[go: up one dir, main page]

KR101973197B1 - Anti-reflective film - Google Patents

Anti-reflective film Download PDF

Info

Publication number
KR101973197B1
KR101973197B1 KR1020190029400A KR20190029400A KR101973197B1 KR 101973197 B1 KR101973197 B1 KR 101973197B1 KR 1020190029400 A KR1020190029400 A KR 1020190029400A KR 20190029400 A KR20190029400 A KR 20190029400A KR 101973197 B1 KR101973197 B1 KR 101973197B1
Authority
KR
South Korea
Prior art keywords
layer
low refractive
inorganic nanoparticles
solid
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020190029400A
Other languages
Korean (ko)
Other versions
KR20190029570A (en
Inventor
변진석
김재영
장영래
김부경
장석훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61029051&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101973197(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20190029570A publication Critical patent/KR20190029570A/en
Application granted granted Critical
Publication of KR101973197B1 publication Critical patent/KR101973197B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/064Copolymers with monomers not covered by C08L33/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은, 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하고, 상기 중공 입자의 입경 대비 상기 솔리드 입자의 입경의 비율이 0.26 내지 0.55 인 반사 방지 필름에 관한 것이다. The present invention, a hard coating layer; And a low refractive layer comprising a binder resin and hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin, wherein the ratio of the particle diameter of the solid particles to the particle diameter of the hollow particles is 0.26 to 0.55. It relates to an antireflection film.

Description

반사 방지 필름{ANTI-REFLECTIVE FILM}Anti-reflective film {ANTI-REFLECTIVE FILM}

본 발명은 반사 방지 필름에 관한 것으로서, 보다 상세하게는 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름에 관한 것이다.The present invention relates to an anti-reflection film, and more particularly, to an anti-reflection film that can simultaneously realize high scratch resistance and antifouling property while having a low reflectance and a high light transmittance, and can increase the sharpness of a screen of a display device.

일반적으로 PDP, LCD 등의 평판 디스플레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다.In general, a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.

빛의 반사를 최소화하기 위한 방법으로는 수지에 무기 미립자 등의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법(anti-glare: AG 코팅); 기재 필름 상에 굴절율이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법 (anti-reflection: AR 코팅) 또는 이들을 혼용하는 방법 등이 있다.As a method for minimizing the reflection of light, a method of dispersing a filler such as inorganic fine particles in a resin is coated on a base film and imparts irregularities (anti-glare: AG coating); There are a method of forming a plurality of layers having different refractive indices on the base film to use interference of light (anti-reflection: AR coating), or a method of mixing them.

그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과 동등한 수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에, 최근에는 AR 코팅에 대한 많은 연구가 이루어지고 있다.Among them, in the case of the AG coating, the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect may be obtained by reducing the amount of light entering the eye by scattering light through unevenness. However, since the AG coating has poor screen clarity due to surface irregularities, many studies on AR coatings have recently been made.

상기 AR 코팅을 이용한 필름으로는 기재 필름 상에 하드 코팅층(고굴절율층), 저반사 코팅층 등이 적층된 다층 구조인 것이 상용화되고 있다. 그러나, 상기와 같이 다수의 층을 형성시키는 방법은 각 층을 형성하는 공정을 별도로 수행함에 따라 층간 밀착력(계면 접착력)이 약해 내스크래치성이 떨어지는 단점이 있다. As the film using the AR coating, a multilayer structure in which a hard coating layer (high refractive index layer), a low reflection coating layer, and the like are laminated on a base film is commercialized. However, the method of forming a plurality of layers as described above has a disadvantage in that scratch resistance is inferior due to weak adhesion between the layers (interfacial adhesion) as the process of forming each layer separately.

또한, 이전에는 반사 방지 필름에 포함되는 저굴절층의 내스크래치성을 향상시키기 위해서는 나노미터 사이즈의 다양한 입자(예를 들어, 실리카, 알루미나, 제올라이트 등의 입자)를 첨가하는 방법이 주로 시도되었다. 그러나, 상기와 같이 나노미터 사이즈의 입자를 사용하는 경우 저굴절층의 반사율을 낮추면서 내스크래치성을 동시에 높이기 어려운 한계가 있었으며, 나노미터의 사이즈의 입자로 인하여 저굴절층 표면이 갖는 방오성이 크게 저하되었다. In addition, in order to improve the scratch resistance of the low refractive layer included in the antireflection film, a method of adding various particles having a nanometer size (for example, particles of silica, alumina, zeolite, etc.) has been mainly attempted. However, in the case of using the nanometer size particles as described above, there was a limit that it is difficult to simultaneously increase the scratch resistance while reducing the reflectance of the low refractive index layer, and due to the nanometer size particles, the antifouling property of the low refractive layer surface is greatly increased. Degraded.

이에 따라, 외부로부터 입사되는 빛의 절대 반사량을 줄이고 표면의 내스크래치성과 함께 방오성을 향상시키기 위한 많은 연구가 이루어지고 있으나, 이에 따른 물성 개선의 정도가 미흡한 실정이다.Accordingly, many studies have been made to reduce the absolute reflection amount of light incident from the outside and to improve the antifouling property together with the scratch resistance of the surface. However, the improvement of the physical properties is insufficient.

본 발명은 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름을 제공하기 위한 것이다.The present invention is to provide an anti-reflection film having a low reflectance and a high light transmittance and at the same time can implement a high scratch resistance and antifouling resistance and can increase the sharpness of the screen of the display device.

본 명세서에서는, 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하고, 상기 중공 입자의 평균 입경 대비 상기 솔리드 입자의 평균 입경의 비율이 0.26 내지 0.55 이고, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 존재하는, 반사 방지 필름이 제공된다.In the present specification, the hard coating layer; And a low refractive layer comprising a binder resin, hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin, wherein the ratio of the average particle diameter of the solid particles to the average particle diameter of the hollow particles is 0.26 to 0.55, and at least 70% by volume of the total solid inorganic nanoparticles present within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer is provided.

또한, 본 명세서에서는, 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자를 포함하는 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하고, 상기 중공 입자의 평균 입경 대비 상기 솔리드 입자의 평균 입경의 비율이 0.15 내지 0.55 이며, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 존재하는, 반사 방지 필름이 제공된다. In addition, in the present specification, a hard coating layer containing a binder resin and organic or inorganic fine particles dispersed in the binder resin; And a low refractive layer comprising a binder resin, hollow inorganic nanoparticles dispersed in the binder resin, and solid inorganic nanoparticles, wherein the ratio of the average particle diameter of the solid particles to the average particle diameter of the hollow particles is 0.15 to 0.15. 0.55, and at least 70% by volume of the total solid inorganic nanoparticles is present within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.

이하 발명의 구체적인 구현예에 따른 반사 방지 필름에 관하여 보다 상세하게 설명하기로 한다. Hereinafter, an antireflection film according to a specific embodiment of the present invention will be described in detail.

본 명세서에서, 광중합성 화합물은 빛이 조사되면, 예를 들어 가시 광선 또는 자외선이 조사되면 중합 반응을 일으키는 화합물을 통칭한다. In the present specification, a photopolymerizable compound is collectively referred to as a compound that causes a polymerization reaction when light is irradiated, for example, visible light or ultraviolet light.

또한, 함불소 화합물은 화합물 중 적어도 1개 이상의 불소 원소가 포함된 화합물을 의미한다. In addition, a fluorine-containing compound means the compound in which at least 1 or more fluorine element is contained in a compound.

또한, (메트)아크릴[(Meth)acryl]은 아크릴(acryl) 및 메타크릴레이트(Methacryl) 양쪽 모두를 포함하는 의미이다. In addition, (meth) acryl [(Meth) acryl] is meant to include both acryl and Methacryl.

또한, (공)중합체는 공중합체(co-polymer) 및 단독 중합체(homo-polymer) 양쪽 모두를 포함하는 의미이다.In addition, (co) polymer is meant to include both co-polymers and homo-polymers.

또한, 중공 실리카 입자(silica hollow particles)라 함은 규소 화합물 또는 유기 규소 화합물로부터 도출되는 실리카 입자로서, 상기 실리카 입자의 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다. Further, silica hollow particles are silica particles derived from a silicon compound or an organosilicon compound, and mean particles having a void space on the surface and / or inside of the silica particles.

발명의 일 구현예에 따르면, 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하고, 상기 중공 입자의 평균 입경 대비 상기 솔리드 입자의 평균 입경의 비율이 0.26 내지 0.55 이고, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 존재하는, 반사 방지 필름이 제공될 수 있다. According to one embodiment of the invention, the hard coating layer; And a low refractive layer comprising a binder resin, hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin, wherein the ratio of the average particle diameter of the solid particles to the average particle diameter of the hollow particles is 0.26 to 0.55 and 70% by volume or more of the entire solid inorganic nanoparticles may be provided within 50% of the total thickness of the low refractive index layer from an interface between the hard coating layer and the low refractive index layer.

상기 중공 입자의 평균 입경 및 상기 솔리드 입자의 평균 입경은 각각 상기 반사 방지 필름의 TEM사진(예를 들어, 25,000배의 배율)에서 확인되는 중공 입자 및 솔리드 입자의 입경을 측정하고 계산하여 얻어진 평균값일 수 있다. The average particle diameter of the hollow particles and the average particle diameter of the solid particles are average values obtained by measuring and calculating the particle diameters of the hollow particles and the solid particles, respectively, which are found in the TEM photograph (for example, 25,000 times magnification) of the antireflection film. Can be.

본 발명자들은 반사 방지 필름에 관한 연구를 진행하여, 상술한 특정의 평균 입경 비율을 갖는 중공 입자 및 솔리드 입자를 포함한 저굴절층을 포함한 반사 방지 필름이 보다 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다. The present inventors have conducted research on the antireflection film, so that the antireflection film including the low refractive index layer including the hollow particles and the solid particles having the specific average particle diameter ratio described above has a lower reflectance and a high light transmittance and high scratch resistance. The experiment confirmed that the castle and antifouling can be implemented at the same time, and completed the invention.

상기 저굴절층의 제조 과정에서 상기 중공 입자 및 솔리드 입자의 분포에 영향을 미치는 다양한 요소, 예들 들어 제조 조건이나 상기 입자 들의 무게 또는 밀도 등을 고려할 수 있는데, 본 발명자들은 상기 2종류의 입자 간의 평균 입경의 차이를 상술한 비율로 조절하는 경우 최종 제조되는 반사 방지 필름에서 보다 낮은 반사율을 확보하면서 향상된 내스크래치성과 방오성을 구현할 수 있다는 점을 확인하였다. Various factors influencing the distribution of the hollow particles and the solid particles in the manufacturing process of the low refractive index layer, for example, manufacturing conditions or the weight or density of the particles, etc. can be considered. When the difference in particle diameter is controlled at the above ratio, it was confirmed that the scratch resistance and the antifouling property can be realized while securing a lower reflectance in the antireflection film to be manufactured.

보다 구체적으로, 상기 저굴절층에서 상기 중공 입자의 평균 입경 대비 상기 솔리드 입자의 평균 입경의 비율이 0.55이하, 또는 0.15 내지 0.55, 또는 0.26 내지 0.55, 또는 0.27 내지 0.40, 또는 0.280 내지 0.380 임에 따라서, 상기 저굴절층 내에서 상기 중공 입자 및 솔리드 입자가 서로 다른 편재 및 분포 양상을 나타낼 수 있으며, 예를 들어 상기 중공 입자 및 솔리드 입자 각각이 주로 분포하는 위치가 상기 하드 코팅층 및 상기 저굴절층 간의 계면을 기준으로 서로 다른 거리일 수 있다. More specifically, the ratio of the average particle diameter of the solid particles to the average particle diameter of the hollow particles in the low refractive layer is less than 0.55, or 0.15 to 0.55, or 0.26 to 0.55, or 0.27 to 0.40, or 0.280 to 0.380 In the low refractive layer, the hollow particles and the solid particles may exhibit different localization and distribution patterns. For example, a position where the hollow particles and the solid particles are mainly distributed is between the hard coating layer and the low refractive layer. The distance may be different based on the interface.

이와 같이 상기 저굴절층에서 상기 중공 입자 및 솔리드 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층이 고유한 내부 구조 및 성분들의 배열 양상을 가지게 되어 보다 낮은 반사율을 가질 수 있다. 또한, 상기 저굴절층에서 상기 중공 입자 및 솔리드 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층의 표면 특성 또한 함께 달라지게 되어 보다 향상된 내스크래치성과 방오성을 구현할 수 있다. As such, as the areas where the hollow particles and the solid particles are mainly distributed in the low refractive layer are different, the low refractive layer may have a unique internal structure and an arrangement of components, thereby having a lower reflectance. In addition, as the area where the hollow particles and the solid particles are mainly distributed in the low refractive layer is changed, the surface characteristics of the low refractive layer are also changed, thereby improving scratch and antifouling properties.

이에 반하여, 상기 저굴절층에 포함되는 중공 입자의 입경과 솔리드 입자의 입경 간의 차이가 그리 크지 않은 경우, 상기 중공 입자 및 솔리드 입자가 서로 뭉치거나 입자 종류에 따른 편재나 분포가 일어나지 않아서, 상기 반사 방지 필름의 반사율을 크게 낮추기 어려울 뿐만 아니라, 요구되는 내스크래치성과 방오성을 달성하기 어려울 수 있다. On the contrary, when the difference between the particle diameters of the hollow particles and the solid particles included in the low refractive index layer is not so large, the hollow particles and the solid particles do not aggregate together or do not occur ubiquitous or distributed according to particle types. Not only is it difficult to significantly lower the reflectance of the prevention film, but it may be difficult to achieve the required scratch and antifouling properties.

이와 같이, 상기 구현예의 반사 방지 필름이 갖는 고유의 효과, 예를 들어 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 특성은 상술한 중공 입자 및 솔리드 입자 간의 평균 입경 비율에 따른 것이다. As such, the inherent effects of the anti-reflection film of the embodiment, for example, having a low reflectance and a high light transmittance, can simultaneously realize high scratch resistance and antifouling property, and can improve the screen sharpness of the display device. It depends on the average particle diameter ratio between one hollow particle and a solid particle.

상기 솔리드형 무기 나노 입자는 그 내부에 빈 공간이 존재하지 않는 형태의 입자를 의미한다. The solid inorganic nanoparticle refers to a particle having no empty space therein.

또한, 상기 중공형 무기 나노 입자는 그 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다. In addition, the hollow inorganic nanoparticles mean particles in the form of empty spaces on the surface and / or inside thereof.

상술한 중공 입자의 평균 입경 대비 솔리드 입자의 평균 입경의 비율이 0.55이하인 조건을 만족함에 따라, 상기 반사 방지 필름이 보다 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있는데, As the ratio of the average particle diameter of the solid particles to the average particle diameter of the hollow particles described above is 0.55 or less, the antireflection film may have high reflectance and antifouling resistance while having a lower reflectance and a high light transmittance.

이와 같은 반사 방지 필름의 특성을 보다 용이하게 조절하고 적용 분야에서 요구되는 특성을 맞추기 위해서 소정의 평균 입경을 갖는 중공 입자 및 솔리드 입자를 사용할 수 있다. Hollow particles and solid particles having a predetermined average particle diameter may be used to more easily adjust the properties of such an antireflection film and to meet the properties required in the application field.

예를 들어, 상기 반사 방지 필름이 보다 낮은 반사율 및 높은 투광율을 가지면서 보다 향상되고 높은 내스크래치성 및 방오성을 구현하기 위해서, 상기 중공 입자의 평균 입경이 40 ㎚ 내지 100 ㎚의 범위 이내일 수 있으며, 또한 상기 솔리드 입자의 평균 입경이 1 ㎚ 내지 30 ㎚의 범위 이내일 수 있다. For example, in order for the anti-reflection film to have a lower reflectance and a high light transmittance, and to improve the scratch resistance and antifouling property, the average particle diameter of the hollow particles may be within a range of 40 nm to 100 nm. In addition, the average particle diameter of the solid particles may be within the range of 1 nm to 30 nm.

상기 중공 입자 및 솔리드 입자의 평균 입경이 상술한 비율이나 상술한 크기 범위를 만족하는 경우, 구체적인 입경의 범위는 크게 한정되는 것은 아니다. 다만, 상기 반사 방지 필름의 보다 균일하고 향상된 품질을 갖기 위해서, 상기 중공 입자의 입경이 10 ㎚ 내지 200 ㎚, 또는 30 ㎚ 내지 120 ㎚, 또는 38 ㎚ 내지 80 ㎚의 범위 이내일 수 있으며, 또한 상기 솔리드 입자의 입경이 0.1 ㎚ 내지 100 ㎚, 또는 0.5 ㎚ 내지 50 ㎚, 또는 2 ㎚ 내지 25 ㎚ 의 범위 이내일 수 있다. When the average particle diameter of the hollow particle and the solid particle satisfies the above-described ratio or the size range described above, the range of the specific particle size is not limited to a large extent. However, in order to have a more uniform and improved quality of the anti-reflection film, the particle diameter of the hollow particles may be within the range of 10 nm to 200 nm, or 30 nm to 120 nm, or 38 nm to 80 nm, The particle diameter of the solid particles may be within the range of 0.1 nm to 100 nm, or 0.5 nm to 50 nm, or 2 nm to 25 nm.

상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 직경을 입자 단면에서 확인되는 최장 직경을 의미할 수 있다. The diameter of the solid inorganic nanoparticles and the hollow inorganic nanoparticles may refer to the longest diameter identified in the particle cross section.

