110134599 A KR20110134599 A KR 20110134599A KR 101516981 B1 KR101516981 B1 KR 101516981B1
- Authority
- KR
- South Korea
- Prior art keywords
- mineral wool
- wool fiber
- composition
- fiber
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 89
- 239000011490 mineral wool Substances 0.000 title claims abstract description 50
- 239000000203 mixture Substances 0.000 title claims abstract description 43
- 239000004035 construction material Substances 0.000 title claims 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 title description 2
- 239000011780 sodium chloride Substances 0.000 title description 2
- 239000004566 building material Substances 0.000 claims abstract description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 29
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 17
- 210000001124 body fluid Anatomy 0.000 claims description 14
- 239000010839 body fluid Substances 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 238000004090 dissolution Methods 0.000 claims description 9
- 239000002893 slag Substances 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 abstract description 17
- 239000012774 insulation material Substances 0.000 abstract description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 239000006227 byproduct Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000000156 glass melt Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011489 building insulation material Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
Abstract
본 발명은 염용해성이 향상된 미네랄울 섬유 조성물 및 이로부터 얻어진 미네랄울 섬유를 함유하는 건축자재에 관한 것으로, 보다 상세하게는, 기존 제품과 동등한 내열성 및 섬유특성을 가지는 동시에, 염용해성이 우수하여 인체에 무해하고, 환경친화적이며 저렴하게 생산 가능한 미네랄울 섬유 조성물 및 이로부터 얻어진 미네랄울 섬유를 함유하는 천장판, 무기단열재 등의 건축자재에 관한 것이다.The present invention relates to a mineral wool fiber composition having improved salt solubility and a building material containing mineral wool fibers obtained from the mineral wool fiber composition. More particularly, the present invention relates to a mineral wool fiber composition having improved heat resistance and fiber properties, To a building material such as a ceiling board containing a mineral wool fiber obtained from the mineral wool fiber composition and an inorganic insulation material which is environmentally friendly and inexpensively producible.
Description
본 발명은 염용해성이 향상된 미네랄울 섬유 조성물 및 이로부터 얻어진 미네랄울 섬유를 함유하는 건축자재에 관한 것으로, 보다 상세하게는, 기존 제품과 동등한 내열성 및 섬유특성을 가지는 동시에, 염용해성이 우수하여 인체에 무해하고, 환경친화적이며 저렴하게 생산 가능한 미네랄울 섬유 조성물 및 이로부터 얻어진 미네랄울 섬유를 함유하는 천장판, 무기단열재 등의 건축자재에 관한 것이다.The present invention relates to a mineral wool fiber composition having improved salt solubility and a building material containing mineral wool fibers obtained from the mineral wool fiber composition. More particularly, the present invention relates to a mineral wool fiber composition having improved heat resistance and fiber properties, To a building material such as a ceiling board containing a mineral wool fiber obtained from the mineral wool fiber composition and an inorganic insulation material which is environmentally friendly and inexpensively producible.
미네랄울(mineral wool, 암면)은 규산염계 광석을 1,500~1,700℃의 고열로 용융한 뒤, 스피너의 고속회전력을 이용하여 섬유화한 인조광물섬유(Man-Made Mineral Fibers, MMMF) 제품이다. 일반적으로 매트(Mat), 블랭킷(Blanket), 벌크(Bulk) 또는 커버(Cover) 상으로 가공되어 사용되며, 단열성, 불연 및 내열성이 뛰어나 보온, 단열, 흡음, 방음재 등 기타 여러 가지 용도로 사용된다. 또한 미네랄울 섬유를 습식 성형해서 천장판으로 사용되기도 한다. 천장판에 사용되는 경우, 일반적인 건축/산업용 내장재로 사용되는 미네랄울과는 달리 사용자에 직접적으로 노출된다는 특징이 있으며, 따라서 미네랄울 섬유의 인체무해성이 더욱 중요한 요소가 될 수 있다. Mineral wool is a man-made mineral fiber (MMMF) product obtained by melting a silicate-based ore at a high temperature of 1,500 ~ 1,700 ° C and then using a high-speed spinning power of spinner. It is generally used as a mat, blanket, bulk or cover and has excellent heat insulation, fire retardancy and heat resistance and is used for various purposes such as heat insulation, insulation, sound absorption, soundproofing . It is also used as a ceiling board by wet-forming mineral wool fibers. When used in a ceiling panel, unlike mineral wool, which is generally used as a building / industrial interior material, it is directly exposed to the user. Therefore, human non-harmfulness of mineral wool fibers can be more important factor.
미네랄울 섬유가 인체에 미치는 영향과 관련하여 국제암연구소(IARC, International Agency for Research on Cancer)의 발암성 물질 분류기준에 따르면, 미네랄울 섬유는 Group 3으로 인체 발암성 비분류 물질(not classifiable as to carcinogenicity to humans)에 해당한다. 하지만, 파쇄된 섬유가 호흡에 의해서 폐에 흡입되어 축적될 경우 인체에 영향을 미칠 가능성은 있다. 따라서, 사람의 체액(일정 농도의 염분을 함유한 물)에 대한 섬유의 용해도를 증가시켜 축적된 섬유를 체외로 용이하게 배출시키도록 하면 인체에 대한 위해성을 최소화할 수 있다. 단, 이렇게 염용해성(saline solubility)을 향상시키더라도 미네랄울이 가지는 무기섬유로서의 기본 성질은 유지해야 한다. 즉, 미네랄울의 실제 사용온도가 700~800℃에 이를 수 있도록 내열성을 갖추어야 하고, 일정 수준의 섬유경을 가져야 하며, 미섬유화 입자(shot)함량을 가능한 최소화시켜 단열성능을 향상시켜야 한다는 점이 중요하다. According to the International Agency for Research on Cancer (IARC) classification of carcinogenic substances, mineral wool fibers are classified as Group 3, not classifiable as to carcinogenicity to humans. However, if the broken fibers are absorbed and accumulated by the respiration into the lungs, there is a possibility of affecting the human body. Therefore, by increasing the solubility of the fibers in human body fluids (water containing a certain concentration of salt), it is possible to minimize the risk to the human body by allowing the accumulated fibers to be easily discharged outside the body. However, even if the saline solubility is improved, the basic properties of mineral wool should be maintained. That is, it is important that heat resistance should be provided so that the actual use temperature of the mineral wool can reach 700 to 800 ° C., the fiber must have a certain degree of fiber diameter, and the amount of the fine fiber shot should be minimized to improve the heat insulating performance Do.
