[go: up one dir, main page]

KR102269653B1 - A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats - Google Patents

A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats Download PDF

Info

Publication number
KR102269653B1
KR102269653B1 KR1020190125378A KR20190125378A KR102269653B1 KR 102269653 B1 KR102269653 B1 KR 102269653B1 KR 1020190125378 A KR1020190125378 A KR 1020190125378A KR 20190125378 A KR20190125378 A KR 20190125378A KR 102269653 B1 KR102269653 B1 KR 102269653B1
Authority
KR
South Korea
Prior art keywords
seq
dna
trpv4
cats
primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020190125378A
Other languages
Korean (ko)
Other versions
KR20210042614A (en
Inventor
박병주
김영덕
정진욱
홍승범
신애리
유지숙
Original Assignee
주식회사 한국유전자정보연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국유전자정보연구원 filed Critical 주식회사 한국유전자정보연구원
Priority to KR1020190125378A priority Critical patent/KR102269653B1/en
Publication of KR20210042614A publication Critical patent/KR20210042614A/en
Application granted granted Critical
Publication of KR102269653B1 publication Critical patent/KR102269653B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2561/00Nucleic acid detection characterised by assay method
    • C12Q2561/101Taqman
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2561/00Nucleic acid detection characterised by assay method
    • C12Q2561/113Real time assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 고양이의 골연골이형성증을 예측 또는 진단하기 위한 단일염기다형성(SNP; single nucleotide polymorphims) 마커 조성물 및 방법에 관한 것으로, 더욱 상세하게는 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 단일염기다형성(single nucleotide polymorphism, SNP)을 증폭 또는 검출할 수 있는 제제를 포함하는, 고양이의 골연골이형성증을 예측 또는 진단용 SNP 마커 조성물 및 방법에 관한 것이다.The present invention relates to a single nucleotide polymorphims (SNP) marker composition and method for predicting or diagnosing osteochondrosis in cats, and more particularly, TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4 ) It relates to a SNP marker composition and method for predicting or diagnosing osteochondrosis in cats, including an agent capable of amplifying or detecting a single nucleotide polymorphism (SNP) of a gene.

Description

고양이의 골연골이형성증을 예측 또는 진단하기 위한 단일염기 다형성 마커 조성물 및 이를 이용한 예측 또는 진단 방법 {A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats}A single nucleotide polymorphic marker composition for predicting or diagnosing osteochondrodysplasia in cats and a prediction or diagnosis method using the same {A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats}

본 발명은 고양이의 골연골이형성증을 예측 또는 진단하기 위한 단일염기다형성(SNP; single nucleotide polymorphims) 마커 조성물 및 방법에 관한 것으로, 더욱 상세하게는 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 단일염기다형성(single nucleotide polymorphism, SNP)을 증폭 또는 검출할 수 있는 제제를 포함하는, 고양이의 골연골이형성증을 예측 또는 진단용 SNP 마커 조성물 및 방법에 관한 것이다.The present invention relates to a single nucleotide polymorphims (SNP) marker composition and method for predicting or diagnosing osteochondrosis in cats, and more particularly, TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) It relates to a SNP marker composition and method for predicting or diagnosing osteochondrosis in cats, including an agent capable of amplifying or detecting a single nucleotide polymorphism (SNP) of a gene.