한편, 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각은 표면에 히드록시기, (메트)아크릴레이트기, 에폭사이드기, 비닐기(Vinyl) 및 싸이올기(Thiol)로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 함유할 수 있다. 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각이 표면에 상술한 반응성 작용기를 함유함에 따라서, 상기 저굴절층은 보다 높은 가교도를 가질 수 있으며, 이에 따라 보다 향상된 내스크래치성 및 방오성을 확보할 수 있다. 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각은 별도의 치환기가 없는 경우 표면에 히드록시기가 존재할 수 있다. Meanwhile, each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles may be selected from the group consisting of a hydroxyl group, a (meth) acrylate group, an epoxide group, a vinyl group (Vinyl), and a thiol group (Thiol) on a surface thereof. It may contain the above reactive functional group. As the solid inorganic nanoparticles and the hollow inorganic nanoparticles each contain the reactive functional groups described above on the surface, the low refractive index layer may have a higher degree of crosslinking, thereby ensuring more scratch resistance and antifouling resistance. can do. Each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles may have a hydroxyl group on the surface when there is no separate substituent.

상술한 바와 같이, 상기 반사 방지 필름은 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함할 수 있다. As described above, the anti-reflection film comprises a hard coating layer; And a low refractive layer including a binder resin and hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin.

구체적으로, 상기 반사 방지 필름에서, 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자가 중공형 무기 나노 입자 보다 많이 분포할 수 있다. Specifically, in the anti-reflection film, the solid inorganic nanoparticles may be distributed more than the hollow inorganic nanoparticles near the interface between the hard coating layer and the low refractive layer.

이전에는 반사 방지 필름의 내스크래치성을 높이기 위하여 무기 입자를 과량 첨가하였으나, 반사 방지 필름의 내스크래치성을 높이는데 한계가 있었고 오히려 반사율과 방오성이 저하되는 문제점이 있었다. Previously, an excessive amount of inorganic particles was added to increase scratch resistance of the antireflective film, but there was a limit in improving scratch resistance of the antireflective film, but there was a problem in that reflectance and antifouling property were lowered.

이에 반하여, 상기 반사 방지 필름에 포함되는 저굴절층 내에서 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 서로 구분될 수 있도록 분포시키는 경우, 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다. On the contrary, when the hollow inorganic nanoparticles and the solid inorganic nanoparticles are distributed so as to be distinguished from each other in the low refractive layer included in the antireflection film, they have high scratch resistance and antifouling resistance while having low reflectance and high light transmittance. Can be implemented at the same time.

구체적으로, 상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자를 주로 분포시키는 경우, 이전에 무기 입자를 사용하여 얻어질 수 있었던 실제 반사율에 비하여 보다 낮은 반사율을 달성할 수 있으며, 또한 상기 저굴절층이 크게 향상된 내스크래치성 및 방오성을 함께 구현할 수 있다. Specifically, in the case of mainly distributing the solid inorganic nanoparticles near the interface between the hard coating layer and the low refractive index of the low refractive layer of the anti-reflection film and the hollow inorganic nanoparticles mainly toward the opposite side of the interface It is possible to achieve a lower reflectance than the actual reflectance previously obtained using inorganic particles, and the low refractive index layer can realize both scratch resistance and stain resistance.

상술한 바와 같이, 상기 저굴절층은 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하며, 상기 하드 코팅층의 일면에 형성될 수 있는데, 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상은 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 존재할 수 있다. As described above, the low refractive layer includes a binder resin, hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin, and may be formed on one surface of the hard coating layer, the solid inorganic nano At least 70% by volume of the total particles may be present within 50% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer.

'상기 솔리드형 무기 나노 입자 전체 중 70 부피% 이상이 특정 영역에 존재한다'는 상기 저굴절층의 단면에서 상기 솔리드형 무기 나노 입자가 상기 특정 영역에 대부분 존재한다는 의미로 정의되며, 구체적으로 상기 솔리드형 무기 나노 입자 전체 중 70 부피% 이상은 상기 솔리드형 무기 나노 입자 전체의 부피를 측정하여 확인 가능하며, 또한 투과전자현미경(TEM) 등의 사진 등을 통해서도 확인 가능하다. '70% by volume or more of the entire solid inorganic nanoparticles are present in a specific region 'is defined as meaning that the solid inorganic nanoparticles are mostly present in the specific region in the cross-section of the low refractive index layer. More than 70% by volume of the total solid inorganic nanoparticles may be confirmed by measuring the volume of the entire solid inorganic nanoparticles, and may also be confirmed through photographs such as a transmission electron microscope (TEM).

상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 특정된 영역에 존재하는지 여부는 각각의 중공형 무기 나노 입자 또는 솔리드형 무기 나노 입자가 상기 특정된 영역 내에 입자 존재하는지 여부로 결정하며, 상기 특정 영역의 경계면에 걸쳐 존재하는 입자는 제외하고 결정한다. Whether the hollow inorganic nanoparticles and the solid inorganic nanoparticles are present in the specified region is determined by whether each of the hollow inorganic nanoparticles or the solid inorganic nanoparticles is present in the specified region and wherein the specific It is determined by excluding particles that exist across the interface of the region.

또한, 상술한 바와 같이, 상기 저굴절층에서 상기 하드 코팅층 및 상기 저굴절층 간의 계면의 반대면 쪽으로는 중공형 무기 나노 입자가 주로 분포할 수 있는데, 구체적으로 상기 중공형 무기 나노 입자 전체 중 30 부피%, 또는 50부피% 이상, 또는 70부피% 이상이 상기 솔리드형 무기 나노 입자 전체 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재할 수 있다. In addition, as described above, hollow inorganic nanoparticles may be mainly distributed toward the opposite surface of the interface between the hard coating layer and the low refractive layer in the low refractive layer. Volume%, or 50% by volume or more, or 70% by volume or more may be present at a greater distance in the thickness direction of the low refractive layer from the interface between the hard coating layer and the low refractive layer than the entire solid inorganic nanoparticles.

상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께의 50%를 초과하는 영역(상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께의 50%를 초과하는 지점으로부터 상기 계면과 대향하는 저굴절층의 다른 일면까지의 영역)에 상기 중공형 무기 나노 입자 전체 중 30 부피%, 또는 50부피% 이상, 또는 70부피% 이상이 존재할 수 있다. From the interface between the hard coating layer and the low refractive layer more than 50% of the total thickness of the low refractive layer (from the point of exceeding 50% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer 30 volume%, 50 volume% or more, or 70 volume% or more of the entire hollow inorganic nanoparticle may be present in the region up to the other surface of the low refractive layer facing the interface.

또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70 부피% 이상이 존재할 수 있다. 또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 초과의 영역에 상기 중공형 무기 나노 입자 전체 중 70 부피% 이상이 존재할 수 있다. In addition, 70% by volume or more of the total solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer. In addition, 70 vol% or more of the entire hollow inorganic nanoparticles may be present in an area of more than 30% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer.

상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자를 주로 분포시킴에 따라서, 상기 저굴절층 내에 서로 굴절율이 다른 2개 이상의 부분 또는 2개 이상의 층이 형성될 수 있으며, 이에 따라 상기 반사 방지 필름의 반사율이 낮아질 수 있다. In the low refractive layer of the antireflection film, the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface. Two or more portions or two or more layers having different refractive indices may be formed in the low refractive layer, and thus the reflectance of the antireflection film may be lowered.

상기 저굴절층에서 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 특이적 분포는 후술하는 특정의 제조 방법에서, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 평균 입경의 비율을 조절하고 상기 2종의 나노 입자를 포함한 저굴절층 형성용 광경화성 수지 조성물을 건조 온도를 조절함으로 얻어질 수 있다. Specific distribution of the solid inorganic nanoparticles and the hollow inorganic nanoparticles in the low refractive index layer in the specific manufacturing method described below, the ratio of the average particle diameter between the solid inorganic nanoparticles and hollow inorganic nanoparticles The photocurable resin composition for forming a low refractive layer including the two kinds of nanoparticles may be obtained by controlling a drying temperature.

상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자를 주로 분포시키는 경우, 이전에 무기 입자를 사용하여 얻어질 수 있었던 반사율 보다 낮은 반사율을 구현할 수 있다. 구체적으로 상기 반사 반지 필름은 380㎚ 내지 780㎚의 가시 광선 파장대 영역에서 1.5%이하, 또는 1.0% 이하, 또는 0.50 내지 1.0%, 0.7%이하, 또는 0.60% 내지 0.70%, 또는 0.62% 내지 0.67%의 평균 반사율을 나타낼 수 있다.When the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer among the low refractive layers of the antireflection film, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface, It is possible to realize reflectance lower than that which could be obtained using inorganic particles. Specifically, the reflective ring film is 1.5% or less, or 1.0% or less, or 0.50 to 1.0%, 0.7% or less, or 0.60% to 0.70%, or 0.62% to 0.67% in the visible light wavelength range of 380 nm to 780 nm. It can represent the average reflectance of.

한편, 상기 구현예의 반사 방지 필름에서, 상기 저굴절층은 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 포함된 제1층과 상기 중공형 무기 나노 입자 전체 중 70 부피% 이상이 포함된 제2층을 포함할 수 있으며, 상기 제1층이 제2층에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치할 수 있다. On the other hand, in the anti-reflection film of the embodiment, the low refractive layer is a first layer containing at least 70% by volume of the total solid inorganic nanoparticles and 70% by volume or more of the entire hollow inorganic nanoparticles It may include two layers, the first layer may be located closer to the interface between the hard coating layer and the low refractive layer than the second layer.

상술한 바와 같이, 상기 반사 방지 필름의 저굴절층에서는 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자가 주로 분포하고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자가 주로 분포하는데, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 각각이 주로 분포하는 영역이 저굴절층 내에서 가시적으로 확인되는 독립된 층을 형성할 수 있다. As described above, in the low refractive layer of the antireflection film, solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer, and hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface. In this case, an area in which the solid inorganic nanoparticles and the hollow inorganic nanoparticles are mainly distributed may form an independent layer which is visible in the low refractive layer.

또한, 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 포함된 제1층은 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 위치할 수 있다. 보다 구체적으로, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 포함된 제1층이 존재할 수 있다. In addition, the first layer including 70% by volume or more of the total solid inorganic nanoparticles may be located within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer. More specifically, the first layer including 70% by volume or more of the total solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.

또한, 상술한 바와 같이, 상기 저굴절층에서 상기 하드 코팅층 및 상기 저굴절층 간의 계면의 반대면 쪽으로는 중공형 무기 나노 입자가 주로 분포할 수 있는데, 구체적으로 상기 중공형 무기 나노 입자 전체 중 30 부피% 이상, 또는 50부피% 이상, 또는 70부피% 이상이 상기 솔리드형 무기 나노 입자 전체 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재할 수 있다. 이에 따라 상술한 바와 같이, 상기 제1층이 제2층에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치할 수 있다.In addition, as described above, hollow inorganic nanoparticles may be mainly distributed toward the opposite surface of the interface between the hard coating layer and the low refractive layer in the low refractive layer. At least 50% by volume, or at least 50% by volume, or at least 70% by volume may be present at a greater distance in the thickness direction of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer than the entire solid inorganic nanoparticle. . Accordingly, as described above, the first layer may be located closer to the interface between the hard coating layer and the low refractive layer than the second layer.

또한, 상술한 바와 같이, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 각각이 주로 분포하는 영역인 제1층 및 제2층 각각이 저굴절층 내에 존재한다는 점을 가시적으로 확인될 수 있다. 예를 들어 투과 전자현미경 [Transmission Electron Microscope] 또는 주사전자현미경 [Scanning Electron Microscope] 등을 이용하여 제1층 및 제2층 각각이 저굴절층 내에 존재한다는 점을 가시적으로 확인할 수 있으며, 또한 저굴절층 내에서 제1층 및 제2층 각각에 분포하는 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 비율 또한 확인할 수 있다. In addition, as described above, it can be visually confirmed that each of the first layer and the second layer, which are regions in which the solid inorganic nanoparticles and the hollow inorganic nanoparticles are mainly distributed, is present in the low refractive layer. For example, the transmission and electron microscope [Transmission Electron Microscope] or the scanning electron microscope [Scanning Electron Microscope], etc. can be visually confirmed that each of the first layer and the second layer in the low refractive layer, and also low refractive index The ratio of solid inorganic nanoparticles and hollow inorganic nanoparticles distributed in each of the first and second layers in the layer can also be confirmed.

한편, 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 포함된 제1층 및 상기 중공형 무기 나노 입자 전체 중 70 부피% 이상이 포함된 제2층 각각은 하나의 층 안에서 공통된 광학 특성을 공유할 수 있으며, 이에 따라 하나의 층으로 정의될 수 있다.Meanwhile, each of the first layer including 70% by volume or more of the solid inorganic nanoparticles and the second layer including 70% or more by volume of the hollow inorganic nanoparticles all share common optical properties in one layer. It may be defined as a single layer accordingly.

보다 구체적으로, 상기 제1층 및 제2층 각각은 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때, 특정한 코쉬 파라미터 A, B 및 C를 갖게 되며, 이에 따라 제1층 및 제2층은 서로 구분될 수 있다. 또한 상기 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 하기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)를 통하여 상기 제1층 및 제2층의 두께도 도출될 수 있기 때문에, 상기 저굴절층 내에서 제1층 및 제2층의 정의가 가능해진다. More specifically, each of the first layer and the second layer has a specific Kosh parameter A when the ellipticity of the polarity measured by ellipsometry is optimized by the Cauchy model of Formula 1. , B and C, whereby the first layer and the second layer can be distinguished from each other. In addition, since the ellipticity of the polarization measured by the ellipsometry can be derived from the Caching model of Formula 1, the thicknesses of the first layer and the second layer can also be derived. The first layer and the second layer can be defined in the low refractive layer.

[일반식1][Formula 1]

Figure 112019026408543-pat00001
Figure 112019026408543-pat00001

상기 일반식1에서, n(

Figure 112019026408543-pat00002
)는
Figure 112019026408543-pat00003
파장에서의 굴절율(refractive index)이고,
Figure 112019026408543-pat00004
는 300 ㎚ 내지 1800㎚의 범위이고, A, B 및 C는 코쉬 파라미터이다. In the general formula 1, n (
Figure 112019026408543-pat00002
)
Figure 112019026408543-pat00003
Refractive index at the wavelength,
Figure 112019026408543-pat00004
Is in the range of 300 nm to 1800 nm, and A, B and C are the Kosch parameters.

한편, 상기 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때 도출되는 코쉬 파라미터 A, B 및 C는 하나의 층 내에서의 평균값일 수 있다. 이에 따라, 상기 제1층 및 제2층 사이에 계면이 존재하는 경우, 상기 제1층 및 제2층이 갖는 코쉬 파라미터 A, B 및 C가 중첩되는 영역이 존재할 수 있다. 다만, 이러한 경우에도, 상기 제1층 및 제2층 각각이 갖는 코쉬 파라미터 A, B 및 C의 평균값을 만족하는 영역의 따라서, 상기 제1층 및 제2층이 두께 및 위치가 특정될 수 있다. Meanwhile, the Kosh parameters A, B, and C derived when the ellipticity of the polarization measured by the ellipsometry is optimized by the Cauchy model of Equation 1 are calculated in one layer. It may be an average value. Accordingly, when an interface exists between the first layer and the second layer, there may be a region where the Kosh parameters A, B, and C of the first layer and the second layer overlap. However, even in this case, the thickness and position of the first layer and the second layer may be specified according to the region satisfying the average values of the Cosch parameters A, B, and C of each of the first layer and the second layer. .

예를 들어, 상기 저굴절층에 포함된 제1층에 대하여 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 하기 일반식1의 코쉬 모델 (Cauchy model)로 최적화(fitting)하였을 때, 하기 A는 1.0 내지 1.65이고 B는 0.0010 내지 0.0350이고 C는 0 내지 1*10-3의 조건을 만족할 수 있으며, 또한 상기 저굴절층에 포함된 제1층에 대하여, 상기 A는 1.30 내지 1.55, 또는 1.40 내지 1.52, 또는 1.491 내지 1.511이면서, 상기 B는 0 내지 0.005, 또는 0 내지 0.00580, 또는 0 내지 0.00573이면서, 상기 C는 0 내지 1*10-3, 또는 0 내지 5.0*10-4, 또는 0 내지 4.1352*10-4 인 조건을 만족할 수 있다. For example, when the ellipticity of the polarization measured by ellipsometry with respect to the first layer included in the low refractive layer is optimized by the Cauchy model of the following general formula (1), Is 1.0 to 1.65, B is 0.0010 to 0.0350, and C may satisfy a condition of 0 to 1 * 10 −3 , and for the first layer included in the low refractive layer, A is 1.30 to 1.55, or 1.40 To 1.52, or 1.491 to 1.511, wherein B is 0 to 0.005, or 0 to 0.00580, or 0 to 0.00573, wherein C is 0 to 1 * 10 −3 , or 0 to 5.0 * 10 −4 , or 0 to It can satisfy the condition of 4.1352 * 10 -4 .

또한, 상기 저굴절층에 포함된 제2층에 대하여 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때, 상기 A는 1.0 내지 1.50이고 B는 0 내지 0.007이고 C는 0 내지 1*10-3의 조건을 만족할 수 있으며, 또한 상기 저굴절층에 포함된 제2층에 대하여, 상기 A는 1.10 내지 1.40, 또는 1.20 내지 1.35, 또는 1.211 내지 1.349이면서, 상기 B는 0 내지 0.007, 또는 0 내지 0.00550, 또는 0 내지 0.00513이면서, 상기 C는 0 내지 1*10-3, 또는 0 내지 5.0*10-4, 또는 0 내지 4.8685*10-4 인 조건을 만족할 수 있다. In addition, when the ellipticity of the polarity measured by ellipsometry of the second layer included in the low refractive index layer is optimized by a Cauchy model of Formula 1, A is 1.0. To 1.50, B is 0 to 0.007, C may satisfy a condition of 0 to 1 * 10 −3 , and A is 1.10 to 1.40, or 1.20 to 1.35 for the second layer included in the low refractive layer. , Or 1.211 to 1.349, wherein B is 0 to 0.007, or 0 to 0.00550, or 0 to 0.00513, wherein C is 0 to 1 * 10 -3 , or 0 to 5.0 * 10 -4 , or 0 to 4.8685 * The condition of 10 -4 can be satisfied.

