KR102092339B1 - Method for effective microorganism sterilization with the intermittent application of 222㎚ KrCl excimer lamp irradiation - Google Patents
Method for effective microorganism sterilization with the intermittent application of 222㎚ KrCl excimer lamp irradiation Download PDFInfo
- Publication number
- KR102092339B1 KR102092339B1 KR1020180049077A KR20180049077A KR102092339B1 KR 102092339 B1 KR102092339 B1 KR 102092339B1 KR 1020180049077 A KR1020180049077 A KR 1020180049077A KR 20180049077 A KR20180049077 A KR 20180049077A KR 102092339 B1 KR102092339 B1 KR 102092339B1
- Authority
- KR
- South Korea
- Prior art keywords
- excimer lamp
- water
- sterilization
- irradiation
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001954 sterilising effect Effects 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000004659 sterilization and disinfection Methods 0.000 title claims abstract description 31
- 244000005700 microbiome Species 0.000 title claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 241001646719 Escherichia coli O157:H7 Species 0.000 claims description 11
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 claims description 10
- 241000186779 Listeria monocytogenes Species 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 235000021056 liquid food Nutrition 0.000 claims description 4
- 239000002351 wastewater Substances 0.000 claims description 3
- 239000003344 environmental pollutant Substances 0.000 claims 2
- 231100000719 pollutant Toxicity 0.000 claims 2
- 238000011835 investigation Methods 0.000 claims 1
- 230000000813 microbial effect Effects 0.000 abstract description 8
- 230000000873 masking effect Effects 0.000 abstract description 2
- 238000011282 treatment Methods 0.000 description 36
- 238000011109 contamination Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 206010016952 Food poisoning Diseases 0.000 description 8
- 208000019331 Foodborne disease Diseases 0.000 description 8
- 235000013305 food Nutrition 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000009360 aquaculture Methods 0.000 description 2
- 244000144974 aquaculture Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- GBWARTHIRIVTNI-PJHQGUKWSA-N (2s)-2,6-diaminohexanoic acid;(2r,3s,4r)-2,3,4,5-tetrahydroxypentanal Chemical compound NCCCC[C@H](N)C(O)=O.OC[C@@H](O)[C@H](O)[C@@H](O)C=O GBWARTHIRIVTNI-PJHQGUKWSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000005577 Gastroenteritis Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- 208000012873 acute gastroenteritis Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000021022 fresh fruits Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000001974 tryptic soy broth Substances 0.000 description 1
- 108010050327 trypticase-soy broth Proteins 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Landscapes
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Physical Water Treatments (AREA)
Abstract
본 발명은 222㎚ KrCl 엑시머 램프를 이용하여 간헐적으로 미생물을 살균하는 방법을 제공한다. 더욱 구체적으로, 고농도의 오염수에서 가림효과 때문에 살균 효율이 저하되었던 한계를 극복하여 보다 효율적인 미생물 살균 방법을 제공한다.The present invention provides a method of intermittently sterilizing microorganisms using a 222 nm KrCl excimer lamp. More specifically, it provides a more efficient microbial sterilization method by overcoming the limitation that the sterilization efficiency was lowered due to the masking effect in high concentration of contaminated water.
Description
본 발명은 미생물 살균 방법에 관한 것으로, 더욱 상세하게는 222㎚ KrCl 엑시머 램프의 간헐적 처리에 의한 효율적 미생물 살균 방법에 관한 것이다.The present invention relates to a method for sterilizing microorganisms, and more particularly, to an efficient method for sterilizing microorganisms by intermittent treatment of a 222 nm KrCl excimer lamp.
물은 생체의 구성 성분으로서 또한 생활 기능을 수행하는 매질로서 필수적인 것이다. 화학 반응이 행해지는 가장 보통의 용매이며, 공업용수로 다량 소비된다. 물은 사용 목적에 따라 처리된다. 물의 처리는 목적에 따라 용수처리와 폐수처리로 구분되는데, 전자는 음료수, 공업용수를 대상으로 하고, 후자는 도시하수, 공장폐수 등을 대상으로 한다. 물 처리는 어떠한 용도로 처리 하느냐에 따라 다르지만 보통 현탁 물질, 조류, 박테리아 및 바이러스의 제거, 탈기, 탈색, 탈철, pH 조절, 탈알칼리, 연화, 탈규소, 탈염 등을 목적으로 한다. 물 처리의 목적에 따라 다양한 처리법이 개발되어 처리되고 있으며 주요 방법으로는 화학, 침전, 여과, 흡착, 응집, 생물학적 처리, 염소처리 등이 있다.Water is essential as a constituent of living organisms and as a medium that performs life functions. It is the most common solvent for chemical reactions and is consumed in large quantities with industrial water. Water is treated according to the intended use. Water treatment is divided into water treatment and wastewater treatment according to the purpose. The former targets drinking water and industrial water, and the latter targets municipal sewage and factory waste water. Water treatment depends on the purpose of treatment, but it is usually aimed at removing suspended substances, algae, bacteria and viruses, degassing, decoloring, de-ironing, pH control, de-alkali, softening, de-silicon, desalting, etc. Various treatment methods have been developed and processed according to the purpose of water treatment, and the main methods include chemical, precipitation, filtration, adsorption, aggregation, biological treatment, and chlorine treatment.