고양이 골연골이형성증(osteochondrodysplasia)은 무분별한 교배로 발생하는 대표적인 불완전 우성 유전질환으로써, 외형적으로 짧은 다리와 꼬리 그리고, 접힌 귀모양 등 귀여운 외모적 특징으로 애묘가들로부터 많은 인기를 얻고 있는 스코티쉬 폴드, 아메리칸 컬 및 먼치킨 등과 같은 품종에서 이 질환이 주로 발생하고 있다. 고양이 골연골이형성증은 생후 4개월부터 성장기에 접어들면서 뼈나 연골 생성에 이상이 생겨 보행에 문제가 생기고, 심한 경우 관절염과 골종양이 발생하는데 이미 발병되면 주기적인 약물치료 및 수술을 통해 교정이 가능하나, 발병 전 조기진단 및 근본적인 치료가 어려워서 질병에 걸린 고양이 분양으로 인한 피해와 분쟁이 많이 발생하고 있어 조기 진단 기술이 필요한 질병 중 하나이다. Osteochondrodysplasia in cats is a representative incomplete dominant genetic disease caused by indiscriminate mating. Scottish folds, which are popular among cat lovers for their cute appearance features such as short legs and tail, and folded ears, Breeds such as American Curls and Munchkins are the most prevalent of the disease. Osteochondrodysplasia in cats enters the growth phase from 4 months of age, causing abnormalities in bone or cartilage production, causing problems in walking, and in severe cases, arthritis and bone tumors. If already onset, it can be corrected through periodic drug treatment and surgery. It is one of the diseases that require early diagnosis technology as it is difficult to diagnose and treat the disease at an early stage before the onset of the disease.

현재 골연골이형성증 진단은 생후 5~6개월부터 X-ray 또는 초음파 검사를 통해 뼈 및 연골상태를 판정하고 있으나, 첫째로 생후 5개월 이전에는 조기진단이 어렵고, 둘째로 검사를 위해서는 전신마취가 필요하며 셋째로 성장단계와 품종에 따라 판정기준 및 정확도가 달라질 수 있다는 단점이 있어 이를 보완하기 위한 새로운 진단법의 개발이 수의학 분야에서 요구되고 있다. 특히, 신체검사의 경우, 고관절 탈구가 의심될 때 뒷다리의 통증과 다리 벌림이 정상적인지 여부를 측정하는 방법으로 성장단계에 따라 기준이 달라질 수 있어 정확도가 떨어진다는 단점이 있다. 또한, X-ray 촬영은 3회 촬영한 X-ray 사진과 데이터 베이스를 근거로 골연골이형성증을 평가하는 방법으로 검사 전에 마취를 통해 동물을 진정시켜야 하는 작업이 필요하며, 특정 자격을 소유한 전문가에 의해 진단되므로 검사기관마다 판단기준이 달라 최종 판독에 유의해야 하는 등의 문제점이 있었다. 이에 고양이 골연골이형성증을 초기에 진단 또는 예방하고 분양 피해를 최소화하기 위해서는 조기에 질병 여부를 확인하여 선택적 교배와 번식을 실시함으로써 질병 발생률을 감소시켜야 하며, 이를 위해서는 조기에 유전적 질병 소인을 확인할 수 있는 DNA 진단법의 개발이 시급한 요구되어지고 있다. Currently, osteochondrodysplasia is diagnosed by X-ray or ultrasound examination from 5 to 6 months of age. First, it is difficult to diagnose early before 5 months of age. Second, general anesthesia is required for the examination. Thirdly, there is a disadvantage that the determination criteria and accuracy may vary depending on the growth stage and variety, so the development of a new diagnostic method is required in the field of veterinary medicine to compensate for this. In particular, in the case of a physical examination, when a hip dislocation is suspected, it is a method of measuring whether the pain in the hind leg and abduction of the leg are normal, and there is a disadvantage in that the accuracy is lowered because the criteria may vary depending on the growth stage. In addition, X-ray imaging is a method of evaluating osteochondrosis based on X-ray photos taken three times and a database, and it is necessary to calm the animal through anesthesia before the examination, and a specialist with specific qualifications Since it is diagnosed by the Inspector, there are problems such as the need to pay attention to the final reading because the judgment criteria are different for each inspection institution. Therefore, in order to diagnose or prevent osteochondrodysplasia in cats at an early stage and to minimize damage to pre-sale, it is necessary to identify the disease early and reduce the disease incidence by selective breeding and breeding. To this end, it is necessary to identify the genetic predisposition to the disease at an early stage. There is an urgent need for the development of a DNA diagnostic method.