한편, 상술한 구현예(들)의 반사 방지 필름에서, 상기 저굴절층에 포함되는 제1층과 제2층은 상이한 범위의 굴절율을 가질 수 있다. On the other hand, in the anti-reflection film of the above-described embodiment (s), the first layer and the second layer included in the low refractive layer may have a different refractive index.

보다 구체적으로, 상기 저굴절층에 포함되는 제1층은 550 ㎚에서 1.420 내지 1.600, 또는 1.450 내지 1.550, 또는 1.480 내지 1.520, 또는 1.491 내지 1.511의 굴절율을 가질 수 있다. 또한, 상기 저굴절층에 포함되는 제2층은 550 ㎚에서 1.200 내지 1.410, 또는 1.210 내지 1.400, 또는 1.211 내지 1.375의 굴절율을 가질 수 있다. More specifically, the first layer included in the low refractive layer may have a refractive index of 1.420 to 1.600, or 1.450 to 1.550, or 1.480 to 1.520, or 1.491 to 1.511 at 550 nm. In addition, the second layer included in the low refractive layer may have a refractive index of 1.200 to 1.410, or 1.210 to 1.400, or 1.211 to 1.375 at 550 nm.

상술한 굴절율의 측정은 통상적으로 알려진 방법을 사용할 수 있으며, 예를 들어 상기 저굴절층에 포함되는 제1층과 제2층 각각에 대하여 380 nm 내지 1,000 nm의 파장에서 측정된 타원 편광과 Cauchy 모델을 이용하여 550nm에서의 굴절율을 계산하여 결정할 수 있다. Measurement of the above-described refractive index may use a commonly known method, for example, the elliptical polarization and the Cauchy model measured at a wavelength of 380 nm to 1,000 nm for each of the first and second layers included in the low refractive index layer. It can be determined by calculating the refractive index at 550nm using.

한편, 상술한 저굴절층은 광중합성 화합물, 광반응성 작용기를 포함한 함불소 화합물, 중공형 무기 나노 입자, 솔리드형 무기 나노 입자 및 광개시제를 포함한 광경화성 코팅 조성물로부터 제조될 수 있다. Meanwhile, the above-described low refractive layer may be prepared from a photocurable coating composition including a photopolymerizable compound, a fluorine-containing compound including a photoreactive functional group, hollow inorganic nanoparticles, solid inorganic nanoparticles, and a photoinitiator.

이에 따라, 상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반응성 작용기를 포함한 함불소 화합물 간의 가교 (공)중합체를 포함할 수 있다. Accordingly, the binder resin included in the low refractive index layer may include a cross-linked (co) polymer between the (co) polymer of the photopolymerizable compound and the fluorine-containing compound including the photoreactive functional group.

상기 구현예의 광경화성 코팅 조성물에 포함되는 광중합성 화합물은 제조되는 저굴절층의 바인더 수지의 기재를 형성할 수 있다. 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머를 포함할 수 있다. 보다 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 1이상, 또는 2이상, 또는 3이상 포함하는 단량체 또는 올리고머를 포함할 수 있다. The photopolymerizable compound included in the photocurable coating composition of the embodiment may form a base material of the binder resin of the low refractive index layer to be prepared. Specifically, the photopolymerizable compound may include a monomer or oligomer including a (meth) acrylate or a vinyl group. More specifically, the photopolymerizable compound may include a monomer or oligomer containing at least one, or at least two, or at least three (meth) acrylate or vinyl groups.

상기 (메트)아크릴레이트를 포함한 단량체 또는 올리고머의 구체적인 예로는, 펜타에리스리톨 트리(메트)아크릴레이트, 펜타에리스리톨 테트라(메트)아크릴레이트, 디펜타에리스리톨 펜타(메트)아크릴레이트, 디펜타에리스리톨 헥사(메트)아크릴레이트, 트리펜타에리스리톨 헵타(메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 트리메틸올프로판 트리(메트)아크릴레이트, 트리메틸올프로판 폴리에톡시 트리(메트)아크릴레이트, 트리메틸롤프로판트리메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 부탄디올 디메타크릴레이트, 헥사에틸 메타크릴레이트, 부틸 메타크릴레이트 또는 이들의 2종 이상의 혼합물이나, 또는 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머, 또는 이들의 2종 이상의 혼합물을 들 수 있다. 이때 상기 올리고머의 분자량은 1,000 내지 10,000인 것이 바람직하다.Specific examples of the monomer or oligomer containing the (meth) acrylate include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth). ) Acrylate, tripentaerythritol hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxy tri (meth) acrylic Latex, trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, butanediol dimethacrylate, hexaethyl methacrylate, butyl methacrylate or a mixture of two or more thereof, or a urethane-modified acrylate oligomer, epoxy Side acrylate oligo , There may be mentioned ether acrylate oligomers, the dendritic acrylate oligomer, or a mixture of these two or more kinds. At this time, the molecular weight of the oligomer is preferably 1,000 to 10,000.

상기 비닐기를 포함하는 단량체 또는 올리고머의 구체적인 예로는, 디비닐벤젠, 스티렌 또는 파라메틸스티렌을 들 수 있다.Specific examples of the monomer or oligomer containing the vinyl group include divinylbenzene, styrene or paramethylstyrene.

상기 광경화성 코팅 조성물 중 상기 광중합성 화합물의 함량이 크게 한정되는 것은 아니나, 최종 제조되는 저굴절층이나 반사 방지 필름의 기계적 물성 등을 고려하여 상기 광경화성 코팅 조성물의 고형분 중 상기 광중합성 화합물의 함량은 5중량% 내지 80중량%일 수 있다. 상기 광경화성 코팅 조성물의 고형분은 상기 광경화성 코팅 조성물 중 액상의 성분, 예들 들어 후술하는 바와 같이 선택적으로 포함될 수 있는 유기 용매 등의 성분을 제외한 고체의 성분만을 의미한다. Although the content of the photopolymerizable compound in the photocurable coating composition is not significantly limited, the content of the photopolymerizable compound in the solid content of the photocurable coating composition in consideration of the mechanical properties of the low refractive index layer or the antireflection film to be produced finally May be 5% to 80% by weight. Solid content of the photocurable coating composition means only the components of the solid except the components of the liquid, for example, an organic solvent that may be optionally included as described below in the photocurable coating composition.

한편, 상기 광중합성 화합물은 상술한 단량체 또는 올리고머 이외로 불소계 (메트)아크릴레이트계 단량체 또는 올리고머를 더 포함할 수 있다. 상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머를 더 포함하는 경우, 상기 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머에 대한 상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머의 중량비는 0.1% 내지 10%일 수 있다. Meanwhile, the photopolymerizable compound may further include a fluorine (meth) acrylate monomer or oligomer in addition to the monomer or oligomer described above. When the fluorine-based (meth) acrylate monomer or oligomer is further included, the weight ratio of the fluorine-based (meth) acrylate monomer or oligomer to the monomer or oligomer containing the (meth) acrylate or vinyl group is 0.1% to May be 10%.

상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머의 구체적인 예로는 하기 화학식 1 내지 5로 이루어진 군에서 선택되는 1종 이상의 화합물을 들 수 있다. Specific examples of the fluorine-based (meth) acrylate monomers or oligomers may include at least one compound selected from the group consisting of the following Chemical Formulas 1 to 5.

[화학식 1][Formula 1]

Figure 112019026408543-pat00005
Figure 112019026408543-pat00005

상기 화학식 1에서, R1은 수소기 또는 탄소수 1 내지 6의 알킬기이고, a는 0 내지 7의 정수이며, b는 1 내지 3의 정수이다.In Formula 1, R 1 is a hydrogen group or an alkyl group having 1 to 6 carbon atoms, a is an integer of 0 to 7, b is an integer of 1 to 3.

[화학식 2][Formula 2]

Figure 112019026408543-pat00006
Figure 112019026408543-pat00006

상기 화학식 2에서, c는 1 내지 10의 정수이다.In Formula 2, c is an integer of 1 to 10.

[화학식 3][Formula 3]

Figure 112019026408543-pat00007
Figure 112019026408543-pat00007

상기 화학식 3에서, d는 1 내지 11의 정수이다.In Formula 3, d is an integer of 1 to 11.

[화학식 4][Formula 4]

Figure 112019026408543-pat00008
Figure 112019026408543-pat00008

상기 화학식 4에서, e는 1 내지 5의 정수이다.In Chemical Formula 4, e is an integer of 1 to 5.

[화학식 5][Formula 5]

Figure 112019026408543-pat00009
Figure 112019026408543-pat00009

상기 화학식 5에서, f는 4 내지 10의 정수이다.In Formula 5, f is an integer of 4 to 10.

한편, 상기 저굴절층에는 상기 광반응성 작용기를 포함한 함불소 화합물로부터 유래한 부분이 포함될 수 있다. On the other hand, the low refractive index layer may include a portion derived from the fluorine-containing compound including the photoreactive functional group.

상기 광반응성 작용기를 포함한 함불소 화합물에는 1이상의 광반응성 작용기가 포함 또는 치환될 수 있으며, 상기 광반응성 작용기는 빛의 조사에 의하여, 예를 들어 가시 광선 또는 자외선의 조사에 의하여 중합 반응에 참여할 수 있는 작용기를 의미한다. 상기 광반응성 작용기는 빛의 조사에 의하여 중합 반응에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으며, 이의 구체적인 예로는 (메트)아크릴레이트기, 에폭사이드기, 비닐기(Vinyl) 또는 싸이올기(Thiol)를 들 수 있다. One or more photoreactive functional groups may be included or substituted in the fluorine-containing compound including the photoreactive functional group, and the photoreactive functional group may participate in the polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light. Means functional groups. The photoreactive functional group may include various functional groups known to be able to participate in a polymerization reaction by irradiation of light, and specific examples thereof may include (meth) acrylate groups, epoxide groups, vinyl groups, or thiol groups ( Thiol).

상기 광반응성 작용기를 포함한 함불소 화합물 각각은 2,000 내지 200,000, 바람직하게는 5,000 내지 100,000의 중량평균분자량(GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량)을 가질 수 있다. Each of the fluorine-containing compounds including the photoreactive functional group may have a weight average molecular weight (weight average molecular weight in terms of polystyrene measured by GPC method) of 2,000 to 200,000, preferably 5,000 to 100,000.

상기 광반응성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 작으면, 상기 광경화성 코팅 조성물에서 함불소 화합물들이 표면에 균일하고 효과적으로 배열하지 못하고 최종 제조되는 저굴절층의 내부에 위치하게 되는데, 이에 따라 상기 저굴절층의 표면이 갖는 방오성이 저하되고 상기 저굴절층의 가교 밀도가 낮아져서 전체적인 강도나 내크스래치성 등의 기계적 물성이 저하될 수 있다. When the weight average molecular weight of the fluorine-containing compound including the photoreactive functional group is too small, the fluorine-containing compounds in the photocurable coating composition may not be uniformly and effectively arranged on the surface, and thus are located inside the low refractive layer that is finally manufactured. Accordingly, the antifouling property of the surface of the low refractive index layer is lowered, and the crosslinking density of the low refractive index layer is lowered, so that mechanical properties such as overall strength and scratch resistance may be reduced.

또한, 상기 광반응성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 높으면, 상기 광경화성 코팅 조성물에서 다른 성분들과의 상용성이 낮아질 수 있고, 이에 따라 최종 제조되는 저굴절층의 헤이즈가 높아지거나 광투과도가 낮아질 수 있으며, 상기 저굴절층의 강도 또한 저하될 수 있다. In addition, when the weight average molecular weight of the fluorine-containing compound including the photoreactive functional group is too high, compatibility with other components in the photocurable coating composition may be lowered, thereby increasing the haze of the low refractive layer to be produced Light transmittance may be lowered, and the strength of the low refractive index layer may also be lowered.

구체적으로, 상기 광반응성 작용기를 포함한 함불소 화합물은 i) 하나 이상의 광반응성 작용기가 치환되고, 적어도 하나의 탄소에 1이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; ii) 1 이상의 광반응성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로(hetero) 지방족 화합물 또는 헤테로(hetero)지방족 고리 화합물; iii) 하나 이상의 광반응성 작용기가 치환되고, 적어도 하나의 실리콘에 1이상의 불소가 치환된 폴리디알킬실록산계 고분자(예를 들어, 폴리디메틸실록산계 고분자); iv) 1 이상의 광반응성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물, 또는 상기 i) 내지 iv) 중 2이상의 혼합물 또는 이들의 공중합체를 들 수 있다.Specifically, the fluorine-containing compound including the photoreactive functional group may include: i) an aliphatic compound or an aliphatic ring compound in which one or more photoreactive functional groups are substituted and at least one fluorine is substituted for at least one carbon; ii) a heteroaliphatic compound or a heteroaliphatic ring compound substituted with one or more photoreactive functional groups, at least one hydrogen substituted with fluorine, and one or more carbons substituted with silicon; iii) polydialkylsiloxane polymers (eg, polydimethylsiloxane polymers) in which at least one photoreactive functional group is substituted and at least one fluorine is substituted in at least one silicone; iv) polyether compounds substituted with one or more photoreactive functional groups and at least one hydrogen substituted with fluorine, or mixtures of two or more of the above i) to iv) or copolymers thereof.

상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100중량부에 대하여 상기 광반응성 작용기를 포함한 함불소 화합물 20 내지 300중량부를 포함할 수 있다. The photocurable coating composition may include 20 to 300 parts by weight of the fluorine-containing compound including the photoreactive functional group with respect to 100 parts by weight of the photopolymerizable compound.

상기 광중합성 화합물 대비 상기 광반응성 작용기를 포함한 함불소 화합물이 과량으로 첨가되는 경우 상기 구현예의 광경화성 코팅 조성물의 코팅성이 저하되거나 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 충분한 내구성이나 내스크래치성을 갖지 못할 수 있다. 또한, 상기 광중합성 화합물 대비 상기 광반응성 작용기를 포함한 함불소 화합물의 양이 너무 작으면, 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 충분한 방오성이나 내스크래치성 등의 기계적 물성을 갖지 못할 수 있다.When the fluorine-containing compound containing the photoreactive functional group is added in excess of the photopolymerizable compound, the coating property of the photocurable coating composition of the embodiment is reduced or the low refractive layer obtained from the photocurable coating composition has sufficient durability or scratch resistance. May not have In addition, when the amount of the fluorine-containing compound including the photoreactive functional group relative to the photopolymerizable compound is too small, the low refractive index layer obtained from the photocurable coating composition may not have sufficient mechanical properties such as antifouling or scratch resistance.

상기 광반응성 작용기를 포함한 함불소 화합물은 규소 또는 규소 화합물을 더 포함할 수 있다. 즉, 상기 광반응성 작용기를 포함한 함불소 화합물은 선택적으로 내부에 규소 또는 규소 화합물을 함유할 수 있고, 구체적으로 상기 광반응성 작용기를 포함한 함불소 화합물 중 규소의 함량은 0.1 중량% 내지 20중량%일 수 있다. The fluorine-containing compound including the photoreactive functional group may further include silicon or a silicon compound. That is, the fluorine-containing compound including the photoreactive functional group may optionally contain a silicon or silicon compound, specifically, the content of silicon in the fluorine-containing compound containing the photoreactive functional group is 0.1% to 20% by weight Can be.

상기 광반응성 작용기를 포함한 함불소 화합물에 포함되는 규소는 상기 구현예의 광경화성 코팅 조성물에 포함되는 다른 성분과의 상용성을 높일 수 있으며 이에 따라 최종 제조되는 굴절층에 헤이즈(haze)가 발생하는 것을 방지하여 투명도를 높이는 역할을 할 수 있다. 한편, 상기 광반응성 작용기를 포함한 함불소 화합물 중 규소의 함량이 너무 커지면, 상기 광경화성 코팅 조성물에 포함된 다른 성분과 상기 함불소 화합물 간의 상용성이 오히려 저하될 수 있으며, 이에 따라 최종 제조되는 저굴절층이나 반사 방지 필름이 충분한 투광도나 반사 방지 성능을 갖지 못하여 표면의 방오성 또한 저하될 수 있다. Silicon contained in the fluorine-containing compound including the photoreactive functional group can increase the compatibility with other components included in the photocurable coating composition of the embodiment, and thus haze (haze) is generated in the refractive layer to be manufactured It can play a role of increasing transparency by preventing. On the other hand, when the content of silicon in the fluorine-containing compound containing the photoreactive functional group is too large, the compatibility between the other components included in the photocurable coating composition and the fluorine-containing compound may be rather deteriorated, thereby resulting in low Since the refractive layer or the antireflection film does not have sufficient light transmittance or antireflection performance, the antifouling property of the surface may also be reduced.

상기 저굴절층은 상기 광중합성 화합물의 (공)중합체 100중량부 대비 상기 중공형 무기 나노 입자 10 내지 400 중량부 및 상기 솔리드형 무기 나노 입자 10 내지 400중량부를 포함할 수 있다. The low refractive layer may include 10 to 400 parts by weight of the hollow inorganic nanoparticles and 10 to 400 parts by weight of the solid inorganic nanoparticles relative to 100 parts by weight of the (co) polymer of the photopolymerizable compound.