이러한 최적의 조건을 찾기 위해 현재까지 많은 연구가 진행되어 왔는데, 그 중 대표적인 것은, 미네랄울 섬유 성분 중 Al2O3의 함량을 감소시킴으로써 체액에 대한 섬유의 용해도를 향상시킬 수 있다는 것이다. 한국공개특허 제2011-0097010호에는 SiO2 함량이 상대적으로 높고, CaO 및 Al2O3 함량은 상대적으로 낮은 고온단열재용 생체용해성 세라믹 섬유 제조용 조성물이 개시되어 있다. 이 조성물은 염용해성이 우수하고1200℃ 이상의 초고온 환경에서 우수한 내열성을 나타내나, 제조비용이 높으며, 미섬유화 입자의 함량이 비교적 높아, 일반적인 산업용 단열재나 천장판 제조 등의 용도로 활용하기에는 부적합하다.Many researches have been carried out to find such optimal conditions. Among them, the decrease in the content of Al 2 O 3 in the mineral wool fibers can improve the solubility of the fibers in the body fluids. Korean Patent Laid-Open Publication No. 2011-0097010 discloses a composition for preparing a bio-soluble ceramic fiber for a high temperature insulation material having a relatively high SiO 2 content and a relatively low CaO and Al 2 O 3 content. This composition is excellent in salt solubility and exhibits excellent heat resistance in an ultra-high temperature environment of 1200 占 폚 or more, but has a high production cost and a relatively high content of microfibrillated particles and is therefore unsuitable for use in general industrial insulation materials and ceiling board production.
한편, 현재 천장판용으로 주로 사용되는 미네랄울(bale wool)은 제철 산업의 부산물인 철슬래그(steel slag)가 주원료이다. 철슬래그는 철광석에서 철을 분리해 내고 남은 부산물로, CaO 함량이 약 40% 이상으로 높고, 철분은 1% 이하로 낮다는 특징이 있다. 또한 철슬래그는 Al2O3 함량이 약 11%로 Al2O3가 필수적으로 포함되기 때문에, 철슬래그가 주원료로 사용되는 미네랄울에서는 상기 언급한 저 Al2O3 조성 설계가 힘들다. 기존의 저알루미나 방식으로는 용융공정에서 염용해성을 향상시키는 데 한계가 있으며, 현실적으로 접근하기 어려운 조건이다. 따라서, Al2O3가 일정 부분 함유되어 있으면서도 향상된 염용해성을 나타내어 건축용 단열재나 천장판 등 일반 건축자재에 적용시 사용자에게 직접 노출되더라도 인체에 무해한 미네랄울 조성물의 개발이 요청되고 있다.On the other hand, mineral wool (bale wool), which is mainly used for ceiling panels, is mainly made up of steel slag, which is a by-product of the steel industry. The iron slag is a by-product after iron is separated from iron ore. It has a characteristic that CaO content is about 40% higher and iron content is less than 1%. Also, because the Al 2 O 3 content of the iron slag is about 11% and Al 2 O 3 is essentially contained, it is difficult to design the above-mentioned low Al 2 O 3 composition in the mineral wool in which the iron slag is used as the main material. The existing low-alumina process has limitations in improving the salt solubility in the melting process, and is a difficult condition to realize in reality. Therefore, it is required to develop a mineral wool composition that is harmless to human body even if it is directly exposed to users when it is applied to general building materials such as a building insulation material and a ceiling board because Al 2 O 3 contains a certain part and exhibits improved salt solubility.
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하고자 한 것으로, 기존 제품과 동등한 내열성 및 섬유특성을 가지는 동시에, 인체 내로 흡입되더라도 염용해성이 우수하기 때문에 체액에 쉽게 용해되어 체외로 배출 및 제거될 수 있어 일반 미네랄울 조성물에 비해 인체 유해성이 크게 감소되고, 철광산업에서 발생하는 부산물인 괴재슬래그(철슬래그)를 주원료로 사용하여 제조될 수 있기 때문에 환경친화적이며 생산 원가적인 측면에서도 유리한 미네랄울 섬유 조성물 및 이를 함유하는 천장판, 무기단열재 등의 건축자재를 제공하는 것을 기술적 과제로 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide a polyurethane foam which has heat resistance and fiber properties equivalent to those of existing products and is easily dissolved in body fluids, (Iron slag), which is a byproduct produced in the iron ore industry, can be produced as a main raw material. Therefore, it is possible to produce mineral wool fibers which are advantageous in terms of environmental friendliness and production cost And to provide a building material such as a ceiling board and an inorganic thermal insulation material containing the composition.