한편, 물을 매개로 식중독이 발생하기도 한다. 식중독(food poisoning)이란 식품이나 물을 매개로 하여 발생하는 급성위장염 및 신경장애 등의 중독증상의 총칭이다. 식중독은 원인세균, 바이러스, 식물성 및 동물성 자연 독, 때로는 독성 화학물질 등에 의하여 오염된 식품을 섭취함으로써 발생한다.Meanwhile, food poisoning may occur through water. Food poisoning is a generic term for poisoning symptoms such as acute gastroenteritis and neurological disorders caused by food or water. Food poisoning is caused by eating food contaminated with causative bacteria, viruses, natural plant and animal poisons, and sometimes toxic chemicals.
전 세계적으로 신선 과채소의 소비가 늘어남에 따라 이를 기반으로 한 식중독 사건들 역시 점차 증가되고 있는 실정이다. 주 원인은 재배 과정 혹은 재배 후 가공 공정상에서 활용되는 용수의 오염으로 알려져 있다. 그 밖에도 다양한 식품 재료의 세척이나 식품 그 자체에 첨가되는 물의 오염은 치명적인 식중독 사건들을 유발시킬 수 있다. 이와 연계된 주요 식중독 유발 미생물로는 이콜라이 O157:H7(Escherichia coli O157:H7), 살모넬라 타이피무리움(Salmonella Typhimurium), 리스테리아 모노사이토제네스(Listeria monocytogenes)가 자주 보고 되고 있다.As the consumption of fresh fruits and vegetables increases worldwide, food poisoning incidents based on this are also gradually increasing. The main cause is known as contamination of water used in the cultivation process or post-cultivation processing process. In addition, washing various food ingredients or contaminating water added to the food itself can cause fatal food poisoning events. Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes have been frequently reported as major food poisoning-causing microorganisms.
물에 존재하는 미생물 제어를 위해서는 가장 기본적인 열처리 살균이 주를 이루지만 공정비용의 증가로 인해 비가열의 물리/화학적 처리가 선호되고 있다. 대표적인 처리로는 염소처리, 오존처리, 자외선(UV-C) 처리 등이 있으며, 특히 자외선 조사 처리는 미국 식품의약품안전청(US-FDA)에서 액체 식품과 물, 식품과 접촉하는 장비 표면, 그리고 식품 표면에 병원성 세균을 불활성화 시키기 위한 안전한 미생물 사멸 기술로 정식 승인된 후 집단 급식 시설이나 도시상수, 산업 공정수, 병원, 음료수 산업 등에 널리 쓰이고 있다.For the control of microorganisms present in water, the most basic heat treatment sterilization mainly takes place, but due to the increase in process cost, non-heating physical / chemical treatment is preferred. Typical treatments include chlorine treatment, ozone treatment, and ultraviolet (UV-C) treatment. In particular, UV irradiation treatment is performed by the U.S. Food and Drug Administration (US-FDA) for liquid food, water, equipment surfaces that come into contact with food, and food. After being officially approved as a safe microbial killing technology for inactivating pathogenic bacteria on the surface, it has been widely used in collective feeding facilities, urban water supply, industrial process water, hospital, and beverage industry.
자외선 살균 방법은 복잡한 안전장치가 요구되지 않고, 단회처리 및 연속처리가 가능하여 생산 설비의 관리가 용이하며, 염소, 오존 처리방법과는 달리 잔존 화합물을 생성하지 않는 장점이 있어 물에 존재하는 미생물 살균 처리법으로 이용 가능성이 매우 높다. 하지만 기존의 254㎚의 UV-C 저압램프는 램프 내부에 인체에 유해한 수은기체를 함유하고 있어 파괴 시 작업자에게 치명적인 영향을 줄 수 있는 한계가 있다. 이에 최근 수은으로부터 자유로운 자외선 램프 기술에 대한 관심이 증가하고 있으며 전 세계적으로 이에 대한 연구가 활발히 진행되고 있다.The ultraviolet sterilization method does not require a complicated safety device, and it can be processed once and continuously, so it is easy to manage the production facilities. Unlike chlorine and ozone treatment methods, it has the advantage of not producing residual compounds, so microorganisms present in water It is highly available as a sterilization method. However, the existing UV-C low-pressure lamp of 254nm contains mercury gas harmful to the human body inside the lamp, and thus has a limit that can have a fatal effect on workers when destroyed. Accordingly, interest in UV lamp technology free from mercury has recently increased, and research on this has been actively conducted worldwide.