상기 저굴절층 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자의 함량이 과다해지는 경우, 상기 저굴절층 제조 과정에서 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 간의 상분리가 충분히 일어나지 않고 혼재되어 반사율이 높아질 수 있으며, 표면 요철이 과다하게 발생하여 방오성이 저하될 수 있다. 또한, 상기 저굴절층 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자의 함량이 과소한 경우, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 가까운 영역에 상기 솔리드형 무기 나노 입자 중 다수가 위치하기 어려울 수 있으며, 상기 저굴절층의 반사율은 크게 높아질 수 있다. When the content of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the low refractive index layer is excessive, the phase separation between the hollow inorganic nanoparticles and the solid inorganic nanoparticles does not sufficiently occur in the low refractive layer manufacturing process is mixed Therefore, the reflectance may be increased, and surface irregularities may be excessively generated, thereby preventing the antifouling property. In addition, when the content of the hollow inorganic nanoparticles and solid inorganic nanoparticles in the low refractive index layer is too small, many of the solid inorganic nanoparticles are located in a region close to the interface between the hard coating layer and the low refractive layer. It may be difficult to, and the reflectance of the low refractive layer may be significantly increased.

상기 저굴절층은 1㎚ 내지 300 ㎚, 또는 50㎚ 내지 200 ㎚, 또는 85 ㎚ 내지 300 ㎚의 두께를 가질 수 있다. The low refractive layer may have a thickness of 1 nm to 300 nm, or 50 nm to 200 nm, or 85 nm to 300 nm.

한편, 상기 하드 코팅층으로는 통상적으로 알려진 하드 코팅층을 큰 제한 없이 사용할 수 있다. On the other hand, as the hard coating layer, a conventionally known hard coating layer can be used without great limitation.

상기 하드 코팅층의 일 예로서, 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는 하드 코팅층을 들 수 있다. An example of the hard coating layer may include a hard resin layer including a binder resin and organic or inorganic fine particles dispersed in the binder resin.

상기 바인더 수지는 광경화성 수지를 포함할 수 있다. 상기 하드코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반응을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 구체적으로, 상기 광경화성 수지는 우레탄 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 폴리에스터 아크릴레이트, 및 폴리에테르 아크릴레이트로 이루어진 반응성 아크릴레이트 올리고머 군; 및 디펜타에리스리톨 헥사아크릴레이트, 디펜타에리스리톨 하이드록시 펜타아크릴레이트, 펜타에리스리톨 테트라아크릴레이트, 펜타에리스리톨 트리아크릴레이트, 트리메틸렌 프로필 트리아크릴레이트, 프로폭시레이티드 글리세롤 트리아크릴레이트, 트리메틸프로판 에톡시 트리아크릴레이트, 1,6-헥산디올디아크릴레이트, 프로폭시레이티드 글리세로 트리아크릴레이트, 트리프로필렌 글리콜 디아크릴레이트, 및 에틸렌글리콜 디아크릴레이트로 이루어진 다관능성 아크릴레이트 단량체 군에서 선택되는 1 종 이상을 포함할 수 있다. The binder resin may include a photocurable resin. The photocurable resin included in the hard coat layer is a polymer of a photocurable compound that may cause a polymerization reaction when light such as ultraviolet rays is irradiated, and may be conventional in the art. Specifically, the photocurable resin is a reactive acrylate oligomer group consisting of urethane acrylate oligomer, epoxide acrylate oligomer, polyester acrylate, and polyether acrylate; And dipentaerythritol hexaacrylate, dipentaerythritol hydroxy pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylene propyl triacrylate, propoxylated glycerol triacrylate, trimethylpropane ethoxy tri At least one member selected from the group of polyfunctional acrylate monomers consisting of acrylate, 1,6-hexanediol diacrylate, propoxylated glycerol triacrylate, tripropylene glycol diacrylate, and ethylene glycol diacrylate It may include.

상기 유기 또는 무기 미립자는 입경의 구체적으로 한정되는 것은 아니나, 예들 들어 유기 미립자는 1 내지 10 ㎛의 입경을 가질 수 있으며, 상기 무기 입자는 1 ㎚ 내지 500 ㎚, 또는 1㎚ 내지 300㎚의 입경을 가질 수 있다. 상기 유기 또는 무기 미립자는 입경은 부피 평균 입경으로 정의될 수 있다.The organic or inorganic fine particles are not particularly limited in particle size, but for example, the organic fine particles may have a particle size of 1 to 10 μm, and the inorganic particles may have a particle size of 1 nm to 500 nm, or 1 nm to 300 nm. Can have The particle size of the organic or inorganic fine particles may be defined as a volume average particle diameter.

또한, 상기 하드 코팅 필름에 포함되는 유기 또는 무기 미립자의 구체적인 예가 한정되는 것은 아니나, 예를 들어 상기 유기 또는 무기 미립자는 아크릴계 수지, 스티렌계 수지, 에폭사이드 수지 및 나일론 수지로 이루어진 유기 미립자이거나 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄 및 산화아연으로 이루어진 무기 미립자일 수 있다. In addition, specific examples of the organic or inorganic fine particles included in the hard coating film are not limited. For example, the organic or inorganic fine particles may be organic fine particles made of acrylic resin, styrene resin, epoxide resin and nylon resin or silicon oxide. And inorganic fine particles consisting of titanium dioxide, indium oxide, tin oxide, zirconium oxide, and zinc oxide.

상기 하드 코팅층의 바인더 수지는 중량평균분자량 10,000 이상의 고분자량 (공)중합체를 더 포함할 수 있다. The binder resin of the hard coating layer may further include a high molecular weight (co) polymer having a weight average molecular weight of 10,000 or more.

상기 고분자량 (공)중합체는 셀룰로스계 폴리머, 아크릴계 폴리머, 스티렌계 폴리머, 에폭사이드계 폴리머, 나일론계 폴리머, 우레탄계 폴리머, 및 폴리올레핀계 폴리머로 이루어진 군에서 선택되는 1 종 이상일 수 있다. The high molecular weight (co) polymer may be one or more selected from the group consisting of cellulose polymers, acrylic polymers, styrene polymers, epoxide polymers, nylon polymers, urethane polymers, and polyolefin polymers.

한편, 상기 하드 코팅 필름의 또 다른 일 예로서, 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅 필름을 들 수 있다. On the other hand, as another example of the hard coating film, a binder resin of a photocurable resin; And the hard coat film containing the antistatic agent disperse | distributed to the said binder resin is mentioned.

상기 하드 코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반응을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 다만, 바람직하게는, 상기 광경화형 화합물은 다관능성 (메트)아크릴레이트계 단량체 또는 올리고머일 수 있고, 이때 (메트)아크릴레이트계 관능기의 수는 2 내지 10, 바람직하게는 2 내지 8, 보다 바람직하게는 2 내지 7인 것이, 하드코팅층의 물성 확보 측면에서 유리하다. 보다 바람직하게는, 상기 광경화형 화합물은 펜타에리스리톨 트리(메트)아크릴레이트, 펜타에리스리톨 테트라(메트)아크릴레이트, 디펜타에리스리톨 펜타(메트)아크릴레이트, 디펜타에리스리톨 헥사(메트)아크릴레이트, 디펜타에리스리톨 헵타(메트)아크릴레이트, 트리펜타에리스리톨 헵타(메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 트리메틸올프로판 트리(메트)아크릴레이트, 및 트리메틸올프로판 폴리에톡시 트리(메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.The photocurable resin included in the hard coat layer is a polymer of a photocurable compound that may cause a polymerization reaction when light such as ultraviolet rays is irradiated, and may be conventional in the art. However, preferably, the photocurable compound may be a polyfunctional (meth) acrylate-based monomer or oligomer, wherein the number of (meth) acrylate-based functional groups is 2 to 10, preferably 2 to 8, more preferably Preferably, 2 to 7 is advantageous in terms of securing physical properties of the hard coating layer. More preferably, the photocurable compound is pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipenta Erythritol hepta (meth) acrylate, tripentaerythritol hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, trimethylolpropane tri (meth) acrylate, and trimethylolpropane polyethoxy It may be at least one selected from the group consisting of tri (meth) acrylates.

상기 대전 방지제는 4급 암모늄염 화합물; 피리디늄염; 1 내지 3개의 아미노기를 갖는 양이온성 화합물; 설폰산 염기, 황산 에스테르 염기, 인산 에스테르 염기, 포스폰산 염기 등의 음이온성 화합물; 아미노산계 또는 아미노 황산 에스테르계 화합물 등의 양성 화합물; 이미노 알코올계 화합물, 글리세린계 화합물, 폴리에틸렌 글리콜계 화합물 등의 비이온성 화합물; 주석 또는 티타늄 등을 포함한 금속 알콕사이드 화합물 등의 유기 금속 화합물; 상기 유기 금속 화합물의 아세틸아세토네이트 염 등의 금속 킬레이트 화합물; 이러한 화합물들의 2종 이상의 반응물 또는 고분자화물; 이러한 화합물들의 2종 이상의 혼합물일 수 있다. 여기서, 상기 4급 암모늄염 화합물은 분자 내에 1개 이상의 4급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다. The antistatic agent is a quaternary ammonium salt compound; Pyridinium salts; Cationic compounds having from 1 to 3 amino groups; Anionic compounds such as sulfonic acid base, sulfate ester base, phosphate ester base and phosphonic acid base; Positive compounds, such as an amino acid type or amino sulfate ester type compound; Nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds; Organometallic compounds such as metal alkoxide compounds including tin or titanium; Metal chelate compounds such as acetylacetonate salts of the organometallic compounds; Two or more reactants or polymerized compounds of these compounds; It may be a mixture of two or more of these compounds. Here, the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in a molecule, and may use a low molecular type or a polymer type without limitation.

또한, 상기 대전 방지제로는 도전성 고분자와 금속 산화물 미립자도 사용할 수 있다. 상기 도전성 고분자로는 방향족 공액계 폴리(파라페닐렌), 헤테로고리식 공액계의 폴리피롤, 폴리티오펜, 지방족 공액계의 폴리아세틸렌, 헤테로 원자를 함유한 공액예의 폴리아닐린, 혼합 형태 공액계의 폴리(페닐렌 비닐렌), 분자중에 복수의 공액 사슬을 갖는 공액계인 복쇄형 공액계 화합물, 공액 고분자 사슬을 포화 고분자에 그래프트 또는 블록 공중합시킨 도전성 복합체 등이 있다. 또한, 상기 금속 산화물 미립자로는 산화 아연, 산화 안티몬, 산화 주석, 산화 세륨, 인듐 주석 산화물, 산화 인듐, 산화 알루니뮴, 안티몬 도핑된 산화 주석, 알루미늄 도핑된 산화 아연 등을 들 수 있다. Moreover, as said antistatic agent, a conductive polymer and metal oxide fine particles can also be used. Examples of the conductive polymer include aromatic conjugated poly (paraphenylene), polypyrrole of heterocyclic conjugated system, polythiophene, polyacetylene of aliphatic conjugated system, polyaniline of conjugated example containing a hetero atom, poly of mixed form conjugated system ( Phenylene vinylene), a double-chain conjugated compound which is a conjugated system having a plurality of conjugated chains in a molecule, and a conductive composite obtained by grafting or block copolymerizing a conjugated polymer chain to a saturated polymer. Further, the metal oxide fine particles include zinc oxide, antimony oxide, tin oxide, cerium oxide, indium tin oxide, indium oxide, aluminium oxide, antimony doped tin oxide, aluminum doped zinc oxide, and the like.

상기 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅 필름은 알콕시 실란계 올리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다. Binder resin of the photocurable resin; And an antistatic agent dispersed in the binder resin may further include one or more compounds selected from the group consisting of alkoxy silane oligomers and metal alkoxide oligomers.

상기 알콕시 실란계 화합물은 당업계에서 통상적인 것일 수 있으나, 바람직하게는 테트라메톡시실란, 테트라에톡시실란, 테트라이소프로폭시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메타크릴록시프로필트리메톡시실란, 글리시독시프로필 트리메톡시실란, 및 글리시독시프로필 트리에톡시실란으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.The alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyl It may be one or more compounds selected from the group consisting of trimethoxysilane, glycidoxypropyl trimethoxysilane, and glycidoxypropyl triethoxysilane.

또한, 상기 금속 알콕사이드계 올리고머는 금속 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반응을 통해 제조할 수 있다. 상기 졸-겔 반응은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할 수 있다.In addition, the metal alkoxide-based oligomer may be prepared through a sol-gel reaction of a composition comprising a metal alkoxide-based compound and water. The sol-gel reaction can be carried out by a method similar to the method for producing an alkoxy silane oligomer described above.

다만, 상기 금속 알콕사이드계 화합물은 물과 급격하게 반응할 수 있으므로, 상기 금속 알콕사이드계 화합물을 유기용매에 희석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반응을 수행할 수 있다. 이때, 반응 효율 등을 감안하여, 물에 대한 금속 알콕사이드 화합물의 몰비(금속이온 기준)는 3 내지 170인 범위 내에서 조절하는 것이 바람직하다.However, since the metal alkoxide compound may react with water rapidly, the sol-gel reaction may be performed by diluting the metal alkoxide compound in an organic solvent and slowly dropping water. At this time, in consideration of the reaction efficiency and the like, the molar ratio (metal ion reference) of the metal alkoxide compound to water is preferably adjusted within the range of 3 to 170.

여기서, 상기 금속 알콕사이드계 화합물은 티타늄 테트라-이소프로폭사이드, 지르코늄 이소프로폭사이드, 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.Here, the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide, and aluminum isopropoxide.

한편, 상기 하드 코팅층은 0.1㎛ 내지 100㎛의 두께를 가질 수 있다. On the other hand, the hard coating layer may have a thickness of 0.1㎛ to 100㎛.

상기 하드 코팅층의 다른 일면에 결합된 기재를 더 포함할 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다. 예를 들어, 상기 기재로는 폴리카르보네이트, 시클로올레핀 중합체, 폴리에스테르 또는 트리아세틸셀룰로오스 등을 들 수 있다. It may further include a substrate bonded to the other side of the hard coating layer. The specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used for the production of a low refractive index layer or an antireflection film can be used without great limitation. For example, a polycarbonate, a cycloolefin polymer, polyester, or triacetyl cellulose etc. are mentioned as said base material.

한편, 상기 저굴절층은 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물을 더 포함할 수 있다. On the other hand, the low refractive index layer may further include a silane compound containing at least one reactive functional group selected from the group consisting of vinyl groups and (meth) acrylate groups.

상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물은 반응성 작용기로 인하여 상기 저굴절층의 기계적 물성, 예를 들어 내스크래치성을 높일 수 있다. 아울러, 상기 저굴절층이 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물을 포함함에 따라서, 보다 향상된 내스크래치성을 확보할 수 있다. The silane compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group may increase the mechanical properties of the low refractive index layer, for example, scratch resistance, due to the reactive functional group. . In addition, as the low refractive layer includes a silane-based compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group, it is possible to secure more improved scratch resistance.

또한, 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물에 포함되는 실란 작용기 또는 실리콘 원자로 인하여 상기 저굴절층 내부 특성을 향상시킬 수 있다. 보다 구체적으로, 상기 저굴절층 내부에 실란계 화합물에 포함되는 실란 작용기 또는 실리콘 원자가 균일하게 분포함에 따라서 보다 낮은 평균반사율을 구현할 수 있고, 또한 상기 실란 작용기 또는 실리콘 원자로 인하여 상기 저굴절층 내부에 균일하게 분포된 무기 미세 입자가 상기 광중합성 화합물과 균일하게 결합하게 되어 최종 제조되는 반사 방지 필름의 내스크래치성이 향상될 수 있다. In addition, the internal characteristics of the low refractive index layer may be improved due to the silane functional group or silicon atom included in the silane compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group. More specifically, as the silane functional groups or silicon atoms included in the silane-based compound are uniformly distributed in the low refractive layer, a lower average reflectance may be realized, and due to the silane functional groups or silicon atoms, The uniformly distributed inorganic fine particles may be uniformly combined with the photopolymerizable compound to improve scratch resistance of the antireflective film to be manufactured.

상술한 바와 같이, 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물이 상기 반응성 작용기와 상기 실리콘 원자를 동시에 포함하는 화학 구조를 가짐에 따라서, 상기 저굴절층 내부 특성을 굴절율을 낮추기에 최적화 시킬 수 있으며, 이에 따라 상기 저굴절층은 낮은 반사율 및 높은 투광율을 구현할 수 있고, 아울러 균일한 가교 밀도를 확보하여 보다 우수한 내마모성 또는 내스크래치성을 확보할 수 있다. As described above, as the silane-based compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group has a chemical structure simultaneously containing the reactive functional group and the silicon atom The low refractive index layer may be optimized for lowering the refractive index. Accordingly, the low refractive index layer may realize a low reflectance and a high light transmittance, and also obtain a uniform crosslink density to provide more excellent wear resistance or scratch resistance. It can be secured.

구체적으로, 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물은 상기 반응성 작용기를 100 내지 1000 g/mol 당량으로 함유할 수 있다. Specifically, the silane compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group may contain 100 to 1000 g / mol equivalents of the reactive functional group.

상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물 중 상기 반응성 작용기의 함량이 너무 작으면, 상기 저굴절층의 내스크래치성이나 기계적 물성을 충분히 높이기 어려울 수 있다. If the content of the reactive functional group is too small in the silane compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group, the scratch resistance and the mechanical properties of the low refractive index layer It can be difficult to raise enough.

한편, 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물 중 상기 반응성 작용기의 함량이 너무 높아지면, 상기 저굴절층 내에서 균질성이나 무기 미세 입자의 분산성이 저하되어 상기 저굴절층의 투광도 등이 오히려 저하될 수 있다.On the other hand, if the content of the reactive functional group in the silane compound containing at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group is too high, homogeneous or inorganic fine in the low refractive layer The dispersibility of the particles may be lowered, and thus the light transmittance of the low refractive index layer may be lowered.

상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물은 100 내지 5,000, 또는 200 내지 3,000의 중량평균분자량(GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량)을 가질 수 있다. The silane compound containing at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group has a weight average molecular weight of 100 to 5,000, or 200 to 3,000 (in terms of polystyrene measured by GPC method). Weight average molecular weight).

