[go: up one dir, main page]

KR102268275B1 - A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole - Google Patents

A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole Download PDF

Info

Publication number
KR102268275B1
KR102268275B1 KR1020190122363A KR20190122363A KR102268275B1 KR 102268275 B1 KR102268275 B1 KR 102268275B1 KR 1020190122363 A KR1020190122363 A KR 1020190122363A KR 20190122363 A KR20190122363 A KR 20190122363A KR 102268275 B1 KR102268275 B1 KR 102268275B1
Authority
KR
South Korea
Prior art keywords
nuclear fuel
fuel assembly
shape
grid
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020190122363A
Other languages
Korean (ko)
Other versions
KR20210039748A (en
Inventor
천주홍
김성수
김바름
박남규
Original Assignee
한전원자력연료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한전원자력연료 주식회사 filed Critical 한전원자력연료 주식회사
Priority to KR1020190122363A priority Critical patent/KR102268275B1/en
Publication of KR20210039748A publication Critical patent/KR20210039748A/en
Application granted granted Critical
Publication of KR102268275B1 publication Critical patent/KR102268275B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/33Supporting or hanging of elements in the bundle; Means forming part of the bundle for inserting it into, or removing it from, the core; Means for coupling adjacent bundles
    • G21C3/3305Lower nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/356Spacer grids being provided with fuel element supporting members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

본 발명은 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체에 관한 것으로서, 더욱 상세하게는 유로홀의 형태를 격자무늬로 구성하여 유로홀 크기 최소화를 통해 이물질 필터링 효율성을 높임과 동시에, 상기 격자무늬를 구성하는 격자프레임의 측단면 형태를 항공기 익형으로 구성하여 냉각수 압력 강하 방지를 통해 냉각수 유속이 저하되지 않도록 한 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체에 관한 것이다.
이를 위해, 복수의 유로홀을 형성하는 핵연료집합체의 하단고정체에 있어서, 상기 유로홀은 격자무늬로 구성되며, 상기 격자무늬를 구성하는 메인격자프레임의 측단면 형태는, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)이며, 상기 메인격자프레임을 통해 구성된 유로홀은 서브격자프레임을 통해 격자무늬로 분할구성되고, 상기 서브격자프레임의 측단면 형태는, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)인 것을 특징으로 하는 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체를 제공한다.
The present invention relates to a lower fixture of a nuclear fuel assembly in which a passage hole is formed by utilizing an aircraft airfoil structure, and more particularly, by configuring the passage hole shape in a grid pattern to minimize the passage hole size, thereby increasing the efficiency of filtering foreign substances and simultaneously , The side cross-sectional shape of the grid frame constituting the grid pattern is configured as an aircraft airfoil so that the flow rate of the cooling water is not lowered by preventing the cooling water pressure drop. it's about
To this end, in the lower fixture of the nuclear fuel assembly forming the plurality of flow path holes, the flow path holes are configured in a grid pattern, and the side cross-sectional shape of the main grid frame constituting the grid pattern is formed from the direction in which the coolant is introduced. It is a streamlined shape of an aircraft airfoil type that is formed in a curved shape and is sharply formed, and the flow path formed through the main grid frame is divided into a grid pattern through the sub grid frame, and the side of the sub grid frame The cross-sectional shape is a curved shape from the direction in which the coolant is introduced and is a streamlined shape of an aircraft spar type formed sharply. The lower end of a nuclear fuel assembly in which a flow path is formed using an aircraft spar structure. provide a fixture.

Description

항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체{A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole}{A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole}

본 발명은 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체에 관한 것으로서, 더욱 상세하게는 이물질 필터링 효율성을 높이면서도 냉각수 압력 강하 방지를 통해 냉각수 유속이 저하되는 것을 방지한 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체에 관한 것이다.The present invention relates to a lower fixed body of a nuclear fuel assembly in which a passage hole is formed by utilizing an aircraft airfoil structure, and more particularly, an aircraft airfoil which prevents a decrease in the coolant flow rate by preventing a coolant pressure drop while improving the foreign material filtering efficiency. It relates to a lower fixed body of a nuclear fuel assembly in which a flow hole is formed by utilizing the structure.

원자로는 핵분열 물질의 연쇄 핵분열반응을 인공적으로 제어하여 핵분열에서 발생되는 열에너지를 동력으로 사용하기 위한 장치이다.A nuclear reactor is a device for artificially controlling a chain fission reaction of fissile materials and using thermal energy generated from nuclear fission as power.

원자로에서 사용되는 핵연료는 농축된 우라늄을 일정한 크기의 원통형 펠렛(pellet)으로 성형된 후에 다수의 펠렛들이 연료봉 내에 장입되어 제조되며, 이러한 다수의 연료봉들이 핵연료 집합체를 구성하여 원자로의 노심에 장전된 후에 핵반응을 통해 연소가 이루어진다.The nuclear fuel used in the nuclear reactor is manufactured by forming the enriched uranium into cylindrical pellets of a certain size, and then a plurality of pellets are charged into the fuel rods, and these fuel rods constitute a nuclear fuel assembly and are loaded into the core of the nuclear reactor. Combustion takes place through a nuclear reaction.

