[go: up one dir, main page]

KR102176917B1 - New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same - Google Patents

New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same Download PDF

Info

Publication number
KR102176917B1
KR102176917B1 KR1020190067788A KR20190067788A KR102176917B1 KR 102176917 B1 KR102176917 B1 KR 102176917B1 KR 1020190067788 A KR1020190067788 A KR 1020190067788A KR 20190067788 A KR20190067788 A KR 20190067788A KR 102176917 B1 KR102176917 B1 KR 102176917B1
Authority
KR
South Korea
Prior art keywords
mesogenic
copolymer
iridium complex
iridium
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020190067788A
Other languages
Korean (ko)
Inventor
최이준
현다솜
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020190067788A priority Critical patent/KR102176917B1/en
Application granted granted Critical
Publication of KR102176917B1 publication Critical patent/KR102176917B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 이리듐(III) 착물 발색단을 포함하는 편광 방출이 가능한 신규한 유기 발광 메소겐성 공중합체 및 이의 제조방법에 관한 것으로서, 본 발명을 통해 제조된 공중합체는 용해도가 높고, 열안정성과 기계적 강도가 우수하면서도 세기가 강한 발광 특징이 있어 OLED의 발광 효율 향상을 유도할 수 있다. The present invention relates to a novel organic light-emitting mesogenic copolymer capable of polarized emission including an iridium (III) complex chromophore and a method for preparing the same, wherein the copolymer prepared through the present invention has high solubility, thermal stability and mechanical strength. It has excellent light emission characteristics with strong intensity, which can lead to improvement of the light emission efficiency of OLED.

Description

이리듐(III) 착물 발색단을 포함하는 편광 방출이 가능한 신규한 유기 발광 메소겐성 공중합체 및 이의 제조방법 {New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same}New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same}

본 발명은 이리듐(III) 착물 발색단을 포함하는 편광 방출이 가능한 신규한 유기 발광 메소겐성 공중합체 및 이의 제조방법에 관한 것이다. The present invention relates to a novel organic light-emitting mesogenic copolymer comprising an iridium (III) complex chromophore and capable of emitting polarized light and a method for preparing the same.

유기 발광 다이오드(Organic Light Emitting Diode, OLED)를 이용한 발광 표시 장치는 액정 표시 장치(Liquid crystal display, LCD)와 달리 별도의 광원을 필요로 하지 않으므로 보다 가볍고 얇은 두께로 제조가 가능할 뿐만 아니라, 높은 휘도, 낮은 소비 전력 등의 고품질의 특성을 갖춰 휴대용 전자기기의 차세대 표시 장치로 활용범위가 확대되고 있다.A light emitting display device using an organic light emitting diode (OLED) does not require a separate light source, unlike a liquid crystal display (LCD), so it can be manufactured with a lighter and thinner thickness, as well as high luminance. With high-quality characteristics such as low power consumption, the range of application is expanding as a next-generation display device for portable electronic devices.

OLED를 이용한 발광 표시 장치의 기본 구조는 양극과 음극 사이에 유기 발광층이 적충된 구조로서 상기 유기 발광층 내에 전자와 정공을 재결합시켜 여기자(exciton)를 형성하고 이 여기자가 낮은 에너지 상태로 전이하면서 방출되는 에너지가 빛으로 발광되는 전계 발광 현상을 원리로 하여 구동되고, 발광효율을 개선하기 위해 다양한 연구가 진행되고 있다.The basic structure of a light-emitting display device using an OLED is a structure in which an organic light-emitting layer is interposed between an anode and a cathode, and electrons and holes are recombined in the organic light-emitting layer to form excitons, which are emitted while transitioning to a low energy state. It is driven on the principle of an electroluminescence phenomenon in which energy is emitted as light, and various studies are being conducted to improve luminous efficiency.

대한민국 공개특허 제10-2017-0114059호에는 정렬된 액정 분자를 포함하는 발광층을 구비하는 OLED가 공지되어 있다. 전계 발광 액정들이 배향막의 배향방향에 따라 정렬된 발광층을 제공함으로써, 광효율 감소없이 3차원 OLED 디스플레이를 구현할 수 있는데, 좌원편광과 우원편광을 동시에 구현할 수 있어 편광된 광을 방출할 수 있어 광효율을 유지하면서도 공정단가 감소의 효과를 발휘할 수 있다.Korean Patent Application Publication No. 10-2017-0114059 discloses an OLED having a light emitting layer including aligned liquid crystal molecules. By providing a light emitting layer in which the electroluminescent liquid crystals are aligned according to the alignment direction of the alignment layer, it is possible to implement a 3D OLED display without reducing light efficiency.Since left circularly polarized light and right circularly polarized light can be implemented at the same time, polarized light can be emitted to maintain light efficiency. Yet, it can exert the effect of reducing the process cost.

최근에는, OLED 광효율을 개선하는 위해 빛의 세기를 강하게 하던 기존 방식을 벗어나 OLED 내부에서 빛을 만들어내는 얇은 층을 조절해 원형 편광성이 높은 빛을 만들어내는 연구가 보고되었다(Advanced Materials, 2017, 1700907). 연구결과에 의하면, 고분자 OLED 발광층에 액정 고분자를 꼬아서 정렬시킬 수 있는 카이럴(chiral) 분자를 소량 첨가해 편광성이 높은 빛을 생성할 수 있다는 것이다. 일반적으로 액정성, 즉 배열가능한 OLED 발광 물질은 선형 편광성을 갖는 빛을 생성하는데, 이 선형 편광된 빛이 카이럴 분자에 의해 비틀린 비등방성 고분자 층을 통과하면 선형 편광된 빛이 원형 편광으로 변하여 광효율을 현저하게 개선시킬 수 있고 이론적으로는 광효율을 100%까지 끌어올릴 수 있다고 보고되고 있다. Recently, a study has been reported to produce light with high circular polarization by controlling a thin layer that generates light inside the OLED, moving away from the conventional method of increasing the intensity of light to improve OLED light efficiency (Advanced Materials, 2017, 1700907). According to the research results, it is possible to generate light with high polarization by adding a small amount of chiral molecules that can be aligned by twisting liquid crystal polymers to the polymer OLED emitting layer. In general, liquid crystalline, that is, arrayable OLED light emitting materials produce light with linear polarization. When this linearly polarized light passes through an anisotropic polymer layer twisted by chiral molecules, the linearly polarized light changes into circular polarization. It is reported that the light efficiency can be remarkably improved and the light efficiency can theoretically be raised to 100%.

편광 발광을 유도할 수 있는 고분자의 구조는 강직한 막대 모양의 메소겐(mesogen)이 주사슬에 위치한 경우와 곁사슬에 위치한 경우가 있으며, 메소겐 양쪽에 UV 경화할 수 있는 관능기가 있는 물질을 경화시켜 메소겐의 배향을 유도해 편광 발광을 얻어낼 수도 있다. 또한 이들처럼 메소겐을 갖는 고분자의 경우 액정상(liquid crystal phase)을 나타낼 수 있다. The structure of a polymer capable of inducing polarized light emission is when a rigid rod-shaped mesogen is located in the main chain or in the side chain, and cures substances with UV-curable functional groups on both sides of the mesogen. By inducing the orientation of the mesogen, polarized light emission can also be obtained. In addition, polymers having mesogens like these may exhibit a liquid crystal phase.

액정은 액체와 고체의 중간상으로 특정 온도 구간이나 특정 농도 구간에서 비등방적인 메소겐 구조가 고체와 같이 약한 방향 질서와 위치 질서를 나타내면서 액체의 유동성을 가진다. 따라서 유기 발광 분자가 액정상을 띠고 있을 때 분자들은 한 방향으로 배향되고 이로 인하여 높은 편광 발광을 유도할 수 있다. Liquid crystal is an intermediate phase between a liquid and a solid, and the anisotropic mesogen structure in a specific temperature range or a specific concentration range shows a weak directional order and positional order like a solid, and has liquid fluidity. Therefore, when the organic light emitting molecules have a liquid crystal phase, the molecules are oriented in one direction, thereby inducing highly polarized light emission.