상기한 기술적 과제를 해결하고자 본 발명은, SiO2 32~48 중량%, Al2O3 10~23 중량%, CaO 23~40 중량%, MgO 2~8 중량%, 및 Na2O와 K2O의 합 1~4중량%를 포함하는 염용해성 미네랄울 섬유 조성물을 제공한다.The present invention to solve the above technical problem is, SiO 2 32 ~ 48 wt%, Al 2 O 3 10 ~ 23 % by weight, CaO 23 ~ 40% by weight, MgO 2 ~ 8 wt%, and Na 2 O and K 2 O of from 1 to 4% by weight based on the total weight of the composition.
본 발명의 다른 측면에 따르면, 상기 염용해성 미네랄울 섬유 조성물을 섬유화하여 얻어지는 것을 특징으로 하는 미네랄울 섬유가 제공된다. According to another aspect of the present invention, there is provided a mineral wool fiber characterized by being obtained by fiberizing the salt-soluble mineral wool fiber composition.
본 발명의 또 다른 측면에 따르면, 상기 미네랄울 섬유를 포함하는 것을 특징으로 하는 건축자재, 예컨대 천장판, 무기단열재 등이 제공된다.According to another aspect of the present invention, there is provided a building material including the mineral wool fiber, such as a ceiling board, an inorganic insulation material, and the like.
본 발명에 따른 염용해성 미네랄울 조성물을 일반 건축자재에, 특히 천장판에 적용할 경우, 천장판의 시공이나, 파손/수리 등으로 인한 보수/교체 등의 작업시 발생할 수 있는 분진이 인체 내로 흡입되었을 때 체액에 쉽게 용해되어 인체로부터 제거될 수 있다. 또한 본 발명의 염용해성 미네랄울 조성물 배합은 철광산업에서 발생하는 부산물인 철슬래그를 주원료로 사용해서도 달성할 수 있으므로 환경친화적이며, 생산 원가 측면에서도 유리하다.When the salt-soluble mineral wool composition according to the present invention is applied to a general building material, particularly a ceiling board, dust that may be generated during work such as repairing / replacing due to construction of a ceiling board or breakage / repair is sucked into the human body It is easily dissolved in body fluids and can be removed from the body. Further, the salt-soluble mineral wool composition of the present invention can be achieved by using iron slag, which is a by-product of the iron ore industry, as the main raw material, thus being environmentally friendly and advantageous in terms of production cost.
이하, 본 발명에 대하여 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
망목 형성 산화물인 SiO2는 미네랄울 섬유의 기본 구조를 형성하는 역할을 한다. 본 발명의 조성물은 전체 100중량% 중에 SiO2를 32~48 중량%, 바람직하게는 39~44 중량% 함유한다. 조성물 중 SiO2 함량이 32 중량% 미만이면 내수성이 저하되어 습식 건축자재(예컨대, 천장판) 제조단계에서 이미 섬유 구조가 상당부분 붕괴될 가능성이 있고, 48 중량%를 초과하면 점도 증가에 따른 섬유경 및 미섬유화 입자(shot) 함량 증가 등의 문제점을 가져올 수 있다.Mesh formed of oxide SiO 2 serves to form the basic structure of the mineral wool fibers. The composition of the present invention contains 32 to 48 wt%, preferably 39 to 44 wt% of SiO 2 in 100 wt% of the total. If the content of SiO 2 in the composition is less than 32 wt%, the water resistance is lowered, and the fiber structure is likely to collapse substantially at the stage of manufacturing a wet building material (for example, a ceiling board). When the SiO 2 content is more than 48 wt% And an increase in the amount of microfibrillated particles (shot).
중간 산화물인 Al2O3는 액상선 근처의 유리 용융물의 점도를 증가시켜 유리의 결정화를 제어하고 섬유의 내수성을 향상시킨다. 본 발명의 조성물은 전체 100중량% 중에 Al2O3를 10~23 중량%, 바람직하게는 14~22 중량% 함유한다. 조성물 중 Al2O3 함량이 10 중량% 미만이면 내수성이 저하되고, 23 중량%를 초과하면 미네랄울 섬유의 염용해성이 감소될 수 있다.The intermediate oxide, Al 2 O 3 , increases the viscosity of the glass melt near the liquidus line to control the crystallization of the glass and improve the water resistance of the fiber. The composition of the present invention contains 10 to 23% by weight, preferably 14 to 22% by weight, of Al 2 O 3 in 100% by weight of the whole. If the content of Al 2 O 3 in the composition is less than 10% by weight, the water resistance of the composition is deteriorated. If the composition is more than 23% by weight, the salt solubility of mineral wool fibers may be decreased.
본 발명의 일 구체예에 있어서, 알루미나 소스를 추가로 사용하지 않을 경우에는 Al2O3 함량이 13~15.5 중량% 수준일 수 있고, 별도의 알루미나 소스를 사용할 경우 20~23중량% 수준일 수 있다. In one embodiment of the present invention, when no alumina source is used, the Al 2 O 3 content may be in the range of 13 to 15.5 wt%, and when a separate alumina source is used, the Al 2 O 3 content may be in the range of 20 to 23 wt% have.