구체적으로, 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물은 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기 1이상, 탄소수 1 내지 10의 알킬렌기가 결합된 트리알콕시실란기 1이상 및 우레탄 작용기를 포함한 유기 작용기를 포함할 수 있다. 상기 트리알콕시실란기는 탄소수 1 내지 3의 알콕시 3개가 실리콘 화합물에 치환된 작용기일 수 있다. Specifically, the silane compound containing at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group is at least one reactive functional group 1 selected from the group consisting of a vinyl group and a (meth) acrylate group. As described above, an organic functional group including at least one trialkoxysilane group having an alkylene group having 1 to 10 carbon atoms and a urethane functional group may be included. The trialkoxysilane group may be a functional group in which three alkoxy having 1 to 3 carbon atoms are substituted with a silicon compound.

상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물의 구체적인 화학 구조가 한정되는 것은 아니나, 이의 구체적인 예로 하기 화학식 11 내지 14의 화합물을 들 수 있다. Although the specific chemical structure of the silane compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group is not limited, specific examples thereof include the compounds represented by the following Chemical Formulas 11 to 14 have.

[화학식11][Formula 11]

Figure 112019026408543-pat00010
Figure 112019026408543-pat00010

[화학식12][Formula 12]

Figure 112019026408543-pat00011
Figure 112019026408543-pat00011

[화학식13][Formula 13]

Figure 112019026408543-pat00012
Figure 112019026408543-pat00012

[화학식14][Formula 14]

Figure 112019026408543-pat00013
Figure 112019026408543-pat00013

상기 화학식 14에서, R1

Figure 112019026408543-pat00014
이며, In Formula 14, R 1
Figure 112019026408543-pat00014
Is,

상기 X는 수소, 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기, 탄소수 1 내지 6의 알콕시기 및 탄소수 1 내지 4의 알콕시카르보닐기 중 어느 하나이고, X is hydrogen, a monovalent moiety derived from an aliphatic hydrocarbon having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkoxycarbonyl group having 1 to 4 carbon atoms,

상기 Y는 단일결합, -CO- 또는 -COO-이며, Y is a single bond, -CO- or -COO-,

R2는 탄소수 1 내지 20의 지방족 탄화수소 유래의 2가 잔기이거나, 혹은 상기 2가 잔기의 하나 이상의 수소가 하이드록시기, 카르복실기 또는 에폭시기로 치환된 2가 잔기이거나, 혹은 상기 2가 잔기의 하나 이상의 -CH2-가 산소 원자들이 직접 연결되지 않도록 -O-, -CO-O-, -O-CO- 또는 -O-CO-O-로 대체된 2가 잔기이고, R 2 is a divalent moiety derived from an aliphatic hydrocarbon having 1 to 20 carbon atoms, or at least one hydrogen of the divalent moiety is a divalent moiety substituted with a hydroxyl, carboxyl or epoxy group, or at least one of the divalent moieties. -CH 2 -is a divalent residue substituted with -O-, -CO-O-, -O-CO- or -O-CO-O- so that the oxygen atoms are not directly connected,

A는 수소 및 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이며, B는 탄소수 1 내지 6의 지방족 탄화수소 유래의 1가 잔기 중 어느 하나이고, n은 0 내지 2의 정수이다. A is either of hydrogen and monovalent residues derived from aliphatic hydrocarbons having 1 to 6 carbon atoms, B is any of monovalent residues derived from aliphatic hydrocarbons having 1 to 6 carbon atoms, and n is an integer of 0 to 2.

상기 화학식 14의 화합물의 하나의 예로 하기 화학식 15의 화합물을 들 수 있다. As an example of the compound of Formula 14, there may be mentioned a compound of Formula 15.

[화학식15][Formula 15]

Figure 112019026408543-pat00015
Figure 112019026408543-pat00015

상기 화학식 15에서, R1, R2 및 R3는 탄수소 1 내지 3의 알콕시기이거나 또는 수소이며, X는 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이고, R4는 탄소수 1 내지 3의 알킬기 또는 수소이다. In Formula 15, R 1 , R 2 and R 3 is an alkoxy group having 1 to 3 carbon atoms or hydrogen, X is a straight or branched chain alkylene group having 1 to 10 carbon atoms, and R 4 is 1 to 3 carbon atoms. Alkyl group or hydrogen.

상기 저굴절층은 이에 포함되는 상기 광중합성 화합물 100중량부 대비 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물 2 내지 40중량부를 포함할 수 있다. The low refractive layer may include 2 to 40 parts by weight of a silane compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group relative to 100 parts by weight of the photopolymerizable compound included therein. Can be.

상기 광중합성 화합물 대비 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물의 함량이 너무 작은 경우, 상기 저굴절층의 내스크래치성을 충분히 확보하기 어려울 수 있다. 또한, 상기 광중합성 화합물 대비 상기 비닐기 및 (메트)아크릴레이트기로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 1이상 포함하는 실란계 화합물의 함량이 너무 큰 경우, 상기 저굴절층에 포함되는 다른 성분들과의 상용성이 크게 저하되어 상기 저굴절층이나 반사 방지 필름에 헤이즈가 발생하거나 이의 투명도가 저하될 수 있으며, 내스크래치성이 오히려 저하될 수 있다.When the content of the silane compound including at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group is too small compared to the photopolymerizable compound, sufficient scratch resistance of the low refractive layer is ensured. It can be difficult to do. In addition, when the content of the silane compound containing at least one reactive functional group selected from the group consisting of the vinyl group and the (meth) acrylate group compared to the photopolymerizable compound is too large, other components included in the low refractive layer Compatibility with these materials may be greatly reduced, so that haze may occur in the low refractive index layer or the anti-reflection film or transparency thereof may be lowered, and scratch resistance may be lowered.

한편, 상기 구현예의 반사 방지 필름은, 광경화형 화합물 또는 이의 (공)중합체, 광반응성 작용기를 포함한 함불소 화합물, 광개시제, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함한 저굴절층 형성용 수지 조성물을 하드 코팅층 상에 도포하고 35℃ 내지 100℃ 의 온도에서 건조하는 단계; 및 상기 수지 조성물의 건조물을 광경화하는 단계;를 포함하는 반사 방지 필름의 제조 방법을 통하여 제공될 수 있다. On the other hand, the anti-reflection film of the embodiment, a photocurable compound or a (co) polymer thereof, a resin for forming a low refractive index layer containing a fluorine-containing compound, a photoinitiator, a hollow inorganic nanoparticles and a solid inorganic nanoparticles, including photoreactive functional groups Applying the composition on a hard coat layer and drying at a temperature of 35 ° C. to 100 ° C .; And photocuring the dried material of the resin composition.

구체적으로, 상기 반사 방지 필름의 제조 방법에 의하여 제공되는 반사 방지 필름은 저굴절층 내에서 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 서로 구분될 수 있도록 분포시키고 이에 따라 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다.Specifically, the anti-reflection film provided by the method of manufacturing the anti-reflection film is distributed in the low refractive layer so that the hollow inorganic nanoparticles and the solid inorganic nanoparticles can be distinguished from each other, thereby providing a low reflectance and a high light transmittance. It can have high scratch resistance and antifouling at the same time.

보다 상세하게는, 상기 반사 방지 필름은 하드 코팅층; 및 상기 하드 코팅층의 일면에 형성되며, 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하며, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 존재할 수 있다. More specifically, the anti-reflection film is a hard coating layer; And a low refractive layer formed on one surface of the hard coating layer, the hollow refractive inorganic nanoparticles and the solid inorganic nanoparticles dispersed in the binder resin, between the hard coating layer and the low refractive index layer. At least 70% by volume of the total solid inorganic nanoparticles may be present within 50% of the total thickness of the low refractive layer from an interface.

또한, 상기 중공형 무기 나노 입자 전체 중 30 부피% 이상이 상기 솔리드형 무기 나노 입자 전체 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재할 수 있다.In addition, at least 30% by volume of the entire hollow inorganic nanoparticles may be present at a greater distance in the thickness direction of the low refractive layer than the interface between the hard coating layer and the low refractive layer than the entire solid inorganic nanoparticles.

또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70 부피% 이상이 존재할 수 있다. 또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 초과의 영역에 상기 중공형 무기 나노 입자 전체 중 70 부피% 이상이 존재할 수 있다.In addition, 70% by volume or more of the total solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer. In addition, 70 vol% or more of the entire hollow inorganic nanoparticles may be present in an area of more than 30% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer.

또한, 상기 반사 방지 필름의 제조 방법에 의하여 제공되는 반사 방지 필름에서, 상기 저굴절층은 상기 솔리드형 무기 나노 입자 전체 중 70중량% 이상이 포함된 제1층과 상기 중공형 무기 나노 입자 전체 중 70중량% 이상이 포함된 제2층을 포함할 수 있으며, 상기 제1층이 제2층에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치할 수 있다.In addition, in the anti-reflection film provided by the method for manufacturing the anti-reflection film, the low refractive index layer of the first layer and 70% by weight of the total of the solid inorganic nanoparticles and the entire hollow inorganic nanoparticles It may include a second layer containing more than 70% by weight, the first layer may be located closer to the interface between the hard coating layer and the low refractive index than the second layer.

상기 저굴절층은 광경화형 화합물 또는 이의 (공)중합체, 광반응성 작용기를 포함한 함불소 화합물, 광개시제, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함한 저굴절층 형성용 수지 조성물을 하드 코팅층 상에 도포하고 35℃ 내지 100℃, 또는 40℃ 내지 80℃의 온도에서 건조함으로서 형성될 수 있다. The low refractive index layer comprises a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, a photoinitiator, hollow inorganic nanoparticles, and a resin composition for forming a low refractive index layer including solid inorganic nanoparticles on a hard coating layer. It can be formed by applying to and drying at a temperature of 35 ℃ to 100 ℃, or 40 ℃ to 80 ℃.

상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 온도가 35 미만이면, 상기 형성되는 저굴절층이 갖는 방오성이 크게 저하될 수 있다. 또한, 상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 온도가 100 초과이면, 상기 저굴절층 제조 과정에서 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 간의 상분리가 충분히 일어나지 않고 혼재되어 상기 저굴절층의 내스크래치성 및 방오성이 저하될 뿐만 아니라 반사율도 크게 높아질 수 있다. When the temperature for drying the low refractive index layer-forming resin composition applied on the hard coating layer is less than 35, antifouling properties of the low refractive index layer may be greatly reduced. In addition, when the temperature of drying the low refractive layer forming resin composition applied on the hard coating layer is more than 100, the phase separation between the hollow inorganic nanoparticles and solid-type inorganic nanoparticles does not sufficiently occur in the low refractive layer manufacturing process. By being mixed, not only the scratch resistance and the antifouling property of the low refractive layer may be lowered, but also the reflectance may be greatly increased.

상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 과정에서 상기 건조 온도와 함께 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 밀도 차이를 조절함으로서 상술한 특성을 갖는 저굴절층을 형성할 수 있다. 상기 솔리드형 무기 나노 입자가 상기 중공형 무기 나노 입자에 비하여 0.50 g/㎤ 이상 높은 밀도를 가질 수 있으며, 이러한 밀도 차이로 인하여 상기 하드 코팅층 상에 형성되는 저굴절층에서 상기 솔리드형 무기 나노 입자가 하드 코팅층 쪽에 보다 가까운 쪽에 위치할 수 있다. Low refractive index layer having the above-described characteristics by controlling the density difference between the solid inorganic nanoparticles and the hollow inorganic nanoparticles with the drying temperature in the process of drying the resin composition for forming the low refractive index layer applied on the hard coating layer Can be formed. The solid inorganic nanoparticles may have a density of 0.50 g / cm3 or more higher than that of the hollow inorganic nanoparticles, and due to the density difference, the solid inorganic nanoparticles may be formed in the low refractive layer formed on the hard coating layer. It may be located closer to the hard coating layer.

한편, 상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 35℃ 내지 100℃ 의 온도에서 건조하는 단계는 10초 내지 5분간, 또는 30초 내지 4분간 수행될 수 있다. On the other hand, the step of drying the resin composition for forming the low refractive index layer applied on the hard coating layer at a temperature of 35 ℃ to 100 ℃ may be performed for 10 seconds to 5 minutes, or 30 seconds to 4 minutes.

상기 건조 시간이 너무 짧은 경우, 상술한 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 상분리 현상이 충분히 일어나지 않을 수 있다. 이에 반하여, 상기 건조 시간이 너무 긴 경우, 상기 형성되는 저굴절층이 하드 코팅층을 침식할 수 있다. When the drying time is too short, phase separation between the solid inorganic nanoparticles and the hollow inorganic nanoparticles described above may not sufficiently occur. In contrast, when the drying time is too long, the formed low refractive index layer may erode the hard coating layer.

한편, 상기 저굴절층은 광경화형 화합물 또는 이의 (공)중합체, 광반응성 작용기를 포함한 함불소 화합물, 중공형 무기 나노 입자, 솔리드형 무기 나노 입자 및 광개시제를 포함한 광경화성 코팅 조성물로부터 제조될 수 있다.Meanwhile, the low refractive layer may be prepared from a photocurable coating composition including a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, a hollow inorganic nanoparticle, a solid inorganic nanoparticle, and a photoinitiator. .

상기 저굴절층은 상기 광경화성 코팅 조성물을 소정의 기재 상에 도포하고 도포된 결과물을 광경화함으로써 얻어질 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다. The low refractive layer can be obtained by applying the photocurable coating composition on a predetermined substrate and photocuring the applied resultant. The specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used for the production of a low refractive index layer or an antireflection film can be used without great limitation.

상기 광경화성 코팅 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 roll reverse 코팅법, vacuum slot die 코팅법, 2 roll 코팅법 등을 사용할 수 있다. Methods and apparatuses conventionally used to apply the photocurable coating composition may be used without particular limitation, for example, bar coating such as Meyer bar, gravure coating, 2 roll reverse coating, vacuum slot die coating Method, 2 roll coating method and the like can be used.

상기 저굴절층은 1㎚ 내지 300 ㎚, 또는 50㎚ 내지 200 ㎚의 두께를 가질 수 있다. 이에 따라, 상기 소정의 기재 상에 도포되는 상기 광경화성 코팅 조성물의 두께는 약 1㎚ 내지 300 ㎚, 또는 50㎚ 내지 200 ㎚일 수 있다. The low refractive layer may have a thickness of 1 nm to 300 nm, or 50 nm to 200 nm. Accordingly, the thickness of the photocurable coating composition applied on the predetermined substrate may be about 1 nm to 300 nm, or 50 nm to 200 nm.

상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 200 내지 400nm파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 100 내지 4,000 mJ/㎠ 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다.In the step of photocuring the photocurable coating composition may be irradiated with ultraviolet light or visible light having a wavelength of 200 to 400nm, the exposure dose is preferably 100 to 4,000 mJ / ㎠. Exposure time is not specifically limited, either, According to the exposure apparatus used, wavelength of an irradiation light, or exposure amount, it can change suitably.

또한, 상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다. In addition, in the step of photocuring the photocurable coating composition may be nitrogen purging to apply nitrogen atmospheric conditions.

상기 광경화형 화합물, 중공형 무기 나노 입자, 솔리드형 무기 나노 입자 및 광반응성 작용기를 포함한 함불소 화합물에 관한 구체적인 내용은 상기 일 구현예의 반사 방지 필름에 관하여 상술한 내용을 포함한다. Details of the photocurable compound, the hollow inorganic nanoparticles, the solid inorganic nanoparticles, and the fluorine-containing compound including the photoreactive functional group include the aforementioned contents with respect to the antireflection film of the embodiment.

상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각은 소정의 분산매에 분산된 콜로이드상으로 조성물에 포함될 수 있다. 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 각각의 콜로이드상은 분산매로 유기 용매를 포함할 수 있다. Each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles may be included in the composition in the form of a colloid dispersed in a predetermined dispersion medium. Each colloidal phase including the hollow inorganic nanoparticles and the solid inorganic nanoparticles may include an organic solvent as a dispersion medium.

상기 광경화성 코팅 조성물 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 함량 범위나 상기 광경화성 코팅 조성물의 점도 등을 고려하여 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 콜로이드 상 중 함량이 결정될 수 있으며, 예를 들어 상기 콜로이드상 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 고형분 함량은 5중량% 내지 60중량%일 수 있다. The colloidal phase of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in consideration of the content range of the hollow inorganic nanoparticles and the solid inorganic nanoparticles or the viscosity of the photocurable coating composition in the photocurable coating composition Heavy content may be determined, for example, the solid content of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the colloidal phase may be 5% by weight to 60% by weight.

여기서, 상기 분산매 중 유기 용매로는 메탄올, 이소프로필알코올, 에틸렌글리콜, 부탄올 등의 알코올류; 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류; 톨루엔, 자일렌 등의 방향족 탄화수소류; 디메틸포름아미드. 디메틸아세트아미드, N-메틸피롤리돈 등의 아미드류; 초산에틸, 초산부틸, 감마부틸로락톤 등의 에스테르류; 테트라하이드로퓨란, 1,4-디옥산 등의 에테르류; 또는 이들의 혼합물이 포함될 수 있다.Herein, examples of the organic solvent in the dispersion medium include alcohols such as methanol, isopropyl alcohol, ethylene glycol and butanol; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene; Dimethylformamide. Amides such as dimethylacetamide and N-methylpyrrolidone; Esters such as ethyl acetate, butyl acetate and gamma butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or mixtures thereof.

상기 광중합 개시제로는 광경화성 수지 조성물에 사용될 수 있는 것으로 알려진 화합물이면 크게 제한 없이 사용 가능하며, 구체적으로 벤조 페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 혼합물을 사용할 수 있다. The photopolymerization initiator may be used without limitation as long as it is a compound known to be used in the photocurable resin composition. Specifically, a benzophenone compound, acetophenone compound, biimidazole compound, triazine compound, oxime compound, or the like. Mixtures of two or more thereof can be used.