(비특허문헌 001) Zhou Z, Sheng X, Zhang Z, Zhao K, Zhu L, et al. Differential Genetic Regulation of Canine Hip Dysplasia and Osteoarthritis. 2010, PLoS ONE 5(10). (Non-Patent Document 001) Zhou Z, Sheng X, Zhang Z, Zhao K, Zhu L, et al. Differential Genetic Regulation of Canine Hip Dysplasia and Osteoarthritis. 2010, PLoS ONE 5(10).

(비특허문헌 002) Fels L, Distl O. Identification and Validation of Quantitative Trait Loci (QTL) for Canine Hip Dysplasia (CHD) in German Shepherd Dogs. 2014, PLoSONE 9(5). (Non-Patent Document 002) Fels L, Distl O. Identification and Validation of Quantitative Trait Loci (QTL) for Canine Hip Dysplasia (CHD) in German Shepherd Dogs. 2014, PLoSONE 9(5).

(비특허문헌 003) Enrique Sachez-Molano., John A Woolliams., Ricardo Pong-Wong., et al. Quantitative trait loci mapping for canine hip dysplasia and its related traits in UK Labrador Retrievers. 2014, BMC Genomics 2014, 15:833(Non-Patent Document 003) Enrique Sachez-Molano., John A Woolliams., Ricardo Pong-Wong., et al. Quantitative trait loci mapping for canine hip dysplasia and its related traits in UK Labrador Retrievers. 2014, BMC Genomics 2014, 15:833

본 발명자들은 고양이 골연골이형성증을 예측 또는 진단을 위해 고양이의 골연골이형성증과 연관성이 높은 단일염기다형성(SNP; single nucleotide polymorphims)을 발굴하고, 이들을 특이적으로 증폭하고 신속하고 정확하게 진단할 수 있는 조성물 및 방법을 발명하고자 하였다.The present inventors discovered single nucleotide polymorphims (SNPs) highly correlated with osteochondrosis of cats for predicting or diagnosing osteochondrosis in cats, specifically amplifying them, and a composition capable of rapidly and accurately diagnosing them and to invent a method.

따라서, 본 발명자들은 새로운 SNP마커들을 포함하는 고양이의 골연골이형성증을 예측 또는 진단하기 위한 조성물 및 방법을 제공하는 것을 목적으로 한다.Accordingly, it is an object of the present inventors to provide a composition and method for predicting or diagnosing osteochondrosis in cats including novel SNP markers.

상기의 목적을 달성하기 위하여 본 발명은 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 단일염기다형성(single nucleotide polymorphism, SNP)을 증폭 또는 검출할 수 있는 제제를 포함하는 고양이의 골연골이형성증을 예측 또는 진단용 SNP 마커 조성물을 제공한다. In order to achieve the above object, the present invention TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4 ) single nucleotide polymorphism (single nucleotide polymorphism, SNP) of the gene amplifying or detecting a cat bone comprising an agent Provided is a SNP marker composition for predicting or diagnosing chondrodysplasia.

또한, 본 발명은 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 단일염기다형성(single nucleotide polymorphism, SNP)를 포함하는 폴리뉴클레오티드를 증폭 또는 검출할 수 있는 프라이머세트 또는 프로브세트를 포함하는 고양이의 골연골이형성증을 예측 또는 진단용 SNP 마커 조성물을 제공한다. In addition, the present invention includes a primer set or probe set capable of amplifying or detecting a polynucleotide comprising a single nucleotide polymorphism (SNP) of TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) gene It provides a SNP marker composition for predicting or diagnosing osteochondrodysplasia in cats.

또한, 본 발명은 1) 고양이로부터 DNA 시료를 채취하는 단계; In addition, the present invention comprises the steps of 1) collecting a DNA sample from a cat;

2) 상기 단계 1)의 채취된 DNA를 주형으로 서열번호 2 및 서열번호 3의 프라이머세트, 또는 서열번호 4 및 서열번호 5의 프로브 세트를 이용하여 PCR을 수행하는 단계;2) performing PCR using the primer set of SEQ ID NO: 2 and SEQ ID NO: 3, or the probe set of SEQ ID NO: 4 and SEQ ID NO: 5 using the DNA collected in step 1) as a template;

3) 상기 단계 2)에서 PCR로 증폭된 산물의 형광값을 조사하는 단계;3) examining the fluorescence value of the product amplified by PCR in step 2);

를 포함하는 고양이의 골연골이형성증을 예측 또는 진단 방법을 제공한다.It provides a method for predicting or diagnosing osteochondrosis in cats, including.