CaO 및 MgO는 알칼리토금속 산화물(RO)로서 염용해성을 향상시키는 역할을 하고, 또한 유리 용융액의 점도를 감소시키고, 화학적 내구성을 향상시키는 등 섬유화에 긍정적인 영향을 미친다. 염용해성에 미치는 영향력은 MgO가 CaO 보다 더 크다고 할 수 있다. 본 발명의 조성물은 전체 100중량% 중에 CaO 23~40 중량% 및 MgO 2~8 중량%를, 바람직하게는 CaO 25~36 중량% 및 MgO 4~6 중량%를 함유한다. 이들 알칼리토금속 산화물의 함량이 상기 하한에 못 미치면 용융점도가 상승하여 shot함량이 증가하거나 섬유경이 증가하는 등의 문제가 발생할 수 있으며, 반대로 상기 상한을 초과하면 섬유화 온도와 결정화 온도의 차이가 감소하여 섬유화 작업시 결정화가 진행되어 원활한 섬유화가 이루어지지 않을 가능성이 있다.CaO and MgO are alkaline earth metal oxides (RO) which play a role in improving salt solubility and have a positive effect on the fiberization, such as reducing the viscosity of the glass melt and improving the chemical durability. The effect of MgO on salt solubility can be said to be larger than that of CaO. The composition of the present invention contains 23 to 40% by weight of CaO and 2 to 8% by weight of MgO, preferably 25 to 36% by weight of CaO and 4 to 6% by weight of MgO in 100% by weight of the whole. If the content of the alkaline earth metal oxide is less than the lower limit, the melt viscosity may increase to increase the shot content or increase the fiber diameter. On the contrary, if the content exceeds the upper limit, the difference between the fiberization temperature and the crystallization temperature decreases There is a possibility that the crystallization progresses during the fiberization operation and the smooth fiberization can not be performed.
Na2O 및 K2O는 알칼리금속 산화물(R2O)로서 비가교 산소를 생성시켜 용융을 원활히 진행시키는 용융제의 역할을 하며, 또한 염용해성을 향상시킨다. 본 발명의 조성물은 전체 100중량% 중에 Na2O와 K2O의 합 1~4중량%를 포함하고, 바람직하게는 Na2O와 K2O의 합 1.5~3.5중량%를 포함한다. Na2O와 K2O는 각각 0~4중량%로 조성물에 포함될 수 있으며, 바람직하게는 Na2O 0.5~3.5 중량% 및 K2O 0.5~3.5 중량%가 포함될 수 있으나, 이에 반드시 한정되는 것은 아니다. 조성물 중 Na2O와 K2O의 합이 1중량%에 못 미치면 염용해성이 저하되고, 4중량%를 초과하면 섬유의 내수성이 저하된다.Na 2 O and K 2 O are alkaline metal oxides (R 2 O), which act as a melting agent for smoothly progressing melting by generating non-crosslinked oxygen, and also improve salt solubility. The composition of the present invention comprises 1 to 4% by weight of the sum of Na 2 O and K 2 O in the total 100% by weight, preferably 1.5 to 3.5% by weight of the sum of Na 2 O and K 2 O. Na 2 O and K 2 O may each be included in the composition in an amount of 0 to 4 wt%, preferably 0.5 to 3.5 wt% of Na 2 O and 0.5 to 3.5 wt% of K 2 O, It is not. If the sum of Na 2 O and K 2 O in the composition is less than 1 wt%, the solubility of the salt is lowered, and if it exceeds 4 wt%, the water resistance of the fiber is lowered.
수식 산화물인 CaO, MgO, Na2O 및 K2O의 총 함량은 조성물은 전체 100중량% 중에 30~50 중량%인 것이 염용해성 향상의 측면에서 바람직하다.The total content of the modified oxides CaO, MgO, Na 2 O and K 2 O is preferably 30 to 50% by weight based on 100% by weight of the total composition in terms of improvement in salt solubility.
본 발명의 염용해성 미네랄울 조성물에는, 의도하지 않았더라도 상기한 성분들 이외에 산화철(FeO 혹은Fe2O3), TiO2 등 기타 성분들이 더 포함될 수 있다. 산화철(FeO 혹은Fe2O3)의 경우 조성물 전체 100중량% 중에 0~5 중량%가 포함될 수 있으며, TiO2의 경우 조성물 전체 100중량% 중에 0~3 중량%가 포함될 수 있다.The salt-soluble mineral wool composition of the present invention may further contain other components such as iron oxide (FeO or Fe 2 O 3 ), TiO 2 and the like in addition to the above-mentioned components, though not intentionally. In the case of iron oxide (FeO or Fe 2 O 3 ), 0 to 5% by weight may be included in 100% by weight of the total composition. In the case of TiO 2 , 0 to 3% by weight may be included in 100% by weight of the composition.
본 발명의 일 구체예에 따르면, 본 발명의 조성물은 철광산업에서 발생하는 부산물인 괴재슬래그(철슬래그)를 주원료로 사용하여 제조될 수 있다. 이 경우, 바람직하게는 괴재슬래그(철슬래그)를 원료물질의 70중량% 이상 사용함으로써 조성물 내 산화철(FeO 혹은 Fe2O3)의 함량을 0~5 중량%(보다 바람직하게는 0~3%)로 낮출 수 있다.According to one embodiment of the present invention, the composition of the present invention can be produced by using a byproduct slag (iron slag), which is a byproduct generated in the iron ore industry, as a main raw material. In this case, the content of iron oxide (FeO or Fe 2 O 3 ) in the composition is preferably 0 to 5 wt% (more preferably 0 to 3 wt%) by using not less than 70 wt% of the raw material, ).
본 발명에 따른 염용해성 미네랄울 조성물은 통상적인 미네랄울 조성물 제조법과 동일한 방식으로 제조할 수 있다. 예를 들어 큐폴라(Cupola)로에서 코크스(Cokes)의 연소열을 이용한 용융 방식을 들 수 있으며, 이방성 흑연 전극봉을 사용하는 전기 용융로 방식으로 전기저항열을 이용하여 용융시킬 수도 있으나, 용융법이 이 방식들에 한정되지는 않는다. The salt-soluble mineral wool composition according to the present invention can be prepared in the same manner as a conventional method for producing a mineral wool composition. For example, it is possible to melt by using the heat of combustion of cokes in Cupola, and it may be melted by electric resistance heat using an electric melting furnace using anisotropic graphite electrode. However, The present invention is not limited thereto.