상기 광중합성 화합물 100중량부에 대하여, 상기 광중합 개시제는 1 내지 100중량부의 함량으로 사용될 수 있다. 상기 광중합 개시제의 양이 너무 작으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발행할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반응 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다. With respect to 100 parts by weight of the photopolymerizable compound, the photopolymerization initiator may be used in an amount of 1 to 100 parts by weight. If the amount of the photopolymerization initiator is too small, an uncured material remaining in the photocuring step of the photocurable coating composition may be issued. If the amount of the photopolymerization initiator is too large, the unreacted initiator may remain as an impurity or have a low crosslinking density, thereby lowering mechanical properties or significantly increasing reflectance of the film.

한편, 상기 광경화성 코팅 조성물은 유기 용매를 더 포함할 수 있다. Meanwhile, the photocurable coating composition may further include an organic solvent.

상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 혼합물을 들 수 있다. Non-limiting examples of the organic solvent include ketones, alcohols, acetates and ethers, or mixtures of two or more thereof.

이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, 디아세톤알코올, n-프로판올, i-프로판올, n-부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2종 이상의 혼합물을 들 수 있다. Specific examples of such organic solvents include ketones such as methyl ethyl kenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, diacetone alcohol, n-propanol, i-propanol, n-butanol, i-butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or a mixture of two or more thereof.

상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을 혼합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 혼합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 작으면, 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 충분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량% 내지 50중량%, 또는 2 내지 20중량%가 되도록 유기 용매를 포함할 수 있다. The organic solvent may be added at the time of mixing each component included in the photocurable coating composition or may be included in the photocurable coating composition while each component is added in a dispersed or mixed state in the organic solvent. If the content of the organic solvent in the photocurable coating composition is too small, defects may occur, such as streaks in the final manufactured film due to reduced flowability of the photocurable coating composition. In addition, when the excessive amount of the organic solvent is added, the solid content is lowered, coating and film formation is not enough, the physical properties and surface properties of the film may be lowered, and defects may occur in the drying and curing process. Accordingly, the photocurable coating composition may include an organic solvent such that the concentration of the total solids of the components included is 1% by weight to 50% by weight, or 2 to 20% by weight.

상기 하드 코팅층은 반사 방지 필름에 사용할 수 있는 것으로 알려진 재질이면 큰 제한 없이 사용할 수 있다. The hard coating layer may be used without any limitation as long as it is a material known to be used for the antireflection film.

구체적으로, 상기 반사 방지 필름의 제조 방법은 광경화형 화합물 또는 이의 (공)중합체 등을 포함한 하드 코팅층 형성용 고분자 수지 조성물을 기재 상에 도포하고 광경화하는 단계를 더 포함할 수 있으며, 상기 단계를 통하여 하드 코팅층을 형성할 수 있다. Specifically, the method of manufacturing the anti-reflection film may further include applying a photocurable compound or a polymer resin composition for forming a hard coating layer including the (co) polymer on the substrate and photocuring the above step, Through the hard coating layer can be formed.

상기 하드 코팅층 형성에 사용되는 성분에 관해서는 상기 일 구현예의 반사 방지 필름에 관하여 상술한 바와 같다. The components used to form the hard coat layer are the same as described above with respect to the antireflection film of the embodiment.

또한, 상기 하드 코팅층 형성용 고분자 수지 조성물은 알콕시 실란계 올리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다. In addition, the polymer resin composition for forming the hard coating layer may further include at least one compound selected from the group consisting of an alkoxy silane oligomer and a metal alkoxide oligomer.

상기 하드 코팅층 형성용 고분자 수지 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 roll reverse 코팅법, vacuum slot die 코팅법, 2 roll 코팅법 등을 사용할 수 있다. Methods and apparatuses conventionally used to apply the polymer resin composition for forming the hard coating layer may be used without particular limitation, for example, bar coating method such as Meyer bar, gravure coating method, 2 roll reverse coating method, vacuum Slot die coating, 2 roll coating, etc. can be used.

상기 하드 코팅층 형성용 고분자 수지 조성물을 광경화 시키는 단계에서는 200~400nm파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 100 내지 4,000 mJ/㎠ 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다. 또한, 상기 하드 코팅층 형성용 고분자 수지 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다.In the step of photocuring the polymer resin composition for forming the hard coating layer may be irradiated with ultraviolet rays or visible light having a wavelength of 200 ~ 400nm, the exposure dose is preferably 100 to 4,000 mJ / ㎠. Exposure time is not specifically limited, either, According to the exposure apparatus used, wavelength of an irradiation light, or exposure amount, it can change suitably. In addition, in the step of photocuring the polymer resin composition for forming a hard coating layer may be purged with nitrogen in order to apply nitrogen atmospheric conditions.

한편, 발명의 다른 구현예에 따르면, 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자를 포함하는 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하고, 상기 중공 입자의 평균 입경 대비 상기 솔리드 입자의 평균 입경의 비율이 0.15 내지 0.55 이며, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 존재하는 반사 방지 필름이 제공될 수 있다. On the other hand, according to another embodiment of the invention, a hard coating layer comprising a binder resin and organic or inorganic fine particles dispersed in the binder resin; And a low refractive layer comprising a binder resin, hollow inorganic nanoparticles dispersed in the binder resin, and solid inorganic nanoparticles, wherein the ratio of the average particle diameter of the solid particles to the average particle diameter of the hollow particles is 0.15 to 0.15. 0.55, and an antireflection film having 70% by volume or more of the entire solid inorganic nanoparticles may be provided within 50% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer.

본 발명자들은 반사 방지 필름에 관한 연구를 진행하여, 상술한 특정의 평균 입경 비율을 갖는 중공 입자 및 솔리드 입자를 포함한 저굴절층을 포함한 반사 방지 필름이 보다 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다. The present inventors have conducted research on the antireflection film, so that the antireflection film including the low refractive index layer including the hollow particles and the solid particles having the specific average particle diameter ratio described above has a lower reflectance and a high light transmittance and high scratch resistance. The experiment confirmed that the castle and antifouling can be implemented at the same time, and completed the invention.

보다 구체적으로, 상기 저굴절층에서 상기 중공 입자의 평균 입경 대비 상기 솔리드 입자의 평균 입경의 비율이 0.55이하, 또는 0.15 내지 0.55, 또는 0.26 내지 0.55, 또는 0.27 내지 0.40, 또는 0.280 내지 0.380 임에 따라서, 상기 저굴절층 내에서 상기 중공 입자 및 솔리드 입자가 서로 다른 편재 및 분포 양상을 나타낼 수 있으며, 예를 들어 상기 중공 입자 및 솔리드 입자 각각이 주로 분포하는 위치가 상기 하드 코팅층 및 상기 저굴절층 간의 계면을 기준으로 서로 다른 거리일 수 있다. More specifically, the ratio of the average particle diameter of the solid particles to the average particle diameter of the hollow particles in the low refractive layer is less than 0.55, or 0.15 to 0.55, or 0.26 to 0.55, or 0.27 to 0.40, or 0.280 to 0.380 In the low refractive layer, the hollow particles and the solid particles may exhibit different localization and distribution patterns. For example, a position where the hollow particles and the solid particles are mainly distributed is between the hard coating layer and the low refractive layer. The distance may be different based on the interface.

이와 같이 상기 저굴절층에서 상기 중공 입자 및 솔리드 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층이 고유한 내부 구조 및 성분들의 배열 양상을 가지게 되어 보다 낮은 반사율을 가질 수 있다. 또한, 상기 저굴절층에서 상기 중공 입자 및 솔리드 입자가 주로 분포하는 영역이 달라짐에 따라서, 상기 저굴절층의 표면 특성 또한 함께 달라지게 되어 보다 향상된 내스크래치성과 방오성을 구현할 수 있다. As such, as the areas where the hollow particles and the solid particles are mainly distributed in the low refractive layer are different, the low refractive layer may have a unique internal structure and an arrangement of components, thereby having a lower reflectance. In addition, as the area where the hollow particles and the solid particles are mainly distributed in the low refractive layer is changed, the surface characteristics of the low refractive layer are also changed, thereby improving scratch and antifouling properties.

상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자에 관한 구체적인 내용을 상기 발명의 일 구현예의 반사 방지 필름에서 상술한 내용을 포함한다. Specific contents of the solid inorganic nanoparticles and the hollow inorganic nanoparticles include the above-mentioned contents in the anti-reflection film of the embodiment of the present invention.

상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자를 주로 분포시킴에 따라서, 상기 저굴절층 내에 서로 굴절율이 다른 2개 이상의 부분 또는 2개 이상의 층이 형성될 수 있으며, 이에 따라 상기 반사 방지 필름의 반사율이 낮아질 수 있다. In the low refractive layer of the antireflection film, the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface. Two or more portions or two or more layers having different refractive indices may be formed in the low refractive layer, and thus the reflectance of the antireflection film may be lowered.

상기 저굴절층에서 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 특이적 분포는 후술하는 특정의 제조 방법에서, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 평균 입경의 비율을 조절하고 상기 2종의 나노 입자를 포함한 저굴절층 형성용 광경화성 수지 조성물을 건조 온도를 조절함으로 얻어질 수 있다. Specific distribution of the solid inorganic nanoparticles and the hollow inorganic nanoparticles in the low refractive index layer in the specific manufacturing method described below, the ratio of the average particle diameter between the solid inorganic nanoparticles and hollow inorganic nanoparticles The photocurable resin composition for forming a low refractive layer including the two kinds of nanoparticles may be obtained by controlling a drying temperature.

상기 저굴절층은 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하며, 상기 하드 코팅층의 일면에 형성될 수 있는데, 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상은 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 존재할 수 있다. The low refractive layer may include a binder resin, hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin, and may be formed on one surface of the hard coating layer. More than% may be present within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.

또한, 상술한 바와 같이, 상기 저굴절층에서 상기 하드 코팅층 및 상기 저굴절층 간의 계면의 반대면 쪽으로는 중공형 무기 나노 입자가 주로 분포할 수 있는데, 구체적으로 상기 중공형 무기 나노 입자 전체 중 30 부피%, 또는 50부피% 이상, 또는 70부피% 이상이 상기 솔리드형 무기 나노 입자 전체 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재할 수 있다. In addition, as described above, hollow inorganic nanoparticles may be mainly distributed toward the opposite surface of the interface between the hard coating layer and the low refractive layer in the low refractive layer. Volume%, or 50% by volume or more, or 70% by volume or more may be present at a greater distance in the thickness direction of the low refractive layer from the interface between the hard coating layer and the low refractive layer than the entire solid inorganic nanoparticles.

상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께의 50%를 초과하는 영역(상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께의 50%를 초과하는 지점으로부터 상기 계면과 대향하는 저굴절층의 다른 일면까지의 영역)에 상기 중공형 무기 나노 입자 전체 중 30 부피%, 또는 50부피% 이상, 또는 70부피% 이상이 존재할 수 있다. From the interface between the hard coating layer and the low refractive layer more than 50% of the total thickness of the low refractive layer (from the point of exceeding 50% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer 30 volume%, 50 volume% or more, or 70 volume% or more of the entire hollow inorganic nanoparticle may be present in the region up to the other surface of the low refractive layer facing the interface.

또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70 부피% 이상이 존재할 수 있다. 또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 초과의 영역에 상기 중공형 무기 나노 입자 전체 중 70 부피% 이상이 존재할 수 있다. In addition, 70% by volume or more of the total solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer. In addition, 70 vol% or more of the entire hollow inorganic nanoparticles may be present in an area of more than 30% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer.

상기 광경화성 수지를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는 하드 코팅층을 포함할 수 있다. It may include a hard coating layer comprising a binder resin containing the photocurable resin and organic or inorganic fine particles dispersed in the binder resin.

상기 유기 미립자는 1 내지 10 ㎛의 입경을 가질 수 있으며, 상기 무기 입자는 1 ㎚ 내지 500 ㎚, 또는 1㎚ 내지 300㎚의 입경을 가질 수 있다.The organic fine particles may have a particle size of 1 to 10 μm, and the inorganic particles may have a particle size of 1 nm to 500 nm, or 1 nm to 300 nm.

상기 하드 코팅층의 바인더 수지와 유기 또는 무기 미립자에 관한 내용은 상기 발명의 일 구현예의 반사 방지 필름에 관하여 상술한 내용을 포함한다. The content of the binder resin and the organic or inorganic fine particles of the hard coating layer includes the above-described content of the anti-reflection film of the embodiment of the present invention.

또한, 상기 다른 구현예의 반사 방지 필름에서 상술한 내용을 제외하고 보다 구체적인 내용은 상기 발명의 일 구현예의 반사 방지 필름에 관하여 상술한 내용을 포함한다. In addition, except for the above-described details in the anti-reflection film of the other embodiment includes more details with respect to the anti-reflection film of the embodiment of the present invention.

본 발명에 따르면, 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름 및 상기 반사 방지 필름의 제조 방법이 제공될 수 있다.According to the present invention, it is possible to provide an anti-reflection film and a method of manufacturing the anti-reflection film which can simultaneously realize high scratch resistance and antifouling property while having a low reflectance and a high light transmittance and can increase the sharpness of the screen of the display device. .

도1은 실시예1의 반사 방지 필름의 단면 TEM 사진을 나타낸 것이다.
도2은 실시예2의 반사 방지 필름의 단면 TEM 사진을 나타낸 것이다.
도3은 실시예3의 반사 방지 필름의 단면 TEM 사진을 나타낸 것이다.
도4은 실시예4의 반사 방지 필름의 단면 TEM 사진을 나타낸 것이다.
도5은 실시예5의 반사 방지 필름의 단면 TEM 사진을 나타낸 것이다.
도6은 실시예6의 반사 방지 필름의 단면 TEM 사진을 나타낸 것이다.
도7은 비교예1의 반사 방지 필름의 단면 TEM 사진을 나타낸 것이다.
도8은 비교예2의 반사 방지 필름의 단면 TEM 사진을 나타낸 것이다.
Figure 1 shows a cross-sectional TEM photograph of the antireflection film of Example 1.
Figure 2 shows a cross-sectional TEM photograph of the antireflection film of Example 2.
Figure 3 shows a cross-sectional TEM photograph of the antireflection film of Example 3.
Figure 4 shows a cross-sectional TEM photograph of the antireflection film of Example 4.
Figure 5 shows a cross-sectional TEM photograph of the antireflection film of Example 5.
Figure 6 shows a cross-sectional TEM photograph of the anti-reflection film of Example 6.
Figure 7 shows a cross-sectional TEM photograph of the antireflection film of Comparative Example 1.
Figure 8 shows a cross-sectional TEM photograph of the antireflection film of Comparative Example 2.

발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

<제조예><Production example>

제조예: 하드 코팅 필름의 제조Preparation Example: Production of Hard Coating Film

KYOEISHA사 염타입의 대전 방지 하드 코팅액(고형분 50중량%, 제품명:LJD-1000)을 트리아세틸 셀루로스 필름에 #10 mayer bar로 코팅하고 90에서 1분 건조한 이후, 150 mJ/㎠의 자외선을 조사하여 약 5 내지 6㎛의 두께를 갖는 하드 코팅 필름을 제조하였다. KYOEISHA salt type antistatic hard coating solution (50 wt% solids, product name: LJD-1000) was coated on a triacetyl cellulose film with # 10 mayer bar and dried at 90 minutes for 1 minute, and then irradiated with 150 mJ / ㎠ To prepare a hard coat film having a thickness of about 5 ~ 6㎛.

<실시예 1 내지 5: 반사 방지 필름의 제조><Examples 1 to 5: Preparation of an antireflection film>

실시예 1 Example 1

(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조(1) Preparation of photocurable coating composition for low refractive layer production

펜타에리트리톨트리아크릴레이트 (PETA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경범위: 약 44 ㎚ 내지 61 ㎚, JSC catalyst and chemicals사 제품) 281 중량부, 솔리드형 실리카 나노 입자(직경범위: 약 12.7 ㎚ 내지 17 ㎚) 63 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 131중량부, 제2함불소 화합물 (RS-537,DIC사) 19중량부, 개시제 (Irgacure 127, Ciba사) 31중량부를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석하였다. 281 parts by weight of hollow silica nanoparticles (diameter range: about 44 nm to 61 nm, manufactured by JSC catalyst and chemicals), 100 parts by weight of pentaerythritol triacrylate (PETA), solid silica nanoparticles (diameter range) About 12.7 nm to 17 nm) 63 parts by weight, 131 parts by weight of the first fluorine-containing compound (X-71-1203M, ShinEtsu), 19 parts by weight of the second fluorine-containing compound (RS-537, DIC), initiator ( 31 parts by weight of Irgacure 127, Ciba Co., Ltd. were diluted in a MIBK (methyl isobutyl ketone) solvent so as to have a solid content concentration of 3% by weight.

(2) 저굴절층 및 반사 방지 필름의 제조(2) Preparation of low refractive index layer and antireflection film

상기 제조예의 하드 코팅 필름 상에, 상기에서 얻어진 광경화성 코팅 조성물을 #4 mayer bar로 두께가 약 110 내지 120㎚가 되도록 코팅하고, 하기 표1의 온도 및 시간으로 건조 및 경화하여 저굴절층을 형성하고, 반사 방지 필름을 제조하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/㎠의 자외선을 조사하였다. On the hard coat film of the above production example, the photocurable coating composition obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at a temperature and time shown in Table 1 below to form a low refractive layer. It formed and the antireflection film was produced. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cm 2 under nitrogen purge.

