KR101646326B1 - High elasticity hyper eutectic aluminum alloy and method for producing the same - Google Patents
High elasticity hyper eutectic aluminum alloy and method for producing the same Download PDFInfo
- Publication number
- KR101646326B1 KR101646326B1 KR1020140045062A KR20140045062A KR101646326B1 KR 101646326 B1 KR101646326 B1 KR 101646326B1 KR 1020140045062 A KR1020140045062 A KR 1020140045062A KR 20140045062 A KR20140045062 A KR 20140045062A KR 101646326 B1 KR101646326 B1 KR 101646326B1
- Authority
- KR
- South Korea
- Prior art keywords
- aluminum alloy
- phase
- alloy
- elasticity
- tib
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 title claims description 26
- 239000000956 alloy Substances 0.000 title claims description 26
- 229910001366 Hypereutectic aluminum Inorganic materials 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 24
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 14
- 238000002844 melting Methods 0.000 claims description 16
- 230000008018 melting Effects 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 229910018575 Al—Ti Inorganic materials 0.000 claims description 6
- 206010001497 Agitation Diseases 0.000 claims description 3
- 238000013019 agitation Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 2
- -1 Si: 17 to 19 wt% Inorganic materials 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 abstract description 11
- 239000010936 titanium Substances 0.000 description 47
- 238000005266 casting Methods 0.000 description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 238000009749 continuous casting Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 229910004356 Ti Raw Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000003609 titanium compounds Chemical class 0.000 description 3
- 229910000521 B alloy Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1068—Making hard metals based on borides, carbides, nitrides, oxides or silicides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0073—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Ti 및 B를 포함하고, Ti:B의 조성 비율이 3.5~5:1이며 B는 0.5~2wt%로 구성되고, 강화상으로서 Al3Ti상 및 TiB2상을 모두 포함하는 고탄성 과공정 알루미늄 합금 및 그 제조방법이 소개된다.Ti and B, a composition ratio of Ti: B of 3.5 to 5: 1 and B of 0.5 to 2 wt%, and a high-elasticity and process aluminum alloy including both Al 3 Ti and TiB 2 phases as reinforcing phases And a manufacturing method thereof are introduced.
Description
본 발명은 강화상으로서 Al3Ti상 및 TiB2상을 동시에 포함함으로써 과공정 알루미늄 합금의 탄성이 획기적으로 높아지며, 연속주조가 아닌 일반주조 공정으로도 주조가 가능하도록 하는 고탄성 과공정 알루미늄 합금 및 그 제조방법에 관한 것이다.
The present invention relates to a high-elasticity and high-process aluminum alloy which is capable of casting by a general casting process rather than a continuous casting process, in which the elasticity of the over-process aluminum alloy is remarkably increased by simultaneously including the Al 3 Ti phase and the TiB 2 phase as the reinforcing phase, And a manufacturing method thereof.
본 발명은 강성 및 NVH 특성의 향상을 위한 주조용 고탄성 알루미늄 소재에 관한 것이다.The present invention relates to a high-resilience aluminum material for casting for improving rigidity and NVH characteristics.
종래의 경우 알루미늄 합금의 탄성 향상을 위하여 금속계 화합물이나 CNT 등의 강화상을 분말형태로 성형하였으나 원가 경쟁력에 있어 한계가 있는 문제가 있었다.In order to improve the elasticity of the aluminum alloy in the conventional case, the reinforcing sheet such as a metal compound or CNT is molded into a powder form, but there is a problem in cost competitiveness.
또한, 합금의 주조공정에서 강화상을 분말형태로 적용할 경우에는, Al 기지와의 젖음성, 분산 문제가 발생되었다.In addition, when the reinforcing phase is applied in the form of powder in the casting process of the alloy, wettability and dispersion problems with the Al base are generated.
특히, 과공정 알루미늄 주조재의 경우, 저압주조공정에 국한되고 조대 Si입자에 의한 가공이 난이한 문제가 있었으며 이를 개선하기 위해 냉각속도를 빠르게 해서 강화상을 미세화하여 가공성과 성형성을 확보해야만 하는 어려움이 있었다.Particularly, in the case of over-process aluminum casting materials, there is a problem in that it is limited to the low-pressure casting process and machining by coarse Si particles is difficult. To improve the difficulty, it is difficult to secure the workability and formability by finishing the strengthened phase by increasing the cooling rate .
따라서, 탄성 최대값을 달성하고 재현성을 확보하기 위해 탄성 향상에 가장 크게 기여하는 티타늄계 화합물 생성을 최적화(Al3Ti상 및 TiB2상 모두 강화상으로 활용)하고, 고압주조를 포함한 일반 주조공정에 적용 가능하고 균일성을 갖는 고탄성 소재를 구현할 필요가 있었던 것이다.
Therefore, in order to achieve the maximum elasticity and ensure reproducibility, optimization of the generation of the titanium-based compound which contributes most to the improvement in elasticity (utilizing both the Al 3 Ti phase and the TiB 2 phase as the reinforcing phase) and the general casting process It is necessary to realize a high elasticity material having applicability and uniformity.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as an admission that the prior art is known to those skilled in the art.