단단한 막대 모양의 calamitic 액정은 방향족 또는 지환족 구조가 코어에 위치하며 경우에 따라서 측쇄 치환체 및 극성 말단 그룹을 포함하기도 한다. Calamitic 액정은 주로 네마틱과 스메틱의 메소상을 가진다. 네마틱 상에서는 분자가 인접한 분자의 장축에 평행하게 정렬된다. 분자들은 하나의 로컬 방향자를 가지고 배향되며 액정상 중에 가장 규칙성이 없어 높은 유동성을 가진다. 스메틱은 분자들이 층을 이루며 한 방향으로 배향되어 있어 네마틱 상보다 다양한 액정상을 가진다. 액정성 발광 물질은 액정상을 형성하는 구간에서 전하 수송 능력이 향상된다는 연구 결과가 보고되기도 하였는데, 스메틱 A와 스메틱 C 상의 경우 더욱 정렬된 형태로 우수한 전하 이동도를 보이는 것으로 나타났다. 하지만 스메틱 A와 C 상의 경우 점도가 높아 가공과 배향이 어려워 아직까지는 전하 수송을 목적으로 하는 분야에 주로 쓰인다. The hard rod-shaped calamitic liquid crystal has an aromatic or cycloaliphatic structure located in the core and, in some cases, may contain side chain substituents and polar end groups. Calamitic liquid crystals mainly have nematic and smectic meso phases. In a nematic phase, molecules are aligned parallel to the major axis of adjacent molecules. Molecules are oriented with one local director and have high fluidity due to the lack of regularity in the liquid crystal phase. Smatic has a more diverse liquid crystal phase than nematic phase because molecules are layered and oriented in one direction. Research results have been reported that the liquid crystal light-emitting material improves the charge transport ability in the section forming the liquid crystal phase, but it was found that the Smetic A and Smatic C phases show excellent charge mobility in a more aligned form. However, in the case of Smetic A and C phases, processing and orientation are difficult due to their high viscosity, so they are mainly used in fields intended for charge transport.

메소겐성 발광 재료에 가장 많이 쓰이는 구조는 fluorene, thiophene, benzothiadiazole 등을 들 수 있다. 그중에서 fluorene계 고분자는 광 발광과 전계 발광 모두에서 높은 효율의 청색 발광을 하며, 열적으로 안정하고 9번 탄소 자리에 다양한 치환기를 도입하여 용해도와 가공성을 향상시킬 수 있다는 장점을 가지고 있어 주사슬형 발광 고분자 중에서 가장 활발하게 연구되었다.Structures most commonly used for mesogenic light-emitting materials include fluorene, thiophene, and benzothiadiazole. Among them, the fluorene-based polymer emits blue light with high efficiency in both photoluminescence and electroluminescence, is thermally stable, and has the advantage of improving solubility and processability by introducing various substituents at the 9th carbon position. Among the luminescent polymers, it has been actively studied.

이처럼 OLED의 광효율을 높이기 위해서는 편광된 빛을 생성시킬수 있는 발광 물질의 개발이 시급하고, 특히 고분자로서 선형 중합체의 경우 한방향으로 정렬이 가능하다는 점에서 편광된 빛을 생성시킬 수 있는 재료로서 적합하다는 점에서 다양한 종류의 액정성 발광 고분자 물질의 개발이 필요한 실정이다.In order to increase the light efficiency of OLED, it is urgent to develop a light-emitting material that can generate polarized light, and in particular, a linear polymer as a polymer is suitable as a material that can generate polarized light because it can be aligned in one direction. There is a need for the development of various kinds of liquid crystal light-emitting polymer materials.

이에 본 발명자들은 신규한 형태의 유기 발광 메소겐 물질을 제조함으로써 풀컬러 디스플레이, 액정 디스플레이용 백라이트 광원 및 차세대 고체 발광 광원에 대한 폭 넓은 적용이 가능하게 하여 본 발명을 완성하였다. Accordingly, the present inventors completed the present invention by manufacturing a novel type of organic light-emitting mesogenic material, enabling wide application to a full-color display, a backlight light source for a liquid crystal display, and a next-generation solid light-emitting light source.

대한민국 공개특허 제10-2017-0114059호 (발명의 명칭 : 정렬된 액정 분자를 포함하는 발광층을 구비하는 유기 발광 다이오드, 출원인 : 한양대학교 산학협력단, 공개일 : 2017년10월13일)Republic of Korea Patent Publication No. 10-2017-0114059 (Name of the invention: organic light-emitting diode having an emission layer containing aligned liquid crystal molecules, Applicant: Hanyang University Industry-Academic Cooperation Foundation, Publication Date: October 13, 2017) 대한민국 등록특허 제10-1745371호 (발명의 명칭 : 하키스틱형 반응성 메소겐 화합물 및 그 제조방법, 출원인 : 금오공과대학교 산학협력단, 등록일 : 2017년06월02일)Republic of Korea Patent Registration No. 10-1745371 (Name of invention: Hockey stick type reactive mesogen compound and its manufacturing method, Applicant: Keumo Institute of Technology Industry-Academic Cooperation, Registration date: June 2, 2017) 대한민국 등록특허 제10-1724588호 (발명의 명칭 : 굽은-핵 이메소겐 화합물 및 그 제조방법, 출원인 : 금오공과대학교 산학협력단, 등록일 : 2017년04월03일)Korean Patent Registration No. 10-1724588 (Name of invention: bent-nuclear imesogen compound and its manufacturing method, Applicant: Keumo Institute of Technology Industry-Academic Cooperation Foundation, registration date: April 3, 2017)

본 발명의 목적은 이리듐(III) 착물 발색단을 포함하는 편광 방출이 가능한 신규한 유기 발광 메소겐성 공중합체 및 이의 제조방법을 제공하는 데에 있다. An object of the present invention is to provide a novel organic light-emitting mesogenic copolymer including an iridium (III) complex chromophore and capable of emitting polarized light and a method for producing the same.

본 발명의 신규한 메소겐성 이리듐(III) 착물을 포함한 공중합체는 하기 화학식 1로 표시되는 것을 특징으로 한다. The copolymer including the novel mesogenic iridium (III) complex of the present invention is characterized by represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112019058715583-pat00001
Figure 112019058715583-pat00001

(상기 R1 및 R2는 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기로부터 선택되고, 상기 m 및 n은 각각 독립적으로 10 내지 10000 정수임)(The R1 and R2 are each independently selected from hydrogen or an alkyl group having 1 to 10 carbon atoms, and m and n are each independently an integer of 10 to 10000)

상기 메소겐성 이리듐 착물을 포함한 공중합체는 보론이 포함된 바이페닐(biphenyl) 유도체 화합물을 제공하는 단계; 플루오렌 유도체 화합물을 제공하는 단계; 헤테로랩틱(heteroleptic) 이리듐 착물을 제공하는 단계; 상기 보론이 포함된 바이페닐(biphenyl) 유도체 화합물, 플루오렌 유도체 화합물 및 헤테로랩틱 이리듐 착물을 중합반응시키는 단계; 및, 중합반응 단계 이후에 중합체 끝단(polymer end group)을 페닐유도체로 캡핑하는 하는 단계;를 포함하여 제조될 수 있다.The copolymer comprising the mesogenic iridium complex is provided with a boron-containing biphenyl derivative compound; Providing a fluorene derivative compound; Providing a heterolaptic iridium complex; Polymerizing the boron-containing biphenyl derivative compound, fluorene derivative compound, and heterolabtic iridium complex; And capping the polymer end group with a phenyl derivative after the polymerization step.

상기 보론이 포함된 바이페닐 유도체 화합물은 하기 화학식 2로 표시될 수 있다.The biphenyl derivative compound containing boron may be represented by the following formula (2).

[화학식 2][Formula 2]

Figure 112019058715583-pat00002
Figure 112019058715583-pat00002

상기 플루오렌 유도체 화합물은 구체적으로 하기 화학식 3으로 표시될 수 있다.The fluorene derivative compound may be specifically represented by Formula 3 below.

[화학식 3][Formula 3]

Figure 112019058715583-pat00003
Figure 112019058715583-pat00003

(상기 R1 및 R2는 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기로부터 선택됨)(The R1 and R2 are each independently selected from hydrogen or an alkyl group having 1 to 10 carbon atoms)

상기 헤테로랩틱(heteroleptic) 이리듐 착물은 구체적으로 하기 화학식 4로 표시될 수 있다.The heteroraptic iridium complex may be specifically represented by the following Formula 4.

[화학식 4][Formula 4]

Figure 112019058715583-pat00004
Figure 112019058715583-pat00004

(상기 X는 Cl, Br, I 중에서 선택됨)(The X is selected from Cl, Br, and I)

상기 중합반응은 K2CO3 수용액에서 팔라듐계 촉매 하에서 반응시키는 것을 특징으로 한다.The polymerization reaction is characterized in that the reaction is performed under a palladium-based catalyst in an aqueous K 2 CO 3 solution.

또한 상기 페닐유도체는 브로모벤젠(bromobenzene) 또는 페닐보릭산(phenylboronic acid)에서 선택될 수 있다. In addition, the phenyl derivative may be selected from bromobenzene or phenylboronic acid.