도 1을 참고하면, 일반적으로 핵연료 집합체는 축방향으로 배치되는 다수의 연료봉과, 이 연료봉의 횡방향으로 마련되어 연료봉을 지지하게 되는 다수의 지지격자(30)와, 이 지지격자(30)와 고정되어 집합체의 골격을 구성하는 다수의 안내관(10) 및 지지격자(30)의 중심에 삽입되는 계측관(20)과, 안내관(10) 및 계측관(20)의 상하단을 각각 지지하게 되는 상단고정체(40) 및 하단고정체(50)로 이루어진다.Referring to FIG. 1 , in general, a nuclear fuel assembly includes a plurality of fuel rods disposed in the axial direction, a plurality of spacer grids 30 provided in the transverse direction of the fuel rods to support the fuel rods, and the spacer grid 30 and fixed to the fuel rods. a plurality of guide tubes 10 and spacer grids 30 that are inserted into the center of the assembly and support the upper and lower ends of the guide tube 10 and the measurement tube 20, respectively It consists of an upper fixed body 40 and a lower fixed body (50).

핵연료 집합체를 구성하는 연료봉은 대략 200개 이상으로 이루어지며, 각 연료봉에는 농축된 우라늄이 일정 크기의 펠렛으로 성형되어 장입된다.The fuel rods constituting the nuclear fuel assembly are approximately 200 or more, and enriched uranium is molded into pellets of a certain size and charged into each fuel rod.

상단고정체(40)와 하단고정체(50)는 안내관(10)의 상단과 하단을 각각 지지하기 위한 것으로, 상단고정체(40)는 핵연료 집합체의 하부를 통해 상부를 흐르는 냉각수의 수압에 의해 핵연료 집합체의 들림이 발생하는 것을 방지하도록 다수의 탄성체가 마련되어 핵연료 집합체의 상단부를 눌려서 고정하는 기능을 한다.The upper fixture 40 and the lower fixture 50 are for supporting the upper end and the lower end of the guide tube 10, respectively, and the upper fixture 40 is the water pressure of the coolant flowing through the lower part of the nuclear fuel assembly. A plurality of elastic bodies are provided to prevent lifting of the nuclear fuel assembly by pressing and fixing the upper end of the nuclear fuel assembly.

하단고정체(50)는 안내관(10)의 하단부를 고정 지지하고, 안내관(10)과 계측관(20)이 삽입되는 홀 및 냉각수가 공급되는 다수의 유로홀을 형성한다.The lower fixture 50 fixes and supports the lower end of the guide tube 10 , and forms a hole into which the guide tube 10 and the measurement tube 20 are inserted, and a plurality of flow passage holes through which cooling water is supplied.

도 2a 및 도 2b를 참조하여 상기 하단고정체(50)에 대하여 상세하게 살펴보도록 한다.With reference to FIGS. 2A and 2B, the lower fixture 50 will be described in detail.

하단고정체(50)에는 안내관(10) 및 계측관(20)이 각각 연결되는 안내홀(51) 및 계측홀(52)과 냉각수 통과 구멍인 유로홀(53)이 형성된다.A guide hole 51 and a measurement hole 52 to which the guide tube 10 and the measurement tube 20 are respectively connected are formed in the lower fixture 50 , and a passage hole 53 which is a cooling water passage hole.

이와 같은 구성에 의해 냉각수는 상기 유로홀(53)을 통해 연료봉 영역으로 유입되어 연료봉들 사이를 통과하면서 연료봉에서 발생되는 열을 냉각시킨다.With this configuration, the coolant flows into the fuel rod region through the flow passage hole 53 and cools the heat generated from the fuel rod while passing between the fuel rods.

이때, 냉각수가 유로홀(53)을 통해 연료봉 영역으로 유입될 때, 냉각수 중에 잔존하는 이물질들 역시 냉각수와 동일한 경로로 연료봉 영역으로 함께 들어오게 된다.At this time, when the coolant flows into the fuel rod region through the flow passage hole 53 , foreign substances remaining in the coolant also enter the fuel rod region through the same path as the coolant.

즉, 원자로 가동 중에 냉각수와 함께 흐르는 여러 형태의 이물질은 유로홀(53)을 통과하여 핵연료집합체의 연료봉이 위치한 영역으로 유입되고, 연료봉과 연료봉 사이 또는 핵연료집합체 최하부 지지격자와 연료봉 사이에 끼일 수 있는 것이다.That is, various types of foreign substances flowing together with the coolant during reactor operation pass through the flow path hole 53 and flow into the region where the fuel rods of the nuclear fuel assembly are located, and may be caught between the fuel rods and the fuel rods or between the spacer grid and the fuel rods at the bottom of the nuclear fuel assembly. will be.

