[go: up one dir, main page]

KR102114116B1 - Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents - Google Patents

Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents Download PDF

Info

Publication number
KR102114116B1
KR102114116B1 KR1020180068663A KR20180068663A KR102114116B1 KR 102114116 B1 KR102114116 B1 KR 102114116B1 KR 1020180068663 A KR1020180068663 A KR 1020180068663A KR 20180068663 A KR20180068663 A KR 20180068663A KR 102114116 B1 KR102114116 B1 KR 102114116B1
Authority
KR
South Korea
Prior art keywords
electron beam
highly fluorinated
resist material
polymer
methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020180068663A
Other languages
Korean (ko)
Other versions
KR20190141895A (en
Inventor
이진균
정석헌
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020180068663A priority Critical patent/KR102114116B1/en
Publication of KR20190141895A publication Critical patent/KR20190141895A/en
Application granted granted Critical
Publication of KR102114116B1 publication Critical patent/KR102114116B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)

Abstract

본 발명은 고불소계 용제에 용해성을 가지는 고불소화 고분자를 포함하는 레지스트 재료에 관한 것으로, 본 발명에 따르면, 고불소계 용제에 용해성을 가지는 고불소화 고분자(PFDMA, PFUDMA, PFDDMA)는 전자선 레지스트 재료로 사용되어 기판에 용액 형태로 도포될 수 있으며, 형성된 박막은 전자선 조사에 의해 용해도가 감소되는 바, 고해상도 이미지를 형성할 수 있고, 전자선 리소그라피에 적용 시, 네거티브 톤 패턴을 형성하여 네거티브 레지스트 재료로 활용될 수 있다.The present invention relates to a resist material comprising a high fluorinated polymer having a solubility in a high fluorine-based solvent, and according to the present invention, a high fluorinated polymer having a solubility in a high fluorine-based solvent (PFDMA, PFUDMA, PFDDMA) is used as an electron beam resist material It can be applied in the form of a solution to the substrate, and the formed thin film has a reduced solubility due to electron beam irradiation, so that a high-resolution image can be formed, and when applied to electron beam lithography, a negative tone pattern is formed to be used as a negative resist material. Can be.

Description

고불소계 용제에 용해성을 가지는 고불소화 고분자를 포함하는 레지스트 재료{Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents}Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents}

본 발명은 고불소계 용제에 용해성을 가지는 고불소화 고분자 및 이를 포함하는 레지스트 재료에 관한 것으로, 상기 레지스트 재료는 기판에 용액 형태로 도포될 수 있으며, 형성된 박막은 전자선 조사에 의해 용해도가 감소되는 바, 본 발명은 고불소계 용제를 이용한 현상 조건에 의해 고해상도 이미지를 형성할 수 있는 전자선 리소그라피용 레지스트 재료를 제공한다.The present invention relates to a high fluorinated polymer having a solubility in a high fluorine-based solvent and a resist material comprising the same, wherein the resist material can be applied in a solution form on a substrate, and the formed thin film has reduced solubility by irradiation with electron beam, The present invention provides a resist material for electron beam lithography capable of forming a high resolution image by developing conditions using a high fluorine-based solvent.

불소(Fluorine) 원자는 상대적으로 작은 원자 반지름(atomic radius)을 가지며, 탄소(carbon) 원자와 강한 화학결합을 형성한다. 따라서 불소 원자는 탄화수소 분자(hydrocarbon molecule)에 도입되어 수소 원자를 대체하는 경우, 분자의 기하학적 형태(molecular geometry)에 커다란 왜곡(distortion)을 유발하지 않으면서 안정된 화합물을 형성할 수 있다. 그러나 불소 원자는 강력한 전기 음성도(electronegativity) 및 약한 분극성(polarizability)을 가지고 있어 탄화수소 분자 내 대부분의 수소 원자가 불소 원자로 대체되면 탄화수소에서 관찰하기 어려운 여러 특징들이 발현된다. 대표적으로 불소 핵 주변에 강하게 속박되어 있는 전자로 인해 친핵체(nucleophile) 및 산화제(oxidizing agent)의 공격에 의해 비활성화되어 화학적 안정성을 나타낸다. 또한, 다른 분자와의 감소된 상호작용으로 인해 소수성(hydrophobic) 및 친유성(oleophobic)의 특성을 동시에 지니게 되고 통상적인 비-불소화(non-fluorinated) 용제 대해 낮은 용해성을 나타낸다.Fluorine atoms have a relatively small atomic radius and form strong chemical bonds with carbon atoms. Therefore, when a fluorine atom is introduced into a hydrocarbon molecule to replace a hydrogen atom, a stable compound can be formed without causing a large distortion in the molecular geometry. However, since the fluorine atom has strong electronegativity and weak polarizability, when hydrogen atoms in most of the hydrocarbon molecules are replaced with fluorine atoms, various features that are difficult to observe in hydrocarbons are expressed. Representatively, electrons that are strongly bound around the fluorine nucleus are inactivated by attack of nucleophile and oxidizing agent and exhibit chemical stability. In addition, due to the reduced interaction with other molecules, it has both hydrophobic and oleophobic properties, and exhibits low solubility in conventional non-fluorinated solvents.

이와 같은 고불소화된 분자의 특징은 저분자량 유체의 형태로, 그리고 고분자의 형태로 구체화되어 우리의 일상생활에 큰 영향을 미치고 있다. 고불소화 또는 불소화 유체는 상기 특성 이외에도 높은 열 안전성(thermal stability), 우수한 유전 특성(dielectric properties), 낮은 표면 장력(surface tension), 불연성(non-flammability), 낮은 독성 등을 바탕으로 약물 전달(drug delivery)을 위한 흡입기(inhaler)의 추진체(propellant)로서, 의료 장비 및 정밀 부품의 세척 용제(cleaning solvent)로서, 그리고 열 전달 유체(heat transfer fluid)로서 널리 적용되고 있다. 더 나아가 최근에는 불소화 유체의 친유성 특성을 적극 활용하여, 화학적으로 침해받기 쉬운 유기물 전자 재료 박막을 패터닝하는 곳에 적용하려는 시도도 진행되고 있다. 대표적으로 미세 유기 발광 다이오드(organic light-emitting diode; OLED)의 화소를 형성하기 위해 유기 발광 재료 박막 상부에 불소화 유체에 용해된 포토레지스트를 코팅하고, 노광한 후, 다시 적절한 불소화 유체로 현상하여 이미징(imaging)을 위한 템플릿(template)을 형성하는 연구가 보고된 바 있다.The characteristics of such highly fluorinated molecules are embodied in the form of low molecular weight fluids and in the form of polymers, which have a great influence on our daily lives. In addition to the above characteristics, high fluorinated or fluorinated fluids are drug delivery based on high thermal stability, excellent dielectric properties, low surface tension, non-flammability, and low toxicity. It is widely applied as a propellant for inhalers for delivery, as a cleaning solvent for medical equipment and precision parts, and as a heat transfer fluid. Furthermore, in recent years, attempts have been made to utilize the lipophilic properties of fluorinated fluids and apply it to patterning thin films of organic electronic materials that are susceptible to chemical infringement. Representatively, a photoresist dissolved in a fluorinated fluid is coated on a thin film of an organic light-emitting material to form a pixel of a fine organic light-emitting diode (OLED), exposed, and then developed again with an appropriate fluorinated fluid for imaging. Studies have been reported to form templates for imagination.