상기 화학식 1로 표시되는 메소겐성 이리듐 착물을 포함한 공중합체는 하기 반응식 1에 의해 제조되는 것을 특징으로 한다.The copolymer including the mesogenic iridium complex represented by Formula 1 is characterized in that it is prepared by the following Reaction Formula 1.

[반응식 1][Scheme 1]

Figure 112019058715583-pat00005
Figure 112019058715583-pat00005

또 다른 양태에서, 본 발명은 상기 화학식 1의 화합물을 함유하는 유방성 액정(lyotropic liquid crystal) 조성물을 제공할 수 있다. In yet another aspect, the present invention can provide a lyotropic liquid crystal composition containing the compound of Formula 1 above.

본 발명은 이리듐(III) 착물 발색단을 포함하는 편광 방출이 가능한 신규한 유기 발광 메소겐성 공중합체 및 이의 제조방법에 관한 것으로서, 본 발명을 통해 제조된 공중합체는 용해도가 높고, 열안정성과 기계적 강도가 우수하면서도 세기가 강한 발광 특징이 있어 OLED의 발광 효율 향상을 유도할 수 있다. The present invention relates to a novel organic light-emitting mesogenic copolymer capable of polarized emission including an iridium (III) complex chromophore and a method for preparing the same, wherein the copolymer prepared through the present invention has high solubility, thermal stability and mechanical strength. It has excellent light emission characteristics with strong intensity, which can lead to improvement of the light emission efficiency of OLED.

도 1은 본 발명의 실시예 1-6에서 제조한 이리듐 공중합체의 FT-IR 스펙트럼을 나타낸다.
도 2는 실시예 1-6에서 제조한 이리듐 공중합체의 1H NMR 스펙트럼을 나타낸다.
도 3은 실시예 1-6에서 제조한 이리듐 공중합체의 UV-vis 흡수 스펙트럼을 나타낸다.
도 4는 실시예 1-6에서 제조한 이리듐 공중합체의 발광 스펙트럼(PL spectra)을 나타낸다.
도 5 내지 도 9는 실시예 1-6에서 제조한 이리듐 공중합체의 POM (Polarized Optical Microscope) 이미지를 나타낸다.
1 shows the FT-IR spectrum of the iridium copolymer prepared in Example 1-6 of the present invention.
2 shows a 1 H NMR spectrum of the iridium copolymer prepared in Example 1-6.
3 shows the UV-vis absorption spectrum of the iridium copolymer prepared in Example 1-6.
4 shows the emission spectrum (PL spectra) of the iridium copolymer prepared in Example 1-6.
5 to 9 show POM (Polarized Optical Microscope) images of the iridium copolymer prepared in Example 1-6.

이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해지도록, 당업자에게 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다. Hereinafter, a preferred embodiment of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, it is provided to sufficiently convey the spirit of the present invention to those skilled in the art so that the contents introduced herein are thorough and complete.

<실시예 1. 메소겐성 이리듐 플루오론계 공중합체의 제조><Example 1. Preparation of mesogenic iridium fluoropolymer>

Suzuki-Miyaura coupling reaction에 의해 하기 반응식 1에 따라 공중합체를 제조하였다. A copolymer was prepared according to Scheme 1 below by Suzuki-Miyaura coupling reaction.

[반응식 2][Scheme 2]

Figure 112019058715583-pat00006
Figure 112019058715583-pat00006

또한, 상기 반응식 2의 Z(dibromofluorene ligand)를 합성하기 위해 하기 반응식 3의 과정에서 이용된 각 중간체를 합성하였다. In addition, to synthesize Z (dibromofluorene ligand) of Scheme 2, each intermediate used in the process of Scheme 3 was synthesized.

[반응식 3][Scheme 3]

Figure 112019058715583-pat00007
Figure 112019058715583-pat00007

실시예 1-1. 화합물 1의 합성 Example 1-1. Synthesis of compound 1

[반응식 4][Scheme 4]

Figure 112019058715583-pat00008
Figure 112019058715583-pat00008

질소 분위기의 반응기에 5-bromo-2-methylpyridine (5 g, 0.0291 mol)을 diethyl ether anhydrous (300 ml)에 용해시킨 후 드라이아이스를 이용하여 -78℃로 냉각하고, 반응기 내부가 충분히 냉각되도록 -78℃를 유지하며 1시간 동안 교반하였다. 교반 후에는 2.5M n-butyllithium (15.1 ml, 0.0378 mol)을 천천히 적가한 후 동일하게 -78℃를 유지하며 2시간 동안 교반하였다. 다시 2시간 후 2,7-dibromo-9-fluorenone (11.7 g, 0.0349 mol)을 여러번에 나눠서 넣어주었다. 시간이 지나며 드라이아이스가 서서히 녹으면서 온도가 점점 올라가 상온(25℃)까지 도달하게 되는데, 상온까지 도달하기 까지 대략 12시간 동안 반응하였다. 반응을 종료한 후 증류수와 ethyl acetate로 유기층을 추출하고, 추출한 유기층은 증류수로 세척하였다. 세척한 유기층은 무수 magnesium sulfate로 수분을 제거한 후 감압 필터로 magnesium sulfate를 제거하고 남은 여과액을 감압 증류로 용매를 제거하였다. 용매를 제거한 생성물은 실리카겔 컬럼 크로마토그래피로 정제하였다. 이 후 dichloromethane로 미반응물을 제거한 후 ethyl acetate를 사용하여 정제된 생성물을 받았다. 정제된 생성물은 ethanol과 증류수로 재결정하여 백색 고체(8.49 g)를 얻었다. 수득률: 67.64%After dissolving 5-bromo-2-methylpyridine (5 g, 0.0291 mol) in diethyl ether anhydrous (300 ml) in a nitrogen atmosphere reactor, cool it to -78°C using dry ice, so that the inside of the reactor is sufficiently cooled- The mixture was stirred for 1 hour while maintaining at 78°C. After stirring, 2.5M n-butyllithium (15.1 ml, 0.0378 mol) was slowly added dropwise, and the mixture was stirred at -78°C for 2 hours. After another 2 hours, 2,7-dibromo-9-fluorenone (11.7 g, 0.0349 mol) was divided and added several times. As time passed, the dry ice gradually melted and the temperature gradually increased to reach room temperature (25°C), and the reaction was performed for about 12 hours until reaching room temperature. After the reaction was completed, the organic layer was extracted with distilled water and ethyl acetate, and the extracted organic layer was washed with distilled water. After removing water from the washed organic layer with anhydrous magnesium sulfate, magnesium sulfate was removed by a reduced pressure filter, and the remaining filtrate was distilled under reduced pressure to remove the solvent. The product from which the solvent was removed was purified by silica gel column chromatography. Thereafter, unreacted products were removed with dichloromethane, and the purified product was obtained using ethyl acetate. The purified product was recrystallized with ethanol and distilled water to obtain a white solid (8.49 g). Yield: 67.64%

1H-NMR (400 MHz, acetone-d6, in ppm) : 2.43 (s, 3H), 5.73 (s, H), 7.14 (d, H, J = 7.81 Hz), 7.46 (d, 2H, J = 1.49 Hz), 7.58 (m, 3H), 7.79 (d, 2H, J = 8.18 Hz), 8.40 (d, H, J = 2.23 Hz). 1 H-NMR (400 MHz, acetone-d 6 , in ppm): 2.43 (s, 3H), 5.73 (s, H), 7.14 (d, H, J = 7.81 Hz), 7.46 (d, 2H, J = 1.49 Hz), 7.58 (m, 3H), 7.79 (d, 2H, J = 8.18 Hz), 8.40 (d, H, J = 2.23 Hz).

FT-IR (KBr pellet, cm-1): 3144 (O-H stretch), 2853 (C-H stretch, CH3-Ar), 1449 (C=C aromatic stretch), 1406 (C-N stretch), 1246, 1171 (C-O stretch), (C-Br stretch).FT-IR (KBr pellet, cm -1 ): 3144 (OH stretch), 2853 (CH stretch, CH3-Ar), 1449 (C=C aromatic stretch), 1406 (CN stretch), 1246, 1171 (CO stretch) , (C-Br stretch).