한편, 자외선 자체의 제한적인 투과 능력으로 물의 오염도가 높을 경우 가림효과(shielding effect)가 발생하여 그 살균력이 떨어지는 문제도 제기되고 있어 이에 대한 해결방안에 대한 연구가 필요한 실정이다.On the other hand, when the contamination degree of water is high due to the limited transmission ability of the UV itself, a shielding effect occurs and a problem that the sterilizing power is lowered is also raised. Therefore, a solution to this problem is needed.
본 발명은 수은 기체가 함유된 기존의 254㎚ UV-C 저압램프의 한계를 극복한 222㎚ KrCl 엑시머램프를 이용하여 효율적으로 미생물을 살균하는 방법을 개발하여 제공하고자 한다.The present invention seeks to develop and provide a method for efficiently sterilizing microorganisms using a 222nm KrCl excimer lamp that overcomes the limitations of the existing 254nm UV-C low pressure lamps containing mercury gas.
또한, 본 발명은 고농도의 오염수에서 발생하는 가림효과(shielding effect)에도 효과적인 미생물 살균 방법을 개발하여 제공하고자 한다.In addition, the present invention is to develop and provide a method for sterilizing microorganisms that is also effective in a shielding effect occurring in a high concentration of contaminated water.
본 발명은 미생물로 오염된 오염원에 222㎚ KrCl 엑시머 램프를 간헐적(intermittent)으로 조사하는 것을 특징으로 하는 미생물 살균 방법을 제공한다.The present invention provides a microbial sterilization method characterized by intermittently irradiating a 222 nm KrCl excimer lamp to a contaminant contaminated with microorganisms.
본 발명의 미생물 살균 방법에 있어서, 상기 오염원은, 일 예로 물, 액상식품, 오폐수 중 선택되는 어느 하나일 수 있다.In the method for sterilizing microorganisms of the present invention, the contamination source may be, for example, any one selected from water, liquid food, and waste water.
본 발명의 미생물 살균 방법에 있어서, 상기 오염원은, 일 예로 미생물이 1×106~1×1010 CFU/mL로 오염되어 있는 것일 수 있다.In the method for sterilizing microorganisms of the present invention, the contamination source may be, for example, that microorganisms are contaminated with 1 × 10 6 to 1 × 10 10 CFU / mL.
본 발명의 미생물 살균 방법에 있어서, 상기 간헐적 조사는, 바람직하게 엑시머 램프를 조사한 후, 다음 조사 전까지 휴식기(interval)를 두는 방식으로 조사하는 것일 수 있다. 이때, 상기 간헐적 조사는, 더욱 바람직하게 엑시머 램프를 조사한 후, 다음 조사 전까지의 휴식기를 한 사이클(cycle)로 하여 반복하는 것일 수 있다. 또한, 상기 간헐적 조사는, 일 예로 조사를 하되, 사이클 반복에 따른 총 조사 시간이 1분 이하이며, 상기 휴식기는 10초 ~ 10분인 것일 수 있다.In the method for sterilizing microorganisms of the present invention, the intermittent irradiation may be performed by irradiating the excimer lamp, preferably by placing an interval until the next irradiation. At this time, the intermittent irradiation, more preferably, after irradiating the excimer lamp, it may be to repeat the rest until the next irradiation as a cycle (cycle). In addition, the intermittent irradiation is, for example, irradiation, but the total irradiation time according to the cycle repetition is 1 minute or less, and the rest period may be 10 seconds to 10 minutes.
본 발명의 미생물 살균 방법에 있어서, 상기 미생물은, 일 예로, 이콜라이 O157:H7(Escherichia coli O157:H7), 살모넬라 타이피무리움(Salmonella Typhimurium), 리스테리아 모노사이토제네스(Listeria monocytogenes) 중 선택되는 어느 하나 이상일 수 있다.In the microorganism sterilization method of the present invention, the microorganism is, for example, E. coli O157: H7 ( Escherichia coli O157: H7), Salmonella Typhimurium ( Salmonella Typhimurium), Listeria monocytogenes ( Listeria monocytogenes ) It can be one or more.
본 발명은 오염수에 UV-C 영역인 222㎚ KrCl 엑시머 램프를 처리하여 효율적으로 미생물을 살균하는 방법을 제공한다.The present invention provides a method for efficiently sterilizing microorganisms by treating a UV-C region of 222 nm KrCl excimer lamp in contaminated water.
도 1은 본 발명의 222㎚ KrCl 엑시머 램프의 간헐처리 시스템 모식도이다.