용융된 미네랄울 용탕을 섬유화시키는 방법에는 여러 가지 방법이 있으나, 이 또한 기존의 방법을 적용할 수 있다. 예컨대, 용융물을 고속으로 회전하는 디스크(Disk) 형태의 스피너휠의 표면에 떨어뜨리고, 동시에 스피너 휠 주위로 강한 바람을 분사하여, 그 원심력에 의해 용융물이 섬유형으로 길게 늘어지도록 하여 섬유화하는 방식을 들 수 있다. 하지만 이 또한 상기 방식에 한정되는 것은 아니다. There are various methods of making the molten mineral wool molten metal into a fiber, but the conventional method can also be applied. For example, a method of dropping a melt onto the surface of a spinner wheel in the form of a disk rotating at high speed, and simultaneously blowing strong wind around the spinner wheel, and making the melt to be long in a fiber shape by the centrifugal force, . However, this is not limited to the above method.
상기와 같이 하여 얻어지는 본 발명의 염용해성 미네랄울 섬유는 바람직하게는, pH 4.5±0.1인 인공체액에 대한 용해속도상수가 250 ng/㎠·hr 이상(보다 바람직하게는 300 ng/㎠·hr 이상, 예컨대 300~450 ng/㎠·hr)이고, 평균 섬유경이 7㎛ 이하(예컨대 4~7 ㎛)이며, 35 mesh 통과후 shot함량이 4중량% 이하(예컨대 1~4 중량%, 보다 바람직하게는 3.5 중량% 이하)이다.The salt-soluble mineral wool fiber of the present invention obtained as described above preferably has a dissolution rate constant of not less than 250 ng / cm 2 · hr (more preferably not less than 300 ng / cm 2 · hr) for a physiological saline solution having a pH of 4.5 ± 0.1 (For example, 300 to 450 ng / cm 2 · hr), the average fiber diameter is 7 μm or less (for example, 4-7 μm), the shot content after passing through the 35 mesh is 4 wt% Is not more than 3.5% by weight).
상기 특성들을 만족시키는 본 발명의 본 발명의 염용해성 미네랄울 섬유는 기존 제품과 동등한 내열성 및 섬유특성을 가지는 동시에, 인체 내로 흡입되더라도 염용해성이 우수하기 때문에 체액에 쉽게 용해되어 체외로 배출 및 제거될 수 있어 일반 건축자재, 예컨대 천장판, 무기단열재 등에 바람직하게 활용될 수 있다.The salt-soluble mineral wool fiber of the present invention satisfying the above characteristics has heat resistance and fiber characteristics equivalent to those of conventional products and is excellent in salt solubility even if it is inhaled into human body. Therefore, it is easily dissolved in body fluids and discharged and removed from the body And can be suitably used for general building materials such as a ceiling board and an inorganic insulation material.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the scope of the present invention is not limited thereto.
실시예 1~7 및 비교예 1~5Examples 1 to 7 and Comparative Examples 1 to 5
하기 표 1(실시예) 및 표 2(비교예)에 나타낸 성분과 함량으로 미네랄울 섬유 조성물을 제조하였다. 제조된 미네랄울 섬유 조성물을 전기용융로(Electric Furnace)에서 용융시킨 후, 용융로 하단 측면부의 직경 약 50mm의 출탕구를 통해 출탕시켜 고속회전하는 섬유화 장치(Fiberizer)로 떨어뜨리고, 스피너의 원심력을 이용하여 섬유를 생산하는 방식으로 미네랄울 섬유를 제조하였다. 이 방식으로 생산된 섬유에 대해 표 1 및 표 2에 기재된 항목들에 대하여 평가하였다.
A mineral wool fiber composition was prepared by the ingredients and contents shown in Table 1 (Examples) and Table 2 (Comparative Example). The produced mineral wool fiber composition was melted in an electric furnace, dropped through a tapping hole having a diameter of about 50 mm at the bottom side of the melting furnace, and dropped into a fiberizer rotating at a high speed. Using a centrifugal force of a spinner Mineral wool fibers were produced by the method of producing fibers. The fibers listed in Table 1 and Table 2 were evaluated for the fibers produced in this manner.
[표 1] (성분 함량 단위: 중량%)[Table 1] (content of ingredients:% by weight)
[표 2] (성분 함량 단위: 중량%)[Table 2] (content of ingredients:% by weight)
상기 표 1에 따르면, 실시예에서 제섬된 섬유에 대한 용해속도상수(Kdis)가 250 ng/㎠·hr이상으로, 인공체액에 대한 염용해도가 우수하였다. 또한 가열선수축율을 통해 적정 수준 이상의 내열성을 가지는 것을 확인하였다. According to the above Table 1, the dissolution rate constant (Kdis) for the fiber-treated fiber in the Examples was 250 ng / cm 2 · hr or more, and the salt solubility to the artificial body fluid was excellent. Also, it was confirmed that the heat shrinkage ratio has a heat resistance higher than an appropriate level.