또한, 본 발명은 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 단일염기다형성(single nucleotide polymorphism, SNP) 마커 조성물을 포함하는 고양이의 골연골이형성증을 예측 또는 진단용 키트을 제공한다.In addition, the present invention provides a kit for predicting or diagnosing osteochondrosis in cats comprising a single nucleotide polymorphism (SNP) marker composition of the TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) gene.

본 발명에 따른 고양이의 골연골이형성증을 예측 또는 진단을 위한 SNP를 포함하는 마커 조성물 및 방법은 첫째, 신체검사나 X-ray 영상검사법에 비해 객관적이고 과학적인 방법으로 기존의 영상검사와 DNA 유전자형 검사를 병행함으로써 검사 결과상에서 나타날 수 있는 오류를 최소화하고 정확도를 향상시킬 수 있다. 둘째, 임상증상이 없어도 출생 후 바로 조기 진단이 가능하여 유전적 위험요소를 피해서 번식함으로써 질병의 발생률을 감소시키는 데 기여할 수 있다. 셋째, 검사 전에 마취 등이 필요 없고, 구강상피세포나 모근을 이용해 손쉽게 검사가 가능할 뿐만 아니라, 넷째, X-ray 영상검사를 해외 의뢰할 경우 발생할 수 있는 위험과 비용 및 시간적 손실을 최소화 시킬 수 있어 고양이 골연골이형성증을 조기에 예측 진단하는데 유용하게 이용될 수 있다. The marker composition and method comprising SNP for predicting or diagnosing osteochondrodysplasia in cats according to the present invention are first, in an objective and scientific way compared to physical examination or X-ray imaging, conventional imaging tests and DNA genotyping tests. In parallel, it is possible to minimize errors that may appear in the test results and improve accuracy. Second, even without clinical symptoms, early diagnosis is possible immediately after birth, which can contribute to reducing the incidence of diseases by avoiding genetic risk factors and breeding. Third, there is no need for anesthesia before the examination, and the examination can be easily performed using oral epithelial cells or hair roots. Fourth, it is possible to minimize the risk, cost, and time loss that may occur when an X-ray imaging test is requested overseas. It can be usefully used for early predictive diagnosis of feline osteochondrodysplasia.

본 발명의 고양이 골연골이형성증 진단 조성물 및 방법는 표현형이 아닌 유전자형을 분석하는 방법으로 골연골이형성증의 판별이 가능하고, 고가의 장비 없이도 빠르고 쉽게 진단할 수 있다는 장점이 있어 기존의 염기서열 검사법을 보완 및 대체할 수 있는 획기적인 방법이다.The cat osteochondrosis diagnosis composition and method of the present invention is a method of analyzing the genotype, not the phenotype, and has the advantage of being able to discriminate osteochondrosis and quickly and easily diagnose without expensive equipment. A revolutionary alternative to