도 2는 본 발명의 실험용 222㎚ KrCl 엑시머 램프의 모식도이다.
도 3은 (a) 이콜라이 O157:H7의 222㎚ KrCl 엑시머 램프의 간헐(intermittent), 연속적(continuous) 처리에 따른 고오염수(106 내지 107)의 살균효과 비교 그래프이다.
도 4는 (b) 살모넬라 타이피무리움의 222㎚ KrCl 엑시머 램프의 간헐(intermittent), 연속적(continuous) 처리에 따른 고오염수(106 내지 107)의 살균효과 비교 그래프이다.
도 5는 (c) 리스테리나 모노사이토제네스의 222㎚ KrCl 엑시머 램프의 간헐(intermittent), 연속적(continuous) 처리에 따른 고오염수(106 내지 107)의 살균효과 비교 그래프이다.1 is a schematic diagram of an intermittent treatment system of a 222 nm KrCl excimer lamp of the present invention.
2 is a schematic diagram of an experimental 222nm KrCl excimer lamp for the present invention.
FIG. 3 is a graph comparing the sterilization effect of high-contaminated water (10 6 to 10 7 ) according to intermittent and continuous treatment of (a) 222 nm KrCl excimer lamp of E. coli O157: H7.
Figure 4 (b) Salmonella typhimurium 222nm KrCl excimer lamp is an intermittent (intermittent), continuous (continuous) treatment of the high-contamination water (10 6 to 10 7 ) is a comparative graph of the sterilization effect.
Figure 5 (c) is a comparative graph of the sterilization effect of high-contamination water (10 6 to 10 7 ) according to the intermittent, continuous (continuous) treatment of the 222 nm KrCl excimer lamp of Listerina monocytogenes.
본 발명에서는 222㎚ KrCl 엑시머 램프를 이용한 효율적인 미생물 살균 방법을 제공한다.The present invention provides an efficient microorganism sterilization method using a 222 nm KrCl excimer lamp.
할로겐 가스(불소, 염소 등)와 묽은 가스(크립톤, 크세논 등)는 고전압 방전 등에 의해 결합하여 엑시머(excimer) 분자를 만든다. 엑시머 분자는 붕괴할 때 자외선을 방출하는데 이를 이용한 것이 엑시머 레이저이다. 엑시머 램프(excimer lamp)는 비활성기체 및 할로겐 기체의 조합으로 충진 된 석영관에 고전압의 전기장을 형성하여 내부 가스의 분자해리를 유도하고, UV-C 영역대의 단일 파장을 방출시키는 기술로 그 가스 조성에 따라 원하는 파장의 조사 처리가 가능하다. 또한, 기존 UV-C 저압 램프에 상응하는 조사강도(Light intensity)를 가지고 있어 실제 식품 살균 공정에 적용이 용이해 차세대 Mercury-free UV-C light source로 관심이 집중되고 있다. 다양한 파장 중 KrCl 기체의 222㎚가 높은 살균 효율을 보이는 것으로 보고되고 있으며 이를 이용한 액상배지, 주스의 살균 적용 연구는 일부 존재하나 모두 shielding effect를 그 한계로 뽑고 있어 이를 극복하기 위한 연구는 현재까지 전무한 실정이다.Halogen gas (fluorine, chlorine, etc.) and dilute gas (krypton, xenon, etc.) are combined by high voltage discharge to form excimer molecules. Excimer molecules emit ultraviolet light when collapsing. Excimer lasers are used. Excimer lamp (excimer lamp) is a technology that induces molecular dissociation of the internal gas by forming a high voltage electric field in a quartz tube filled with a combination of inert gas and halogen gas, and emits a single wavelength in the UV-C region. According to this, irradiation treatment of a desired wavelength is possible. In addition, as it has a light intensity corresponding to a conventional UV-C low-pressure lamp, it is easy to apply to an actual food sterilization process, and thus it is attracting attention as a next-generation Mercury-free UV-C light source. It is reported that 222nm of KrCl gas among various wavelengths has a high sterilization efficiency, and there are some researches on application of sterilization of liquid medium and juice using them, but all have selected shielding effect as its limit, so there are no studies to overcome this. This is true.
한편, 본 발명에서는 고농도의 오염수에서 가림효과(shielding)가 발생하여 살균 효율이 저하되는 문제점을 개선하기 위해 엑시머 램프를 ‘간헐적(intermittent)’으로 처리하는 방식을 적용(도 1)함으로써, 동일 조사(dose)량을 적용한 연속 처리 대비 높은 살균 효율을 보이는 미생물 살균 방법을 개발한 것이다.On the other hand, in the present invention, by applying a method of treating the excimer lamp 'intermittent' in order to improve the problem that the sterilization efficiency is lowered due to the shielding effect in a high concentration of contaminated water (Fig. 1), the same It developed a microbial sterilization method that shows high sterilization efficiency compared to the continuous treatment to which the dose is applied.