크기가 비교적 큰 이물질이 유로홀(53)을 통해 냉각수와 같이 연료봉 사이로 유입되면, 이물질은 인접한 핵연료봉 피복관에 진동접촉하고, 그로 인해 핵연료봉 피복관을 기계적으로 마모시켜 상기 피복관을 손상시키게 된다.When a relatively large foreign material enters between the fuel rods, such as coolant, through the flow passage hole 53, the foreign material comes into vibrational contact with the adjacent nuclear fuel rod cladding tube, thereby mechanically abrading the nuclear fuel rod cladding tube and damaging the cladding tube.

이와 같이 핵연료봉에 손상을 입힐 수 있는 이물질의 종류는 절삭가공 후의 금속조각, 용접시 발생되는 찌꺼기, 볼트, 넛트, 못, 쇠톱조각 등 매우 다양하다.As such, the types of foreign substances that can damage nuclear fuel rods are very diverse, such as metal fragments after cutting, dregs generated during welding, bolts, nuts, nails, and hacksaw fragments.

핵연료봉의 피복관이 손상되면 연료봉내 핵물질의 핵반응으로 인하여 생성된 핵반응 생성물질들이 연료봉 피복관의 밖으로 유출되어 냉각수를 방사능 물질들로 오염시키고, 오염된 냉각수는 원자력 발전소의 일차 냉각 계통을 순환하면서 일차냉각수 전체를 오염시킨다.When the cladding of the nuclear fuel rod is damaged, the nuclear reaction products generated due to the nuclear reaction of the nuclear material in the fuel rod leak out of the fuel rod cladding and contaminate the cooling water with radioactive substances, and the contaminated cooling water circulates through the primary cooling system of the nuclear power plant as the primary coolant contaminate the whole.

이러한 문제점을 방지하기 위해 유로홀(53)은 원자로에서 발생하는 이물질을 여과하기 위해 그물망 형태 등 다양한 모양으로 설계가 되고 있는 실정이다.In order to prevent such a problem, the flow hole 53 is designed in various shapes, such as a mesh shape, in order to filter foreign substances generated in the nuclear reactor.

하지만, 종래에는 이물질 필터링 효율을 높이기 위한 유로홀(53) 설계는 냉각수의 압력이 강하되어 냉각수 흐름이 원활하게 이루어지지 않고, 냉각수의 압력강하를 방지하기 위한 유로홀(53) 설계는 이물질 필터링 효율이 떨어지는 문제가 있다.However, in the related art, in the design of the flow hole 53 for increasing the foreign material filtering efficiency, the cooling water pressure is lowered and the cooling water flow is not performed smoothly, and the flow hole 53 design to prevent the pressure drop of the cooling water is the foreign material filtering efficiency. There is a problem with this falling.

대한민국 공개번호 특2000-0061665호Republic of Korea Publication No. 2000-0061665

본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 유로홀의 크기를 최소화하여 이물질 필터링에 대한 효율성을 극대화하면서도, 하단고정체의 유로홀을 통한 냉각수의 압력 강하를 방지하여 냉각수 흐름이 원활하게 이루어지도록 한 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체를 제공하고자 한 것이다, The present invention has been devised to solve the above problems, and an object of the present invention is to maximize the efficiency of filtering foreign substances by minimizing the size of the flow hole, while preventing the pressure drop of the coolant through the flow hole of the lower fixture to prevent cooling water. This is to provide a lower fixed body of a nuclear fuel assembly that forms a flow hole by utilizing the aircraft airfoil structure that allows for smooth flow.

본 발명은 상기한 목적을 달성하기 위하여, 복수의 유로홀을 형성하는 핵연료집합체의 하단고정체에 있어서, 상기 유로홀은 격자무늬로 구성되며, 상기 격자무늬를 구성하는 메인격자프레임의 측단면 형태는, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)이며, 상기 메인격자프레임을 통해 구성된 유로홀은 서브격자프레임을 통해 격자무늬로 분할구성되고, 상기 서브격자프레임의 측단면 형태는, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)인 것을 특징으로 하는 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체를 제공한다.In order to achieve the above object, in the lower fixture of a nuclear fuel assembly forming a plurality of passage holes, the passage holes are configured in a grid pattern, and a side cross-sectional shape of a main grid frame constituting the grid pattern is an aircraft airfoil type streamlined shape that is curved from the direction in which the coolant is introduced and is formed sharply, and the flow path formed through the main grid frame is divided into a grid pattern through the sub grid frame. and the side cross-sectional shape of the sub-lattice frame is an aircraft airfoil type streamlined shape that is curved from the direction in which the coolant is introduced and is sharply formed. Provided is a lower fixing body of a nuclear fuel assembly having a hole formed therein.