실시예 1-2. 화합물 2의 합성 Example 1-2. Synthesis of compound 2

[반응식 5][Scheme 5]

Figure 112019058715583-pat00009
Figure 112019058715583-pat00009

질소 분위기의 반응기에 화합물 1(compound 1)(8.49 g, 0.0197 mol)과 건조된 benzene (100 ml)을 넣어주고 trifluoromethanesulfonic acid(2.3 ml, 0.0256 mol)를 천천히 적가하여 혼합물 상태로 제조하였다. 적가 후의 혼합물을 4시간 동안 교반하며 환류시켰다. 반응 종료 후 상기 혼합물을 sodium bicarbonate 수용액에 붓고 EA(에틸아세테이트)로 추출하였다. 추출한 유기층을 증류수로 세척하고 무수 magnesium sulfate로 수분을 제거하고, 다시 감압 필터로 magnesium sulfate를 제거하여 여과액만을 남겼다. 얻은 여과액을 감압 증류하여 용매를 제거하였고, 용매를 제거한 후 수득한 생성물은 실리카겔 컬럼 크로마토그래피로 dichloromethane을 사용하여 정제하였다. 정제된 생성물은 ethanol과 증류수로 재결정하여 백색 고체(8.49 g)를 얻었다. 수득률: 89.78%Compound 1 (compound 1) (8.49 g, 0.0197 mol) and dried benzene (100 ml) were added to the reactor in a nitrogen atmosphere, and trifluoromethanesulfonic acid (2.3 ml, 0.0256 mol) was slowly added dropwise to prepare a mixture. The mixture after dropwise addition was stirred for 4 hours and refluxed. After completion of the reaction, the mixture was poured into an aqueous sodium bicarbonate solution and extracted with EA (ethyl acetate). The extracted organic layer was washed with distilled water, moisture was removed with anhydrous magnesium sulfate, and magnesium sulfate was removed again with a reduced pressure filter, leaving only the filtrate. The obtained filtrate was distilled under reduced pressure to remove the solvent, and the product obtained after removing the solvent was purified by silica gel column chromatography using dichloromethane. The purified product was recrystallized with ethanol and distilled water to obtain a white solid (8.49 g). Yield: 89.78%

1H-NMR (400 MHz, acetone-d6, in ppm) : 2.45 (s, 3H), 7.21 (m, 3H), 7.32 (m, 3H), 7.50 (m, H), 7.64 (m, 4H), 7.92 (d, 2H, J = 8.39 Hz), 8.27 (d, H, J = 2.24 Hz). 1 H-NMR (400 MHz, acetone-d 6 , in ppm): 2.45 (s, 3H), 7.21 (m, 3H), 7.32 (m, 3H), 7.50 (m, H), 7.64 (m, 4H ), 7.92 (d, 2H, J = 8.39 Hz), 8.27 (d, H, J = 2.24 Hz).

FT-IR (KBr Pellet, cm-1): 3042 (C-H aromatic stretch), 1508, 1492 (C=C stretch), 1451 (C-N stretch), 700 (C-Br stretch).FT-IR (KBr Pellet, cm -1 ): 3042 (CH aromatic stretch), 1508, 1492 (C=C stretch), 1451 (CN stretch), 700 (C-Br stretch).

실시예 1-3. 화합물 3의 합성 Example 1-3. Synthesis of compound 3

[반응식 6][Scheme 6]

Figure 112019058715583-pat00010
Figure 112019058715583-pat00010

반응기에 화합물 2(compound 2)(8.49 g, 0.0173 mol)와 pyridine:water(3:1) (300 ml)을 넣고 potassium permanganate (40.96 g, 0.259 mol)을 10번에 나눠서 넣고 환류하였다(이 때, potassium permanganate를 넣으면 용액이 보라색이 되는데, 촉매가 망간 산화물이 되면 보라색이 사라지고 용액이 투명하게 변하게 되기에, potassium permanganate를 나눠서 넣고, 보라색이 없어질 때마다 potassium permanganate를 넣어 총 10회 수행함). 반응종료 후 용액을 증류수로 감압 필터하여 망간 산화물을 제거하고 여과액을 얻었다. 여과액에서 용매의 양을 줄인 후 HCl을 적가하여 pH 시험지가 congo red가 되도록 산성화하여, 고체로 석출된 생성물을 수득하였다. 석출된 생성물은 감압필터로 여과하여 실리카겔 컬럼 크로마토그래피로 ethyl acetate를 사용하여 정제하여 백색 고체(2.518 g)를 얻었다. 수득률: 27.93%Compound 2 (8.49 g, 0.0173 mol) and pyridine:water (3:1) (300 ml) were added to the reactor, potassium permanganate (40.96 g, 0.259 mol) was divided into 10 times and refluxed (at this time If you add potassium permanganate, the solution becomes purple, but when the catalyst becomes manganese oxide, the purple disappears and the solution becomes transparent, so add potassium permanganate separately, and add potassium permanganate every time the purple disappears, and perform a total of 10 times). After completion of the reaction, the solution was filtered under reduced pressure with distilled water to remove manganese oxide, and a filtrate was obtained. After reducing the amount of the solvent in the filtrate, HCl was added dropwise to acidify the pH test paper so that it became congo red, thereby obtaining a product precipitated as a solid. The precipitated product was filtered through a reduced pressure filter and purified by silica gel column chromatography using ethyl acetate to obtain a white solid (2.518 g). Yield: 27.93%

1H-NMR (400 MHz, acetone-d6, in ppm): 7.27 (m, 2H,), 7.36 (m, 4H), 7.66 (d, H, J = 1.72 Hz), 7.68 (d, H, J = 1.79 Hz), 7.74 (d, 2H, J = 1.64 Hz), 7.95 (s, H), 7.97 (s, H), 8.10 (d, H, J = 8.37 Hz), 8.54 (d, H, J = 1.94 Hz). 1 H-NMR (400 MHz, acetone-d 6 , in ppm): 7.27 (m, 2H,), 7.36 (m, 4H), 7.66 (d, H, J = 1.72 Hz), 7.68 (d, H, J = 1.79 Hz), 7.74 (d, 2H, J = 1.64 Hz), 7.95 (s, H), 7.97 (s, H), 8.10 (d, H, J = 8.37 Hz), 8.54 (d, H, J = 1.94 Hz).

FT-IR (KBr Pellet, cm-1): 3426 (O-H stretch), 1700 (C=O stretch), 1566 (C=C aromatic stretch), 1452 (C-N stretch), 1408 (C-O stretch).FT-IR (KBr Pellet, cm -1 ): 3426 (OH stretch), 1700 (C=O stretch), 1566 (C=C aromatic stretch), 1452 (CN stretch), 1408 (CO stretch).

실시예 1-4. 이리듐 이합체의 합성 Example 1-4. Synthesis of iridium dimer

[반응식 7][Scheme 7]

Figure 112019058715583-pat00011
Figure 112019058715583-pat00011

질소 분위기의 반응기에 iridium(Ⅲ) chloride hydrate (1 g, 3.349 mmol)와 1-phenylisoquinoline (1.581 g, 7.703 mmol)과 2-ethoxyethanol:water(3:1) (50 ml)을 넣어 혼합물을 상온에서 8시간 교반한 후 24시간 동안 환류하였다. 반응 종료 후에는 실온(25℃)까지 온도를 낮춘 후, 혼합물을 증류수에 침전시키고 감압 필터한 후 진공오븐에서 건조하였다. 침전물은 ethanol과 증류수로 세척하고, 세척한 생성물은 증류수로 세척하여 감압 필터 후 건조시켰다. 이와 같은 세척 과정을 3번 정도 반복하여 정제하여 적색 고체(4.316 g)를 얻었다. 수득률: 94.3%In a nitrogen atmosphere reactor, iridium(III) chloride hydrate (1 g, 3.349 mmol), 1-phenylisoquinoline (1.581 g, 7.703 mmol) and 2-ethoxyethanol:water (3:1) (50 ml) were added to the mixture at room temperature. After stirring for 8 hours, it was refluxed for 24 hours. After the reaction was completed, the temperature was lowered to room temperature (25° C.), the mixture was precipitated in distilled water, filtered under reduced pressure, and dried in a vacuum oven. The precipitate was washed with ethanol and distilled water, and the washed product was washed with distilled water, filtered under reduced pressure, and dried. This washing process was repeated 3 times to obtain a red solid (4.316 g). Yield: 94.3%

1H-NMR (400 MHz, chloroform-d, in ppm): 6.01 (d, 4H, J = 7.57 Hz), 6.48 (t, 4H), 6.54 (d, 4H, J = 6.51), 6.79 (t, 4H), 7.72 (d, H, J = 1.41 Hz), 7.74 (t, 2H), 7.76 (d, H, J = 1.87 Hz), 7.79 (s, H), 7.80 (d, 6H, J = 7.49 Hz), 7.85 (s, H), 8.10 (d, 4H, J = 7.62 Hz), 8.95 (d, 4H, J = 8.49 Hz), 9.03 (d, 4H, J = 6.42 Hz). 1 H-NMR (400 MHz, chloroform-d, in ppm): 6.01 (d, 4H, J = 7.57 Hz), 6.48 (t, 4H), 6.54 (d, 4H, J = 6.51), 6.79 (t, 4H), 7.72 (d, H, J = 1.41 Hz), 7.74 (t, 2H), 7.76 (d, H, J = 1.87 Hz), 7.79 (s, H), 7.80 (d, 6H, J = 7.49 Hz), 7.85 (s, H), 8.10 (d, 4H, J = 7.62 Hz), 8.95 (d, 4H, J = 8.49 Hz), 9.03 (d, 4H, J = 6.42 Hz).