고불소화 고분자는 1930년대 Scholffer 및 Scherer가 폴리(클로로트리플루오로에틸렌)[ploly(chlorotrifluoroethylene); PCTFE]을, 그리고 Plunkett이 고분자량의 폴리(테트라플루오로에틸렌)[poly(tetrafluoroethylene); PTFE]을 개발하면서 주목을 받기 시작한 이후 폴리(비닐플루오라이드)[poly(vinylfluoride); PVF], 폴리(비닐리덴 플루오라이드)[poly(vinylidene fluoride); PVDF], 폴리(트리플루오로에틸렌)[poly(trifluoroethylene)] 등 다양한 고불소화 고분자들이 등장하였다. 이 중, TeflonTM이라는 이름으로 상업화된 PTFE는 우수한 내화학성, 마찰 특성 등으로 다양한 분야에서 활용되고 있는데, 미세한 가루의 형태로 윤활제(lubricants), 플라스틱, 페인트 등에 기능성 첨가제로서 적용되는 것도 중요한 응용분야 중 하나이다. PTFE-기반 플루오로첨가제(fluoroadditive)는 다른 등급(grade)의 PTFE에 비해 작은 입자 크기 및 낮은 분자량을 지니는데, 이는 주로 고분자량의 PTFE에 전자선(electron beam; e-beam)을 조사하거나 열 분해 공정(thermal degradation process)을 통해서 제조된다.The high fluorinated polymer was produced by Scholffer and Scherer in the 1930s by poly (chlorotrifluoroethylene); PCTFE], and Plunkett is a high molecular weight poly (tetrafluoroethylene) [poly (tetrafluoroethylene); PTFE] has started to receive attention in the development of poly (vinylfluoride) [poly (vinylfluoride); PVF], poly (vinylidene fluoride); PVDF], poly (trifluoroethylene) [poly (trifluoroethylene)] and various high fluorinated polymers have appeared. Among them, PTFE commercialized under the name of Teflon TM is used in various fields due to its excellent chemical resistance and friction properties, and it is also important to apply it as a functional additive to lubricants, plastics, paints, etc. in the form of fine powder Is one of the. PTFE-based fluoroadditives have a smaller particle size and lower molecular weight than other grades of PTFE, which are mainly used to irradiate or thermally decompose electron beams (e-beams) to high molecular weight PTFE. It is manufactured through a thermal degradation process.

상기 언급된 바와 같이, PTFE는 상온에서 전자선 또는 감마선의 조사에 의해 쉽게 사슬 절단(chain scission)이 일어난다는 사실이 알려져 있고, 이는 상업적으로 적용되어 왔다. 하지만 몇몇 문헌들에서는 비활성 분위기 하에서 PTFE의 녹는점 보다 높은 온도에서 고에너지 방사선이 조사되면 사슬간 가교(cross-linking)가 일어날 수 있음을 보고한 바도 있다. 이러한 점에 착안하여, 본 발명자들은 PTFE와 유사한 사슬을 곁 사슬(side chain)로 가지며 불소화 유체를 이용하여 용액 공정이 가능하며, 상대적으로 매우 합성이 용이한 폴리(세미-퍼플루오로알킬 메타크릴레이트)[poly(semi-perfluoroalkyl methacrylate)]의 전자선 조사 조건 하에서의 화학적 특성을 분석하고자 하였다. 2000년에 M. Lazzari 연구팀은 제논 광원(xenon light source)에서 방출되는 자외선에 의한 아크릴레이트 고분자 및 메타크릴레이트 고분자들의 광산화 열화(photooxidative degradation) 연구를 발표한 바 있다. 상기 연구에서 메타크릴레이트계 고분자에 고불소화 알킬 사슬이 첨가되는 경우 광화학적 안정성이 향상되는 것을 확인하였다. 그러나 불소화 용제에 용해될 정도의 높은 고불소화 알킬 사슬을 가지는 아크릴레이트 고분자 또는 메타크릴레이트 고분자를 합성하여 적용하지는 않았고, 또한 대기 상태 하에서 전자선 조사를 진행하였으므로 산소 라디칼(oxygen radical)이 개입되는 반응을 관찰할 수 있었다. As mentioned above, it is known that chain scission easily occurs by irradiation of electron beams or gamma rays at room temperature, which has been commercially applied. However, some documents have reported that cross-linking may occur when high energy radiation is irradiated at a temperature higher than the melting point of PTFE under an inert atmosphere. In view of this, the present inventors have a chain similar to PTFE as a side chain, and a solution process is possible using a fluorinated fluid, and poly (semi-perfluoroalkyl methacryl) is relatively very easy to synthesize. Rate) [poly (semi-perfluoroalkyl methacrylate)] to analyze the chemical properties under electron beam irradiation conditions. In 2000, the M. Lazzari research team published a study on photooxidative degradation of acrylate polymers and methacrylate polymers by ultraviolet light emitted from xenon light sources. In the above study, it was confirmed that the photochemical stability was improved when a high fluorinated alkyl chain was added to the methacrylate-based polymer. However, acrylate polymers or methacrylate polymers having a high fluorinated alkyl chain high enough to be soluble in a fluorinated solvent were not synthesized and applied, and since electron beam irradiation was performed under atmospheric conditions, reactions involving oxygen radicals were involved. I could observe.

본 발명에서는 전자선 리소그라피(lithography)가 진행되는, 산소가 배제된 고진공 조건 하에서 불소화 용제에 용해될 수 있는 수준의 높은 불소 함량을 가지는 고불소화된 메타크릴레이트가 전자선 조사에 의해 어떠한 화학 변화를 보이는지를 분석하고자 하였다. 전자선 조사에 의한 방사선 화학(radiation chemistry)을 통해 선택적으로 불소화된 메타크릴레이트 박막의 용해도를 변화시킬 수 있다면, 이를 매우 낮은 화학적 침해성을 가지는 불소화 용제와 함께 적용하여 매우 약한 유기 소재를 리소그라피 패터닝하는데 유용하게 적용할 수 있을 것으로 기대한다.In the present invention, the electron lithography (lithography) is advanced, fluorinated methacrylate having a high fluorine content of a level that can be dissolved in a fluorinated solvent under a high-vacuum-excluded condition, what kind of chemical changes by electron beam irradiation Analysis. If the solubility of the fluorinated methacrylate thin film can be selectively changed through radiation chemistry by electron beam irradiation, it is applied with a fluorinated solvent having a very low chemical invasion property to lithographically pattern a very weak organic material. It is expected to be useful.

상기와 같은 인식에 따라, 본 발명에서는 고불소계 용제에 용해가 가능하여 고불소계 용액으로 도포가 가능한 고불소화 고분자 레지스트의 개발 전략 및 이를 구체화하는 고불소화 고분자 전자선 레지스트의 합성에 대하여 기술하고자 한다.In accordance with the above recognition, the present invention will describe the development strategy of a high-fluorinated polymer resist that can be dissolved in a high-fluorine-based solvent and can be coated with a high-fluorine-based solution, and the synthesis of a high-fluorinated polymer electron beam resist that embodies it.

대한민국 등록특허 제10-0740994호 (2007.07.12 등록)Republic of Korea Registered Patent No. 10-0740994 (registered on July 12, 2007)

본 발명의 목적은 고불소계 용제에 용해성을 가지는 고불소화 고분자를 포함하는 레지스트 재료 및 이를 이용한 패턴 형성 방법을 제공하는 데 있다.An object of the present invention is to provide a resist material containing a high fluorinated polymer having a solubility in a high fluorine-based solvent and a pattern forming method using the same.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 고불소화 고분자를 포함하며, 상기 고분자는 고불소계 용제로 패턴 공정이 진행되는 고불소화 전자선 레지스트 재료를 제공한다.In order to achieve the above object, the present invention includes a high fluorinated polymer represented by the following Chemical Formula 1, wherein the polymer provides a highly fluorinated electron beam resist material in which a pattern process is performed with a high fluorine-based solvent.

[화학식 1][Formula 1]

Figure 112018058534952-pat00001
Figure 112018058534952-pat00001

상기 화학식 1에서, x는 0 내지 10의 정수이고, n은 10 내지 1000의 정수임.In Formula 1, x is an integer from 0 to 10, n is an integer from 10 to 1000.