상기 표 2에 따르면, 비교예 1, 2의 경우 Al2O3의 함량이 낮아 염용해성이 상대적으로 낮은 결과가 나왔다. Al2O3는 중간산화물로 적절 수준으로 함유되지 않을 경우 염용해성 저하의 주요인이 된다. 특히 비교예 2의 경우 Al2O3의 함량대비 SiO2의 함량이 높아 섬유경과 shot함량이 높게 나온 것으로 판단된다. 비교예 3은 SiO2 함량이 높은 조성으로, SiO2 함량 증가로 인한 점도 증가로 출탕 자체에 어려움이 컸는데, 용탕 낙하 과정에서 급격히 냉각되어 섬유경 및 shot함량의 증가로 이어지게 되었다. 또한 상대적인 수식산화물 함량의 감소로 용해도도 낮아진 것으로 판단된다. 비교예 4는 Al2O3 함량이 25.4중량%로 크게 높아 용해도가 급격히 나빠졌다. 비교예 5은 Na2O+K2O의 함량이 높아서 용해도가 낮았다.According to the above Table 2, in Comparative Examples 1 and 2, the content of Al 2 O 3 was low and the salt solubility was relatively low. Al 2 O 3 is an intermediate oxide, and when it is not contained at an appropriate level, it becomes a main cause of deterioration of salt solubility. In particular, in the case of Comparative Example 2, the content of SiO 2 was higher than the content of Al 2 O 3 , indicating that the fiber content and shot content were high. In Comparative Example 3, the SiO 2 content was high and the viscosity was increased due to the increase of the SiO 2 content. However, the molten metal was rapidly cooled during the falling of the molten steel, resulting in an increase in the fiber diameter and the shot content. Also, it is considered that the solubility is lowered due to the decrease of relative oxide content. In Comparative Example 4, the Al 2 O 3 content was as high as 25.4 wt%, and the solubility was drastically deteriorated. In Comparative Example 5, the content of Na 2 O + K 2 O was high and the solubility was low.
<물성 측정>≪ Measurement of physical properties &
1. 용해속도상수(K1. Dissolution rate constant (K disdis ))
실시예 및 비교예에서 제조된 섬유의 체액에 대한 용해도를 평가하기 위해 아래와 같은 방법으로 인공체액 용해속도상수를 구하였다. 유리 섬유의 체내 염용해성은 인공체액에 대한 섬유의 용해도를 기준으로 평가하는데, 상기 용해도를 기준으로 한 체내 잔류시간을 비교한 후 다음에 나타낸 <수학식 1>을 이용하여 용해속도 상수(Kdis)를 계산하였다.In order to evaluate the solubility of the fibers prepared in Examples and Comparative Examples in body fluids, the dissolution rate constants of artificial body fluids were determined in the following manner. The solubility of the glass fiber in the salt is evaluated on the basis of the solubility of the fiber in the artificial body fluid. The dissolution rate constant (Kdis) is calculated using the following Equation (1) Respectively.
<수학식 1>&Quot; (1) "
Kdis = [doρ(1 - M/Mo)0.5)]/2t K dis = [d o ρ ( 1 - M / M o) 0.5)] / 2t
do: 초기 평균 섬유경(㎛), ρ: 섬유의 초기밀도(g/cm3)d o : initial average fiber diameter (탆), rho: initial density of fiber (g / cm 3 )
Mo: 초기 섬유의 질량(mg), M: 용해되고 남은 섬유의 질량(mg)M o : mass of initial fiber (mg), M: mass of fiber remaining (mg)
t: 실험시간(hr)t: Experiment time (hr)
섬유의 용해속도상수를 측정하기 위해 사용한 인공체액1L에 들어 있는 조성성분의 함량(g)은 다음과 같다.The content (g) of the composition component contained in 1 L of the artificial body fluid used for measuring the dissolution rate constant of the fiber is as follows.
실시예 및 비교예의 유리 섬유를 플라스틱 필터 지지대(Air Monitoring Cassette)로 고정된 0.2 ㎛ 폴리카보네이트 멤브레인 필터(polycarbonate membrane filter) 사이의 얇은 층 사이에 놓고, 이 필터 사이로 상기 인공체액을 여과시켜 용해속도를 측정하였다. 실험이 진행되는 동안 계속하여 인공 체액의 온도를 37 ℃, 유량을 135 ml/일로 조절하고, HCl을 이용하여 pH를 4.5 ±0.1로 유지시켰다. 오랜 기간 동안에 일어나는 섬유의 용해도를 정확히 측정하기 위하여 섬유를 21일간 침출(leaching)시키면서, 특정 간격(4, 7, 11, 14, 21일) 으로 여과된 인공체액을 유도 결합 플라즈마 분석법(ICP, Inductively Coupled Plasma Spectrometer)을 이용해서 용해된 이온들을 분석한 후 이 결과를 이용해서 상기 <수학식 1>로 용해속도상수(Kdis)를 구하였다.The glass fibers of the Examples and Comparative Examples were placed between thin layers between a 0.2 μm polycarbonate membrane filter fixed with a plastic filter support (Air Monitoring Cassette), and the artificial body fluid was filtered between the filters to set the dissolution rate Respectively. During the experiment, the temperature of the artificial body fluid was adjusted to 37 ° C, the flow rate to 135 ml / day, and the pH was maintained at 4.5 ± 0.1 using HCl. In order to accurately measure the solubility of fibers occurring over a long period of time, artificial body fluids filtered at specific intervals (4, 7, 11, 14, 21 days) were inductively coupled plasma (ICP) Coupled Plasma Spectrometer) was used to analyze the dissolved ions, and the dissolution rate constant (K dis ) was determined using the above-described equation (1).