FT-IR (KBr Pellet, cm-1): 3083 (C-H stretch), 1658 (C=O stretch), 1574(C=C aromatic stretch), 1487 (C-N stretch), 1317 (C-O stretch).FT-IR (KBr Pellet, cm -1 ): 3083 (CH stretch), 1658 (C=O stretch), 1574 (C=C aromatic stretch), 1487 (CN stretch), 1317 (CO stretch).

실시예 1-5. 화합물 4의 합성 Example 1-5. Synthesis of compound 4

[반응식 8][Scheme 8]

Figure 112019058715583-pat00012
Figure 112019058715583-pat00012

질소 분위기의 반응기에 화합물 3(compound 3)(반응비 2.5)과 iridium dimer (반응비 1), sodium carbonate (반응비 10), 용매인 2-ethoxyethanol(25 ml)을 용질이 다 녹을 정도로 넣고 100℃에서 24시간 교반하였다. 반응 종료 후 감압 필터하여 여과액을 받아낸 후 hexane과 ethanol로 세척하여 정제하여 적색 고체를 얻었다. 수득률: 62.12%In a nitrogen atmosphere reactor, add compound 3 (reaction ratio 2.5), iridium dimer (reaction ratio 1), sodium carbonate (reaction ratio 10), and 2-ethoxyethanol (25 ml) as a solvent to the extent that the solute is dissolved. It was stirred at °C for 24 hours. After the reaction was completed, the filtrate was filtered under reduced pressure, followed by washing with hexane and ethanol to obtain a red solid. Yield: 62.12%

1H-NMR (400 MHz, acetone-d6, in ppm): : 6.31(d, 1H, J = 7.81 Hz), 6.35(d, 1H, J = 8.6 Hz), 6.49(m, 1H), 6.59(dd, 1H, J = 18.1 Hz, 1.21 Hz), 6.63(d, 1H, J = 18.51 Hz), 6.69(d, 2H, J = 7.21 Hz), 6.83(t, 1H, J = 8.33 Hz), 6.92(d, 1H, J = 1.58 Hz), 7.03(t, 2H, J = 7.85 Hz), 7.15(d, 1H, J = 1.53 Hz), 7.20(d, 1H, J = 5.11 Hz), 7.28(d, 2H, J = 1.8 Hz), 7.36(m, 1H), 7.43(d, 1H, J = 1.68 Hz), 7.47(d, 1H, J = 1.34 Hz), 7.51(d, 2H, J = 5.68 Hz), 7.55(d, 1H, J = 5.91 Hz), 7.7(m, 3H), 7.75(m, 2H), 7.86(m, 1H), 7.91(d, 1H, J = 8.28 Hz), 7.94(d, 1H, J = 2.08 Hz), 8.08(d, 1H, J = 8.24 Hz), 8.15(d, 1H, J = 8.00 Hz), 8.72(d, 1H, J = 6.40 Hz), 8.85(d, 1H, J = 7.56 Hz), 8.91(m, 1H). 1 H-NMR (400 MHz, acetone-d 6 , in ppm):: 6.31 (d, 1H, J = 7.81 Hz), 6.35 (d, 1H, J = 8.6 Hz), 6.49 (m, 1H), 6.59 (dd, 1H, J = 18.1 Hz, 1.21 Hz), 6.63 (d, 1H, J = 18.51 Hz), 6.69 (d, 2H, J = 7.21 Hz), 6.83 (t, 1H, J = 8.33 Hz), 6.92 (d, 1H, J = 1.58 Hz), 7.03 (t, 2H, J = 7.85 Hz), 7.15 (d, 1H, J = 1.53 Hz), 7.20 (d, 1H, J = 5.11 Hz), 7.28 ( d, 2H, J = 1.8 Hz), 7.36 (m, 1H), 7.43 (d, 1H, J = 1.68 Hz), 7.47 (d, 1H, J = 1.34 Hz), 7.51 (d, 2H, J = 5.68 Hz), 7.55 (d, 1H, J = 5.91 Hz), 7.7 (m, 3H), 7.75 (m, 2H), 7.86 (m, 1H), 7.91 (d, 1H, J = 8.28 Hz), 7.94 ( d, 1H, J = 2.08 Hz), 8.08 (d, 1H, J = 8.24 Hz), 8.15 (d, 1H, J = 8.00 Hz), 8.72 (d, 1H, J = 6.40 Hz), 8.85 (d, 1H, J = 7.56 Hz), 8.91 (m, 1H).

FT-IR (KBr Pellet, cm-1): 3044 (C-H stretch), 1657 (C=O stretch), 1551 (C=C aromatic stretch), 1444 (C-N stretch), 1389 (C-O stretch).FT-IR (KBr Pellet, cm -1 ): 3044 (CH stretch), 1657 (C=O stretch), 1551 (C=C aromatic stretch), 1444 (CN stretch), 1389 (CO stretch).

실시예 1-6. 이리듐 공중합체의 합성 Example 1-6. Synthesis of Iridium Copolymer

[반응식 9][Scheme 9]

Figure 112019058715583-pat00013
Figure 112019058715583-pat00013

이리듐 공중합체의 합성을 위해, 2,7-dibromo-9,9'-dioctylfluoren (X), biphenyl-4,4'-diboronic acid(pinacol) ester (Y) 및 화합물 4(compound 4)(Z)의 조성비를 조절할 때, 각 모노머의 몰비를 X, Y 및 Z의 순으로 50:50:0(M100), 0:50:50(N100), 45:50:5(M90N10), 25:50:25(M50N50), 12.5:50:37.5(M25N75) 및 37.5:50:12.5(N75N25)로 suzuki 짝지움 반응을 사용하여 합성하였다. For the synthesis of iridium copolymer, 2,7-dibromo-9,9'-dioctylfluoren (X), biphenyl-4,4'-diboronic acid (pinacol) ester (Y), and compound 4 (Z) When adjusting the composition ratio of, the molar ratio of each monomer is 50:50:0(M100), 0:50:50(N100), 45:50:5(M90N10), 25:50: 25 (M50N50), 12.5:50:37.5 (M25N75) and 37.5:50:12.5 (N75N25) were synthesized using the suzuki coupling reaction.

이를 보다 자세히 설명하면, 질소 분위기의 반응기에 정제한 2,7-dibromo-9,9-n-octylfluorene과 biphenyl-4,4'-diboronic acid bis(pinacol) ester, 화합물 4(compound 4)를 2M의 potassium carbonate 수용액, Aliquat® 336, toluene의 혼합액에 용해시킨 후 100℃에서 2시간 환류시켰다. 반응기 내부의 온도가 충분히 100℃가 되었을 때 Pd(PPh3)4를 넣고 48시간 반응시켰다. 48시간 후 end-cap으로 phenylboronic acid와 bromobenzene을 6시간 간격으로 넣었다(end-cap 재료를 같이 넣으면 서로 반응할 수 있음). bromobenzene을 넣고 6시간을 더 반응시킨 후 반응을 종료하고 혼합액을 acetone에 침전시켜 침전물을 얻고, 상기 침전물을 감압 필터한 후 증류수와 methanol로 세척하여 미반응한 모노머와 올리고머, 촉매를 제거하였다. 촉매 제거 후 얻은 생성물은 chloroform에 녹인 후 acetone에 재침전하여 정제하였다.To explain this in more detail, 2,7-dibromo-9,9-n-octylfluorene and biphenyl-4,4'-diboronic acid bis(pinacol) ester and compound 4 (compound 4) were 2M purified in a nitrogen atmosphere. After dissolving in a mixture of potassium carbonate aqueous solution, Aliquat ® 336, and toluene, it was refluxed at 100°C for 2 hours. When the temperature inside the reactor reached 100° C., Pd(PPh 3 ) 4 was added and reacted for 48 hours. After 48 hours, phenylboronic acid and bromobenzene were added as end-caps at intervals of 6 hours. Bromobenzene was added and reacted for an additional 6 hours, the reaction was terminated, and the mixture was precipitated in acetone to obtain a precipitate. The precipitate was filtered under reduced pressure and washed with distilled water and methanol to remove unreacted monomers, oligomers, and catalyst. The product obtained after removal of the catalyst was dissolved in chloroform and purified by reprecipitation in acetone.