또한, 본 발명은 상기 고불소화 전자선 레지스트 재료를 고불소계 용제에 용해시킨 후 기판에 도포하는 제 1공정; 상기 기판을 가열 처리하여 레지스트 막을 형성하는 제 2공정; 상기 레지스트 막에 전자선을 조사하는 제 3공정: 및 상기 레지스트 막을 현상액으로 현상하고, 기판 상에 패턴을 형성하는 제 4공정;을 포함하는 패턴 형성 방법을 제공한다.In addition, the present invention is a first step of dissolving the highly fluorinated electron beam resist material in a high fluorine-based solvent and applying it to the substrate; A second step of heating the substrate to form a resist film; A third step of irradiating an electron beam to the resist film: and a fourth step of developing the resist film with a developer and forming a pattern on a substrate.

본 발명에 따르면, 고불소계 용제에 용해성을 가지는 고불소화 고분자(PFDMA, PFUDMA, PFDDMA)는 전자선 레지스트 재료로 사용되어 기판에 용액 형태로 도포될 수 있으며, 형성된 박막은 전자선 조사에 의해 용해도가 감소되는 바, 고해상도 이미지를 형성할 수 있고, 전자선 리소그라피에 적용 시, 네거티브 톤 패턴을 형성하여 네거티브 레지스트 재료로 활용될 수 있다.According to the present invention, a high fluorinated polymer (PFDMA, PFUDMA, PFDDMA) having solubility in a high fluorine-based solvent can be applied as a solution to the substrate by being used as an electron beam resist material, and the formed thin film has reduced solubility by irradiation with electron beam A bar, a high-resolution image can be formed, and when applied to electron beam lithography, a negative tone pattern can be formed and used as a negative resist material.

도 1(a)는 고불소화 용제인 FC-3283, FC-770, HFE-7500의 화학 구조식을 나타낸 도면이며, (b)는 FUDMA, FDDMA 단량체의 합성식, (c)는 PFDMA, PFUDMA, PFDDMA 고분자 중합의 합성식을 나타낸 도면이다.
도 2는 합성된 고분자 PFDMA, PFUDMA, PFDDMA의 분자량을 나타낸 도면이다.
도 3(a)는 PFDMA, (b)는 PFUDMA, (c)는 PFDDMA의 전자선 리소그라피로 확보한 네거티브 톤 패턴의 주사전자현미경 사진을 나타낸 도면이며, (d)는 PFDMA, (e)는 PFUDMA, (f)는 PFDDMA의 동일한 패턴의 원자현미경 사진을 나타낸 도면이다.
도 4(a)는 norrish type II 분해 반응, (b)는 탈불소화(defluorination) 반응에 의한 고불소화 알킬 사슬의 분해 및 사슬 간의 가교 결합의 생성을 유도할 수 있는 전자선 조사에 의한 분해 메커니즘을 나타낸 도면이다.
도 5(a)는 PFDMA, (b)는 PFUDMA, (c)는 PFDDMA의 전자선 조사 전 박막과 조사 후 박막의 푸리에 변환 적외선 분광학(FT-IR) 스펙트럼을 나타낸 도면이다.
도 6은 전자선 조사 전의 PFDMA 박막과 전자 선 조사 후 PFDMA 박막의 X선 광전자 분광학(XPS) 스펙트럼으로, (a)는 C 1s 스펙트럼, (b)는 O 1s 스펙트럼, (c)는 F 1s 스펙트럼, (d)는 survey 스펙트럼을 나타낸 도면이다.
도 7은 PFDMA, PFUDMA, PFDDMA의 GC-MS (EI 모드) 스펙트럼을 나타낸 도면이다.
Figure 1 (a) is a diagram showing the chemical structure of the high-fluorination solvent FC-3283, FC-770, HFE-7500, (b) is a synthetic formula of FUDMA, FDDMA monomer, (c) is PFDMA, PFUDMA, PFDDMA It is a diagram showing a synthetic formula of polymer polymerization.
2 is a view showing the molecular weight of the synthesized polymer PFDMA, PFUDMA, PFDDMA.
Figure 3 (a) is a PFDMA, (b) is PFUDMA, (c) is a diagram showing a scanning electron microscope photograph of a negative tone pattern secured by electron beam lithography of PFDDMA, (d) is PFDMA, (e) is PFUDMA, (f) is a view showing an atomic force microscope photograph of the same pattern of PFDDMA.
Figure 4 (a) is a norrish type II decomposition reaction, (b) is defluorination (defluorination) decomposition (defluorination) decomposition of a high-fluorination alkyl chain and the decomposition mechanism by electron beam irradiation that can induce the generation of cross-linking between chain It is a drawing.
5 (a) is a diagram showing Fourier transform infrared spectroscopy (FT-IR) spectra of a thin film before and after irradiation with PFDMA, (b) PFUDMA, and (c) PFDDMA.
6 is an X-ray photoelectron spectroscopy (XPS) spectrum of the PFDMA thin film before electron beam irradiation and the PFDMA thin film after electron beam irradiation, (a) is C 1s spectrum, (b) is O 1s spectrum, (c) is F 1s spectrum, (d) shows the survey spectrum.
7 is a view showing the GC-MS (EI mode) spectrum of PFDMA, PFUDMA, and PFDDMA.

본 발명의 발명자들은 고불소화 용제에 용해가 가능한 고불소화 고분자를 포함하는 레지스트를 개발하고, 이를 전자선 리소그라피에 적용한 결과, 네거티브 톤 패턴을 형성하는 것을 확인하며 본 발명을 완성하였다.The inventors of the present invention developed a resist containing a high fluorinated polymer soluble in a high fluorinated solvent, and applied it to electron beam lithography, confirming that a negative tone pattern was formed, and completed the present invention.

이에, 본 발명은 하기 화학식 1로 표시되는 고불소화 고분자를 포함하며, 상기 고분자는 고불소계 용제로 패턴 공정이 진행되는 고불소화 전자선 레지스트 재료를 제공한다.Accordingly, the present invention includes a high fluorinated polymer represented by the following Chemical Formula 1, and the polymer provides a highly fluorinated electron beam resist material in which a pattern process is performed with a high fluorine-based solvent.

[화학식 1][Formula 1]

Figure 112018058534952-pat00002
Figure 112018058534952-pat00002

상기 화학식 1에서, x는 0 내지 10의 정수이고, n은 10 내지 1000의 정수임.In Formula 1, x is an integer from 0 to 10, n is an integer from 10 to 1000.

상기 고불소화 고분자는 폴리(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트)(PFDMA), 폴리(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-헵타데카플루오로운데실 메타크릴레이트)(PFUDMA) 및 폴리(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실 메타크릴레이트)(PFDDMA)로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The high fluorinated polymer is poly (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA), poly (4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluorodecyl methacrylate) (PFUDMA) and poly (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl methacrylate) It may be selected from the group consisting of (PFDDMA), but is not limited thereto.

상기 고불소화 고분자는 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-헵타데카플루오로운데실 메타크릴레이트(FUDMA), 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실 메타크릴레이트(FDDMA) 및 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트(FDMA)로 이루어진 군에서 선택된 하나 이상의 단량체를 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.The high fluorinated polymer is 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluorodecyl methacrylate (FUDMA ), 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl methacrylate (FDDMA) and 3 One selected from the group consisting of, 3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate (FDMA) The above monomers may be included, but are not limited thereto.

상기 고불소화 고분자는 고불소계 용제에 용해될 수 있다.The high fluorinated polymer can be dissolved in a high fluorine-based solvent.