삭제delete

이때, 상기 서브격자프레임이 교차되는 지점에는 이물질필터링부재가 추가로 구성되며, 상기 이물질필터링부재의 측단면 형태는, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형 타입의 유선형(流線型)인 것이 바람직하다.At this time, a foreign material filtering member is additionally configured at the point where the sub-lattice frame intersects, and the side cross-sectional shape of the foreign material filtering member is curved from the direction in which the coolant is introduced, and then formed into a pointed airfoil type streamline ( It is preferable that it is 流 line型).

본 발명에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체는 다음과 같은 효과가 있다.The lower fixed body of the nuclear fuel assembly in which the passage hole is formed using the aircraft airfoil structure according to the present invention has the following effects.

첫째, 유로홀을 격자로 설계하여 유로홀 크기를 최소화하되, 그 격자를 구성하는 격자 프레임의 측단면은 항공기 익형의 단면을 적용하였다.First, the flow hole was designed as a grid to minimize the flow hole size, but the cross section of the lattice frame constituting the grid was applied to the cross section of the aircraft airfoil.

이에 따라, 격자 프레임이 구성하는 유로홀을 통과하는 냉각수의 압력이 강하되는 일은 발생하지 않으므로 냉각수 흐름이 원활하게 이루어질 수 있으며, 격자 형태로 구성된 유로홀로 인해 이물질 필터링 효율을 높일 수 있는 효과가 있다.Accordingly, since the pressure of the cooling water passing through the passage holes of the grid frame does not drop, the coolant flow can be smoothly performed, and the foreign matter filtering efficiency can be increased due to the passage holes formed in the grid shape.

둘째, 유로홀을 교차하여 구획하는 내부 격자 프레임의 교차 지점에, 항공기 익형의 단면을 갖는 이물질필터링부재를 추가로 구성함으로써, 냉각수 압력 강하 방지는 그대로 유지하면서도 이물질 필터링 효율을 더욱 극대화할 수 있는 효과가 있다. Second, by additionally configuring a foreign material filtering member having a cross section of an aircraft airfoil at the intersection of the internal grid frame that intersects and divides the flow path hole, the effect of further maximizing the foreign material filtering efficiency while maintaining the prevention of cooling water pressure drop there is

도 1은 일반적인 핵연료집합체를 나타낸 도면
도 2a는 종래 기술에 따른 핵연료집합체의 하단고정체를 나타낸 사시도
도 2b는 종래 기술에 따른 핵연료집합체의 하단고정체를 나타낸 평면도
도 3은 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체를 나타낸 평면도
도 4는 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체의 요부를 나타낸 사시도
도 5는 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체의 요부를 나타낸 저면사시도
도 6은 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체를 나타낸 저면도
도 7은 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료집합체의 하단고정체를 나타낸 요부단면도.
1 is a view showing a general nuclear fuel assembly;
Figure 2a is a perspective view showing the bottom fixture of the nuclear fuel assembly according to the prior art;
Figure 2b is a plan view showing the bottom fixture of the nuclear fuel assembly according to the prior art;
3 is a plan view showing the lower end fixture of a nuclear fuel assembly in which a flow path hole is formed using an aircraft airfoil structure according to a preferred embodiment of the present invention;
4 is a perspective view showing the main part of a lower end fixture of a nuclear fuel assembly in which a flow path hole is formed using an aircraft airfoil structure according to a preferred embodiment of the present invention;
5 is a bottom perspective view showing the main part of the lower end fixture of the nuclear fuel assembly in which the passage hole is formed by using the aircraft airfoil structure according to the preferred embodiment of the present invention;
6 is a bottom view showing the lower end of the nuclear fuel assembly in which a flow path hole is formed by using the aircraft airfoil structure according to the preferred embodiment of the present invention;
7 is a sectional view showing the main part of the lower fixed body of the nuclear fuel assembly in which the flow path hole is formed by utilizing the aircraft airfoil structure according to the preferred embodiment of the present invention.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims are not to be construed as limited in their ordinary or dictionary meanings, and on the principle that the inventor can appropriately define the concept of the term in order to best describe his invention. It should be interpreted as meaning and concept consistent with the technical idea of the present invention.

이하, 첨부된 도 3 내지 도 7을 참조하여 본 발명의 바람직한 실시예에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체(이하, '하단고정체'라 함)에 대하여 설명하도록 한다.Hereinafter, with reference to the accompanying Figures 3 to 7, the lower fixture (hereinafter referred to as the 'lower fixture') of the nuclear fuel assembly in which the passage hole is formed by using the aircraft airfoil structure according to the preferred embodiment of the present invention. let me explain

하단고정체(100)는 유로홀(200)의 크기를 최소화하여 이물질 필터링 효율을 높이면서도, 냉각수 통과시 냉각수 압력이 강하되는 것을 방지하여 냉각수 흐름이 원활하게 이루어질 수 있도록 하였다.The lower fixture 100 minimizes the size of the flow hole 200 to increase the foreign material filtering efficiency, while preventing the cooling water pressure from dropping when the cooling water passes through, so that the cooling water flows smoothly.