본 발명은 강화상으로서 Al3Ti상 및 TiB2상을 동시에 포함하여 탄성이 증대되며 동시에 연속주조가 아닌 일반주조 공정으로도 주조가 가능하도록 하는 고탄성 과공정 알루미늄 합금 및 그 제조방법을 제공하는데 그 목적이 있다.
The present invention provides a high-resilience and high-process aluminum alloy which includes both Al 3 Ti phase and TiB 2 phase as a strengthening phase to increase the elasticity thereof and at the same time enables casting by a general casting process instead of continuous casting, There is a purpose.
상기의 목적을 달성하기 위한 본 발명에 따른 과공정 알루미늄합금은 Ti 및 B를 포함하고, Ti:B의 조성 비율이 3.5~5:1이며 B는 0.5~2wt%로 구성되고, 강화상으로서 Al3Ti상 및 TiB2상을 모두 포함한다.In order to achieve the above object, the over-processing aluminum alloy according to the present invention comprises Ti and B, a composition ratio of Ti: B is 3.5 to 5: 1, B is 0.5 to 2 wt% 3 Ti phase and TiB 2 phase.
본 발명의 또 다른 실시예의 과공정 알루미늄합금은, 상용 알루미늄합금인 A390합금의 첨가원소의 조성 성분을 기본으로 하되, B의 조성은 0.5~2wt%이고 Ti는 Ti:B의 조성 비율이 3.5~5:1이 되도록 포함되며 잔부는 Al으로 구성되고, 강화상으로서 Al3Ti상 및 TiB2상을 모두 포함한다.The aluminum alloy for over-processing according to another embodiment of the present invention has a composition of B of 0.5 to 2 wt% and a composition ratio of Ti: B of 3.5 to 5 wt% based on the composition of the additive element of the A390 alloy, 5: 1, and the remainder is composed of Al, and includes both the Al 3 Ti phase and the TiB 2 phase as the strengthening phase.
이러한 알루미늄 합금을 제조하는 방법은, 용융로에 Al, Al-B 모합금, Al-Ti 모합금 또는 Ti 원소재를 장입하되, Ti:B의 조성 비율이 3.5~5:1이며 B는 0.5~2wt%로 구성되도록 장입하는 장입단계; 내부에서 강화상으로서 Al3Ti상 및 TiB2상이 모두 생성되도록 용탕을 교반하여 반응을 촉진시키는 1차 교반단계; 첨가원소를 장입하는 추가단계; 및 생성된 강화상이 용탕내에서 균일하게 분산되도록 용탕을 교반하는 2차 교반단계;를 포함한다.A method of producing such an aluminum alloy is characterized in that a composition ratio of Ti: B is 3.5 to 5: 1 and B is 0.5 to 2 wt%, wherein Al, Al-B parent alloy, Al-Ti parent alloy, %; ≪ / RTI > A primary agitation step in which the molten metal is stirred to accelerate the reaction so that both the Al 3 Ti phase and the TiB 2 phase are generated as the strengthening phase therein; An additional step of charging the additional element; And a secondary stirring step of stirring the molten metal so that the resultant reinforcing phase is uniformly dispersed in the molten metal.
Al-B 모합금은 B : 3~8wt% 및 잔부 Al로 구성될 수 있고, Al-Ti 모합금은 Ti : 5~10wt% 및 잔부 Al로 구성될 수 있다.
The Al-B parent alloy may be composed of 3 to 8 wt% of B and the remainder Al, and the Al-Ti parent alloy may be composed of 5 to 10 wt% of Ti and the remainder Al.
기존의 과공정 알루미늄은 대부분 고온 용해/빠른 냉각속도가 필요하여 연속주조공정을 적용해야 하고, 개재물 증가, 경제성 저하 등의 문제점을 가지는 반면, 본 발명에 따르면 Ti/B 조성비의 제어를 통해 상용소재보다 공정온도(용해, 초정 Si 정출온도)가 낮아지기 때문에 연속주조가 아닌 일반 주조공정도 가능하고, 연속주조 사용시에도 공정 제어의 부담을 낮출 수 있게 된다.In the conventional over-process aluminum, a high-temperature melting / rapid cooling rate is required, so that a continuous casting process must be applied, and inclusions increase and economical efficiency are lowered. On the other hand, according to the present invention, Since the process temperature (melting temperature and crystallization temperature of Si) is lower than that of the conventional casting process, it is possible to perform a general casting process rather than a continuous casting process.
또한, 조성비 제어를 통한 티타늄 화합물의 최적화(미세 TiB2상 생성 극대화 및 균일 분포, Al3Ti 상의 생성)로 인하여 탄성 및 강도, 내마모성, 가공성 등의 특성이 향상된다.
In addition, characteristics such as elasticity, strength, abrasion resistance and workability are improved due to the optimization of the titanium compound through the composition ratio control (maximization of fine TiB 2 phase formation and uniform distribution, generation of Al 3 Ti phase).