<실시예 2. 이리듐 공중합체의 분자량 및 구조 분석><Example 2. Molecular Weight and Structure Analysis of Iridium Copolymer>

합성한 고분자는 Shimadzu 사의 GPC로 분자량을 측정하였다. 측정 시 chloroform을 용매로 사용하였다. The synthesized polymer was measured for molecular weight by Shimadzu's GPC. In the measurement, chloroform was used as a solvent.

측정 결과, 표 1과 같이 M100과 M90N10의 경우 분자량이 측정이 되었지만 나머지 공중합체의 경우 유기용매에 대한 용해도가 낮아 GPC로 분자량을 측정할 수 없었다.As a result of the measurement, as shown in Table 1, the molecular weights of M100 and M90N10 were measured, but the remaining copolymers had low solubility in organic solvents, so that the molecular weight could not be measured by GPC.

또한 1H-NMR 및 FT-IR 분광분석법으로 구조를 조사하였다. 1H-NMR 측정에 사용된 용매는 chloroform-d였다. FT-IR은 모두 KBr pellet으로 만들어서 측정하였다. 측정 결과 도 1 및 도 2와 같이 공중합체에서 화합물 4(compound 4)의 함량이 많을수록 1400 cm-1와 3400 cm-1에서 C-N, C=O, N-H의 흡수 피크의 세기가 증가함을 확인할 수 있다. In addition, the structure was investigated by 1 H-NMR and FT-IR spectroscopy. The solvent used for the 1 H-NMR measurement was chloroform-d. All FT-IRs were measured by making KBr pellets. As a result of the measurement, it can be seen that as the content of compound 4 in the copolymer increases as shown in FIGS. 1 and 2, the intensity of absorption peaks of CN, C=O, and NH increase at 1400 cm -1 and 3400 cm -1 . have.

GPC data of soluble polymerGPC data of soluble polymer Copolymer codeCopolymer code MnMn MwMw PDIPDI M100M100 1100011000 1950019500 1.771.77 M90N10M90N10 67006700 79007900 1.191.19

<실시예 3. 이리듐 공중합체의 흡광 및 발광특성><Example 3. Light absorption and emission characteristics of iridium copolymer>

합성한 고분자의 흡광 특성은 chloroform을 용매로 사용하여 용액 상태에서 측정하였다. 측정에 사용된 cell은 quartz cell을 사용하였다. 도 3은 chloroform 용액 상태에서 측정한 UV-vis 흡수 스펙트럼으로서, 표 2에 chloroform을 용액에서 측정한 UV-vis 흡수 스펙트럼 최대 파장을 정리하여 나타내었다.The light absorption properties of the synthesized polymer were measured in a solution state using chloroform as a solvent. The cell used for the measurement was a quartz cell. 3 is a UV-vis absorption spectrum measured in a chloroform solution state, and Table 2 shows the maximum wavelength of the UV-vis absorption spectrum measured in a solution of chloroform.

이를 보다 자세히 살펴보면, Chloroform 용액 상태에서 M100은 2,7-dibromo-9,9-n-dioctyl-fluorene과 biphenyl이 결합된 구조이므로 365nm에서 최대 흡수 파장을 보였다. 이는 2,7-dibromo-9,9-n-octylfluorene가 385nm에서 최대 흡수 파장을 갖는데 이러한 영향을 받아 M100의 UV-vis 흡수 스펙트럼이 365nm에서 최대 흡수 파장을 갖는 것으로 설명할 수 있다. N100의 경우 iridium compound인 compound 4와 iphenyl이 결합된 구조이다. iridium compound인 compound 4는 대략 375nm에서 최대 흡수 파장값을 가졌다. 이러한 구조단위가 포함된 N100은 350nm, 360nm에서 최대 흡수 파장값을 보였다. 앞서 말한 2개의 고분자는 단독중합체이다. 나머지 3개의 공중합체의 경우 UV-vis 흡수 스펙트럼을 살펴보면 흡수 스펙트럼에 영향을 줄 수 있는 단량체가 2가지가 있다. 2,7-dibromo-9,9-n-dioctyl-fluorene과 화합물 4(compound 4)의 최대 흡수 파장값이 유사하기 때문에 두 단위체의 조성비가 다른 M90N10, M50N50, M25N75의 최대 흡수 파장값이 유사하게 나타났다.Looking at this in more detail, in the chloroform solution, M100 exhibited a maximum absorption wavelength at 365 nm because 2,7-dibromo-9,9-n-dioctyl-fluorene and biphenyl were combined. This can be explained that 2,7-dibromo-9,9-n-octylfluorene has a maximum absorption wavelength at 385 nm, and under this influence, the UV-vis absorption spectrum of M100 has a maximum absorption wavelength at 365 nm. In the case of N100, compound 4, an iridium compound, and iphenyl are combined. Compound 4, an iridium compound, had a maximum absorption wavelength at approximately 375 nm. N100 containing these structural units showed maximum absorption wavelength values at 350nm and 360nm. The two polymers mentioned above are homopolymers. In the case of the remaining three copolymers, looking at the UV-vis absorption spectrum, there are two monomers that can affect the absorption spectrum. Since the maximum absorption wavelength values of 2,7-dibromo-9,9-n-dioctyl-fluorene and compound 4 are similar, the maximum absorption wavelength values of M90N10, M50N50, and M25N75 differ in the composition ratio of the two units. appear.

UV-vis 흡수 스펙트럼을 통한 광학 밴드갭은 다음과 같은 식으로 구할 수 있는데, 광학적 밴드갭은 대부분 3.16-3.05 eV으로 구해졌다. 조성에 따라서 광학 밴드갭의 차이는 크게 없음을 알 수 있었다.The optical bandgap through the UV-vis absorption spectrum can be obtained by the following equation, and most of the optical bandgaps were obtained as 3.16-3.05 eV. It was found that there was no significant difference in the optical bandgap depending on the composition.

Figure 112019058715583-pat00014
Figure 112019058715583-pat00014

합성한 고분자의 발광 특성은 chloroform을 사용하여 용액 상태로 측정하였고, 측정에 사용된 cell은 quartz cell을 사용하였다. 도 4는 chloroform 용액 상태에서 측정한 PL 스펙트럼으로서, 표 3에서는 chloroform을 용액 상태에서 측정한 PL 스펙트럼의 최대 파장을 정리하여 나타내었다.The luminescence properties of the synthesized polymer were measured in a solution state using chloroform, and the cell used for the measurement was a quartz cell. 4 is a PL spectrum measured in a chloroform solution state, and Table 3 shows the maximum wavelength of the PL spectrum measured in a solution state of chloroform.

본 발명에서는 발광 고분자를 만들기 위해 인광 발색단을 적용하였는데, 여기서 형광 발색단으로는 2,7-dibromo-9,9-n-dioctyl-fluorene이 사용되었고, 인광 발색단으로는 iridium compound인 화합물 4(compound 4)가 사용되었는데, 이 때 사용된 인광 발색단의 최대 발광 파장값은 대략 640 nm이고, 형광 발색단의 최대 발광 파장값은 대략 415 nm이다. In the present invention, a phosphorescent chromophore was applied to make a light emitting polymer, where 2,7-dibromo-9,9-n-dioctyl-fluorene was used as the fluorescent chromophore, and compound 4, which is an iridium compound, was used as the phosphorescent chromophore. ) Was used, and the maximum emission wavelength value of the phosphorescent chromophore used at this time was approximately 640 nm, and the maximum emission wavelength value of the fluorescent chromophore was approximately 415 nm.

M100과 M90N10의 경우 PL 스펙트럼에서 보면 408 nm, 409 nm에서 최대 발광 파장값을 갖는 것으로 확인되는 바, 이로부터 M100, M90N10은 적색 발광을 하지 않는다는 것을 알 수 있다. 즉, 이는 구조적으로 설명할 수 있는데, 먼저 M100의 경우 인광 발색단인 화합물(compound 4)를 사용하지 않았기 때문이다. In the case of M100 and M90N10, it is confirmed that they have the maximum emission wavelength values at 408 nm and 409 nm in the PL spectrum. From this, it can be seen that M100 and M90N10 do not emit red light. That is, this can be explained structurally, because first, in the case of M100, a phosphorescent chromophore compound (compound 4) was not used.