한편, 본 발명의 오염원은 일 예로 미생물이 1×106~1×1010 CFU/mL로 오염되어 있는 것일 수 있다. 본 발명은 고농도의 오염수에서 발생하는 가림효과 때문에 살균 효율이 저하되는 문제점을 극복한 기술인데, 하기 실험에서는, 오염수의 농도가 1×106 CFU/mL일 때에도, 미생물 살균효과가 유의성 있게 발생하는 것을 확인할 수 있다. 따라서, 본 발명은 그 이상의 미생물 농도에서도 본 발명에 따른 살균 효능이 발휘됨을 당연히 추론할 수 있는데, 통상적으로 미생물은 액상에서 1×1010 CFU/mL 이상 배양되기 어려워, 현실적인 최대 오염 농도는 1×1010 CFU/mL이다. 다만, 영양배지의 농도, 양 및 배양시간에 따라 오염의 정도가 가변될 수 있으므로, 오염원은 반드시 1×106~1×1010 CFU/mL로 한정하는 것은 아니다. Meanwhile, the contaminant of the present invention may be, for example, a microorganism contaminated with 1 × 10 6 to 1 × 10 10 CFU / mL. The present invention is a technique that overcomes the problem that the sterilization efficiency is lowered due to the masking effect occurring in the high concentration of contaminated water. In the following experiment, even when the concentration of contaminated water is 1 × 10 6 CFU / mL, the microbial sterilization effect is significantly You can see what happens. Therefore, the present invention can naturally be deduced that the sterilizing efficacy according to the present invention is exerted even at a concentration of microorganisms higher than that. Typically, microorganisms are difficult to cultivate more than 1 × 10 10 CFU / mL in a liquid phase, and a realistic maximum contamination concentration is 1 ×. 10 10 CFU / mL. However, since the degree of contamination may vary depending on the concentration, amount, and culture time of the nutrient medium, the source of contamination is not necessarily limited to 1 × 10 6 ~ 1 × 10 10 CFU / mL.
한편, 본 발명에서 ‘간헐적(intermittent)’으로 조사하는 것은, 바람직하게 엑시머 램프를 조사한 후, 다음 조사 전까지 휴식기(interval)를 두는 방식으로 조사할 수 있다. 이때, 상기 간헐적 조사는, 바람직하게 엑시머 램프를 조사한 후, 다음 조사 전까지의 휴식기를 한 사이클(cycle)로 하여 반복 수행할 수 있다. 또한, 상기 간헐적 조사는, 조사를 하되, 사이클 반복에 따른 총 조사 시간이 1분 이하이며, 상기 휴식기는 10초~10분인 것이 좋다. 총 조사 시간이 1분을 초과하거나, 휴식기가 10분을 초과하면 경제적이지 못해 바람직하지 않다. 이때, 1회당 조사시간 및 휴식시간은 엑시머 램프(excimer lamp)의 전력이나 강도 등의 캐피시티(capasity)에 따라 가변적으로 결정될 수 있다.On the other hand, in the present invention, "intermittent" irradiation can be performed by irradiating the excimer lamp, preferably by irradiating an interval until the next irradiation. In this case, the intermittent irradiation may be performed repeatedly after irradiating the excimer lamp, preferably as a cycle before the next irradiation. In addition, the intermittent irradiation, the irradiation, but the total irradiation time according to the cycle repetition is less than 1 minute, the rest period is preferably 10 seconds to 10 minutes. If the total irradiation time exceeds 1 minute, or the rest period exceeds 10 minutes, it is not economical and therefore undesirable. At this time, the irradiation time and the break time per time can be variably determined according to the capacity of the excimer lamp (excimer lamp) or intensity.
일 예를 들자면, 20W급 램프를 사용하여 1회 조사시간을 5초로 하고, 휴식기를 3분으로 한 후, 총 조사시간을 20초로 설정하면, ‘5초조사-3분휴식-5초조사-3분휴식-5초조사-3분휴식-5초조사-(3분 휴식, 단 마지막 휴식은 기술적 의미가 없어 생략 가능)’의 방식으로 수행할 수 있는 것이다. For example, if the irradiation time is 5 seconds using a 20W class lamp, the rest period is set to 3 minutes, and the total irradiation time is set to 20 seconds, '5 second irradiation-3 minute rest-5 seconds irradiation- 3 minute break-5 second survey-3 minute break-5 second survey-(3 minute break, but the last break has no technical meaning and can be omitted).