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 살펴본다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
본 발명은 강화상으로서 Al3Ti상 및 TiB2상을 동시에 포함하여 탄성이 증대되며 동시에 초정 Si의 정출온도인 공정온도가 낮아져 연속주조뿐만 아니라 일반 주조공정으로도 주조가 가능하도록 하는 고탄성 과공정 알루미늄 합금에 관한 것이다.The present invention relates to a process for producing a high-elasticity and high-strength steel sheet, which simultaneously increases the elasticity of Al 3 Ti phase and TiB 2 phase as a reinforcing phase and simultaneously lowers the process temperature, which is the crystallization temperature of the primary crystal Si, Aluminum alloy.
본 발명에 따른 고탄성 과공정 알루미늄 합금은, 알루미늄합금으로서 B : 0.5~2wt%를 포함하고, Ti:B 조성 비율이 3.5~5:1이며, 강화상으로서 Al3Ti상 및 TiB2상을 동시에 포함한다.
A high-elasticity and high-process aluminum alloy according to the present invention comprises 0.5 to 2 wt% of B as an aluminum alloy, a Ti: B composition ratio of 3.5 to 5: 1, and an Al 3 Ti phase and a TiB 2 phase .
본 발명의 알루미늄 합금의 경우 과공정 알루미늄 합금으로서 Si 함량을 17~19wt%로 한정하고, 탄성 향상에 가장 효과적인 티타늄 화합물(TiB2 : 570GPa, Al3Ti: 220GPa) 생성을 극대화하기 위해 B 함량을 0.5~2wt%로 하고 Ti:B 조성 비율을 3.5~5:1로 지정하여 기초 합금계를 구성한다. In the case of the aluminum alloy of the present invention and the process aluminum alloy, the Si content is limited to 17 to 19 wt%, and in order to maximize the production of the titanium compound (TiB 2 : 570 GPa, Al 3 Ti: 220 GPa) 0.5 to 2 wt%, and the Ti: B composition ratio is set to 3.5 to 5: 1 to constitute the base alloy system.
주조용 알루미늄 합금의 주요 원소인 Si은 유동성과 주조품질에 주요한 영향을 미치고 탄성에도 기여하지만 19wt%이상 첨가될 경우 초정 Si이 정출되어 미세조직이 불균일해지고 가공성에 악영향을 미치게 된다. Si이 과량 첨가되는 합금의 경우는 이를 극복하기 위해 일반적인 주조공정이 아닌 연속주조공정과 후성형공정이 필요하게 된다. 본 특허에서는 일반적인 주조공정인 중력주조, 저압주조 공정에 대한 적용시에도 균일하고 미세한 조직 확보를 목표로 하기에 기초합금계의 Si함량을 17~19wt%로 한정하였다.Si, which is the main element of aluminum alloy for casting, has a major influence on fluidity and casting quality and also contributes to elasticity, but when it is added more than 19wt%, primary Si is crystallized and microstructure becomes uneven and adversely affects processability. In the case of an alloy containing an excessive amount of Si, a continuous casting process and a post-forming process are required instead of a general casting process. In this patent, the Si content of the base alloy system is limited to 17 ~ 19 wt% in order to achieve a uniform and fine structure even when applied to general casting processes such as gravity casting and low pressure casting.
알루미늄에 Ti와 B를 첨가할 경우에는 탄성에 대한 기여가 가장 높은 TiB2와 Al3Ti 강화상을 형성시킬 수 있으므로 본 발명에서 가장 중요한 원소라 할 수 있다. 특히, Ti:B의 조성비가 3.5:1 이하인 경우에는 Al3Ti상의 생성 없이 TiB2만 생성되어 탄성의 향상에 한계가 존재하게 된다. 또한, Ti:B의 조성비가 6:1 이상인 경우에는 용융점이 800℃ 이상이 되어 실제 주조 공정 적용에서 용탕에 산화개재물이 다량 발생하고 용탕내 가스농도가 높아져서 주조품 내부품질에 악영향을 미치게 된다. When Ti and B are added to aluminum, TiB 2 and Al 3 Ti reinforcing phases, which have the highest contribution to elasticity, can be formed, which is considered to be the most important factor in the present invention. In particular, when the composition ratio of Ti: B is 3.5: 1 or less, only TiB 2 is generated without the formation of Al 3 Ti phase, and there is a limit to the improvement of elasticity. Further, when the composition ratio of Ti: B is 6: 1 or more, the melting point becomes 800 ° C or higher, so that a large amount of oxidized inclusions are generated in the molten metal in the actual casting process and the gas concentration in the molten metal becomes high, adversely affecting the quality of the casting.
또한, B 함량은 최소한의 TiB2생성을 위해 0.5wt% 이상이 확보되어야 하고, 용해 온도 상승, 개재물 억제, 성부 제어 용이성, 소재 원가 상승 등을 고려하여 최대 2wt%로 제한되어야 하며, Ti 함량은 Al3Ti상과 TiB2상의 동시 생성을 위해 Ti:B 조성 비율인 3.5~5:1에 따라 첨가된다.