도 1은 TRPV4 후보유전자에서 확인된 6개의 cSNP를 보여주는 것이다.
도 2은 TRPV4 유전자의 NCBI 염기서열이다.
도 3는 서열번호 2 내지 서열번호 5에 해당하는 프라이머 및 프로브 세트를 이용하여 고양이 골연골이형성증을 결정하는 G1127T의 대립유전자형을 특이적으로 증폭한 것으로, (A)는 대립유전자형의 구별 그래프(Allelic discrimination plot)을 나타낸 그래프이며, (B)는 형광물질로 표지된 각각의 GG, GT, TT 유전자형 및 Negative Control 의 증폭 곡선을 보여주는 그래프이다.
도 4은 실시간 중합효소 연쇄반응법을 이용해 분석된 3개의 대립유전자형(1127GG, 1127GT, 1127TT)의 유전자를 DNA 염기서열분석(DNA sequencing)을 통해 분석한 결과를 보여주는 것이다.
1 shows six cSNPs identified in TRPV4 candidate genes.
2 is the NCBI sequence of the TRPV4 gene.
3 is a specific amplification of the allele of G1127T, which determines cat osteochondrosis, using primers and probe sets corresponding to SEQ ID NOs: 2 to 5, (A) is a graph of allelic differentiation (Allelic); discrimination plot), and (B) is a graph showing amplification curves of each GG, GT, TT genotype and Negative Control labeled with a fluorescent substance.
4 shows the results of analyzing the genes of three allelic types (1127GG, 1127GT, 1127TT) analyzed using the real-time polymerase chain reaction method through DNA sequencing.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 단일염기다형성(single nucleotide polymorphism, SNP)을 증폭 또는 검출할 수 있는 제제를 포함하는 고양이의 골연골이형성증을 예측 또는 진단용 SNP 마커 조성물을 제공한다. 바람직하게는 TRPV4 유전자는 서열번호 1인 것이며, TRPV4 유전자의 단일염기다형성(single nucleotide polymorphism, SNP)은 1127번째의 염기가 G 또는 T인 것이다. The present invention is a TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4 ) SNP for predicting or diagnosing osteochondrosis in cats comprising an agent capable of amplifying or detecting single nucleotide polymorphism (SNP) of the gene A marker composition is provided. preferably TRPV4 The gene is SEQ ID NO: 1, TRPV4 A single nucleotide polymorphism (SNP) of a gene is one in which the 1127th base is G or T.

또한, 본 발명은 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 단일염기다형성(single nucleotide polymorphism, SNP)를 포함하는 폴리뉴클레오티드를 증폭 또는 검출할 수 있는 프라이머세트 또는 프로브세트를 포함하는 고양이의 골연골이형성증을 예측 또는 진단용 SNP 마커 조성물을 제공한다. 바람직하게는, TRPV4 유전자는 서열번호 1인 것이며, TRPV4 유전자의 단일염기다형성(single nucleotide polymorphism, SNP)은 1127번째의 염기가 G 또는 T인 것이다. 보다 바람직하게는, 상기 조성물은 서열번호 2 및 서열번호 3의 프라이머 세트 또는 서열번호 4 및 서열번호 5의 프로브 세트인 것이며, 보다 더 바람직하게는 상기 서열번호 4 및 서열번호 5의 5'말단에 형광물질인 VIC 또는 FAM으로 표지되고 서열번호 4 및 서열번호 5의 3'말단에는 NFQ(Non Fluorescent quencher)-MGB(Minor Groove Binder)가 결합되는 것이다. 또한, 바람직하게는 상기 검출은 Taqman 프로브를 이용한 실시간 중합효소 연쇄반응법(Realtime PCR)분석법에 의하여 검출되는 것인, 고양이의 골연골이형성증을 예측 또는 진단용 SNP 마커 조성물이다. In addition, the present invention includes a primer set or probe set capable of amplifying or detecting a polynucleotide comprising a single nucleotide polymorphism (SNP) of TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) gene It provides a SNP marker composition for predicting or diagnosing osteochondrodysplasia in cats. Preferably, TRPV4 The gene is SEQ ID NO: 1, TRPV4 A single nucleotide polymorphism (SNP) of a gene is one in which the 1127th base is G or T. More preferably, the composition is a primer set of SEQ ID NO: 2 and SEQ ID NO: 3 or a probe set of SEQ ID NO: 4 and SEQ ID NO: 5, even more preferably at the 5' end of SEQ ID NO: 4 and SEQ ID NO: 5 It is labeled with a fluorescent substance, VIC or FAM, and NFQ (Non Fluorescent quencher)-MGB (Minor Groove Binder) is bound to the 3' end of SEQ ID NO: 4 and SEQ ID NO: 5. In addition, preferably, the detection is a SNP marker composition for predicting or diagnosing osteochondrosis in cats, which is detected by a realtime PCR analysis using a Taqman probe.