상기 고불소계 용제는 3-에톡시-1,1,1,2,3,4,4,5,5,6,6,6-도데카플루오로-2-트리플루오로메틸-헥세인(3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane; HFE-7500), 퍼플루오로트리프로필아민(perfluorotripropylamine; FC-3283) 및 퍼플루오로-N-알킬 모르폴린(perfluoro-N-alkyl morpholines; FC-770)으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The high fluorine-based solvent is 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane (3 -ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane; HFE-7500), perfluorotripropylamine; FC- 3283) and perfluoro-N-alkyl morpholines (FC-770), but is not limited thereto.

상기 고불소화 고분자는 수평균 분자량(Mn)이 8,000 내지 13,000일 수 있으나, 이에 제한되는 것은 아님을 명시한다.The high fluorinated polymer may have a number average molecular weight (Mn) of 8,000 to 13,000, but is not limited thereto.

또한, 본 발명은 상기 고불소화 전자선 레지스트 재료를 고불소계 용제에 용해시킨 후 기판에 도포하는 제 1공정; 상기 기판을 가열 처리하여 레지스트 막을 형성하는 제 2공정; 상기 레지스트 막에 전자선을 조사하는 제 3공정: 및 상기 레지스트 막을 현상액으로 현상하고, 기판 상에 패턴을 형성하는 제 4공정;을 포함하는 패턴 형성 방법을 제공한다.In addition, the present invention is a first step of dissolving the highly fluorinated electron beam resist material in a high fluorine-based solvent and applying it to the substrate; A second step of heating the substrate to form a resist film; A third step of irradiating an electron beam to the resist film: and a fourth step of developing the resist film with a developer and forming a pattern on a substrate.

상기 제 1공정의 기판은 규소 기판일 수 있으나, 이에 제한되는 것은 아님을 명시한다.It should be noted that the substrate of the first process may be a silicon substrate, but is not limited thereto.

상기 제 2공정의 가열 처리는 60 내지 80℃에서 30초 내지 2분 동안 수행될 수 있으나, 이에 제한되는 것은 아님을 명시한다.It is noted that the heat treatment of the second process may be performed at 60 to 80 ° C. for 30 seconds to 2 minutes, but is not limited thereto.

상기 제 3공정의 전자선은 0.5 내지 15 C/m2 의 선량으로 조사될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The electron beam of the third process may be irradiated with a dose of 0.5 to 15 C / m 2 , but it is not limited thereto.

이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예 1: 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-헵타데카플루오로운데실 메타크릴레이트(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl methacrylate; FUDMA)의 합성Example 1: 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluorodecyl methacrylate (4, Synthesis of 4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl methacrylate (FUDMA)

메틸 메타크릴레이트(methyl methacrylate)(3.14 g, 31.37 mmol), 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-헵타데카플루오로 운데센-1-올(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro undecen-1-ol)(3.00 g, 6.27 mmol), 디브틸주석디라우르산(dibutyltin dilaurate)(0.97 g, 1.25 mmol), 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methylphenol)(0.009 g, 0.044 mmol), 용제로서 톨루엔(10 cm3)을 100 cm3 둥근 바닥 플라스크에 넣었다. 이후 플라스크 내부를 N2 기류로 치환하고, 120℃로 가열하여 하루 밤 교반시켰다. 상온으로 식힌 후, 디에틸 에테르(diethyl ether)를 이용하여 추출하고, 물로 세척한 후 무수 MgSO4로 건조시켰다. 수득한 화합물은 컬럼크로마토그래피(실리카 겔, 디클로로메탄 : 헥세인 = 1 : 3)를 이용하여 무색 액체의 FUDMA(2.50 g, 78%)를 수득하였다. Methyl methacrylate (3.14 g, 31.37 mmol), 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Heptadecafluoro undecen-1-ol (4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro undecen-1- ol) (3.00 g, 6.27 mmol), dibutyltin dilaurate (0.97 g, 1.25 mmol), 2,6-di-tert-butyl-4-methylphenol (2,6-di-tert -butyl-4-methylphenol) (0.009 g, 0.044 mmol), toluene (10 cm 3 ) as a solvent was placed in a 100 cm 3 round bottom flask. Subsequently, the inside of the flask was replaced with an N 2 stream, heated to 120 ° C. and stirred overnight. After cooling to room temperature, the mixture was extracted with diethyl ether, washed with water and dried over anhydrous MgSO 4 . The obtained compound was subjected to column chromatography (silica gel, dichloromethane: hexane = 1: 3) to obtain FUDMA (2.50 g, 78%) as a colorless liquid.

1H NMR(400 MHz, CDCl3):δ= 1.93 (s, 3 H), 1.96-2.03 (m, 2 H), 2.11-2.26 (m, 2 H), 4.21 (t, J = 6 Hz, 2 H), 5.57 (s, 1 H), 6.09 (s, 1 H). 1 H NMR (400 MHz, CDCl 3 ): δ = 1.93 (s, 3 H), 1.96-2.03 (m, 2 H), 2.11-2.26 (m, 2 H), 4.21 (t, J = 6 Hz, 2 H), 5.57 (s, 1 H), 6.09 (s, 1 H).

실시예 2: 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실 메타크릴레이트(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl methacrylate; FDDMA)의 합성Example 2: 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl methacrylate (5, Synthesis of 5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl methacrylate (FDDMA)

메틸 메타크릴레이트(5.08 g, 50.79 mmol), 5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-헵타데카플루오로도데센-1-올(5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluorododecan-1-ol)(5.00 g, 10.15 mmol), 디브틸주석디라우르산(1.28 g, 2.03 mmol), 2,6-디-터트-부틸-4-메틸페놀(0.015 g, 0.071 mmol), 용제로서 톨루엔(15 cm3)을 250 cm3 둥근 바닥 플라스크에 넣었다. 이후 플라스크 내부를 N2 기류로 치환하고, 120℃로 가열하여 하루 밤 교반시켰다. 상온으로 식힌 후, 디에틸 에테르 이용하여 추출하고, 물로 세척한 후 무수 MgSO4로 건조시켰다. 수득한 화합물을 컬럼크로마토그래피(실리카 겔, 디클로로메탄 : 헥세인 = 1 : 3)를 이용하여 무색 액체의 FDDMA(4.20 g, 75%)를 수득하였다. Methyl methacrylate (5.08 g, 50.79 mmol), 5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluorododecene-1 -Ol (5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluorododecan-1-ol) (5.00 g, 10.15 mmol), dibutyl tin Dilauric acid (1.28 g, 2.03 mmol), 2,6-di-tert-butyl-4-methylphenol (0.015 g, 0.071 mmol), toluene (15 cm 3 ) as a solvent was placed in a 250 cm 3 round bottom flask. . Subsequently, the inside of the flask was replaced with an N 2 stream, heated to 120 ° C. and stirred overnight. After cooling to room temperature, the mixture was extracted with diethyl ether, washed with water, and dried over anhydrous MgSO 4 . The obtained compound was subjected to column chromatography (silica gel, dichloromethane: hexane = 1: 3) to obtain FDDMA (4.20 g, 75%) as a colorless liquid.

1H NMR(400 MHz, CDCl3):δ= 1.65-1.81 (m, 4H), 1.93 (s, 3 H), 2.03-2.20 (m, 2 H), 4.17 (t, J = 6 Hz, 2 H), 5.56 (s, 1 H), 6.08 (s, 1 H). 1 H NMR (400 MHz, CDCl 3 ): δ = 1.65-1.81 (m, 4H), 1.93 (s, 3 H), 2.03-2.20 (m, 2 H), 4.17 (t, J = 6 Hz, 2 H), 5.56 (s, 1 H), 6.08 (s, 1 H).