The B content should be at least 0.5 wt% for the minimum TiB 2 production, and should be limited to a maximum of 2 wt% considering the increase of the melting temperature, the inhibition of inclusions, the easiness of controlling the contents and the increase of the material cost. It is added according to the Ti: B composition ratio of 3.5 to 5: 1 for simultaneous production of Al 3 Ti and TiB 2 phases.
본 발명은 이러한 탄성과 주조성을 모두 확보하기 위해 과공정 알루미늄 합금의 대표소재인 A390의 성분 조성을 기본으로 하되, 특히 B의 함량을 0.5~2wt%로 하고, Ti:B 조성 비율을 3.5~5:1로 지정하여 기초 합금계를 구성하도록 하는 것이다.In order to secure both elasticity and castability, the present invention is based on the composition of A390, which is a representative material of an over-process aluminum alloy, with the content of B being 0.5 to 2 wt% and the ratio of Ti: B being 3.5 to 5: 1 to constitute the base alloy system.
즉, 상기 알루미늄 합금은, 상용 알루미늄합금인 A390합금의 Al을 제외한 기타 첨가원소의 조성 성분을 기본으로 하되, 그 중 Ti 및 B의 조성은 B : 0.5~2wt%이고 Ti는 Ti:B 조성 비율이 3.5~5:1이 되도록 조정되는 것이다. 나머지 Si, Cu, Mg 등의 첨가원소는 모두 A390의 조성과 동일하게 유지되고, 잔부는 Al인 것이다. 그리고 이러한 조성을 통해 강화상으로서 Al3Ti상 및 TiB2상을 포함할 수 있는 것이다.That is, the aluminum alloy is based on the compositional components of other added elements except Al of A390 alloy, which is a commercial aluminum alloy, in which the composition of Ti and B is 0.5 to 2 wt% of B, Ti is the composition ratio of Ti: B Is adjusted to be 3.5 to 5: 1. All of the remaining elements such as Si, Cu, and Mg remain the same as the composition of A390, and the remainder is Al. And can include Al 3 Ti and TiB 2 phases as reinforcing phases through such a composition.
아래의 표는 이러한 종래의 A390 상용합금의 조성을 나타내고, 본 발명의 효과를 확인하기 위한 기초합금계로서의 Al-Si-Ti-B 합금계의 조성 및 이를 A390에 적용한 본 발명의 적용 가능한 조성범위를 정리한 것이다.The following table shows the compositions of such conventional A390 commercial alloys and the composition of the Al-Si-Ti-B alloy system as the base alloy system for confirming the effect of the present invention and the applicable composition range of the present invention applied to A390 It is summarized.
하기의 표는 기초 합금계로서, Al-Si-Ti-B 합금계에서 Si를 17wt%로 고정하고 Ti와 B의 함량을 조절한 결과와 Ti:B=5:1로 고정하고 Si를 변화시킨 결과를 나타낸 표이다.The following table shows the result of adjusting the contents of Ti and B by fixing Si at 17 wt% in an Al-Si-Ti-B alloy system as a base alloy system, fixing the Si: Ti: B = 5: Fig.
상기 표에서와 같이, 과공정 알루미늄 조성에서는 Ti의 첨가 시 Al3Ti 내에 Si가 고용되므로 초정 Si에 의한 탄성 향상 효과에 한계가 존재한다. 따라서, 탄성의 극대화를 위해서는 Ti/B조성비 제어에 의한 강화상을 극대화할 필요가 있으며, 이와 함께 Si 함량의 변화 영향을 같이 고찰해야 하는 것이다.As shown in the above table, in the over-processing aluminum composition, since Si is dissolved in Al 3 Ti when Ti is added, there is a limit to the effect of improving the elasticity by the primary Si. Therefore, in order to maximize the elasticity, it is necessary to maximize the strengthened phase by controlling the Ti / B composition ratio, and at the same time, the influence of the change in the Si content should be considered.
상기와 같은 시험 결과, Ti:B의 조성비를 3.5~5:1로 함으로써 기존 대비 용융점을 낮춰서 유동성 및 주조성에 장점을 가짐을 확인할 수 있었다.As a result of the above test, it was confirmed that the composition ratio of Ti: B is 3.5 to 5:
또한, 용융점의 저하는 과공정 알루미늄에서의 Si 조직 제어에 대한 공정 윈도우 측면에서도 유리한 것이다.
The lowering of the melting point is also advantageous in terms of the process window for controlling the Si structure in the over-process aluminum.
한편, Ti:B 조성비 3.5~5:1, Si 함량 17~19wt%로 할 경우에는 기존 소재 대비 탄성이 11.5% 이상 향상되고, 용융점이 최대 19℃(645 -> 627) 저감하는 효과를 볼 수 있었다. 또한, 초정 Si 외에도 강화입자가 생성되어 마모성이 증가함을 알 수 있었다. 일반적인 과공정 알루미늄에서는 Si 조직 미세화와 균일 분산을 목적으로 연속주조공정(높은 용해온도, 빠른 냉각속도)을 적용 중에 있으나, 본 발명에서의 용융점 저하는 고가의 연속주조공정 대신 고효율의 일반 주조 공정 적용을 가능하게 한다는 점이다.