이에 따라, 냉각수 흐름 및 이물질 필터링 효율성을 모두 높일 수 있다.Accordingly, both cooling water flow and foreign matter filtering efficiency can be increased.

하단고정체(100)는 냉각수가 흘러 통과하는 유로홀(200)을 형성한다.The lower fixture 100 forms a channel hole 200 through which the coolant flows.

이때, 유로홀(200)은 도 3에 도시된 바와 같이 격자무늬로 형성된다.At this time, the channel holes 200 are formed in a grid pattern as shown in FIG. 3 .

즉, 유로판 상에 메인격자프레임(300)이 격자로 구성되어 사각 형태의 유로홀(200)을 형성하는 것이다.That is, the main grid frame 300 is configured as a grid on the passage plate to form the passage hole 200 in a square shape.

이와 같이 유로홀(200)이 격자무늬 형태로 구성됨에 따라, 메인격자프레임(300)의 두께를 크게 하여 냉각수가 통과되는 유로홀(200)의 크기를 최소화할 수 있으며, 이로 인해, 이물질 필터링 효율을 극대화할 수 있다.As described above, as the flow hole 200 is configured in a grid pattern, the size of the flow hole 200 through which the cooling water passes by increasing the thickness of the main grid frame 300 can be minimized. can be maximized.

한편, 유로홀(200)은 이물질 필터링을 극대화해야함은 물론, 유로홀(200)을 통과하는 냉각수 흐름시 압력이 강하되는 것을 방지해야하는바, 상기 유로홀(200)을 형성하는 메인격자프레임(300)은 항공기 날개 형태의 유선형(流線型)으로 형성된다.On the other hand, the flow hole 200 should maximize filtering of foreign substances, as well as prevent the pressure from dropping when the coolant flows through the flow hole 200 , so the main grid frame 300 forming the flow hole 200 should be ) is formed in a streamlined shape in the shape of an aircraft wing.

정확하게는, 상기 메인격자프레임(300)의 측단면 형태는 도 4 및 도 7에 도시된 바와 같이, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기의 익형(翼型)으로 형성된 것이다.Precisely, as shown in FIGS. 4 and 7 , the side sectional shape of the main lattice frame 300 is curved from the direction in which the coolant is introduced, and then formed into a pointed shape of the airfoil of an aircraft. .

즉, 하단고정체(100)가 격자무늬 구성으로 인해 유로홀(200)의 크기가 작게 형성되더라도, 냉각수는 유로홀(200) 통과시 메인격자프레임(300)을 기준으로 양측에서 각각 유입되다가 메인격자프레임(300)의 곡선형을 따라 가이드되면서 메인격자프레임(300)의 뾰족한 부위에서 만나 연료봉으로 유입되므로, 냉각수 유입시 압력이 강하되는 현상은 발생하지 않는다.That is, even if the lower fixture 100 has a small size of the flow hole 200 due to the grid pattern configuration, the cooling water flows in from both sides based on the main grid frame 300 when the flow hole 200 passes, and then flows into the main While guided along the curved shape of the lattice frame 300 , they meet at the pointed portion of the main lattice frame 300 and flow into the fuel rod, so that the pressure drop does not occur when the coolant is introduced.

이에 따라, 냉각수는 유로홀(200)을 통해 유속 저하 없이 원활하게 유입이 되므로, 냉각수 압력 강하방지 효율과 이물질 필터링 효율성을 모두 높일 수 있다.Accordingly, the cooling water flows smoothly through the flow path hole 200 without lowering the flow rate, so that both the cooling water pressure drop prevention efficiency and the foreign material filtering efficiency can be improved.

한편, 상기 유로홀(200)의 크기를 더욱 최소화하여 이물질 필터링 효율성을 더욱 극대화시킬 수 있다.Meanwhile, it is possible to further minimize the size of the flow hole 200 to further maximize the foreign material filtering efficiency.

이를 위해, 도 3에 도시된 바와 같이, 메인격자프레임(300)에 의해 형성된 유로홀(200)에 격자무늬를 추가로 구성하는 것이다.To this end, as shown in FIG. 3 , a lattice pattern is additionally configured in the channel hole 200 formed by the main lattice frame 300 .

즉, 유로홀(200)을 가로질러 교차하는 서브격자프레임(400)을 통해 유로홀(200)을 분할 시키는 것이다.That is, the channel hole 200 is divided through the sub-lattice frame 400 that crosses the channel hole 200 .

이에 따라 유로홀(200)의 크기는 더욱 작아져, 이물질 필터링 효율을 극대화시킬 수 있다.Accordingly, the size of the flow hole 200 may be further reduced, thereby maximizing the foreign material filtering efficiency.