실시예 3: 폴리(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트[poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate; PFDMA]의 합성Example 3: Poly (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate [poly Synthesis of (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate; PFDMA]

Schlenk 튜브 내에 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylat; FDMA)(10.0 g), 2,2-아조비시소부티로니트릴(2,2-azobisisobutyronitrile; AIBN)(0.3 g)을 넣고, 튜브 내의 공기를 N2 기류로 치환하였다. N2 가스로 버블링(bubbling) 처리한 벤조트리플루오라이드(benzotrifluoride)(10 cm3)를 N2 가스 조건 하에 튜브 내에 첨가하였다. 이후 80℃의 온도에서 12시간 동안 교반시킨 다음, 튜브 내의 고분자 용액을 헥세인(300 cm3)에 침전시키고, 여과 및 회수하였다. 이후 이를 건조시켜 고불소화 고분자인 PFDMA(7.2 g)를 수득하였다. 수득된 고분자의 수평균 분자량(Mn)은 10,600 g/mol, 중량평균 분자량(Mw)은 16,300 g/mol로 확인되었다.3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate (3,3, 4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylat; FDMA) (10.0 g), 2,2-azobisisobutyronitrile (2,2-azobisisobutyronitrile; AIBN) (0.3 g) was added, and air in the tube was replaced with an N 2 stream. In N 2 gas was added in a bubbled (bubbling) treated benzotrifluoride (benzotrifluoride) (10 cm 3) under an N 2 gas tube condition. After stirring for 12 hours at a temperature of 80 ℃, the polymer solution in the tube was precipitated in hexane (300 cm 3 ), filtered and recovered. Then, it was dried to obtain PFDMA (7.2 g), a high-fluorinated polymer. The obtained polymer had a number average molecular weight (Mn) of 10,600 g / mol and a weight average molecular weight (Mw) of 16,300 g / mol.

실시예 4: 폴리(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-헵타데카플루오로운데실 메타크릴레이트)[poly(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl methacrylate); PFUDMA]의 합성Example 4: Poly (4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluorodecyl methacrylate) [poly (4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl methacrylate); Synthesis of PFUDMA]

PFUDMA도 FDMA와 같은 자유라디칼 중합법에 의해 제조되었다. 수득된 고분자의 수평균 분자량(Mn)은 10,400 g/mol, 중량평균 분자량(Mw)은 16,400 g/mol로 확인되었다.PFUDMA was also prepared by a free radical polymerization method such as FDMA. The obtained polymer had a number average molecular weight (Mn) of 10,400 g / mol and a weight average molecular weight (Mw) of 16,400 g / mol.

실시예 5: 폴리(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실 메타크릴레이트[poly(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl methacrylate); PFDDMA]의 합성Example 5: Poly (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl methacrylate [ Synthesis of poly (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl methacrylate); PFDDMA]

PFDDMA도 FDMA와 같은 자유라디칼 중합법에 의해 제조되었다. 수득된 고분자의 수평균 분자량(Mn)은 10,700 g/mol, 중량평균 분자량(Mw)은 15,900 g/mol로 확인되었다.PFDDMA was also produced by a free radical polymerization method such as FDMA. The obtained polymer had a number average molecular weight (Mn) of 10,700 g / mol and a weight average molecular weight (Mw) of 15,900 g / mol.

실시예 6: 전자선 리소그라피Example 6: Electron beam lithography

규소(Si) 기판 위에 HFE-7500에 용해시킨 PFDMA, PFUDMA, PFDDMA 용액(5 wt%)을 각각 3000 rpm에서 60초간 스핀 코팅을 진행한 뒤, 70℃에서 1분 동안 가열하여 박막(120 nm)을 형성하였다. 이후 80 keV 가속 전압 하에서 1-11 C/m2의 선량으로 전자선을 조사한 후, PFDMA(FC-770), PFUDMA(FC-3283), PFDDMA(FC-3283)로 30초간 현상 과정을 진행하여 나노 패턴을 형성하였다.PFDMA, PFUDMA, and PFDDMA solutions (5 wt%) dissolved in HFE-7500 on a silicon (Si) substrate were spin-coated at 3000 rpm for 60 seconds, respectively, and then heated at 70 ° C. for 1 minute to form a thin film (120 nm). Formed. After irradiating the electron beam with a dose of 1-11 C / m 2 under an 80 keV acceleration voltage, the nanoparticles were processed for 30 seconds with PFDMA (FC-770), PFUDMA (FC-3283), and PFDDMA (FC-3283). A pattern was formed.

실험예: 고불소화 고분자 및 이를 이용하여 제조되는 전자선 리소그라피 분석Experimental Example: High Fluorinated Polymer and Electron Beam Lithography Analysis

본 발명은 전자선 조건 하에서 고분자의 주쇄 절단 반응을 통해 포지티브 패턴을 형성할 수 있는 폴리(메틸 메타크릴레이트)[poly(methyl methacrylate); PMMA]로부터 모티브를 얻어, 과불화탄소(perfluorocarbon) 및 수소불화에테르(hydrofluoroether)계의 고불소계 용제(도 1a)를 이용하여 리소그라피 공정에 이용할 수 있는 전자선 레지스트 재료를 개발하고자 하였다. 즉, 화학적 활성이 매우 낮아 제한된 침해성을 가지는 고불소계 용제를 이용하여 박막의 형성 및 패턴의 현상이 가능하도록 고불소화 고분자형 전자선 레지스트 재료를 합성한 후, 이를 전자선 조사 조건 하에서의 작동 메커니즘을 추적하여 보다 우수한 감도 및 해상도를 나타내는 레지스트 재료를 개발하고자 하였다.The present invention is a poly (methyl methacrylate) [poly (methyl methacrylate) capable of forming a positive pattern through the main chain cutting reaction of the polymer under electron beam conditions; PMMA], and tried to develop an electron beam resist material that can be used in the lithography process using a perfluorocarbon and a hydrofluoroether-based high fluorine-based solvent (FIG. 1A). That is, a highly fluorinated polymer electron beam resist material is synthesized to enable formation of a thin film and development of a pattern using a high fluorine-based solvent having very low chemical activity, and then tracking the operating mechanism under electron beam irradiation conditions. An attempt was made to develop a resist material that exhibits better sensitivity and resolution.

이를 위해, 상업적으로 구입 가능하며, 고불소계 용제에 대해 우수한 용해성을 지니는 단량체인 FDMA를 이용하여 AIBN을 라디칼 개시제로, 벤조트리플루오라이드를 중합 용제로 적용하는 용액 상 랜덤 공중합 과정을 통해 PFDMA 고분자로 전환하였다(도 1c). 상기 PFDFMA 고분자의 분자량 측정은 이동상으로 고불소계 용제인 AK-225G를, 표준물질로 PMMA를 적용하는 조건에서 Mn=10,600, PDI=1.54로 확인되었다(도 2).To this end, a commercially available, high-fluorinated solvent having excellent solubility as a monomer using FDMA, AIBN as a radical initiator, and benzotrifluoride as a polymerization solvent in a solution phase random copolymerization process to a PFDMA polymer Converted (Figure 1c). The molecular weight measurement of the PFDFMA polymer was confirmed to be Mn = 10,600 and PDI = 1.54 under the conditions of applying a high fluorine-based solvent AK-225G as a mobile phase and PMMA as a standard (FIG. 2).