On the other hand, when the Ti: B composition ratio is 3.5 to 5: 1 and the Si content is 17 to 19 wt%, the elasticity is improved by 11.5% or more and the melting point is reduced by 19 ° C. (645 -> 627) there was. In addition, it was found that reinforcing particles were formed in addition to the superfine Si to increase the abrasion resistance. In the general over-process aluminum, a continuous casting process (high melting temperature, fast cooling rate) is being applied for the purpose of refining Si uniformly and uniformly dispersing Si. However, in the present invention, the lowering of the melting point is not limited to the high- .
하기의 표는 본 발명의 알루미늄 합금에 관하여, Ti:B 조성 비율을 5:1로 하고, Si의 함량을 변화시키며 탄성과 용융점을 비교해본 결과이다.The following table shows the results of comparing the elasticity and melting point of the aluminum alloy of the present invention with the composition ratio of Ti: B being 5: 1 and changing the content of Si.
본래 A390합금의 경우 Ti는 0.2wt% 이하로 제한되고 B는 첨가되지 않는 합금이다. 상기 표의 실시예들은 이러한 A390 기본 합금의 조성에서 Ti와 B의 조성을 튜닝하고, Si의 경우 13wt%, 17wt%, 19wt%로 변화시키며, 나머지 A390을 이루던 잔여 성분의 경우 종래의 A390 합금과 동일하게 유지한 것이다. 예를 들어, A390-1B-5Ti의 경우 B를 1wt%로 조정하고 Ti를 5wt%로 조정하며, 나머지 첨가원소는 기존의 A390과 동일하게 하고, Si는 13wt%, 17wt%, 19wt%로 각각 변화시키며, 잔부를 Al으로 조정한 본 발명의 실시예를 언급하는 것이다.In the case of the original A390 alloy, Ti is limited to 0.2 wt% or less and B is an alloy not added. The examples in the above table adjust the composition of Ti and B in the composition of this A390 base alloy and change it to 13wt%, 17wt%, and 19wt% in case of Si, and in the case of remaining components constituting the remaining A390, "He said. For example, in case of A390-1B-5Ti, B is adjusted to 1wt%, Ti is adjusted to 5wt%, the remaining elements are the same as those of A390, and Si is 13wt%, 17wt% and 19wt% , And the balance is adjusted to Al.
상기 표에서 볼 수 있듯이, Ti:B 조성비 5:1, Si 17wt%로 할 경우가 기존 소재 A390 대비 탄성이 12.2% 이상 향상되고, 용융점 및 초정 Si 정출온도가 최대 22℃(661 -> 639) 저감되는 효과가 있었다. 또한, 초정 Si 외에도 강화입자가 생성되어 마모성이 증가되었다. As shown in the above table, when the composition ratio of Ti: B is 5: 1 and Si is 17wt%, the elasticity is improved by 12.2% or more compared to the existing material A390 and the melting point and the initial crystallization temperature of Si are 22 ° C (661 -> 639) There was an effect to be reduced. In addition, reinforcing particles were formed in addition to the superfine Si to increase abrasion resistance.
일반적인 과공정 알루미늄에서는, Si 조직 미세화와 균일 분산을 목적으로 연속주조공정(높은 용해온도, 빠른 냉각 속도)을 적용하고 있으나, 본 발명에서의 용융점 저하는 고가의 연속주조공정 대신 고효율의 일반 주조 공정 적용을 가능하게 한다는 점을 알 수 있는 것이다.
In the general over-process aluminum, a continuous casting process (high melting temperature, fast cooling rate) is applied for the purpose of refining Si uniformly and uniformly dispersing Si. However, in the present invention, the lowering of the melting point is not limited to the high- It is possible to know that it is possible to apply it.
이러한 본 발명의 과공정 알루미늄 합금의 제조방법은, 용융로에 Al, Al-B 모합금, Al-Ti 모합금 또는 Ti 원소재를 장입하는 장입단계; 강화상으로서 Al3Ti상 및 TiB2상이 모두 생성되도록 용탕을 교반하는 1차 교반단계; Ti와 B를 제외한 나머지 첨가원소를 장입하는 추가단계; 및 생성된 강화상이 용탕내에서 균일하게 분산되도록 용탕을 교반하는 2차 교반단계;를 포함한다.The method for manufacturing the over-process aluminum alloy according to the present invention comprises the steps of charging Al, Al-B parent alloy, Al-Ti parent alloy or Ti raw material into the melting furnace; A primary agitation step in which the molten metal is stirred so as to produce both the Al 3 Ti phase and the TiB 2 phase as the strengthening phase; An additional step of charging the additional elements except Ti and B; And a secondary stirring step of stirring the molten metal so that the resultant reinforcing phase is uniformly dispersed in the molten metal.