본 발명의 "프라이머"는 올리고뉴클레오타이드를 의미하는 것으로, 핵산쇄(주형)에 상보적인 프라이머 연장 산물의 합성이 유도되는 조건, 즉, 뉴클레오타이드와 DNA 중합효소와 같은 중합제의 존재, 그리고 적합한 온도와 pH의 조건에서 합성의 개시점으로 작용할 수 있다. 바람직하게는, 프라이머는 디옥시리보뉴클레오타이드이며 단일쇄이다. 본 발명에서 이용되는 프라이머는 자연(naturally occurring) dNMP(즉, dAMP, dGMP, dCMP 및 dTMP), 변형 뉴클레오타이드 또는 비-자연 뉴클레오타이드를 포함할 수 있다. 또한, 프라이머는 리보뉴클레오타이드도 포함할 수 있다.The term "primer" of the present invention refers to an oligonucleotide, and conditions in which the synthesis of a primer extension product complementary to a nucleic acid chain (template) is induced, that is, the presence of nucleotides and a polymerization agent such as a DNA polymerase, and a suitable temperature and temperature. It can serve as a starting point for synthesis under the conditions of pH. Preferably, the primer is a deoxyribonucleotide and is single-stranded. The primer used in the present invention may include naturally occurring dNMP (ie, dAMP, dGMP, dCMP, and dTMP), modified nucleotides, or non-natural nucleotides. In addition, the primer may also include ribonucleotides.

"프로브"는 특정 뉴클레오타이드 서열에 혼성화될 수 있는 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하는 자연 또는 변형되는 모노머 또는 결합을 갖는 선형의 올리고머를 의미한다. 바람직하게는, 프로브는 혼성화에서의 최대 효율을 위하여 단일가닥이다. 프로브는 바람직하게는 디옥시리보뉴클레오타이드이다. "Probe" means a linear oligomer having a linkage or a natural or modified monomer comprising deoxyribonucleotides and ribonucleotides capable of hybridizing to a specific nucleotide sequence. Preferably, the probe is single-stranded for maximum efficiency in hybridization. The probe is preferably a deoxyribonucleotide.

본 발명에 이용되는 프로브로서, 상기 SNP를 포함하는 서열에 완전하게(perfectly) 상보적인 서열이 이용될 수 있으나, 특이적 혼성화를 방해하지 않는 범위 내에서 실질적으로(substantially) 상보적인 서열이 이용될 수도 있다. 바람직하게는, 본 발명에 이용되는 프로브는 본 발명의 SNP를 포함하는 10-30개의 연속 뉴클레오타이드 잔기를 포함하는 서열에 혼성화될 수 있는 서열을 포함한다. 보다 바람직하게는, 상기 프로브의 3'말단 또는 5'말단은 상기 SNP 염기에 상보적인 염기를 갖는다. 일반적으로, 혼성화에 의해 형성되는 듀플렉스(duplex)의 안정성은 말단의 서열의 일치에 의해 결정되는 경향이 있기 때문에, 3'말단 또는 5'말단에 SNP 염기에 상보적인 염기를 갖는 프로브에서 말단 부분이 혼성화되지 않으면, 이러한 듀플렉스는 엄격한 조건에서 해체될 수 있다.As the probe used in the present invention, a sequence that is completely complementary to the sequence including the SNP may be used, but a sequence that is substantially complementary within a range that does not interfere with specific hybridization may be used. may be Preferably, the probe used in the present invention comprises a sequence capable of hybridizing to a sequence comprising 10-30 consecutive nucleotide residues comprising the SNP of the present invention. More preferably, the 3' end or 5' end of the probe has a base complementary to the SNP base. In general, since the stability of the duplex formed by hybridization tends to be determined by the matching of the sequences at the ends, in probes having a base complementary to the SNP base at the 3' or 5' end, the terminal portion is If not hybridized, these duplexes can dissociate under stringent conditions.