한편, 본 발명에서 상기 미생물은, 일 예로 이콜라이 O157:H7(Escherichia coli O157:H7), 살모넬라 타이피무리움(Salmonella Typhimurium), 리스테리아 모노사이토제네스(Listeria monocytogenes) 중 선택되는 어느 하나 이상일 수 있다.Meanwhile, in the present invention, the microorganism may be, for example, any one or more selected from Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes .
이하, 본 발명의 내용을 하기 실시예를 들어 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.Hereinafter, the contents of the present invention will be described in more detail with reference to the following examples. However, the scope of rights of the present invention is not limited to the following examples, but includes modifications of technical ideas equivalent thereto.
[실시예 1 : 간헐적 처리방식을 이용하여 살균한 후 식중독균의 저감화 정도 비교][Example 1: Comparison of the degree of reduction of food poisoning bacteria after sterilization using an intermittent treatment method]
본 실시예에서는 물에 식중독균인 이콜라이 O157:H7(Escherichia coli O157:H7), 살모넬라 타이피무리움(Salmonella Typhimurium), 리스테리아 모노사이토제네스(Listeria monocytogenes)를 접종하여 간헐적 처리방식으로 살균한 후 식중독균의 저감화 정도를 비교하였다.In this embodiment, the food poisoning bacteria E. coli O157: H7 ( Escherichia coli O157: H7), Salmonella Typhimurium, Listeria monocytogenes were inoculated, and sterilized by an intermittent treatment method. The degree of reduction was compared.
이콜라이 O157:H7, 살모넬라 타이피무리움, 리스테리아 모노사이토제네스를 tryptic soy broth에서 24시간 동안 배양한 후 원심 분리한 pellet을 0.2% sterile peptone water(PW)에 희석하고 오염도 수준에 따른 균액을 물에 첨가하여 교반하였다. 222㎚의 KrCl 엑시머 램프를 동일 dose(0.5, 1, 1.5, 2mJ/㎠)로 연속 처리 한 물 샘플을 각각의 선택 분별용 배지인 sorbitol MacConkdy agar(SMAC), xylose lysine desoxycholate agar(XLD), Oxford agar base with Bacto Oxford antimicrobial supplement(OAB)에 희석하여 분주 도말 하였다. 24시간 배양 된 배지 위에 선택적으로 형성된 콜로니를 계수하였다.E. coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes were incubated for 24 hours in tryptic soy broth, and then centrifuged pellets were diluted in 0.2% sterile peptone water (PW), and the fungus solution according to the contamination level was added to water. It was added and stirred. Water samples obtained by continuously treating a 222 nm KrCl excimer lamp with the same dose (0.5, 1, 1.5, 2 mJ / cm 2) are sorbitol MacConkdy agar (SMAC), xylose lysine desoxycholate agar (XLD), and Oxford for each selective fractionation medium. It was diluted in agar base with Bacto Oxford antimicrobial supplement (OAB) and plated. Colonies selectively formed on the cultured medium for 24 hours were counted.
상기 표 1 내지 3에서 확인할 수 있듯이 기존의 연속적인 222㎚ 엑시머 램프 조사 처리는 물의 미생물 오염도에 따라 그 효과의 차이를 보여주었다. 가장 미생물 오염도가 낮은 물(104~5)의 경우 1.52mJ/㎠ 이상의 dose에서 대상 미생물들이 모두 검출 한계(detection limit = 1 log CFU/ml) 이하로 사멸되는 반면 미생물의 오염도가 가장 높은 물(106~7)에서는 shielding effect로 인해 그 살균효과가 유의적으로 감소하는 것을 알 수 있다.As can be seen from Tables 1 to 3, the conventional continuous 222 nm excimer lamp irradiation treatment showed a difference in effect according to the degree of microbial contamination of water. In the case of water with the lowest level of microbial contamination (10 4 ~ 5 ), at the dose of 1.52 mJ / ㎠ or more, all target microorganisms are killed below the detection limit (detection limit = 1 log CFU / ml), while water with the highest level of microbial contamination ( In 10 6 ~ 7 ), it can be seen that the sterilization effect is significantly reduced due to the shielding effect.
한편, 간헐적 조사 처리 방법은 물을 교반하는 상태에서 5초간 조사 후 1분의 휴식기(interval)를 두는 방식이며 본 실험은 20W급 램프로 전체 조사 시간 20초, 3번의 휴식기(interval)로 진행하였다. 2mJ/㎠의 경우 총 20초의 조사, 3분의 interval로 구성된다. 간헐적 조사 처리 방법으로 shielding effect의 한계를 극복하는지 알아보기 위해 고농도의 오염수인 106~7에 간헐적 조사 처리 방법으로 물을 살균하여 상기 연속적 조사 처리 방법을 적용한 물과 비교하였다.On the other hand, the intermittent irradiation treatment method is a method of placing an interval of 1 minute after irradiation for 5 seconds while stirring water, and this experiment was conducted with an interval of 20 seconds and 3 irradiation times with a 20W class lamp. . In the case of 2mJ / cm2, it consists of a total of 20 seconds of irradiation and an interval of 3 minutes. In order to find out if the intermittent irradiation treatment method overcomes the limitation of the shielding effect, water was sterilized by using the intermittent irradiation treatment method at a high concentration of contaminated water 10 6 to 7 and compared with water to which the continuous irradiation treatment method was applied.