그리고, Al-B 모합금은 B : 3~8wt% 및 잔부 Al로 구성될 수 있다. 또한, Al-Ti 모합금은 Ti : 5~10wt% 및 잔부 Al로 구성될 수 있다. Ti 원소재의 경우 100wt% Ti 원소재 뿐만 아니라 반응활성화제로서의 비 나트륨계 플럭스 등이 첨가된 고농도(75~95wt%)의 Ti 원소재의 사용도 가능하다. 상기 실시예의 경우에는 75wt% 농도의 Ti 원소재가 사용되었다.The Al-B parent alloy may be composed of 3 to 8 wt% of B and the balance Al. The Al-Ti parent alloy may be composed of 5 to 10 wt% Ti and the balance Al. In the case of the Ti raw material, it is possible to use not only a 100 wt% Ti raw material but also a Ti raw material having a high concentration (75 to 95 wt%) to which a non-sodium flux as a reaction activator is added. In the case of the above embodiment, a Ti raw material having a concentration of 75 wt% was used.
한편, 공정 중 교반작업에서는 교반속도는 500rpm이상을 확보해야 한다. 교반자의 직경과 속도는 반응 촉진과 형성된 강화입자의 분산에 영향을 미치므로 직경은 40% 이상이 되어야하고, 교반속도가 500rpm이하일 경우는 조대한 Al3Ti 잔존으로 인한 유동성 저하, TiB2 생성량 부족으로 인한 탄성 저하, 용탕 부위 별 편차 등의 문제를 발생시키기 때문이다.
On the other hand, in the stirring operation in the process, the stirring speed should be at least 500 rpm. If the diameter and the speed's stirring may have an impact on the dispersion of strengthening particles are formed and the reaction promotion diameter should be at least 40%, and the stirring rate 500rpm less than the flow impact of the Al 3 Ti remaining coarse, TiB 2 production shortage Which causes problems such as deterioration of elasticity due to the presence of the molten metal and deviation of the molten metal.
기존의 과공정 알루미늄은 대부분 고온 용해/빠른 냉각속도가 필요하여 연속주조공정을 적용해야 하고, 개재물 증가, 경제성 저하 등의 문제점을 가지는 반면, 본 발명에 따르면 Ti/B 조성비의 제어를 통해 상용소재보다 공정온도(용해, 초정 Si 정출온도)가 낮아지기 때문에 연속주조가 아닌 일반 주조공정도 가능하고, 연속주조 사용시에도 공정 제어의 부담을 낮출 수 있게 된다.In the conventional over-process aluminum, a high-temperature melting / rapid cooling rate is required, so that a continuous casting process must be applied, and inclusions increase and economical efficiency are lowered. On the other hand, according to the present invention, Since the process temperature (melting temperature and crystallization temperature of Si) is lower than that of the conventional casting process, it is possible to perform a general casting process rather than a continuous casting process.
또한, 조성비 제어를 통한 티타늄 화합물의 최적화(미세 TiB2상 생성 극대화 및 균일 분포, Al3Ti 상의 생성)로 인하여 탄성 및 강도, 내마모성, 가공성 등의 특성이 향상된다.
In addition, characteristics such as elasticity, strength, abrasion resistance and workability are improved due to the optimization of the titanium compound through the composition ratio control (maximization of fine TiB 2 phase formation and uniform distribution, generation of Al 3 Ti phase).
본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.
Claims (5)
Si 조성은 17~19wt%이고, B의 조성은 0.5~2wt%이며, Ti는 Ti:B의 조성 비율이 3.5~5:1이 되도록 함유되고, 기타 불순물과 잔부 Al로 구성되며, 강화상으로서 Al3Ti상 및 TiB2상을 모두 포함하는 고탄성 과공정 알루미늄 합금.As a process aluminum alloy,
The Si composition is 17 to 19 wt%, the B composition is 0.5 to 2 wt%, and the Ti is contained so that the composition ratio of Ti: B is 3.5 to 5: 1, and other impurities and the remainder Al, Al 3 High-elasticity and high-process aluminum alloy containing both Ti and TiB 2 phases.
Si: 17~19wt%, Fe: 0.5wt%, Cu: 4.0~5.0wt%, Mn:0.1wt%, Mg: 0.45~0.62wt%, Zn: 0.1wt%, B: 0.5~2wt%, Ti: Ti:B의 조성 비율이 3.5~6:1이 되도록 함유되고, 기타 불순물과 잔부 Al로 구성되며, 강화상으로서 Al3Ti상 및 TiB2상을 모두 포함하는 고탄성 과공정 알루미늄 합금.As a process aluminum alloy,
Si: 17 to 19 wt%, Fe: 0.5 wt%, Cu: 4.0 to 5.0 wt%, Mn: 0.1 wt%, Mg: 0.45 to 0.62 wt%, Zn: 0.1 wt% A high-elasticity and process aluminum alloy containing Ti: B in a composition ratio of 3.5 to 6: 1, comprising other impurities and the remainder Al, and including both Al 3 Ti and TiB 2 phases as reinforcing phases.