2. 가열선수축율2. Heat shrinkage factor
미네랄울 섬유의 가열 선수축율을 측정하기 위해 섬유를 패드(Pad) 형태의 시편으로 제조한 후 실험에 사용하였다. 먼저, 섬유 220 g을 0.2 % 녹말 용액에서 충분히 해면한 후, 300*300 mm 주형에 부어 넣고, 해면된 섬유를 고르게 하여 면 편차를 적게 한 후 주형 바닥을 통해 배수함으로써 패드를 제조하였다. 상기 패드를 100 ℃의 오븐에서 24시간 이상 충분히 건조시킨 후 100 × 100 × 25 mm의 크기로 절단하여 시편을 제조하고, 백금핀으로 측정점을 표시한 다음 버니어 캘리퍼스를 이용하여 측정점 사이의 거리를 소수점 이하 둘째자리까지 측정한 후 상기 패드를 1000℃로 가열된 노(furnace)에 위치시켜 1시간 동안 각각 가열한 다음 상온에서 냉각시켰다. 상기 냉각된 시편의 측정점 사이의 거리를 측정하여 열처리 전후의 측정결과를 비교하였으며 다음의 <수학식 2>을 이용하여 선수축율을 계산하였다.In order to measure the heat shrinkage of mineral wool fibers, fibers were prepared as pad type specimens and used in the experiment. First, 220 g of fiber was thoroughly dipped in a 0.2% starch solution, poured into a 300 * 300 mm mold, the spun fibers were leveled, the surface deviation was reduced, and the pad was drained through the bottom of the mold. The pad was sufficiently dried for 24 hours or more in an oven at 100 ° C. and cut into a size of 100 × 100 × 25 mm to prepare a test piece. Platinum pins were used to mark the measurement points. Then, using a vernier caliper, The pads were placed in a furnace heated to 1000 ° C., heated for 1 hour, and then cooled at room temperature. The distance between the measurement points of the cooled specimen was measured to compare the measurement results before and after the heat treatment, and the linear contraction ratio was calculated using the following Equation (2).
<수학식 2>&Quot; (2) "
가열 선수축율(%) = (l0-l1)/l0×100Heat linear shrinkage (%) = (l 0 -l 1) / l 0 × 100
여기서, l0는 시험편 마크 사이의 최초 거리(mm), l1은 가열후의 시험편 마크 사이의 길이(mm)를 나타낸다.Where l 0 is the initial distance (mm) between specimen marks, and l 1 is the length (mm) between specimen marks after heating.
3. Shot Contents3. Shot Contents
섬유의 제섬 과정에서 미처 섬유화되지 못하고 섬유 사이에 존재하게 되는 입자 형태의 것을 shot이라고 한다. Shot 함량을 측정하기 위해서는 다음과 같은 방법을 사용하였다. 우선 체(Sieve)의 무게를 측정한 후, 섬유 50g을 체에 담아 무게를 측정하였다. 그리고 섬유의 내부에 있는 shot이 떨어져 나가지 않게끔 유의하며 섬유를 잘게 찢어 믹서기에 넣고 물을 약 90% 정도 수준이 되도록 투입하였다. 믹서기로 30초 동안 교반한 후, 35 mesh 체를 통해 걸러내는데, 이 때 지속적으로 물을 통과시켜 섬유가 완전히 체를 통과하고 shot만 남을 수 있도록 하였다. 최종적으로 남은 shot을 체와 같이 120℃ 건조기에서 약 3시간 건조시켜 무게를 측정하였다. Shot contents는 아래의 <수학식3>를 이용하여 구하였다.In the process of fiber fibrillation, it is called "shot". Shot content was measured by the following method. After measuring the weight of the sieve, 50 g of the fiber was weighed and weighed. The fibers were torn into pieces and placed in a blender so that the shots inside the fibers did not fall off. After stirring for 30 seconds with a blender, the mixture was filtered through a 35 mesh sieve to continuously pass water through the sieve so that only the shot could remain. Finally, the remaining shots were dried in a 120 ° C dryer for about 3 hours and weighed. Shot contents were obtained using Equation (3) below.
<수학식 3>&Quot; (3) "
Shot Contents(%) = w1 / w0×100Shot Contents (%) = w 1 / w 0 100
여기서, w0는 shot 포함된 섬유의 무게(g), w1은 섬유를 제외한shot의 무게(g)를 나타낸다.Where w 0 is the weight (g) of the shot containing fibers, and w 1 is the weight (g) of the shot excluding the fibers.
4. 섬유경4. Fiber diameter
섬유경은 광학현미경을 이용하여 측정하였으며, 측정 방법은 아래와 같다. 우선 슬라이드 글라스에 미량의 섬유를 올려놓고 슬라이드 분산액을 한 방울 떨어뜨려 혼합시켰다. 커버글라스를 덮은 후 약 6시간 정도 상온에서 건조시켜 프레파라트(표본)를 제작하였다. 총 5개의 프레파라트를 제작한 뒤, 현미경을 통해 배율이 x200이 되도록 조정하여 측정을 시작하였다. 측정시 섬유를 무작위로 선정하여 섬유경을 측정하였으며, 무작위성의 확보를 위해 각 프레파라트별로 100개씩 섬유경을 측정하였다. 최종적으로 측정된 섬유경을 모두 기록하여 평균해서 평균섬유경을 구하였다.The fiber diameter was measured using an optical microscope, and the measurement method was as follows. First, a small amount of fiber was placed on a slide glass, and a drop of the slide dispersion was dropped and mixed. Cover glass was covered and then dried at room temperature for about 6 hours to prepare a prepalat (sample). A total of five prepara- tats were prepared, and the measurement was started by adjusting the magnification to x200 through a microscope. Fibers were randomly selected to measure the fiber diameter, and fiber diameter was measured in 100 pieces of each of the preparats to ensure randomness. The final measured fiber diameter was recorded and averaged to obtain an average fiber diameter.