도 2 내지 도 4는 간헐적 조사 처리 방법과 연속적 조사 처리 방법의 살균 효과를 비교하여 나타내었다. 각각 (a) 이콜라이 O157:H7, (b) 살모넬라 타이피무리움, (c) 리스테리아 모노사이토제네스의 검출량이다. 도 2 내지 도 4에 나타난 바와 같이 222㎚ KrCl 엑시머 램프를 간헐적으로 처리할 경우 기존의 연속처리방식 대비 약 90~99% 이상 살균 효율이 증가되었다.2 to 4 are shown by comparing the sterilizing effect of the intermittent irradiation treatment method and the continuous irradiation treatment method. Respectively, (a) E. coli O157: H7, (b) Salmonella typhimurium, (c) Listeria monocytogenes. 2 to 4, when the 222 nm KrCl excimer lamp was intermittently treated, the sterilization efficiency was increased by about 90 to 99% or more compared to the conventional continuous processing method.
본 실시는 실험용 배치타입(도 1)으로 진행되었으나 엑시머 램프가 상부에 위치하는 개방형 터널을 갖출 후 물이 공급되는 연속식 공정으로 확장이 용이하다. 이는 다른 실시 예로써 대량의 물, 식품을 연속적으로 살균 처리하는데 보다 유리할 수 있다고 사료된다.Although this implementation was conducted in an experimental batch type (FIG. 1), it is easy to expand to a continuous process in which water is supplied after an excimer lamp has an open tunnel located at the top. It is believed that this may be more advantageous for continuously sterilizing large amounts of water and food as another embodiment.
한편 본 발명은 기존의 UV램프의 문제점이었던 수은사고로부터 안전하며, 고농도의 오염수에도 적용 가능한 장점을 가지고 있다. 또한 수처리 공정뿐 만 아니라 기타 액상 식품군의 대체 비가열 살균기술로써 활용 가능성이 있는 것으로 확인된다.On the other hand, the present invention is safe from mercury accidents, which has been a problem with conventional UV lamps, and has the advantage of being applicable to high concentration of contaminated water. In addition, it is confirmed that it is possible to utilize not only water treatment processes, but also alternative non-heat sterilization technologies of liquid food groups.
Claims (7)
상기 오염원은,
미생물이 1×106~1×1010 CFU/mL로 오염되어 있는 것이고,
상기 간헐적 조사는,
상기 엑시머 램프를 조사한 후, 다음 조사 전까지 휴식기(interval)를 두는 방식으로, 상기 엑시머 램프를 조사한 후, 다음 조사 전까지의 휴식기를 한 사이클(cycle)로 하여 반복하되, 사이클 반복에 따른 총 조사 시간이 1분 이하이며, 상기 휴식기는 10초 ~ 10분인 것을 특징으로 하는 미생물 살균 방법.
Sterilization of pollutants is possible by intermittently irradiating a 222nm KrCl excimer lamp on any one of the pollutants selected from water, liquid food, and waste water contaminated with microorganisms,
The pollution source,
The microorganism is contaminated with 1 × 10 6 ~ 1 × 10 10 CFU / mL,
The intermittent investigation,
After the excimer lamp is irradiated, an interval is placed until the next irradiation, and after the excimer lamp is irradiated, the rest until the next irradiation is repeated as one cycle, but the total irradiation time according to the cycle repetition is Less than 1 minute, the rest period is 10 seconds ~ 10 minutes, characterized in that the microorganism sterilization method.
상기 미생물은,
이콜라이 O157:H7(Escherichia coli O157:H7), 살모넬라 타이피무리움(Salmonella Typhimurium), 리스테리아 모노사이토제네스(Listeria monocytogenes) 중 선택되는 어느 하나 이상을 살균하는 것을 특징으로 하는 미생물 살균 방법.