용융로에 Al 및 Al-B 모합금과 함께 Al-Ti 모합금 또는 Ti 원소재를 장입하되, Ti:B의 조성 비율이 3.5~5:1이며 B는 0.5~2wt%로 구성되도록 장입하는 장입단계;
내부에서 강화상으로서 Al3Ti상 및 TiB2상이 모두 생성되도록 용탕을 500rpm 이상으로 교반하여 반응을 촉진시키는 1차 교반단계;
Si: 17~19wt%가 포함된 첨가원소를 장입하는 추가단계; 및
생성된 강화상이 용탕내에서 균일하게 분산되도록 용탕을 교반하는 2차 교반단계;를 포함하는 것을 특징으로 하는 고탄성 과공정 알루미늄 합금 제조방법.A method of manufacturing an aluminum alloy according to claim 2,
A charging step in which the composition ratio of Ti: B is 3.5 to 5: 1 and B is 0.5 to 2 wt% is charged with Al-Ti parent alloy together with Al and Al-B parent alloy in the melting furnace ;
A primary agitation step in which the molten metal is stirred at 500 rpm or more so as to generate both the Al 3 Ti phase and the TiB 2 phase as reinforcing phases therein to promote the reaction;
An additional step of charging an additional element containing 17 to 19 wt% of Si; And
And a second agitating step of agitating the molten metal so that the resultant strengthened phase is uniformly dispersed in the molten metal.
Al-B 모합금은 B : 3~8wt% 및 잔부 Al로 구성된 것을 특징으로 하는 고탄성 과공정 알루미늄 합금 제조방법.The method of claim 3,
Wherein the Al-B parent alloy is composed of 3 to 8 wt% of B and the balance Al.
Al-Ti 모합금은 Ti : 5~10wt% 및 잔부 Al로 구성된 것을 특징으로 하는 고탄성 과공정 알루미늄 합금 제조방법.The method of claim 3,
Wherein the Al-Ti parent alloy is composed of Ti: 5 to 10 wt% and the balance Al.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020140045062A KR101646326B1 (en) | 2014-04-15 | 2014-04-15 | High elasticity hyper eutectic aluminum alloy and method for producing the same |
| US14/471,645 US9725792B2 (en) | 2014-04-15 | 2014-08-28 | High elasticity hyper eutectic aluminum alloy and method for manufacturing the same |
| DE102014217823.1A DE102014217823B4 (en) | 2014-04-15 | 2014-09-05 | Highly elastic hypereutectic aluminum alloy and process for its production |
| CN201410498217.XA CN105002406B (en) | 2014-04-15 | 2014-09-25 | The hypereutectic aluminium alloy of high resiliency and its manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020140045062A KR101646326B1 (en) | 2014-04-15 | 2014-04-15 | High elasticity hyper eutectic aluminum alloy and method for producing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20150119584A KR20150119584A (en) | 2015-10-26 |
| KR101646326B1 true KR101646326B1 (en) | 2016-08-08 |
Family
ID=54193297
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020140045062A Active KR101646326B1 (en) | 2014-04-15 | 2014-04-15 | High elasticity hyper eutectic aluminum alloy and method for producing the same |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US9725792B2 (en) |
| KR (1) | KR101646326B1 (en) |
| CN (1) | CN105002406B (en) |
| DE (1) | DE102014217823B4 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110273087A (en) * | 2019-06-25 | 2019-09-24 | 昆明理工大学 | Regulate and control the method for hypereutectic aluminum-silicon alloy casting overall performance |
| FR3114448A1 (en) * | 2020-09-23 | 2022-03-25 | Constellium Neuf-Brisach | BATTERY BOTTOM FOR ELECTRIC VEHICLES |
| CN114606417B (en) * | 2020-12-04 | 2023-02-10 | 比亚迪股份有限公司 | Al-Si series die-casting aluminum alloy material, preparation method thereof, and heat sink |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009515041A (en) * | 2005-11-02 | 2009-04-09 | トゥビタク | Method for producing grain refined mother alloy |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS605839A (en) * | 1983-06-22 | 1985-01-12 | Takeo Shinoda | Heat-resistant cast aluminum alloy for piston |
| JPH04202737A (en) * | 1990-11-30 | 1992-07-23 | Showa Alum Corp | Wear-resistant aluminum alloy with excellent strength |
| JPH11293374A (en) | 1998-04-10 | 1999-10-26 | Sumitomo Electric Ind Ltd | Heat-resistant and wear-resistant aluminum alloy and method for producing the same |
| JP3552565B2 (en) | 1999-01-11 | 2004-08-11 | 日本軽金属株式会社 | Manufacturing method of die-cast piston excellent in high temperature fatigue strength |
| JP2000355722A (en) * | 1999-06-17 | 2000-12-26 | Nippon Light Metal Co Ltd | Al-Si die-cast product excellent in airtightness and abrasion resistance and method for producing the same |
| JP2001020047A (en) | 1999-07-05 | 2001-01-23 | Toyota Autom Loom Works Ltd | Stock for aluminum alloy forging and its production |
| US6261390B1 (en) | 2000-05-15 | 2001-07-17 | Hsien-Yang Yeh | Process for nodulizing silicon in casting aluminum silicon alloys |
| JP2002126850A (en) | 2000-10-23 | 2002-05-08 | Chuetsu Metal Works Co Ltd | Manufacturing method of composite swash plate for variable capacity compressor |
| BRPI0924625B1 (en) * | 2009-02-27 | 2017-06-06 | Tubitak | method for producing al-ti-b grain refining master alloys with al3ti particles and alb2 particles dispersed in an aluminum matrix. |