이때, 유로홀(200)의 크기가 작아지더라도, 냉각수의 압력이 강하되는 것을 방지해야하는바, 상기 서브격자프레임(400)의 형태 역시 항공기 익형으로 형성된다.At this time, even if the size of the flow hole 200 is reduced, it is necessary to prevent the pressure of the cooling water from dropping. The sub-lattice frame 400 is also formed in an aircraft airfoil.

즉, 유로홀(200)을 십자(十字)로 가로지르는 서브격자프레임(400)의 측단면 형태 역시, 도 7에 도시된 바와 같이, 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기의 익형(翼型)으로 형성된 것이다. That is, the cross-sectional shape of the sub-lattice frame 400 that crosses the flow path 200 in a cross is also curved from the direction in which the coolant is introduced, as shown in FIG. 7, and then is formed to be sharp. It is formed by the airfoil of

이에 따라, 서브격자프레임(400)을 통해 유로홀(200)이 추가로 분할 구성되도라도, 냉각수는 분할된 유로홀(200) 통과시 서브격자프레임(400)을 기준으로 양측에서 각각 유입되다가 서브격자프레임(400)의 곡선형을 따라 가이드되면서 서브격자프레임(400)의 뾰족한 부위에서 만나 연료봉으로 유입되므로, 냉각수 유입시 압력이 강하되는 현상은 발생하지 않는다.Accordingly, even if the passage hole 200 is additionally divided through the sub grid frame 400 , the cooling water flows in from both sides based on the sub grid frame 400 when passing through the divided passage hole 200 , and then While guided along the curved shape of the lattice frame 400 , it meets at the sharp portion of the sub lattice frame 400 and flows into the fuel rod, so that the pressure drop does not occur when coolant is introduced.

이에 따라, 냉각수는 유로홀(200)을 통해 유속 저하 없이 원활하게 유입이 되므로, 냉각수 압력 강하방지 효율과 이물질 필터링 효율성을 모두 높일 수 있다.Accordingly, the cooling water flows smoothly through the flow path hole 200 without lowering the flow rate, so that both the cooling water pressure drop prevention efficiency and the foreign material filtering efficiency can be improved.

또한, 상기 서브격자프레임(400)이 교차되는 지점에는 이물질필터링부재(500)가 추가로 구성될 수 있다.In addition, a foreign material filtering member 500 may be additionally configured at a point where the sub-lattice frame 400 intersects.

이물질필터링부재(500) 역시 유로홀(200)의 크기를 줄여, 이물질 필터링 효율을 높이기 위한 구성이다.The foreign material filtering member 500 is also configured to reduce the size of the flow hole 200 to increase the foreign material filtering efficiency.

이때, 이물질필터링부재(500)는 서브격자프레임(400)이 교차되는 지점에 설치되되, 그의 크기는 가변될 수 있도록 설계될 수 있다.In this case, the foreign material filtering member 500 is installed at the point where the sub-lattice frame 400 intersects, and the size thereof may be designed to be variable.

상기 이물질필터링부재(500)의 구성으로 인해, 유로홀(200)의 크기가 줄더라도 냉각수 흐름시 압력 강하가 발생하지 않도록 해야하는바, 상기 이물질필터링부재(500)의 측단면 형태는 항공기의 익형으로 형성된다.Due to the configuration of the foreign material filtering member 500, even if the size of the flow hole 200 is reduced, a pressure drop should not occur when the coolant flows. The side cross-sectional shape of the foreign material filtering member 500 is the airfoil of an aircraft. is formed

즉, 이물질필터링부재(500)의 측단면 형태는 냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기의 익형(翼型)으로 형성된 것이다.That is, the side cross-sectional shape of the foreign material filtering member 500 is formed in a curved shape from the direction in which the cooling water flows, and then is formed in the shape of an aircraft airfoil formed to be sharp.

이때, 상기 이물질필터링부재(500)는 서브격자프레임(400)의 교차 지점에 설치되므로, 사방을 향해 유선형으로 제공된다.At this time, since the foreign material filtering member 500 is installed at the intersection of the sub-lattice frame 400, it is provided in a streamlined shape toward all directions.

이에 따라, 이물질필터링부재(500)의 곡선부위는 도 5 및 도 6에 도시된 바와 같이 저면에서 봤을 때 원형으로 형성된다.Accordingly, the curved portion of the foreign material filtering member 500 is formed in a circular shape when viewed from the bottom as shown in FIGS. 5 and 6 .

이와 같은 이물질필터링부재(500)의 전체적인 형상은 흡사 미사일과 같은 유선형으로 제공된다.The overall shape of the foreign material filtering member 500 is provided in a streamlined shape like a missile.

이와 같이 구성된 유로홀(200)은 이중(二重)의 격자무늬와 이물질필터링부재(500)의 구성으로 인해 크기가 최소화될 수 있다.The flow hole 200 configured in this way can be minimized in size due to the double lattice pattern and the configuration of the foreign material filtering member 500 .