According to claim 1,
The microorganism,
E. coli O157: H7 ( Escherichia coli O157: H7), Salmonella Typhimurium ( Salmonella Typhimurium), Listeria monocytogenes ( Listeria monocytogenes ) is a method for sterilizing microorganisms, characterized by sterilizing any one or more selected.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020180049077A KR102092339B1 (en) | 2018-04-27 | 2018-04-27 | Method for effective microorganism sterilization with the intermittent application of 222㎚ KrCl excimer lamp irradiation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020180049077A KR102092339B1 (en) | 2018-04-27 | 2018-04-27 | Method for effective microorganism sterilization with the intermittent application of 222㎚ KrCl excimer lamp irradiation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20190124957A KR20190124957A (en) | 2019-11-06 |
| KR102092339B1 true KR102092339B1 (en) | 2020-03-24 |
Family
ID=68541888
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020180049077A Active KR102092339B1 (en) | 2018-04-27 | 2018-04-27 | Method for effective microorganism sterilization with the intermittent application of 222㎚ KrCl excimer lamp irradiation |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR102092339B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20250064015A (en) | 2023-10-31 | 2025-05-09 | 서울대학교산학협력단 | Method for sterilizing fresh produce using ultraviolet and ultrasonic |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119409271B (en) * | 2024-11-25 | 2025-10-03 | 上海电力大学 | A method for decomposing iohexol and acetochlor by far-ultraviolet light |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3144887B2 (en) * | 1992-04-17 | 2001-03-12 | 松下電器産業株式会社 | Water sterilizer |
| WO2015065622A1 (en) | 2013-11-04 | 2015-05-07 | Aardvark Ip Holding, Llc | Aquaculture water treatment systems and methods |
| KR101674077B1 (en) | 2014-08-11 | 2016-11-08 | 서울대학교산학협력단 | Slice ham sterilization apparatus |
-
2018
- 2018-04-27 KR KR1020180049077A patent/KR102092339B1/en active Active
Non-Patent Citations (1)
| Title |
|---|
| G.G. Matafonova외 4명, Efficiency of KrCl excilamp (222 nm) for inactivation of bacteria in suspension, Letters in Applied Microbiology 47 (2008), pp508-513. 1부.* |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20250064015A (en) | 2023-10-31 | 2025-05-09 | 서울대학교산학협력단 | Method for sterilizing fresh produce using ultraviolet and ultrasonic |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20190124957A (en) | 2019-11-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Delorme et al. | Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods | |
| Csapó et al. | Effect of UV light on food quality and safety | |
| Koca et al. | Ultraviolet light applications in dairy processing | |
| US20090250626A1 (en) | Liquid sanitization device | |
| Ha et al. | Effect of intermittent 222 nm krypton-chlorine excilamp irradiation on microbial inactivation in water | |
| US20090169425A1 (en) | Apparatus and method for disinfecting food using photo-catalytic reaction of titanium dioxide and ultraviolet rays | |
| Kumar et al. | Effect of ozone and ultraviolet light on Listeria monocytogenes populations in fresh and spent chill brines | |
| Cassar et al. | Microbial decontamination of food by light-based technologies: Ultraviolet (UV) light, pulsed UV light (PUV), and UV light-emitting diodes (UV-LED) | |
| Yagi et al. | Sterilization using 365 nm UV-LED | |
| US9981862B2 (en) | Reactor usable for decontamination of fluids and method of use | |
| KR102092339B1 (en) | Method for effective microorganism sterilization with the intermittent application of 222㎚ KrCl excimer lamp irradiation | |
| Park et al. | Bactericidal effect of ultraviolet C light-emitting diodes: Optimization of efficacy toward foodborne pathogens in water | |
| Datta et al. | Ultraviolet and pulsed light technologies in dairy processing | |
| EP2653448B1 (en) | Water treatment | |
| Dababneh et al. | Coliform-Specific Solar Disinfection of Treated Wastewater. | |
| Ramsay et al. | The synergistic effect of excimer and low-pressure mercury lamps on the disinfection of flowing water | |
| KR102047338B1 (en) | Apparatus for sterilizing microorganism using photoenergy and Sterilizing method using the same | |
| Bhalerao et al. | Pulsed light technology applied in food processing | |
| Guerrero-Beltran et al. | Ultraviolet-C light processing of liquid food products | |
| Eleren et al. | Inactivation of E. Coli and B. Subtilis by solar and solar/H2O2 processes in humic surface waters | |
| KR20130038891A (en) | Microbial inactivation method of kimchi saline water using microwave-plasma sterilization system | |
| JP2001252650A (en) | Water light sterilization method | |
| Mori et al. | Effects of ultraviolet LED on bacteria | |
| Cho et al. | Inactivation Efficacy of Combination Treatment of Propyl Gallate and UVA LED for Escherichia coli O157: H7 in Apple Juice | |
| CN109534440A (en) | A kind of method of alicyclic acid bacillus pollution in control water |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20180427 |
|
| PA0201 | Request for examination | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20190829 Patent event code: PE09021S01D |
|
| PG1501 | Laying open of application | ||
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20200206 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20200317 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20200318 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| PR1001 | Payment of annual fee |
Payment date: 20250225 Start annual number: 6 End annual number: 6 |