| KR20130058998A (en) * | 2011-11-28 | 2013-06-05 | 현대자동차주식회사 | Aluminum alloy for continuous casting and method for producing the same |
| KR20130058997A (en) | 2011-11-28 | 2013-06-05 | 현대자동차주식회사 | Aluminum alloy and method for producing the same |
| CN102676886B (en) | 2012-05-29 | 2014-07-02 | 中原工学院 | High-intensity hypereutectic aluminum-silicon alloy |
| KR101845414B1 (en) * | 2012-08-10 | 2018-04-05 | 현대자동차주식회사 | Manufacturing Method of Aluminum Alloys Using Shape and Creation Location Control for Strengthening Phase |
| CN103276262A (en) * | 2013-06-18 | 2013-09-04 | 天津松岩铝制品有限公司 | High intensity Al-Si-Cu alloy and smelting method thereof |
| KR101637639B1 (en) * | 2014-02-27 | 2016-07-07 | 현대자동차주식회사 | High elasticity aluminum alloy including titanium compound and method for producing the same |
-
2014
- 2014-04-15 KR KR1020140045062A patent/KR101646326B1/en active Active
- 2014-08-28 US US14/471,645 patent/US9725792B2/en active Active
- 2014-09-05 DE DE102014217823.1A patent/DE102014217823B4/en active Active
- 2014-09-25 CN CN201410498217.XA patent/CN105002406B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009515041A (en) * | 2005-11-02 | 2009-04-09 | トゥビタク | Method for producing grain refined mother alloy |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102014217823B4 (en) | 2020-06-25 |
| CN105002406A (en) | 2015-10-28 |
| KR20150119584A (en) | 2015-10-26 |
| US9725792B2 (en) | 2017-08-08 |
| DE102014217823A1 (en) | 2015-10-15 |
| US20150292064A1 (en) | 2015-10-15 |
| CN105002406B (en) | 2019-02-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5879244B2 (en) | Aluminum alloy | |
| JP5582982B2 (en) | Aluminum alloy and method for producing the same | |
| KR102562688B1 (en) | Silicon-Based Alloys, Methods for Their Production and Uses of Such Alloys | |
| KR101646326B1 (en) | High elasticity hyper eutectic aluminum alloy and method for producing the same | |
| KR101637639B1 (en) | High elasticity aluminum alloy including titanium compound and method for producing the same | |
| JP2022528180A (en) | Die-cast aluminum alloy, its manufacturing method and application | |
| US12291764B2 (en) | Silicon based alloy, method for the production thereof and use of such alloy | |
| CN106312026A (en) | Modifier applied to refining treatment of grains and structures of cast steel | |
| CN106555066B (en) | A method of preparing high-performance richness iron secondary aluminium with micro compound additive | |
| CN113862530B (en) | Aluminum alloy and preparation method thereof | |
| WO2007094300A1 (en) | Aluminum bronze alloy as raw material for semi-molten alloy casting | |
| KR101823891B1 (en) | Method for manufacturing high elastic aluminum alloy | |
| KR101776508B1 (en) | Method for manufactyring high elastic aluminum alloy | |
| JP2007000921A (en) | System for producing molten metal for cast product | |
| CN104651651B (en) | A kind of copper-hafnium-phosphorus intermediate alloy and preparation method thereof | |
| CN103667586B (en) | Preparation method of UNS N07718 high-temperature alloy | |
| CN117385217A (en) | Reinforced solution treatment process for high-strength cast aluminum alloy | |
| CN120536763A (en) | Preparation method of heat-treatment-free regenerated aluminum-silicon alloy | |
| CN114717468A (en) | Smelting process for changing natural frequency of brake disc | |
| CN111057894A (en) | A new type of metal composite additive for aluminum alloy smelting and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20140415 |
|
| PA0201 | Request for examination | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20150910 Patent event code: PE09021S01D |
|
| PG1501 | Laying open of application | ||
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20160614 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20160801 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20160801 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| FPAY | Annual fee payment |
Payment date: 20190729 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
Payment date: 20190729 Start annual number: 4 End annual number: 4 |
|
| PR1001 | Payment of annual fee |
Payment date: 20200729 Start annual number: 5 End annual number: 5 |
|
| PR1001 | Payment of annual fee |
Payment date: 20210728 Start annual number: 6 End annual number: 6 |
|
| PR1001 | Payment of annual fee |
Payment date: 20220727 Start annual number: 7 End annual number: 7 |
|
| PR1001 | Payment of annual fee |
Payment date: 20230801 Start annual number: 8 End annual number: 8 |
|
| PR1001 | Payment of annual fee |
Payment date: 20240725 Start annual number: 9 End annual number: 9 |