이후 전자선 조사 하에서 포지티브 패턴이 형성되는 것을 확인하기 위하여 전자선 리소그라피 실험을 진행하였다. 그러나 예상과 달리, 고불소계 용제인 FC-770을 이용한 현상 과정 후에 PFDMA 고분자 박막은 네거티브 패턴을 형성하는 것을 확인하였다(도 3a 및 3d). 이는, PFDMA 고분자가 전자선 조사 중 유발되는 자유 라디칼에 의한 주쇄 절단 반응이 아닌, 또 다른 자유 라디칼 반응인 Norrish type II 분해 반응에 의한 것으로, 고분자 사슬 중 에스테르 결합을 형성하는 탄소와 산소간의 이중결합이 끊어지며 이중 라디칼이 형성되고, 6각 고리 형태의 전이상태(6-membered transition state)가 구성되며, 이에 따라 수소 원자의 이동을 동반한 고불소화 알켄(alkene) 사슬의 탈리 현상에 의해 발생하는 것으로 예상하였다(도 4a). 상대적으로 작은 결합 강도를 가지는 탄소-산소 π- 결합이 높은 에너지의 전자선에 의해 이중 라디칼을 형성한 후, 6각 고리 형태의 전이상태를 통해 세미-퍼플루오로알킬(semi-perfluoroalkyl) 사슬로부터 수소를 얻어와 1H, 1H, 2H-퍼플루오로데칸(perfluorodecane) 사슬이 탈리되며 카르복시산이 형성되는 것으로 보인다. 카르복시산이 형성되면 고분자는 높은 극성을 가지게 되어 고불소계 용제에 대한 용해성이 낮아지게 된다.Thereafter, an electron beam lithography experiment was conducted to confirm that a positive pattern was formed under electron beam irradiation. However, unlike the prediction, it was confirmed that the PFDMA polymer thin film formed a negative pattern after the development process using the high-fluorine-based solvent FC-770 (FIGS. 3A and 3D). This is because the PFDMA polymer is not a main chain cleavage reaction caused by free radicals induced during electron beam irradiation, but is also caused by another free radical reaction, a Norrish type II decomposition reaction, and a double bond between carbon and oxygen forming an ester bond in the polymer chain It breaks and a double radical is formed, and a six-membered transition state is formed, which is caused by the desorption of a highly fluorinated alkene chain accompanied by the movement of a hydrogen atom. Expected (Figure 4a). Hydrogen from a semi-perfluoroalkyl chain through a transition state of a hexagonal ring form after forming a double radical by an electron beam of high energy with a carbon-oxygen π-bond having a relatively small bond strength. And 1 H , 1 H , and 2 H -perfluorodecane chains are desorbed and carboxylic acid appears to be formed. When the carboxylic acid is formed, the polymer has a high polarity and solubility in a high fluorine-based solvent is lowered.

보다 자세히 전자선 조사에 의한 메타크릴레이트 고분자의 분해 메커니즘을 확인하기 위해, PFDMA와 구조는 유사하나 메틸렌(-CH2-) 단위를 하나씩 더 가지는 단량체 2종(FUDMA, FDDMA) (도 1b)을 선정하였고, 전자선 조사 하에서 이의 패터닝 결과를 관찰하고자 하였다. FUDMA 및 FDDMA는 상업적으로 구입이 불가능한 관계로 합성하여 제조하였다. 두 신규 단량체 모두 세미-퍼플루오로알킬 알코올(semi-perfluoroalkyl alcohol)과 MMA 내 메틸 에스테르(methyl ester) 작용기 간의 에스테르 교환(transesterification) 반응을 통해 높은 수율로 합성되었다. 이때, 에스테르 교환 반응을 강산 촉매를 이용하는 경로 대신, 루이스 산 촉매인 디브틸주석디라우르산(dibutyltin dilaurate)을 이용하여 톨루엔(toluene) 내에서 진행하였다. 확보된 PFDMA와 유사하게 AIBN을 라디칼 개시제로, 벤조트리플루오라이드를 중합 용제로 적용하는 용액 상 랜덤 공중합 과정을 통해 고분자로 전환하였다(도 1c). 제조된 고분자들의 분자량은 PFUDMA의 경우, Mn=10,400, PDI=1.5, PFDDMA의 경우, Mn=10,700, PDI=1.49로 확인된 바, 상기 고분자들이 PFDMA와 유사한 분자량 및 분자량 분포로 제조된 것을 확인할 수 있었다(도 2).In order to confirm the decomposition mechanism of the methacrylate polymer by electron beam irradiation in more detail, two monomers (FUDMA, FDDMA) having a similar structure to PFDMA but having one more methylene (-CH 2- ) unit (FUDMA, FDDMA) were selected. And attempted to observe its patterning results under electron beam irradiation. FUDMA and FDDMA were synthesized in a commercially unavailable relationship. Both new monomers were synthesized in high yield through a transesterification reaction between a semi-perfluoroalkyl alcohol and a methyl ester functional group in MMA. At this time, the transesterification reaction was carried out in toluene using dibutyltin dilaurate, a Lewis acid catalyst, instead of using a strong acid catalyst. Similar to the obtained PFDMA, AIBN was converted into a polymer through a random copolymerization process in solution phase using a radical initiator and benzotrifluoride as a polymerization solvent (FIG. 1C). The molecular weights of the prepared polymers were confirmed to be Mn = 10,400, PDI = 1.5 for PFUDMA, and Mn = 10,700, PDI = 1.49 for PFDDMA, confirming that the polymers were prepared with molecular weight and molecular weight distribution similar to PFDMA. There was (Fig. 2).

신규 고분자인 PFUDMA 및 PFDDMA에 대해서도 박막 형성 후 전자선 조사 실험을 진행한 결과, PFDMA와 마찬가지로 네거티브 패턴이 형성되는 것을 확인하였다(도 3b, 3c, 3e, 3f). 상기 결과로부터 본 발명자들은 PFDMA와 유사한 화학 반응이 전자선 조사 조건 하에서 PFUDMA 및 PFDDMA에서도 발생하는 것으로 예상하고, 이를 정밀한 분석 기법을 적용하여 검증하고자 하였다. As a result of conducting an electron beam irradiation experiment after forming a thin film for the new polymers PFUDMA and PFDDMA, it was confirmed that a negative pattern was formed as in PFDMA (FIGS. 3B, 3C, 3E, and 3F). From the above results, the present inventors predicted that a chemical reaction similar to PFDMA would occur in PFUDMA and PFDDMA under electron beam irradiation conditions, and tried to verify it by applying a precise analysis technique.

먼저 푸리에 변환 적외선 분광학(FT-IR)을 이용하여 전자선 조사 전의 고분자 박막과 전자선 조사 이후 현상 과정까지 끝낸 박막의 화학 구조의 차이를 확인하였다. 그 결과, 도 5와 같이, PFDMA, PFUDMA 및 PFDDMA, 3종의 고분자 모두 조사 전과 조사 후 에스테르 작용기의 C=O(1738 cm-1), 고불소화 사슬의 C-F(1149, 1203, 1232 cm-1)가 동일한 위치에서 유사한 강도로 측정되는 것을 확인하였다. 앞서 언급한 전자선 조사 하에서 Norrish Type II 분해 반응이 발생하여 용해도의 변화가 유발되면 고분자 구조 내에 카르복시산이 발생하고(도 4a), 이에 따른 새로운 C=O 결합 피크가 관찰되어야 하나 이는 검출 되지 않았다. First, by using Fourier transform infrared spectroscopy (FT-IR), the difference in the chemical structure of the polymer thin film before electron beam irradiation and the thin film finished until the development process after electron beam irradiation was confirmed. As a result, as shown in Figure 5, PFDMA, PFUDMA and PFDDMA, C = O (1738 cm -1 ) of the ester functional group before and after irradiation of all three polymers, CF (1149, 1203, 1232 cm -1 of the high fluorinated chain) ) Was confirmed to be measured with similar strength at the same location. When the Norrish Type II decomposition reaction occurs under the aforementioned electron beam irradiation and a change in solubility is caused, a carboxylic acid is generated in the polymer structure (FIG. 4A), and thus a new C = O binding peak should be observed, but this was not detected.