특히, 상기 서열번호 2 및 서열번호 3의 프라이머 세트 또는 서열번호 4 및 서열번호 5의 프로브세트는 TRPV4(Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 1127단일염기 변이를 특이적으로 검출할 수 있는 것이다.In particular, the primer set of SEQ ID NO: 2 and SEQ ID NO: 3 or the probe set of SEQ ID NO: 4 and SEQ ID NO: 5 specifically detects 1127 single nucleotide mutations of TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) gene it can be done

상기 프라이머는 각각 정방향 프라이머 및 역방향 프라이머를 포함한 2쌍의 프라이머를 제작하였고, 형광프로브는 5' 말단에는 reporter로써 VIC 또는 FAM을 부착하였고 3' 방향에는 quencher로써 NFQ-MGB를 모두 부착하는 것이다.For the primers, two pairs of primers including a forward primer and a reverse primer were prepared, respectively, and VIC or FAM was attached as a reporter to the 5' end of the fluorescent probe, and NFQ-MGB was attached as a quencher to the 3' direction.

더욱 바람직하게는 상기에서 실시간 PCR 분석법에 의해 정량적으로 측정하는데 있어서, 상대적 증폭량을 정량적으로 산출하기 위하여 G1127T의 경우 서열번호 2 및 3의 염기서열로 이루어진 프라이머 세트와 서열번호 4 및 5의 염기서열의 5'말단에 VIC 또는 FAM으로 표지한 프로브로 구성된 유전자 발현 분석 세트를 사용하는 것이 바람직하다. 그리고 모든 프로브의 3'말단에는 퀀칭(Quenching)을 위하여 소광제가 결합되는 것이 바람직하며, 구체적으로 TaqMan NFQ-MGB를 모두 부착하는 것이다.More preferably, in the quantitative measurement by real-time PCR analysis, in the case of G1127T, the primer set consisting of the nucleotide sequences of SEQ ID NOs: 2 and 3 and the nucleotide sequences of SEQ ID NOs: 4 and 5 in order to quantitatively calculate the relative amplification amount It is preferable to use a gene expression analysis set consisting of probes labeled with VIC or FAM at the 5' end. And it is preferable that a quencher is bound to the 3' end of all probes for quenching, specifically, all of TaqMan NFQ-MGB are attached.

더욱 더 바람직하게는 상기 서열번호 4의 5'말단에 형광물질인 FAM으로 표지되고, 서열번호 5의 5' 말단에 형광물질인 VIC으로 표지되는 것이며, 서열번호 4 및 서열번호 5의 프로브 세트의 3'말단에는 각각 NFQ(Non Fluorescent quencher)-MGB(Minor Groove Binder)가 결합되는 것이다. 본 발명의 증폭은 PCR(polymerase chain reaction)에 따라 실시되며, 본 발명의 바람직한 구현 예에 따르면, 본 발명의 프라이머는 유전자 증폭 반응(amplification reactions)에 이용된다. 더욱 바람직하게는 본 발명의 증폭 및 검출은 실시간 중합효소 연쇄반응법(Realtime PCR)분석법에 의하여 검출되는 것이 더욱 바람직하다. Even more preferably, the 5' end of SEQ ID NO: 4 is labeled with a fluorescent substance FAM, and the 5' end of SEQ ID NO: 5 is labeled with a fluorescent substance VIC, and the probe set of SEQ ID NO: 4 and SEQ ID NO: 5 A non-fluorescent quencher (NFQ)-minor groove binder (MGB) is bonded to the 3' end, respectively. The amplification of the present invention is carried out according to PCR (polymerase chain reaction), and according to a preferred embodiment of the present invention, the primers of the present invention are used in gene amplification reactions. More preferably, the amplification and detection of the present invention is more preferably detected by realtime PCR analysis.