그리고, 투과전자현미경(TEM)을 이용하여 상기 형성된 저굴절층에 함유된 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자 각각 100 내지 170개의 최장 직경을 측정하고, 이를 10회 반복하여 상기 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자의 평균 입경을 구하였다 [중공형 실리카 나노 입자의 평균직경: 55.9 ㎚, 솔리드형 실리카 나노 입자의 평균직경: 14.5 ㎚].In addition, 100 to 170 longest diameters of the hollow silica nanoparticles and the solid silica nanoparticles contained in the formed low refractive layer were measured using a transmission electron microscope (TEM), and the hollow silica was repeated 10 times. The average particle diameter of the nanoparticles and the solid silica nanoparticles was obtained [average diameter of the hollow silica nanoparticles: 55.9 nm, average diameter of the solid silica nanoparticles: 14.5 nm].

실시예 2Example 2

(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조(1) Preparation of photocurable coating composition for low refractive layer production

트리메틸올프로페인 트리아크릴레이트(TMPTA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경범위: 약 42 ㎚ 내지 66 ㎚, JSC catalyst and chemicals사 제품) 283 중량부, 솔리드형 실리카 나노 입자(직경범위: 약 12 ㎚ 내지 19 ㎚) 59 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 115중량부, 제2함불소 화합물 (RS-537, DIC사) 15.5중량부, 개시제 (Irgacure 127, Ciba사) 10중량부를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석하였다. 283 parts by weight of hollow silica nanoparticles (diameter range: about 42 nm to 66 nm, manufactured by JSC catalyst and chemicals) based on 100 parts by weight of trimethylolpropane triacrylate (TMPTA), solid silica nanoparticles (diameter) Range: about 12 nm to 19 nm) 59 parts by weight, 115 parts by weight of the first fluorine-containing compound (X-71-1203M, ShinEtsu), 15.5 parts by weight of the second fluorine-containing compound (RS-537, DIC), initiator 10 parts by weight (Irgacure 127, Ciba Co., Ltd.) was diluted in a MIBK (methyl isobutyl ketone) solvent so as to have a solid content concentration of 3% by weight.

(2) 저굴절층 및 반사 방지 필름의 제조(2) Preparation of low refractive index layer and antireflection film

상기 제조예의 하드 코팅 필름 상에, 상기에서 얻어진 광경화성 코팅 조성물을 #4 mayer bar로 두께가 약 110 내지 120㎚가 되도록 코팅하고, 하기 표1의 온도 및 시간으로 건조 및 경화하여 저굴절층을 형성하고, 반사 방지 필름을 제조하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/㎠의 자외선을 조사하였다. On the hard coat film of the above production example, the photocurable coating composition obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at a temperature and time shown in Table 1 below to form a low refractive layer. It formed and the antireflection film was produced. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cm 2 under nitrogen purge.

그리고, 투과전자현미경(TEM)을 이용하여 상기 형성된 저굴절층에 함유된 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자 각각 100 내지 170개의 최장 직경을 측정하고, 이를 10회 반복하여 상기 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자의 평균 입경을 구하였다 [중공형 실리카 나노 입자의 평균직경: 54.9 ㎚, 솔리드형 실리카 나노 입자의 평균직경: 14.5 ㎚].In addition, 100 to 170 longest diameters of the hollow silica nanoparticles and the solid silica nanoparticles contained in the formed low refractive layer were measured using a transmission electron microscope (TEM), and the hollow silica was repeated 10 times. The average particle diameter of the nanoparticles and the solid silica nanoparticles was obtained [average diameter of hollow silica nanoparticles: 54.9 nm, average diameter of solid silica nanoparticles: 14.5 nm].

실시예 3Example 3

(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조(1) Preparation of photocurable coating composition for low refractive layer production

펜타에리트리톨트리아크릴레이트 (PETA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경범위: 약 43 ㎚ 내지 71 ㎚, JSC catalyst and chemicals사 제품) 281 중량부, 솔리드형 실리카 나노 입자(직경범위: 약 13 ㎚ 내지 16 ㎚) 63 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 111량부, 제2함불소 화합물 (RS-537,DIC사) 30 중량부, 개시제 (Irgacure 127, Ciba사) 23중량부를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석하였다. 281 parts by weight of hollow silica nanoparticles (diameter range: about 43 nm to 71 nm, manufactured by JSC catalyst and chemicals), 100 parts by weight of pentaerythritol triacrylate (PETA), solid silica nano particles (diameter range) : About 13 nm to 16 nm) 63 parts by weight, 111 parts by weight of the first fluorine-containing compound (X-71-1203M, ShinEtsu), 30 parts by weight of the second fluorine-containing compound (RS-537, DIC), initiator (Irgacure 127, Ciba) 23 parts by weight was diluted in a MIBK (methyl isobutyl ketone) solvent so as to have a solid content concentration of 3% by weight.

(2) 저굴절층 및 반사 방지 필름의 제조(2) Preparation of low refractive index layer and antireflection film

상기 제조예의 하드 코팅 필름 상에, 상기에서 얻어진 광경화성 코팅 조성물을 #4 mayer bar로 두께가 약 110 내지 120㎚가 되도록 코팅하고, 하기 표1의 온도 및 시간으로 건조 및 경화하여 저굴절층을 형성하고, 반사 방지 필름을 제조하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/㎠의 자외선을 조사하였다. On the hard coat film of the above production example, the photocurable coating composition obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at a temperature and time shown in Table 1 below to form a low refractive layer. It formed and the antireflection film was produced. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cm 2 under nitrogen purge.

그리고, 투과전자현미경(TEM)을 이용하여 상기 형성된 저굴절층에 함유된 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자 각각 100 내지 170개의 최장 직경을 측정하고, 이를 10회 반복하여 상기 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자의 평균 입경을 구하였다 [중공형 실리카 나노 입자의 평균직경: 54.5 ㎚, 솔리드형 실리카 나노 입자의 평균직경: 19.5 ㎚].In addition, 100 to 170 longest diameters of the hollow silica nanoparticles and the solid silica nanoparticles contained in the formed low refractive layer were measured using a transmission electron microscope (TEM), and the hollow silica was repeated 10 times. The average particle diameter of the nanoparticles and the solid silica nanoparticles was obtained [average diameter of the hollow silica nanoparticles: 54.5 nm, average diameter of the solid silica nanoparticles: 19.5 nm].

실시예 4Example 4

(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조(1) Preparation of photocurable coating composition for low refractive layer production

트리메틸올프로페인 트리아크릴레이트(TMPTA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경범위: 약 38 ㎚ 내지 82 ㎚, JSC catalyst and chemicals사 제품) 264 중량부, 솔리드형 실리카 나노 입자(직경범위: 약 15 ㎚ 내지 19 ㎚) 60 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 100중량부, 제2함불소 화합물 (RS-537, DIC사) 50 중량부, 개시제 (Irgacure 127, Ciba사) 30중량부를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석하였다. 264 parts by weight of hollow silica nanoparticles (diameter range: about 38 nm to 82 nm, manufactured by JSC catalyst and chemicals), 100 parts by weight of trimethylolpropane triacrylate (TMPTA), solid silica nano particles (diameter) Range: about 15 nm to 19 nm) 60 parts by weight, 100 parts by weight of the first fluorine-containing compound (X-71-1203M, ShinEtsu), 50 parts by weight of the second fluorine-containing compound (RS-537, DIC), initiator (Irgacure 127, Ciba Co., Ltd.) 30 parts by weight was diluted in a MIBK (methyl isobutyl ketone) solvent so as to have a solid content concentration of 3% by weight.

(2) 저굴절층 및 반사 방지 필름의 제조(2) Preparation of low refractive index layer and antireflection film

상기 제조예의 하드 코팅 필름 상에, 상기에서 얻어진 광경화성 코팅 조성물을 #4 mayer bar로 두께가 약 110 내지 120㎚가 되도록 코팅하고, 하기 표1의 온도 및 시간으로 건조 및 경화하여 저굴절층을 형성하고, 반사 방지 필름을 제조하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/㎠의 자외선을 조사하였다. On the hard coat film of the above production example, the photocurable coating composition obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at a temperature and time shown in Table 1 below to form a low refractive layer. It formed and the antireflection film was produced. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cm 2 under nitrogen purge.

그리고, 투과전자현미경(TEM)을 이용하여 상기 형성된 저굴절층에 함유된 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자 각각 100 내지 170개의 최장 직경을 측정하고, 이를 10회 반복하여 상기 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자의 평균 입경을 구하였다 [중공형 실리카 나노 입자의 평균직경: 55.4 ㎚, 솔리드형 실리카 나노 입자의 평균직경: 17.1 ㎚].In addition, 100 to 170 longest diameters of the hollow silica nanoparticles and the solid silica nanoparticles contained in the formed low refractive layer were measured using a transmission electron microscope (TEM), and the hollow silica was repeated 10 times. The average particle diameter of the nanoparticles and the solid silica nanoparticles was obtained [average diameter of the hollow silica nanoparticles: 55.4 nm, average diameter of the solid silica nanoparticles: 17.1 nm].

실시예 5Example 5

(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조(1) Preparation of photocurable coating composition for low refractive layer production

펜타에리트리톨트리아크릴레이트 (PETA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경범위: 약 43 ㎚ 내지 81 ㎚, JSC catalyst and chemicals사 제품) 414 중량부, 솔리드형 실리카 나노 입자(직경범위: 약 14 ㎚ 내지 19 ㎚) 38 중량부, 함불소 화합물 (RS-537,DIC사) 167 중량부, 개시제 (Irgacure 127, Ciba사) 33중량부, 및 3-메타크릴옥시프로필메틸디메톡시실란(분자량: 234.3) 110중량부를, IBK(methyl isobutyl ketone)용매에 고형분 농도 3.2 중량%가 되도록 희석하였다. 414 parts by weight of hollow silica nanoparticles (diameter range: about 43 nm to 81 nm, manufactured by JSC catalyst and chemicals), 100 parts by weight of pentaerythritol triacrylate (PETA), solid silica nanoparticles (diameter range) About 14 nm to 19 nm) 38 parts by weight, fluorine-containing compound (RS-537, DIC) 167 parts by weight, initiator (Irgacure 127, Ciba) 33 parts by weight, and 3-methacryloxypropylmethyldimethoxysilane (Molecular weight: 234.3) 110 parts by weight was diluted in an IBK (methyl isobutyl ketone) solvent so as to have a solid concentration of 3.2% by weight.

(2) 저굴절층 및 반사 방지 필름의 제조(2) Preparation of low refractive index layer and antireflection film

상기 제조예의 하드 코팅 필름 상에, 상기에서 얻어진 광경화성 코팅 조성물을 #4 mayer bar로 두께가 약 110 내지 120㎚가 되도록 코팅하고, 하기 표1의 온도 및 시간으로 건조 및 경화하여 저굴절층을 형성하고, 반사 방지 필름을 제조하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/㎠의 자외선을 조사하였다. On the hard coat film of the above production example, the photocurable coating composition obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at a temperature and time shown in Table 1 below to form a low refractive layer. It formed and the antireflection film was produced. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cm 2 under nitrogen purge.

그리고, 투과전자현미경(TEM)을 이용하여 상기 형성된 저굴절층에 함유된 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자 각각 100 내지 170개의 최장 직경을 측정하고, 이를 10회 반복하여 상기 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자의 평균 입경을 구하였다 [중공형 실리카 나노 입자의 평균직경: 55.5 ㎚, 솔리드형 실리카 나노 입자의 평균직경: 17.1 ㎚].In addition, 100 to 170 longest diameters of the hollow silica nanoparticles and the solid silica nanoparticles contained in the formed low refractive layer were measured using a transmission electron microscope (TEM), and the hollow silica was repeated 10 times. The average particle diameter of the nanoparticles and the solid silica nanoparticles was obtained [average diameter of the hollow silica nanoparticles: 55.5 nm, average diameter of the solid silica nanoparticles: 17.1 nm].

실시예 6Example 6

(1) 하드 코팅층(HD2)의 제조(1) Preparation of Hard Coating Layer (HD2)

펜타에리스리톨 트리아크릴레이트 30g, 고분자량 공중합체(BEAMSET 371, Arakawa사, Epoxy Acrylate, 분자량 40,000) 2.5g, 메틸에틸케톤 20g 및 레벨링제(Tego wet 270) 0.5g을 균일하게 혼합한 이후에 굴절률이 1.525인 미립자로서 아크릴-스티렌 공중합체(부피평균입경: 2㎛, 제조사: Sekisui Plastic) 2g을 첨가하여 하드 코팅 조성물을 제조하였다.After uniform mixing of 30 g of pentaerythritol triacrylate, 2.5 g of high molecular weight copolymer (BEAMSET 371, Arakawa, Epoxy Acrylate, molecular weight 40,000), 20 g of methyl ethyl ketone and 0.5 g of leveling agent (Tego wet 270) As a fine particle of 1.525, 2 g of an acrylic-styrene copolymer (volume average particle diameter: 2 μm, manufacturer: Sekisui Plastic) was added to prepare a hard coating composition.

이와 같이 얻어진 하드 코팅 조성 물을 트리아세틸셀룰로오스 필름에 #10 mayer bar로 코팅하고 90℃에서 1분간 건조하였다. 상기 건조물에 150 mJ/㎠ 의 자외선을 조사하여 5㎛의 두께를 갖는 하드 코팅층을 제조하였다.The hard coating composition thus obtained was coated with a # 10 mayer bar on a triacetylcellulose film and dried at 90 ° C. for 1 minute. 150 mJ / cm 2 was irradiated to the dried material to prepare a hard coating layer having a thickness of 5 μm.

(2) 저굴절층 및 반사 방지 필름의 제조(2) Preparation of low refractive index layer and antireflection film

트리메틸올프로페인 트리아크릴레이트(TMPTA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경범위: 약 40 ㎚ 내지 68 ㎚, JSC catalyst and chemicals사 제품) 283 중량부, 솔리드형 실리카 나노 입자(직경범위: 약 14 ㎚ 내지 17 ㎚) 59 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 115중량부, 제2함불소 화합물 (RS-537, DIC사) 15.5중량부, 개시제 (Irgacure 127, Ciba사) 10중량부를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석하여 저굴절층 제조용 광경화성 코팅 조성물의 제조하였다. 283 parts by weight of hollow silica nanoparticles (diameter range: about 40 nm to 68 nm, manufactured by JSC catalyst and chemicals), based on 100 parts by weight of trimethylolpropane triacrylate (TMPTA), solid silica nanoparticles (diameter) Range: about 14 nm to 17 nm) 59 parts by weight, 115 parts by weight of the first fluorine-containing compound (X-71-1203M, ShinEtsu), 15.5 parts by weight of the second fluorine-containing compound (RS-537, DIC), initiator 10 parts by weight (Irgacure 127, Ciba Co., Ltd.) was diluted in a MIBK (methyl isobutyl ketone) solvent to have a solid content of 3% by weight to prepare a photocurable coating composition for producing a low refractive layer.

상기 제조된 하드 코팅층(HD2) 상에, 상기에서 얻어진 저굴절층 제조용 광경화성 코팅 조성물을 #4 mayer bar로 두께가 약 110 내지 120㎚가 되도록 코팅하고, 60 ℃의 온도에서 1분 간 건조 및 경화하여 저굴절층을 형성하고, 반사 방지 필름을 제조하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/㎠의 자외선을 조사하였다. On the prepared hard coating layer (HD2), the photocurable coating composition for producing a low refractive index layer is coated with a # 4 mayer bar to a thickness of about 110 to 120nm, dried for 1 minute at a temperature of 60 ℃ and It hardened | cured and the low refractive layer was formed and the antireflection film was produced. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cm 2 under nitrogen purge.

그리고, 투과전자현미경(TEM)을 이용하여 상기 형성된 저굴절층에 함유된 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자 각각 100 내지 170개의 최장 직경을 측정하고, 이를 10회 반복하여 상기 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자의 평균 입경을 구하였다 [중공형 실리카 나노 입자의 평균직경: 55.4 ㎚, 솔리드형 실리카 나노 입자의 평균직경: 14.7 ㎚].In addition, 100 to 170 longest diameters of the hollow silica nanoparticles and the solid silica nanoparticles contained in the formed low refractive layer were measured using a transmission electron microscope (TEM), and the hollow silica was repeated 10 times. The average particle diameter of the nanoparticles and the solid silica nanoparticles was obtained [average diameter of the hollow silica nanoparticles: 55.4 nm, average diameter of the solid silica nanoparticles: 14.7 nm].

건조 온도(℃)Drying temperature (℃) 건조 시간Drying time 실시예1Example 1 4040 1분1 minute 실시예2Example 2 6060 1분1 minute 실시예3Example 3 8080 1분1 minute 실시예4Example 4 6060 2분2 minutes 실시예5Example 5 6060 1분1 minute 실시예6Example 6 6060 1분1 minute

<비교예: 반사 방지 필름의 제조>비교예1Comparative Example 1 Preparation of Antireflection Film Comparative Example 1

솔리드형 실리카 나노 입자(직경범위: 약 34 ㎚ 내지 80 ㎚)을 사용한 점을 제외하고는 실시예1과 동일한 방법으로 반사 방지 필름을 제조하였다. An anti-reflection film was prepared in the same manner as in Example 1 except for using solid silica nanoparticles (diameter: about 34 nm to 80 nm).

투과전자현미경(TEM)을 이용하여 상기 형성된 저굴절층에 함유된 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자 각각 100 내지 170개의 최장 직경을 측정하고, 이를 10회 반복하여 상기 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자의 평균 입경을 구하였다 [중공형 실리카 나노 입자의 평균직경: 54.6 ㎚, 솔리드형 실리카 나노 입자의 평균직경: 53.2 ㎚].Using a transmission electron microscope (TEM) to measure the longest diameter of 100 to 170 hollow silica nanoparticles and solid silica nanoparticles contained in the formed low refractive index layer, and repeated 10 times to repeat the hollow silica nanoparticles And the average particle diameter of the solid silica nanoparticles (average diameter of the hollow silica nanoparticles: 54.6 nm, average diameter of the solid silica nanoparticles: 53.2 nm).