따라서 전자선 조사에 의한 Norrish Type II 분해 반응의 발생 개연성이 의심되는 상황이 전개되었고, 이를 재확인하기 위해, 전자선 조사 전후 PFDMA 고분자 박막에 대해 X선 광전자 분광학(XPS)을 이용한 화학 조성 분석을 진행하였다. 그 결과, 도 6a와 같이, 전자선 조사 전과 조사 후, C-C(285.78), C-O(288.08), C-F(291.78) 결합의 결합 에너지가 모두 유사한 것을 확인하였다. 또한, 도 6b와 같이, 에스테르 작용기의 C=O(291.88), C-O-C(288.08) 결합 모두 매우 유사한 결합 에너지를 나타내는 것을 확인하였다. 따라서 상기 결과로부터 전자선 조사 전과 조사 후 Norrish type II 분해 반응에 의한 화학적 조성 변화가 발생한다는 증거를 확보하는데 실패하였다. Therefore, a situation in which the probability of occurrence of the Norrish Type II decomposition reaction by electron beam irradiation was suspected was developed, and to confirm this, chemical composition analysis using X-ray photoelectron spectroscopy (XPS) was performed on PFDMA polymer thin films before and after electron beam irradiation. As a result, as shown in FIG. 6A, it was confirmed that the binding energies of C-C (285.78), C-O (288.08), and C-F (291.78) bonds were similar before and after electron beam irradiation. In addition, as shown in Figure 6b, it was confirmed that both the C = O (291.88) and C-O-C (288.08) bonds of the ester functional group exhibit very similar binding energies. Therefore, from the above results, it was unsuccessful to secure evidence that chemical composition changes occurred by Norrish type II decomposition reaction before and after electron beam irradiation.

즉, FT-IR과 XPS를 이용한 실험을 통해 PFDMA 및 이와 유사한 고분자가 전자선에 의해 유발되는 자유 라디칼의 분해 반응을 통해 네거티브 패턴을 형성할 것이라는 점을 확인하지 못했다. 이에, PFDMA 고분자 박막이 전자선 조사를 통해 용해도가 감소되는 또 다른 원인으로서, 고불소화 알킬 사슬 자체가 고에너지 전자에 의해 분해되어 불소 함량이 줄어들게 되고(defluorination), 이때 동반되는 자유 라디칼의 생성에 의해 고불소화 알킬 사슬간 가교 결합이 발생하는 반응을 예상하였다(도 4b). 이와 같은 반응 메커니즘의 개연성은 상용화되는 불소 고분자인 CYTOPTM(AsahiGlassCo.) 박막이 전자선 조사에 의해 용해도가 감소되며 포지티브 패턴을 형성하는데에서도 유추할 수 있다.That is, it was not confirmed through experiments with FT-IR and XPS that PFDMA and similar polymers would form a negative pattern through the decomposition reaction of free radicals caused by electron beams. Accordingly, as another cause of the solubility of the PFDMA polymer thin film being reduced through electron beam irradiation, the high-fluorinated alkyl chain itself is decomposed by high-energy electrons to reduce the fluorine content (defluorination), and by the generation of accompanying free radicals A reaction in which crosslinking between high fluorinated alkyl chains occurred was expected (FIG. 4B). The likelihood of the reaction mechanism can be inferred from the formation of a positive pattern by reducing the solubility of CYTOPTM (AsahiGlassCo.) Thin films, which are commercially available fluorine polymers, by electron beam irradiation.

전자선 조사에 의한 고불소화 알킬 사슬의 분해 반응을 직접 관찰하기 위해, 가스 크로마토그래피(GC) 기법 중 하나인 전자 이온화(electron ionization; EI) 방법을 적용하여 고불소화 고분자의 분해를 유도하였다. 전자 이온화 조건 하에서 고분자 시료에 전자선을 조사하는 것이 가능하고, 이때 분해 반응이 발생하게 되면 분해 산물이 질량분석기(MS)를 통해 검출되므로, 고불소화 고분자의 분해 반응을 확인할 수 있다. In order to directly observe the decomposition reaction of the highly fluorinated alkyl chain by electron beam irradiation, decomposition of the high fluorinated polymer was induced by applying an electron ionization (EI) method, one of gas chromatography (GC) techniques. Under electron ionization conditions, it is possible to irradiate an electron beam to a polymer sample. At this time, when a decomposition reaction occurs, a decomposition product is detected through a mass spectrometer (MS), so that the decomposition reaction of the high-fluorinated polymer can be confirmed.

상호 비교를 위해 PFDMA, PFUDMA 및 PFDDMA, 3종의 고분자를 대상으로 분석을 진행하였다. 그 결과, 도 7과 같이, 전자 이온화 조건에 의해 3종의 고분자 모두에게서 공통적으로 112, 86, 69 m/z 피크가 관측되었다. 도 4b에서 볼 수 있듯이 112 m/z 피크는 탈불소화 분해 산물 중 [C3F4]-로, 86 m/z 피크는 [C4F2]-로, 69 m/z는 [CF3]-로 분자량을 매칭할 수 있었다. 이와 같은 탈불소화 분해 반응과 더불어 고불소화 알킬 사슬에 자유 라디칼이 생성되고, 이들 간 가교 결합이 발생하여 PFDMA를 비롯한 고불소화 알킬 메타크릴레이트의 용해도가 현저히 감소되는 것을 확인하였다.For mutual comparison, analysis was conducted on three types of polymers: PFDMA, PFUDMA and PFDDMA. As a result, as shown in FIG. 7, peaks of 112, 86, and 69 m / z were commonly observed in all three polymers by electron ionization conditions. As can be seen in Fig. 4b 112 m / z peaks of de-fluorination degradation products [C 3 F 4] - to, 86 m / z peaks are [C 4 F 2] - to, 69 m / z is [CF 3] - it had to be matched to the molecular weight. In addition to the defluorination decomposition reaction, free radicals are generated in the high-fluorinated alkyl chain, and cross-linking occurs between them, confirming that the solubility of the high-fluorinated alkyl methacrylate including PFDMA is significantly reduced.

또한, 전자선 조사에 의한 네거티브 패턴 형성 메커니즘과 더불어, 고불소화 메타크릴레이트를 이용하여 리소그라피 실험을 진행하였으며, 네거티브 톤 패턴을 형성하는 것을 확인할 수 있었다.In addition, in addition to the mechanism for forming a negative pattern by electron beam irradiation, a lithography experiment was performed using high fluorinated methacrylate, and it was confirmed that a negative tone pattern was formed.

이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it is obvious that for those skilled in the art, these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all modifications or variations derived from the meaning and scope of the claims and their equivalent concepts should be interpreted to be included in the scope of the present invention.

Claims (9)

하기 화학식 1로 표시되는 고불소화 고분자를 포함하며, 상기 고분자는 고불소계 용제로 네거티브 패턴 공정이 진행되고,
상기 고불소화 고분자는 폴리(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트)(PFDMA), 폴리(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-헵타데카플루오로운데실 메타크릴레이트)(PFUDMA) 및 폴리(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실 메타크릴레이트)(PFDDMA)로 이루어진 군에서 선택된 것을 특징으로 하는 고불소화 전자선 레지스트 재료:
[화학식 1]
Figure 112020001665778-pat00003

상기 화학식 1에서, x는 0 내지 10의 정수이고, n은 10 내지 1000의 정수임.
It includes a high fluorinated polymer represented by the formula (1), the polymer is a high fluorine-based solvent, a negative pattern process is in progress,
The high fluorinated polymer is poly (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA), poly (4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluorodecyl methacrylate) (PFUDMA) and poly (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl methacrylate) Highly fluorinated electron beam resist material selected from the group consisting of (PFDDMA):
[Formula 1]
Figure 112020001665778-pat00003