또한, 격자무늬를 형성하는 프레임(300,400)의 측단면 형태는 냉각수 유입방향으로 유선형으로 형성됨에 따라, 냉각수 유입시 압력이 강하되는 것을 방지할 수 있다.In addition, since the side cross-sectional shapes of the frames 300 and 400 forming the grid pattern are formed in a streamlined shape in the coolant inflow direction, it is possible to prevent the pressure from dropping when coolant is introduced.

이러한 구성으로 인해, 유로홀(200)을 통해 유입되는 냉각수는 도 7에 도시된 바와 같이 격자프레임(300,400)의 곡선부위를 따라 유입된 후 격자프레임(300,400)의 뾰족한 부위에서 만나 연료봉으로 흘러나가는 유체 흐름을 통해, 항공기 날개의 기체가 압력 강하 없이 지나가는 것과 동일하게 압력 강하가 방지되므로 냉각수 유속은 저하되지 않으며, 촘촘한 유로홀(200) 구성으로 인해 이물질 필터링 효율을 극대화시킬 수 있다.Due to this configuration, the coolant flowing in through the passage hole 200 flows along the curved portion of the grid frames 300 and 400 as shown in FIG. 7 , and then meets at the sharp portions of the grid frames 300 and 400 and flows to the fuel rod. Through the fluid flow, the pressure drop is prevented in the same way that the gas of the aircraft wing passes without a pressure drop, so the coolant flow rate is not lowered, and the foreign material filtering efficiency can be maximized due to the dense flow hole 200 configuration.

지금까지 설명한 바와 같이, 본 발명에 따른 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체는 유로홀을 격자무늬로 구성하되 격자무늬를 구성하는 프레임의 측단면 형태를 항공기의 날개 형태로 적용하였다.As described so far, the lower fixture of the nuclear fuel assembly in which the passage hole is formed by using the aircraft airfoil structure according to the present invention is composed of the passage hole in a grid pattern, but the side cross-sectional shape of the frame constituting the grid pattern is the wing of the aircraft. applied in the form.

이에 따라, 냉각수 유속은 그대로 유지하면서도 이물질 필터링 효율을 극대화할 수 있다.Accordingly, it is possible to maximize the foreign material filtering efficiency while maintaining the coolant flow rate as it is.

이상에서 본 발명은 기재된 구체예에 대하여 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정은 첨부된 특허 청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail with respect to the described embodiments, it is apparent to those skilled in the art that various modifications and variations are possible within the scope of the technical spirit of the present invention, and it is natural that such variations and modifications belong to the appended claims.

100 : 하단고정체 200 : 유로홀
300 : 메인격자프레임 400 : 서브격자프레임
500 : 이물질필터링부재
100: lower fixture 200: euro hole
300: main grid frame 400: sub grid frame
500: foreign matter filtering member

Claims (3)

복수의 유로홀을 형성하는 핵연료집합체의 하단고정체에 있어서,
상기 유로홀은 격자무늬로 구성되며,
상기 격자무늬를 구성하는 메인격자프레임의 측단면 형태는,
냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)이며,
상기 메인격자프레임을 통해 구성된 유로홀은 서브격자프레임을 통해 격자무늬로 분할구성되고,
상기 서브격자프레임의 측단면 형태는,
냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)인 것을 특징으로 하는 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체.
In the lower fixed body of the nuclear fuel assembly forming a plurality of flow holes,
The flow hole is composed of a grid pattern,
The side cross-sectional shape of the main grid frame constituting the grid pattern is,
It is a streamlined shape of an aircraft airfoil type that is formed in a curved shape from the direction in which the coolant flows in and then becomes sharp.
The channel hole configured through the main grid frame is divided into a grid pattern through the sub grid frame,
The side cross-sectional shape of the sub-lattice frame is,
A bottom fixture of a nuclear fuel assembly in which a flow path is formed using an aircraft airfoil structure, characterized in that it is a curved shape from the direction in which the coolant flows, and then has a pointed shape.
삭제delete 제1항에 있어서,
상기 서브격자프레임이 교차되는 지점에는 이물질필터링부재가 추가로 구성되며, 상기 이물질필터링부재의 측단면 형태는,
냉각수가 유입되는 방향으로부터 곡선형으로 이루어지다가 뾰족하게 형성된 항공기 익형(翼型) 타입의 유선형(流線型)인 것을 특징으로 하는 항공기 익형구조를 활용하여 유로홀을 형성한 핵연료 집합체의 하단고정체.



According to claim 1,
A foreign material filtering member is additionally configured at a point where the sub-lattice frame intersects, and the side cross-sectional shape of the foreign material filtering member is,
A bottom fixture of a nuclear fuel assembly in which a flow path is formed using an aircraft airfoil structure, characterized in that it is a curved shape from the direction in which the coolant flows, and then has a pointed shape.