M100의 경우, 2,7-dibromo-9,9-n-dioctyl-fluorene과 biphenyl이 1:1로 이루어진 구조이며 형광 발색단인 2,7-dibromo-9,9-n-dioctyl-fluorene만을 발색단으로 사용되었기 때문에 M100의 최대 발광 파장값은 409nm으로 나타났다고 추정된다. In the case of M100, 2,7-dibromo-9,9-n-dioctyl-fluorene and biphenyl consist of 1:1, and only 2,7-dibromo-9,9-n-dioctyl-fluorene, a fluorescent chromophore, is a chromophore. Since it was used, it is estimated that the maximum emission wavelength value of M100 was 409 nm.

M90N10의 경우에는 화합물 4(compound 4)가 도입되었는데, 조성비를 살펴보면 형광 발색단, biphenyl 및 인광 발색단이 45:50:5의 조성비를 갖는데 이는 iridium의 함량이 극히 적다는 것을 의미한다. 따라서 인광 발광을 위한 형광 및 인광 발색단이 갖춰졌지만 조성비가 적합하지 않았다고 볼 수 있다. 인광 발색단이 적색 발광을 한다 하더라도 청색 발광을 하는 2,7-dibromo-9,9-n-dioctyl-fluorene의 함량이 매우 많기 때문에 적색 발광이 아닌 청색 발광을 하였다. 결과적으로 M90N10의 최대 발광 파장값은 408nm이며 적색발광이 아니었다. 반면 이처럼 iridium의 함량이 없거나 매우 적은 경우인 M100과 M90N10은 청색 발광을 하였다. In the case of M90N10, compound 4 was introduced. Looking at the composition ratio, the fluorescent chromophore, biphenyl, and phosphorescent chromophore have a composition ratio of 45:50:5, which means that the content of iridium is extremely small. Therefore, although the fluorescent and phosphorescent chromophores for phosphorescence emission were equipped, the composition ratio was not suitable. Although the phosphorescent chromophore emits red light, it emits blue light rather than red light because the content of 2,7-dibromo-9,9-n-dioctyl-fluorene emitting blue light is very high. As a result, the maximum emission wavelength value of M90N10 was 408 nm, and it was not red emission. On the other hand, when there is no or very little iridium content, M100 and M90N10 emit blue light.

UV-vis absorption of copolymersUV-vis absorption of copolymers Copolymer codeCopolymer code UV λmax (nm)UV λ max (nm) λ onset (nm)λ onset (nm) Optical Eg (eV)Optical E g (eV) M100M100 365365 406406 3.053.05 M90N10M90N10 365365 393393 3.163.16 M50N50M50N50 350, 360350, 360 396396 3.133.13 M25N75M25N75 360360 400400 3.13.1 N100N100 350, 360350, 360 397397 3.123.12

PL data of copolymersPL data of copolymers Copolymer codeCopolymer code PL λmax (nm) in CHCl3 solutionPL λ max (nm) in CHCl 3 solution M100M100 409409 M90N10M90N10 408408

<실시예 4. 이리듐 공중합체의 메소겐성 확인> <Example 4. Confirmation of mesogenicity of iridium copolymer>

POM images 분석을 통해 도 5 내지 도 9와 같이 합성한 고분자의 액정상을 확인한 결과 M100의 경우 열방성의 액정이고, M90N10, M50N50, M25N75는 유방성의 액정이며, N100의 경우 액정상을 확인할 수 없었다.As a result of confirming the liquid crystal phase of the polymer synthesized as shown in FIGS. 5 to 9 through POM image analysis, M100 is a thermally dissipating liquid crystal, M90N10, M50N50, and M25N75 are breast-like liquid crystals, and in the case of N100, the liquid crystal phase could not be confirmed.

즉, 열방성 액정인 M100는 250℃에서 네마틱 상이 나타났다. 280℃ 부근에서 Ti가 되어 등방성 액체가 나타났다. That is, the heat dissipating liquid crystal M100 showed a nematic phase at 250°C. At around 280°C, T i became an isotropic liquid.

다음으로 유방성 액정상을 형성시키기 위해 chloroform을 용매로 사용하여 이들의 특징을 분석한 결과, M90N10의 경우 구조상 알킬 그룹이 많아 용해도가 우수했다. 따라서 용매에 용해시켜 액정상을 명확하게 확인할 수 있었다. M50N50 및 M25N75의 경우 M90N10보다 iridium 함량이 많이 증가되어 용해도가 크게 감소하였다. 따라서 용매로 녹여 액정상을 확인하려 해도 iridium의 함량이 높아 용해도가 낮아져 액정상을 제대로 확인할 수 없었다. N100의 경우 구조상으로 보면 알킬 그룹이 전혀 없다. 이는 N100의 구조의 대부분이 방향족성기로 이루어져 있다는 것을 의미한다. 구조상 강직한 기가 많으면 엔트로피가 감소하여 용해도가 감소한다. 결과적으로 열방성인지 유방성인지 확인하기가 어려웠다.Next, as a result of analyzing their characteristics using chloroform as a solvent to form a breast-like liquid crystal phase, M90N10 had excellent solubility due to the large amount of alkyl groups in its structure. Therefore, the liquid crystal phase was clearly confirmed by dissolving in a solvent. In the case of M50N50 and M25N75, the iridium content was increased more than that of M90N10, and the solubility was greatly decreased. Therefore, even when trying to check the liquid crystal phase by dissolving it with a solvent, the solubility was low due to the high content of iridium, so that the liquid crystal phase could not be properly identified. In the case of N100, structurally, there is no alkyl group at all. This means that most of the structure of N100 is composed of aromatic groups. If there are many structurally rigid groups, entropy decreases and solubility decreases. As a result, it was difficult to determine whether it was a parenchymal or breast-like.

결론적으로 M100은 열방성의 액정이며 250℃에서 네마틱 상이 나타났다. 그리고 M90N10는 유방성 액정상을 나타내었고, M50N50 및 M25N75는 용해도가 낮아 유방성 액정상을 형성하는지 제대로 확인할 수 없었으며, N100은 액정상을 형성하지 못했다.In conclusion, M100 is a thermally dissipating liquid crystal and a nematic phase appeared at 250°C. In addition, M90N10 exhibited a lyotropic liquid crystal phase, M50N50 and M25N75 had low solubility, so it was not possible to properly determine whether or not to form a lyotropic liquid crystal phase, and N100 could not form a liquid crystal phase.

이상의 결과를 통해 본 발명의 메소겐성 이리듐 공중합체의 제조시, 원료 화합물의 혼합비를 통해 발광정도를 조절할 수 있음을 확인할 수 있다. From the above results, it can be seen that when the mesogenic iridium copolymer of the present invention is prepared, the degree of luminescence can be controlled through the mixing ratio of the raw material compounds.

Claims (8)

하기 화학식 1로 표시되는 메소겐성 이리듐 착물을 포함한 공중합체.
[화학식 1]
Figure 112019058715583-pat00015

(상기 R1 및 R2는 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기로부터 선택되고, 상기 m 및 n은 각각 독립적으로 10 내지 10000 정수임)
A copolymer containing a mesogenic iridium complex represented by the following formula (1).
[Formula 1]
Figure 112019058715583-pat00015

(The R1 and R2 are each independently selected from hydrogen or an alkyl group having 1 to 10 carbon atoms, and m and n are each independently an integer of 10 to 10000)
보론이 포함된 바이페닐(biphenyl) 유도체 화합물을 제공하는 단계;
플루오렌 유도체 화합물을 제공하는 단계; 헤테로랩틱(heteroleptic) 이리듐 착물을 제공하는 단계;
상기 보론이 포함된 바이페닐(biphenyl) 유도체 화합물, 플루오렌 유도체 화합물 및 헤테로랩틱 이리듐 착물을 중합반응시키는 단계; 및,
중합반응 단계 이후에 중합체 끝단(polymer end group)을 페닐유도체로 캡핑하는 하는 단계;
를 포함하는 것이 특징인 제1항에 기재된 화학식 1로 표시되는 메소겐성 이리듐 착물을 포함한 공중합체의 제조방법.
Providing a biphenyl (biphenyl) derivative compound containing boron;
Providing a fluorene derivative compound; Providing a heterolaptic iridium complex;
Polymerizing the boron-containing biphenyl derivative compound, fluorene derivative compound, and heterolabtic iridium complex; And,
Capping the polymer end group with a phenyl derivative after the polymerization step;
A method for producing a copolymer comprising a mesogenic iridium complex represented by Formula 1 according to claim 1, characterized by comprising a.
제2항에 있어서,
상기 보론이 포함된 바이페닐(biphenyl) 유도체 화합물은 하기 화학식 2로 표시되는 것을 특징으로 하는 메소겐성 이리듐 착물을 포함한 공중합체의 제조방법.
[화학식 2]
Figure 112019058715583-pat00016
The method of claim 2,
The biphenyl (biphenyl) derivative compound containing boron is a method for producing a copolymer including a mesogenic iridium complex, characterized in that represented by the following formula (2).
[Formula 2]
Figure 112019058715583-pat00016
제2항에 있어서,
상기 플루오렌 유도체 화합물은 하기 화학식 3으로 표시되는 것을 특징으로 하는 메소겐성 이리듐 착물을 포함한 공중합체의 제조방법.
[화학식 3]
Figure 112019058715583-pat00017