In Formula 1, x is an integer from 0 to 10, n is an integer from 10 to 1000.
삭제delete 제 1항에 있어서, 상기 고불소화 고분자는 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-헵타데카플루오로운데실 메타크릴레이트(FUDMA), 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실 메타크릴레이트(FDDMA) 및 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트(FDMA)로 이루어진 군에서 선택된 하나 이상의 단량체를 포함하는 것을 특징으로 하는 고불소화 전자선 레지스트 재료.The method of claim 1, wherein the high fluorinated polymer is 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadeca fluoride. Sil methacrylate (FUDMA), 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl methacryl Rate (FDDMA) and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate (FDMA) High fluorinated electron beam resist material comprising at least one monomer selected from the group consisting of. 제 1항에 있어서, 상기 고불소화 고분자는 고불소계 용제에 용해되는 것을 특징으로 하는 고불소화 전자선 레지스트 재료.The highly fluorinated electron beam resist material according to claim 1, wherein the highly fluorinated polymer is dissolved in a high fluorine-based solvent. 제 1항에 있어서, 상기 고불소계 용제는 3-에톡시-1,1,1,2,3,4,4,5,5,6,6,6-도데카플루오로-2-트리플루오로메틸-헥세인(3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane; HFE-7500), 퍼플루오로트리프로필아민(perfluorotripropylamine; FC-3283) 및 퍼플루오로-N-알킬 모르폴린(perfluoro-N-alkyl morpholines; FC-770)으로 이루어진 군에서 선택된 것을 특징으로 하는 고불소화 전자선 레지스트 재료.The method of claim 1, wherein the high fluorine-based solvent is 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoro Methyl-hexane (3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane; HFE-7500), perfluorotripropyl Highly fluorinated electron beam resist material selected from the group consisting of amines (perfluorotripropylamine; FC-3283) and perfluoro-N-alkyl morpholines (FC-770). 제 1항에 있어서, 상기 고불소화 고분자는 수평균 분자량(Mn)이 8,000 내지 13,000인 것을 특징으로 하는 고불소화 전자선 레지스트 재료.The highly fluorinated electron beam resist material according to claim 1, wherein the highly fluorinated polymer has a number average molecular weight (Mn) of 8,000 to 13,000. 삭제delete 제 1항, 제 3항 내지 제 6항 중 어느 한 항에 따른 고불소화 전자선 레지스트 재료를 고불소계 용제에 용해시킨 후 기판에 도포하는 제 1공정;
상기 기판을 가열 처리하여 레지스트 막을 형성하는 제 2공정;
상기 레지스트 막에 전자선을 조사하는 제 3공정: 및
상기 레지스트 막을 현상액으로 현상하고, 기판 상에 패턴을 형성하는 제 4공정;을 포함하는 패턴 형성 방법.
A first step of dissolving the highly fluorinated electron beam resist material according to any one of claims 1, 3 to 6 in a high fluorine-based solvent and applying it to the substrate;
A second step of heating the substrate to form a resist film;
A third step of irradiating the resist film with electron beams: and
And a fourth step of developing the resist film with a developer and forming a pattern on the substrate.
제 8항에 있어서, 상기 제 2공정의 가열 처리는 60 내지 80℃에서 30초 내지 2분 동안 수행되는 것을 특징으로 하는 패턴 형성 방법.The method of claim 8, wherein the heat treatment in the second process is performed at 60 to 80 ° C. for 30 seconds to 2 minutes.
KR1020180068663A 2018-06-15 2018-06-15 Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents Active KR102114116B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180068663A KR102114116B1 (en) 2018-06-15 2018-06-15 Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180068663A KR102114116B1 (en) 2018-06-15 2018-06-15 Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents

Publications (2)

Publication Number Publication Date
KR20190141895A KR20190141895A (en) 2019-12-26
KR102114116B1 true KR102114116B1 (en) 2020-05-22

Family

ID=69103905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180068663A Active KR102114116B1 (en) 2018-06-15 2018-06-15 Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents

Country Status (1)

Country Link
KR (1) KR102114116B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11720022B2 (en) 2019-02-12 2023-08-08 Samsung Electronics Co., Ltd. Resist compound, method of forming pattern using the same, and method of manufacturing semiconductor device using the same
KR102815975B1 (en) * 2023-06-26 2025-06-04 (주)후성 Liquid phase preparation method of octafluoro-2-butene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115430A1 (en) * 2010-03-01 2013-05-09 Christopher Ober Patterning of Biomaterials Using Fluorinated Materials and Fluorinated Solvents

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778629B2 (en) * 1986-12-19 1995-08-23 ミノルタ株式会社 Positive resist film and method for forming resist pattern thereof
TWI226509B (en) * 2000-09-12 2005-01-11 Fuji Photo Film Co Ltd Positive resist composition
KR100740994B1 (en) 2006-03-30 2007-07-20 한국화학연구원 Cross-linkable perfluorinated di (meth) acrylic compound, photopolymerizable composition containing the same, and photopolymerizable membrane using the same
EP2297613B1 (en) * 2008-05-23 2017-11-29 Cornell University Orthogonal processing of organic materials used in electronic and electrical devices
TWI575319B (en) * 2011-09-22 2017-03-21 東京應化工業股份有限公司 Resist composition and method of forming resist pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115430A1 (en) * 2010-03-01 2013-05-09 Christopher Ober Patterning of Biomaterials Using Fluorinated Materials and Fluorinated Solvents

Also Published As

Publication number Publication date
KR20190141895A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP5473270B2 (en) Photopatterning composition using hyperbranched polymer
CN1221861C (en) Protective film composition
US8481246B2 (en) Method of forming pattern
CN104678699B (en) Self-assembled structures, methods of making the same, and articles comprising the same
JP6792769B2 (en) Hyperbranched polymer and its production method, and composition
TWI675855B (en) Fluorine-containing monomer, fluoropolymer, pattern forming composition using the same, and pattern forming method thereof
KR102114116B1 (en) Resist materials comprising highly fluorinated polymers having a solubility in highly fluorinated solvents
JP6220370B2 (en) Polymers containing repeating units having photoacid-generating functional groups and base solubility-enhancing functional groups, related photoresist compositions, and methods for forming electronic devices
KR101923182B1 (en) Highly perfluorinated positive-tone electron beam resist being capable of processing with fluorous solvent
Jung et al. Investigation of degradation pathways of poly (semiperfluoroalkyl methacrylate) thin films induced by electron‐beam irradiation
KR101901522B1 (en) High fluorinated polymer compound with high glass transition temperature and solubility in fluorous solvents
Jaye et al. Modular and processable fluoropolymers prepared via a safe, mild, iodo–ene polymerization
TW200527132A (en) Low-polydispersity photoimageable polymers and photoresists and processes for microlithography
Cimen et al. Synthesis and stability of BODIPY‐based fluorescent polymer brushes at different p H s
Chagas et al. Selective fragmentation of radiation-sensitive novel polymeric resist materials by inner-shell irradiation
TW200832057A (en) Resist composition for use in lithography method utilizing electron beam, x-ray or EUV light
TWI871279B (en) Resin for photoresist, method for producing resin for photoresist, resin composition for photoresist, and method for forming pattern
Cui et al. A novel non-chemically amplified resist based on polystyrene-iodonium derivatives for electron beam lithography
Son et al. Photo-cleavable perfluoroalkylated copolymers for tailoring quantum dot thin films
Oh et al. Molecular resists equipped with fluorinated aromatic units for electron-beam and extreme UV lithography
JP2015530469A (en) Cross-linking stabilization process for azo-crosslinked fluoropolymers with perfluoroether pendant groups
Blakey et al. Polycarbonate based nonchemically amplified photoresists for extreme ultraviolet lithography
Sasaki et al. Poly (olefin sulfone) s
JP7483125B2 (en) Method for producing reversible addition-fragmentation chain transfer polymers
Bonetti Preparation and Characterization of Light Sensitive Tetrafluoro-λ⁶-Sulfanyl-Containing Polymers

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20180615

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20191111

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20200503

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200518

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200519

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20230320

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20250324

Start annual number: 6

End annual number: 6