KR1020190122363A 2019-10-02 2019-10-02 A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole Active KR102268275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190122363A KR102268275B1 (en) 2019-10-02 2019-10-02 A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190122363A KR102268275B1 (en) 2019-10-02 2019-10-02 A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole

Publications (2)

Publication Number Publication Date
KR20210039748A KR20210039748A (en) 2021-04-12
KR102268275B1 true KR102268275B1 (en) 2021-06-22

Family

ID=75440131

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190122363A Active KR102268275B1 (en) 2019-10-02 2019-10-02 A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole

Country Status (1)

Country Link
KR (1) KR102268275B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4375006A1 (en) * 2022-11-18 2024-05-29 Collins Engine Nozzles, Inc. A method of manufacturing an airfoil last change screen using edm and abrasive flow machining

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702989B2 (en) * 2021-09-24 2023-07-18 Hamilton Sundstrand Corporation Last chance screen for aircraft fuel system
CN115295177B (en) * 2022-07-07 2024-03-19 中国核动力研究设计院 Nuclear fuel assembly lower tube seat based on filter rod structure, filter assembly and application
EP4579686A1 (en) * 2023-12-29 2025-07-02 Framatome Debris filtering grid for a nuclear fuel assembly bottom nozzle
KR20250106092A (en) * 2024-01-02 2025-07-09 한전원자력연료 주식회사 mproved nuclear fuel assembly with enhanced seismic performance and control rod worth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851181B1 (en) * 2017-01-16 2018-06-05 한전원자력연료 주식회사 Bottom nozzle including filtering device for nuclear fuel assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218673A (en) * 1994-01-31 1995-08-18 Toshiba Corp Fuel spacer
KR20000061665A (en) 1999-03-30 2000-10-25 임창생 Piled Filter for Protecting Debris in Nuclear Fuel Assembly Lower End Fitting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851181B1 (en) * 2017-01-16 2018-06-05 한전원자력연료 주식회사 Bottom nozzle including filtering device for nuclear fuel assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4375006A1 (en) * 2022-11-18 2024-05-29 Collins Engine Nozzles, Inc. A method of manufacturing an airfoil last change screen using edm and abrasive flow machining
US12214303B2 (en) 2022-11-18 2025-02-04 Collins Engine Nozzles, Inc. Airfoil last chance screen utilizing EDM and AFM

Also Published As

Publication number Publication date
KR20210039748A (en) 2021-04-12

Similar Documents

Publication Publication Date Title
KR102268275B1 (en) A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole
KR102162012B1 (en) A bottom nozzle of Nuclear Fuel Assembly formed flow hole by utilizing a layered Aircraft Airfoil Structure
KR100887054B1 (en) Reduced Pressure Drop Debris Filter Bottom Nozzle For A Fuel Assembly Of A Nuclear Reactor
US20080013667A1 (en) Lower and upper end plugs of an annular fuel rod
US4980121A (en) Protective device for lower end portion of a nuclear fuel rod cladding
KR100285032B1 (en) Low Pressure Drop spacers used in fuel assemblies
JPH02287290A (en) Lower end nozzle of fuel assembly with particle holder and fuel assembly with the same end nozzle
US11120918B2 (en) Nuclear fuel assembly debris filtering bottom nozzle
EP0290865A2 (en) Nuclear reactor core containing fuel assemblies positioned adjacent core baffle structure
KR102413698B1 (en) A bottom Fixture of Nuclear Fuel Assembly formed flow hole by a Aircraft Airfoil Structure forming a flow hole
KR101851184B1 (en) Bottom nozzle providing improved filtering capability for nuclear fuel assembly
KR101851181B1 (en) Bottom nozzle including filtering device for nuclear fuel assembly
KR20140019926A (en) Spacer grid of a nuclear fuel assembly to prevent flow-induced vibration
KR102162013B1 (en) A bottom nozzle of Nuclear Fuel Assembly formed spiral type flow hole
KR100927133B1 (en) Support grid for foreign material filtration with cylindrical dimples
KR100918486B1 (en) Support grid for foreign material filtration with cylindrical dimples
KR20140019924A (en) Spacer grid of a nuclear fuel assembly to prevent flow-induced vibration
KR101453396B1 (en) Protective grid of a nuclear fuel assembly to prevent resonant vibration by flow-induced vibration in high frequencies
US9196386B2 (en) Spacer grid for nuclear fuel assembly for reducing high frequency vibration
KR102656311B1 (en) fuel assembly
EP1551034B1 (en) Axially segregated part-length fuel rods in a reactor fuel bundle
KR101711546B1 (en) Spacer grid of a nuclear fuel assembly with improved isotropic supporting structure
KR101141295B1 (en) Nuclear fuel rod having support structure

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20191002

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20201028

Patent event code: PE09021S01D

PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210408

PG1501 Laying open of application
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210617

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210617

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20240613

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20250609

Start annual number: 5

End annual number: 5