(상기 R1 및 R2는 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기로부터 선택됨)
The method of claim 2,
The fluorene derivative compound is a method for producing a copolymer containing a mesogenic iridium complex, characterized in that represented by the following formula (3).
[Formula 3]
Figure 112019058715583-pat00017

(The R1 and R2 are each independently selected from hydrogen or an alkyl group having 1 to 10 carbon atoms)
제2항에 있어서,
상기 헤테로랩틱(heteroleptic) 이리듐 착물은 하기 화학식 4로 표시되는 것을 특징으로 하는 메소겐성 이리듐 착물을 포함한 공중합체의 제조방법.
[화학식 4]
Figure 112019058715583-pat00018


(상기 X는 Cl, Br, I 중에서 선택됨)
The method of claim 2,
The heterolabtic (heteroleptic) iridium complex is a method for producing a copolymer including a mesogenic iridium complex, characterized in that represented by the following formula (4).
[Formula 4]
Figure 112019058715583-pat00018


(The X is selected from Cl, Br, and I)
제2항에 있어서,
상기 중합반응은 팔라듐계 촉매 하에서 반응시키는 것을 특징으로 하는 메소겐성 이리듐 착물을 포함한 공중합체의 제조방법.
The method of claim 2,
The polymerization reaction is a method for producing a copolymer containing a mesogenic iridium complex, characterized in that the reaction is carried out under a palladium-based catalyst.
제2항에 있어서,
상기 페닐유도체는 브로모벤젠(bromobenzene) 또는 페닐보릭산(phenylboronic acid)에서 선택되는 것을 특징으로 하는 메소겐성 이리듐 착물을 포함한 공중합체의 제조방법.
The method of claim 2,
The phenyl derivative is a method of producing a copolymer including a mesogenic iridium complex, characterized in that selected from bromobenzene or phenylboronic acid.
제1항의 공중합체를 포함하는 것을 특징으로 하는 유방성 액정(lyotropic liquid crystal) 조성물. A lyotropic liquid crystal composition comprising the copolymer of claim 1.
KR1020190067788A 2019-06-10 2019-06-10 New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same Active KR102176917B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190067788A KR102176917B1 (en) 2019-06-10 2019-06-10 New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190067788A KR102176917B1 (en) 2019-06-10 2019-06-10 New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same

Publications (1)

Publication Number Publication Date
KR102176917B1 true KR102176917B1 (en) 2020-11-10

Family

ID=73548839

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190067788A Active KR102176917B1 (en) 2019-06-10 2019-06-10 New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same

Country Status (1)

Country Link
KR (1) KR102176917B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508686A (en) * 1996-04-17 2000-07-11 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Spiro atom containing polymers and their use as electroluminescent materials
US6867243B2 (en) * 2001-06-29 2005-03-15 University Of Hull Light emitting polymer
KR101687427B1 (en) * 2008-12-05 2016-12-19 보에 테크놀로지 그룹 컴퍼니 리미티드 Functionalized polyfluorenes for use in optoelectronic devices
KR101724588B1 (en) 2015-04-23 2017-04-07 금오공과대학교 산학협력단 Bent-core dimesogenic compound and method for preparing thereof
KR101745371B1 (en) 2015-04-23 2017-06-09 금오공과대학교 산학협력단 hockey stic shaped reactive mesogen compound and method for preparing thereof
KR20170114059A (en) 2016-04-01 2017-10-13 한양대학교 산학협력단 Organic light-emitting diode having emission layer comprising aligned liquid crystal molecules
JP6442977B2 (en) * 2014-10-22 2018-12-26 三菱ケミカル株式会社 Polymer, composition for organic electroluminescence device, organic electroluminescence device, organic EL display device and organic EL lighting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508686A (en) * 1996-04-17 2000-07-11 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Spiro atom containing polymers and their use as electroluminescent materials
US6867243B2 (en) * 2001-06-29 2005-03-15 University Of Hull Light emitting polymer
KR101687427B1 (en) * 2008-12-05 2016-12-19 보에 테크놀로지 그룹 컴퍼니 리미티드 Functionalized polyfluorenes for use in optoelectronic devices
JP6442977B2 (en) * 2014-10-22 2018-12-26 三菱ケミカル株式会社 Polymer, composition for organic electroluminescence device, organic electroluminescence device, organic EL display device and organic EL lighting
KR101724588B1 (en) 2015-04-23 2017-04-07 금오공과대학교 산학협력단 Bent-core dimesogenic compound and method for preparing thereof
KR101745371B1 (en) 2015-04-23 2017-06-09 금오공과대학교 산학협력단 hockey stic shaped reactive mesogen compound and method for preparing thereof
KR20170114059A (en) 2016-04-01 2017-10-13 한양대학교 산학협력단 Organic light-emitting diode having emission layer comprising aligned liquid crystal molecules

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Adv. Funct. Mater., 2007, Vol. 17, pp. 1085-1092 *
Chem. Mater., 2008, Vol.20, pp.1629-1635 *

Similar Documents

Publication Publication Date Title
JP4461762B2 (en) Polymer compound and polymer light emitting device using the same
WO2004039859A1 (en) High-molecular compounds and polymerer light emitting devices made by using the same
Fan et al. High-efficiency circularly polarized emission from liquid-crystalline platinum complexes
Sharma et al. Self-assembled blue-light emitting materials for their liquid crystalline and OLED applications: from a simple molecular design to supramolecular materials
Feng et al. Triphenylene 2, 3-dicarboxylic imides as luminescent liquid crystals: Mesomorphism, optical and electronic properties
Wu et al. Linearly polarized electroluminescence from ionic iridium complex-based metallomesogens: the effect of aliphatic-chain on their photophysical properties
Chen et al. An AEE-active polymer containing tetraphenylethene and 9, 10-distyrylanthracene moieties with remarkable mechanochromism
San Jose et al. Liquid crystalline polyacetylene derivatives with advanced electrical and optical properties
Yang et al. Platinum-based metallomesogens bearing a Pt (4, 6-dfppy)(acac) skeleton: Synthesis, photophysical properties and polarised phosphorescence application
Sun et al. Multi-substituted dibenzo [a, c] phenazine derivatives as solution-processable thermally activated delayed fluorescence materials for orange–red organic light-emitting diodes
GB2437213A (en) Polymer compound and polymer light-emitting device using same
CN115286649A (en) A kind of aryl boron nitrogen compound with narrow band emission and its preparation and application
Yu et al. A phase-dependent photoluminescent discotic liquid crystal bearing a graphdiyne substructure
Gao et al. A fully π-conjugated triazine-based 2D covalent organic framework used as metal-free yellow phosphors in white light-emitting diodes
Chalke et al. Novel methoxy spirobifluorene and alkyl substituted diphenylacene based organic blue light emitting polymers for application in organic electronics
KR102176917B1 (en) New organic light emitting mesogenic copolymers with composition containing iridium(III) complex chromophore, capable of polarized light emission and method for preparing the same
KR102050163B1 (en) New organic light emitting mesogenic copolymers with composition containing iridium complex chromophore, capable of polarized light emission and method for preparing the same
CN104449672B (en) Long-arm benzoic acid rare earth luminescent material and preparation method thereof
Zhu et al. The design, synthesis and order-enhanced emission of luminescent liquid crystalline polymers based on a “jacketing” effect
Sun et al. Fluorene-carbazole-based hyperbranched polymers with linear red TADF chromophores for high-efficiency white and red electroluminescent devices
KR20190139013A (en) New organic light-emitting mesogenic copolymers capable of trichromatic polarized light emission and method for preparing the same
KR20130046632A (en) Electriluminescent polymer containing benzothiadiazole derivatives and organoelectriluminescent device emloying the same
Wang et al. Synthesis, characterization, photoluminescence and electroluminescence properties of new 1, 3, 4-oxadiazole-containing rhenium (I) complex Re (CO) 3 (Bphen)(PTOP)
Hu et al. Synthesis and properties of novel ferroelectric liquid crystalline polyacetylenes containing terphenyl mesogens with chiral groups
del Barrio et al. Extended liquid-crystalline oligofluorenes with photo-and electroluminescence

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20190610

PA0201 Request for examination
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20201103

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20201104

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20201104

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20231031

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20250122

Start annual number: 5

End annual number: 5