비교예2Comparative Example 2

솔리드형 실리카 나노 입자(직경범위: 약 36 ㎚ 내지 48 ㎚)을 사용한 점을 제외하고는 실시예2와 동일한 방법으로 반사 방지 필름을 제조하였다. An anti-reflection film was prepared in the same manner as in Example 2, except that solid silica nanoparticles (diameter: about 36 nm to 48 nm) were used.

투과전자현미경(TEM)을 이용하여 상기 형성된 저굴절층에 함유된 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자 각각 100 내지 170개의 최장 직경을 측정하고, 이를 10회 반복하여 상기 중공형 실리카 나노 입자 및 솔리드형 실리카 나노 입자의 평균 입경을 구하였다 [중공형 실리카 나노 입자의 평균직경: 54.5 ㎚, 솔리드형 실리카 나노 입자의 평균직경: 41.1 ㎚].Using a transmission electron microscope (TEM) to measure the longest diameter of 100 to 170 hollow silica nanoparticles and solid silica nanoparticles contained in the formed low refractive index layer, and repeated 10 times to repeat the hollow silica nanoparticles And the average particle diameter of the solid silica nanoparticles (average diameter of the hollow silica nanoparticles: 54.5 nm, average diameter of the solid silica nanoparticles: 41.1 nm).

<실험예: 반사 방지 필름의 물성 측정>Experimental Example: Measurement of Physical Properties of Anti-Reflection Film

상기 실시예 및 비교예에서 얻어진 반사 방지 필름에 대하여 다음과 같은 항목의 실험을 시행하였다. The antireflection films obtained in the Examples and Comparative Examples were subjected to the experiments as follows.

1. 반사 방지 필름의 평균 반사율 측정1.Measure the average reflectance of the antireflective film

실시예 및 비교예에서 얻어진 반사 방지 필름이 가시 광선 영역(380 내지 780㎚)에서 나타내는 평균 반사율을 Solidspec 3700(SHIMADZU) 장비를 이용하여 측정하였다. The average reflectance which the antireflective film obtained by the Example and the comparative example shows in visible region (380-780 nm) was measured using the Solidspec 3700 (SHIMADZU) apparatus.

2. 방오성 측정2. Antifouling measurement

실시예 및 비교예에서 얻어진 반사 방지 필름의 표면에 검은색 네임펜으로 5 ㎝길이의 직선을 그리고, 무진천을 이용하여 문질렀을 때 지워지는 횟수를 확인하여 방오성을 측정하였다. A 5 cm long straight line was drawn with a black name pen on the surface of the antireflective films obtained in Examples and Comparative Examples, and the antifouling properties were measured by checking the number of times erased when rubbed using a dust-free cloth.

<측정 기준><Metrics>

O: 지워지는 시점이 10회 이하O: erase time is 10 times or less

: 지워지는 시점이 11회 내지 20회: 11 to 20 times erased

X: 지워지는 시점이 20회 초과X: Cleared more than 20 times

3. 내스크래치성 측정3. Scratch resistance measurement

상기 스틸울에 하중을 걸고 27 rpm의 속도로 10회 왕복하며 실시예 및 비교예에서 얻어진 반사 방지 필름의 표면을 문질렀다. 육안으로 관찰되는 1cm이하의 스크래치 1개 이하가 관찰되는 최대 하중을 측정하였다. The steel wool was loaded and reciprocated 10 times at a speed of 27 rpm to rub the surface of the antireflective film obtained in Examples and Comparative Examples. The maximum load at which one scratch or less of 1 cm or less observed with the naked eye was observed was measured.

평균반사율(%)Average reflectance (%) 내스크래치성
(g)
Scratch resistance
(g)
방오성Antifouling 상분리여부Phase separation
실시예1Example 1 0.630.63 500500 OO OO 실시예2Example 2 0.620.62 500500 OO OO 실시예3Example 3 0.670.67 500500 OO OO 실시예4Example 4 0.640.64 500500 OO OO 실시예5Example 5 0.630.63 500500 OO OO 실시예6Example 6 0.650.65 500500 00 00 비교예1Comparative Example 1 0.800.80 5050 XX XX 비교예2Comparative Example 2 0.820.82 5050 XX XX

상기 표2에 나타난 바와 같이, 실시예 1 내지 6의 반사 방지 필름의 저굴절층에 포함되는 중공 입자의 입경 대비 솔리드 입자의 입경의 비율이 0.55 이하이며, 이에 따라 가시 광선 영역에서 0.70% 이하의 낮은 반사율을 나타내면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다는 점이 확인된다. 또한, 도 1내지 6에 나타난 바와 같이, 실시예 1내지 4의 반사 방지 필름의 저굴절층에서는 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 상분리가 되어 있으며, 상기 솔리드형 무기 나노 입자가 상기 반사 방지 필름의 하드 코팅층 및 상기 저굴절층 간의 계면 쪽으로 대부분 존재하며 몰려 있으며, 상기 중공형 무기 나노 입자는 하드 코팅층으로부터 먼 쪽에 대부분 존재하며 몰려 있다는 점이 확인된다. As shown in Table 2, the ratio of the particle size of the solid particles to the particle size of the hollow particles included in the low refractive layer of the antireflection films of Examples 1 to 6 is 0.55 or less, and therefore 0.70% or less in the visible light region. It is confirmed that high scratch resistance and antifouling property can be simultaneously realized while showing low reflectance. 1 to 6, hollow inorganic nanoparticles and solid inorganic nanoparticles are phase-separated in the low refractive layer of the antireflection film of Examples 1 to 4, and the solid inorganic nanoparticles are It is confirmed that most of them exist and are concentrated toward the interface between the hard coating layer and the low refractive layer of the anti-reflection film, and the hollow inorganic nanoparticles are mostly present and crowded away from the hard coating layer.

상기 표2에 기재된 바와 같이, 비교예1및 2의 반사 방지 필름의 저굴절층에서는 중공 입자의 입경 대비 솔리드 입자의 입경의 비율이 0.55를 초과하며, 또한 도 7 및 8에 나타난 바와 같이 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 상분리되지 않고 혼재되어 있는 점이 확인된다. As shown in Table 2, in the low refractive layer of the antireflection films of Comparative Examples 1 and 2, the ratio of the particle size of the solid particles to the particle size of the hollow particles exceeded 0.55, and as shown in FIGS. It is confirmed that the inorganic nanoparticles and the solid inorganic nanoparticles are mixed without phase separation.

그리고, 상기 표2에 나타난 바와 같이, 각각 상대적으로 높은 반사율과 함께 낮은 내스크래치성 및 방오성을 나타낸다는 점이 확인되었다.And, as shown in Table 2, it was confirmed that each exhibits a relatively high scratch resistance and low scratch resistance and stain resistance.

Claims (12)

하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하고,
상기 중공형 무기 나노 입자의 평균 입경 대비 상기 솔리드형 무기 나노 입자의 평균 입경의 비율이 0.26 내지 0.55 이고,
상기 저굴절층은 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 포함된 제1층과 상기 중공형 무기 나노 입자 전체 중 70부피% 이상이 포함된 제2층을 포함하는,
반사 방지 필름.
Hard coating layer; And a low refractive layer comprising a binder resin and hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin.
The ratio of the average particle diameter of the solid inorganic nanoparticles to the average particle diameter of the hollow inorganic nanoparticles is 0.26 to 0.55,
The low refractive layer includes a first layer containing at least 70% by volume of the total solid inorganic nanoparticles and a second layer containing at least 70% by volume of the entire hollow inorganic nanoparticles,
Anti-reflection film.
제1항에 있어서,
상기 제1층이 제2층에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치하는, 반사 방지 필름.
The method of claim 1,
And the first layer is located closer to the interface between the hard coat layer and the low refractive layer than the second layer.
제1항에 있어서,
상기 중공형 무기 나노 입자의 평균 입경이 40 ㎚ 내지 100 ㎚의 범위 이내인, 반사 방지 필름.
The method of claim 1,
The anti-reflection film of which the average particle diameter of the hollow inorganic nanoparticles is within a range of 40 nm to 100 nm.
제1항에 있어서,
상기 솔리드형 무기 나노 입자의 평균 입경이 1 ㎚ 내지 30 ㎚의 범위 이내인, 반사 방지 필름.
The method of claim 1,
The anti-reflection film of which the average particle diameter of the said solid type inorganic nanoparticle is in the range of 1 nm-30 nm.
제1항에 있어서,
상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반응성 작용기를 포함한 함불소 화합물 간의 가교 (공)중합체를 포함하는, 반사 방지 필름.
The method of claim 1,
The binder resin included in the low refractive index layer comprises an anti-reflective film comprising a cross-linked (co) polymer between a (co) polymer of a photopolymerizable compound and a fluorine-containing compound including a photoreactive functional group.
제5항에 있어서,
상기 저굴절층은 상기 광중합성 화합물의 (공)중합체 100중량부 대비 상기 중공형 무기 나노 입자 10 내지 400 중량부 및 상기 솔리드형 무기 나노 입자 10 내지 400중량부를 포함하는, 반사 방지 필름.
The method of claim 5,
The low refractive index layer comprises 10 to 400 parts by weight of the hollow inorganic nanoparticles and 10 to 400 parts by weight of the solid inorganic nanoparticles relative to 100 parts by weight of the (co) polymer of the photopolymerizable compound.
제1항에 있어서,
상기 하드 코팅층은 광경화성 수지를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는, 반사 방지 필름.
The method of claim 1,
The hard coating layer comprises a binder resin containing a photocurable resin and organic or inorganic fine particles dispersed in the binder resin; Antireflection film comprising a.
제7항에 있어서,
상기 하드 코팅층은 광경화성 수지를 포함하는 바인더 수지; 및 1 내지 10 ㎛의 입경을 갖는 유기 미립자 또는 1 ㎚ 내지 500 ㎚의 입경을 갖는 무기 미립자;를 포함하는, 반사 방지 필름.
The method of claim 7, wherein
The hard coating layer is a binder resin containing a photocurable resin; And organic fine particles having a particle size of 1 to 10 μm or inorganic fine particles having a particle size of 1 nm to 500 nm.
제1항에 있어서,
상기 저굴절층은 상기 중공형 무기 나노 입자를 상기 솔리드형 무기 나노 입자에 비하여 보다 높은 중량으로 포함하는, 반사 방지 필름.
The method of claim 1,
The low refractive index layer comprises the hollow inorganic nanoparticles at a higher weight than the solid inorganic nanoparticles, anti-reflection film.
제1항에 있어서,
상기 반사 방지 필름은 380㎚ 내지 780㎚의 가시 광선 파장대 영역에서 0.7%이하의 평균 반사율을 갖는, 반사 방지 필름.
The method of claim 1,
The antireflective film has an average reflectance of 0.7% or less in the visible light wavelength range of 380 nm to 780 nm.
바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하고,
상기 중공형 무기 나노 입자의 평균 입경 대비 상기 솔리드형 무기 나노 입자의 평균 입경의 비율이 0.26 내지 0.55 이고,
상기 저굴절층은 상기 솔리드형 무기 나노 입자 전체 중 70부피% 이상이 포함된 제1층과 상기 중공형 무기 나노 입자 전체 중 70부피% 이상이 포함된 제2층을 포함하는,
반사 방지 필름.
A hard coating layer comprising a binder resin and organic or inorganic fine particles dispersed in the binder resin; And a low refractive layer comprising a binder resin and hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin.
The ratio of the average particle diameter of the solid inorganic nanoparticles to the average particle diameter of the hollow inorganic nanoparticles is 0.26 to 0.55,
The low refractive layer includes a first layer containing at least 70% by volume of the total solid inorganic nanoparticles and a second layer containing at least 70% by volume of the entire hollow inorganic nanoparticles,
Anti-reflection film.
제11항에 있어서,
상기 하드코팅층에 포함되는 유기 미립자는 1 내지 10 ㎛의 입경을 갖고
상기 하드코팅층에 포함되는 무기 미립자는 1 ㎚ 내지 500 ㎚의 입경을 갖는, 반사 방지 필름.
The method of claim 11,
The organic fine particles included in the hard coating layer has a particle diameter of 1 to 10 ㎛
Inorganic fine particles contained in the hard coating layer has a particle size of 1 nm to 500 nm, antireflection film.
KR1020190029400A 2016-07-14 2019-03-14 Anti-reflective film Active KR101973197B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160089377 2016-07-14
KR20160089377 2016-07-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170051842A Division KR101961333B1 (en) 2016-07-14 2017-04-21 Anti-reflective film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190045688A Division KR102216567B1 (en) 2016-07-14 2019-04-18 Anti-reflective film

Publications (2)

Publication Number Publication Date
KR20190029570A KR20190029570A (en) 2019-03-20
KR101973197B1 true KR101973197B1 (en) 2019-08-26

Family

ID=61029051

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020170051842A Active KR101961333B1 (en) 2016-07-14 2017-04-21 Anti-reflective film
KR1020190029400A Active KR101973197B1 (en) 2016-07-14 2019-03-14 Anti-reflective film
KR1020190045688A Active KR102216567B1 (en) 2016-07-14 2019-04-18 Anti-reflective film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170051842A Active KR101961333B1 (en) 2016-07-14 2017-04-21 Anti-reflective film

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020190045688A Active KR102216567B1 (en) 2016-07-14 2019-04-18 Anti-reflective film

Country Status (3)

Country Link
JP (1) JP6820081B2 (en)
KR (3) KR101961333B1 (en)
CN (1) CN207601348U (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632686B (en) * 2016-07-14 2021-10-29 株式会社Lg化学 Anti-reflection film
KR102196429B1 (en) 2018-03-16 2020-12-29 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102280262B1 (en) 2018-05-18 2021-07-21 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102281759B1 (en) * 2018-10-17 2021-07-26 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
WO2020204341A1 (en) * 2019-03-29 2020-10-08 주식회사 엘지화학 Optical laminate
WO2020204329A1 (en) 2019-03-29 2020-10-08 주식회사 엘지화학 Optical laminate
KR102703629B1 (en) * 2020-03-16 2024-09-04 주식회사 엘지화학 Anti-refractive film
KR102703630B1 (en) * 2020-03-16 2024-09-04 주식회사 엘지화학 Anti-refractive film
US12253651B2 (en) 2020-03-16 2025-03-18 Lg Chem, Ltd. Anti-reflective film
KR20210136222A (en) 2020-05-06 2021-11-17 삼성디스플레이 주식회사 Optical film, display device including the optical film and manufacturing method of the optical film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120200933A1 (en) * 2009-10-16 2012-08-09 Dai Nippon Printing Co., Ltd. Optical film and display panel
US20130143028A1 (en) * 2008-02-13 2013-06-06 Fujifilm Corporation Optical film, method for producing the same, polarizing plate and image display device
US20160115340A1 (en) * 2013-05-27 2016-04-28 Nitto Denko Corporation Hard coat film and hard coat film wound body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323931A (en) * 1997-05-26 1998-12-08 Kanegafuchi Chem Ind Co Ltd Transparent conductive film
JP2004264327A (en) * 2003-01-22 2004-09-24 Fuji Photo Film Co Ltd Antireflection film, polarizing plate, and display device
JP5209855B2 (en) * 2006-05-31 2013-06-12 日揮触媒化成株式会社 Paint for forming transparent film and substrate with transparent film
JP2009244382A (en) * 2008-03-28 2009-10-22 Sharp Corp Functional film and display apparatus
JP2010152311A (en) * 2008-07-22 2010-07-08 Fujifilm Corp Antireflective film, polarizing plate, and image display
JP5659494B2 (en) 2009-02-17 2015-01-28 凸版印刷株式会社 Antireflection film and manufacturing method thereof, polarizing plate, transmissive liquid crystal display
JP6011527B2 (en) * 2011-04-26 2016-10-19 大日本印刷株式会社 Antireflection film, polarizing plate and image display device
CN103765249B (en) * 2011-05-16 2015-11-25 大日本印刷株式会社 Method for producing antireflection film, antireflection film, polarizing plate, and image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130143028A1 (en) * 2008-02-13 2013-06-06 Fujifilm Corporation Optical film, method for producing the same, polarizing plate and image display device
US20120200933A1 (en) * 2009-10-16 2012-08-09 Dai Nippon Printing Co., Ltd. Optical film and display panel
US20160115340A1 (en) * 2013-05-27 2016-04-28 Nitto Denko Corporation Hard coat film and hard coat film wound body

Also Published As

Publication number Publication date
JP6820081B2 (en) 2021-01-27
KR20190043516A (en) 2019-04-26
KR101961333B1 (en) 2019-03-22
KR20180008261A (en) 2018-01-24
JP2019508753A (en) 2019-03-28
KR20190029570A (en) 2019-03-20
CN207601348U (en) 2018-07-10
KR102216567B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
KR102015050B1 (en) Anti-reflective film and preparation method of the same
KR101973197B1 (en) Anti-reflective film
KR101973196B1 (en) Anti-reflective film
KR102093950B1 (en) Anti-reflective film and preparation method of the same
KR101919128B1 (en) Anti-refractive film
JP2019070858A (en) Antireflective film
WO2018012802A1 (en) Anti-reflection film
JP7138892B2 (en) anti-reflection film
JP6690808B2 (en) Antireflection film and manufacturing method thereof
KR101977934B1 (en) Anti-reflective film
WO2017155338A1 (en) Anti-reflective film
KR101977933B1 (en) Anti-reflective film and preparation method of the same
KR102361621B1 (en) Anti-reflective film
KR102340255B1 (en) Anti-reflective film and preparation method of the same
KR101907653B1 (en) Anti-reflective film
WO2017155337A1 (en) Anti-reflection film

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20190314

Patent event code: PA01071R01D

Filing date: 20170421

Application number text: 1020170051842

PA0201 Request for examination
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20190319

PG1501 Laying open of application
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20190418

Patent event code: PA01071R01D

Filing date: 20170421

Application number text: 1020170051842

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20190422

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20190422

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20220401

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20240320

Start annual number: 6

End annual number: 6