Claims (8)
pH 4.5±0.1인 인공체액에 대한 용해속도상수가 300 ng/㎠·hr 이상이고, 평균 섬유경이 7㎛ 이하이며, 35 mesh 통과후 shot함량이 4중량% 이하인 것을 특징으로 하는,
건축자재용 미네랄울 섬유.32 to 48 wt% of SiO 2 , 10 to 23 wt% of Al 2 O 3 , 23 to 40 wt% of CaO, 2 to 4.7 wt% of MgO, 1 to 4 wt% of Na 2 O and K 2 O, 3% < / RTI > by weight of a salt-soluble mineral wool fiber composition,
characterized in that the dissolution rate constant for an artificial body fluid having a pH of 4.5 ± 0.1 is 300 ng / cm 2 · hr or more, the average fiber diameter is 7 μm or less, and the shot content after passing through 35 mesh is 4%
Mineral wool fiber for construction materials.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020110134599A KR101516981B1 (en) | 2011-12-14 | 2011-12-14 | Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020110134599A KR101516981B1 (en) | 2011-12-14 | 2011-12-14 | Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20130067421A KR20130067421A (en) | 2013-06-24 |
| KR101516981B1 true KR101516981B1 (en) | 2015-05-06 |
Family
ID=48863255
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020110134599A Active KR101516981B1 (en) | 2011-12-14 | 2011-12-14 | Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR101516981B1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018066803A1 (en) * | 2016-10-04 | 2018-04-12 | 재단법인 포항산업과학연구원 | Inorganic fiber using by-products of iron-making process, and manufacturing method therefor |
| KR102097293B1 (en) | 2019-07-05 | 2020-04-06 | 해원엠에스씨(주) | Manufacturing method of ceramic panel comprising slag and stone powder |
| KR102097289B1 (en) | 2019-07-05 | 2020-04-10 | 해원엠에스씨(주) | Ceramic panel comprising slag and stone powder |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101677847B1 (en) * | 2015-06-23 | 2016-11-21 | 주식회사 케이씨씨 | Acoustic Absorption Panel |
| KR102177965B1 (en) * | 2019-01-18 | 2020-11-12 | 주식회사 케이씨씨 | Composition for mineral wool and mineral wool manufactured thereof |
| KR102261524B1 (en) * | 2019-09-02 | 2021-06-07 | 주식회사 케이씨씨 | Batch composition for mineral wool and mineral wool manufactured therefrom |
| KR102552917B1 (en) * | 2020-09-14 | 2023-07-10 | 주식회사 케이씨씨 | Batch composition for mineral wool and mineral wool manufactured therefrom |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996014274A2 (en) * | 1994-11-08 | 1996-05-17 | Rockwool International A/S | Man-made vitreous fibres |
| KR100198907B1 (en) | 1990-06-01 | 1999-06-15 | 에스.르 바궤레스 | Mineral fibers that can be broken down in physiological media |
| JP2001139347A (en) | 1999-11-12 | 2001-05-22 | Kawasaki Steel Corp | Rock wool and rock wool board |
-
2011
- 2011-12-14 KR KR1020110134599A patent/KR101516981B1/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100198907B1 (en) | 1990-06-01 | 1999-06-15 | 에스.르 바궤레스 | Mineral fibers that can be broken down in physiological media |
| WO1996014274A2 (en) * | 1994-11-08 | 1996-05-17 | Rockwool International A/S | Man-made vitreous fibres |
| JP2001139347A (en) | 1999-11-12 | 2001-05-22 | Kawasaki Steel Corp | Rock wool and rock wool board |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018066803A1 (en) * | 2016-10-04 | 2018-04-12 | 재단법인 포항산업과학연구원 | Inorganic fiber using by-products of iron-making process, and manufacturing method therefor |
| KR102097293B1 (en) | 2019-07-05 | 2020-04-06 | 해원엠에스씨(주) | Manufacturing method of ceramic panel comprising slag and stone powder |
| KR102097289B1 (en) | 2019-07-05 | 2020-04-10 | 해원엠에스씨(주) | Ceramic panel comprising slag and stone powder |
| US11230498B2 (en) | 2019-07-05 | 2022-01-25 | Haewonmsc Co., Ltd | Ceramic panel including slag and stone dust |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20130067421A (en) | 2013-06-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101516981B1 (en) | Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom | |
| JP5230055B2 (en) | High temperature resistant glassy inorganic fiber | |
| EP3087042B1 (en) | Non-biopersistent inorganic glass fiber with improved shrinkage and strength | |
| JP6109802B2 (en) | Salt-soluble ceramic fiber composition | |
| KR100676167B1 (en) | Biodegradable Ceramic Fiber Composition for High Temperature Insulation | |
| US9919954B2 (en) | Inorganic fiber | |
| US10023491B2 (en) | Inorganic fiber | |
| JP5890515B2 (en) | Bio-soluble mineral wool fiber composition and mineral wool fiber | |
| EP3169637B1 (en) | Inorganic fiber with improved shrinkage and strength | |
| EP3169833B1 (en) | Inorganic fiber with improved shrinkage and strength | |
| KR101531633B1 (en) | A composition for preparing ceramic fiber and a saline soluble ceramic fiber prepared therefrom for heat insulating material at high temperature | |
| KR102780160B1 (en) | Composition for ceramic fiber and ceramic fiber manufactured therefrom | |
| HK1233612A1 (en) | A composition for preparing ceramic fiber and a biosoluble ceramic fiber prepared therefrom for heat insulating material at high temperature | |
| HK1176345A (en) | A composition for preparing ceramic fiber and a biosoluble ceramic fiber prepared therefrom for heat insulating material at high temperature | |
| HK1174324B (en) | Ceramic fiber composition which is soluble in salt |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20111214 |
|
| A201 | Request for examination | ||
| PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20130531 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20111214 Comment text: Patent Application |
|
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20140625 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20150223 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20150427 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20150428 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| PR1001 | Payment of annual fee |
Payment date: 20210329 Start annual number: 7 End annual number: 9 |
|
| PR1001 | Payment of annual fee |
Payment date: 20240326 Start annual number: 10 End annual number: 12 |