본 발명은 실시간 중합효소 연쇄반응법(Realtime PCR)을 이용한 TaqMan SNP Genotyping 기술을 기반으로 고양이 골연골이형성증을 결정하는 TRPV4 유전자의 SNP를 효율적으로 분석해 골연골이형성증을 정확히 진단할 수 있는 진단기술을 발명하는데 있다. TaqMan SNP Genotyping 방법은 5’nuclease assays 원리를 응용한 방법으로 프로브와 해당 SNP가 일치(match)되면 형광 프로브가 활성을 띄게 되고, 프로브가 해당 SNP와 불일치(mismatch) 할 경우 프로브가 떨어져 나가기 때문에 더 이상의 반응이 진행되지 않는 원리를 이용한 방법으로 한 번의 PCR만으로 두 개의 대립유전자형을 동시에 분석할 수 있어 기존의 DNA 염기서열 분석법에 비해 고가의 장비가 필요하지 않고 시간과 비용을 절감할 수 있다. The present invention is based on TaqMan SNP Genotyping technology using real-time polymerase chain reaction (Realtime PCR), and invents a diagnostic technology that can accurately diagnose osteochondrosis by efficiently analyzing the SNP of the TRPV4 gene, which determines osteochondrosis in cats. is doing TaqMan SNP genotyping is a method that applies the principle of 5'nuclease assays. When the probe and the corresponding SNP match, the fluorescent probe becomes active. When the probe mismatches with the corresponding SNP, the probe falls off. As a method using the principle that the above reaction does not proceed, two alleles can be analyzed simultaneously with only one PCR, so expensive equipment is not required compared to the existing DNA sequencing method, and time and cost can be saved.

또한, 본 발명은 1) 고양이로부터 DNA 시료를 채취하는 단계; In addition, the present invention comprises the steps of 1) collecting a DNA sample from a cat;

2) 상기 단계 1)의 채취된 DNA를 주형으로 서열번호 2 및 서열번호 3의 프라이머세트, 또는 서열번호 4 및 서열번호 5의 프로브 세트를 이용하여 PCR을 수행하는 단계;2) performing PCR using the primer set of SEQ ID NO: 2 and SEQ ID NO: 3, or the probe set of SEQ ID NO: 4 and SEQ ID NO: 5 using the DNA collected in step 1) as a template;

3) 상기 단계 2)에서 PCR로 증폭된 산물의 형광값을 조사하는 단계;3) examining the fluorescence value of the product amplified by PCR in step 2);

를 포함하는 고양이의 골연골이형성증을 예측 또는 진단 방법을 제공한다.It provides a method for predicting or diagnosing osteochondrosis in cats, including.

바람직하게는 서열번호 2 및 3의 염기서열로 이루어진 프라이머 세트와 서열번호 4 및 5의 염기서열의 5'말단에 VIC 또는 FAM으로 표지한 프로브로 구성된 유전자 발현 분석 세트를 사용하는 것이 바람직하다. 그리고 모든 프로브의 3'말단에는 퀀칭(Quenching)을 위하여 소광제가 결합되는 것이 바람직하며, 구체적으로 TaqMan NFQ-MGB를 모두 부착하는 것이다. 또한, 상기 PCR은 Taqman 프로브를 이용한 실시간 중합효소 연쇄반응법(Realtime PCR)분석법에 따라 수행되는 것이다. Preferably, a gene expression analysis set consisting of a primer set consisting of the nucleotide sequences of SEQ ID NOs: 2 and 3 and a probe labeled with VIC or FAM at the 5' end of the nucleotide sequences of SEQ ID NOs: 4 and 5 is used. And it is preferable that a quencher is bound to the 3' end of all probes for quenching, specifically, all of TaqMan NFQ-MGB are attached. In addition, the PCR is performed according to a realtime PCR analysis method using a Taqman probe.

또한, 본 발명은 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 단일염기다형성(single nucleotide polymorphism, SNP) 마커 조성물을 포함하는 고양이의 골연골이형성증을 예측 또는 진단용 키트을 제공한다.In addition, the present invention provides a kit for predicting or diagnosing osteochondrosis in cats comprising a single nucleotide polymorphism (SNP) marker composition of the TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4) gene.

바람직하게는 상기 키트는 서열번호 2 및 서열번호 3로 표시되는 프라이머 세트, 또는 서열번호 4 및 서열번호 5의 형광물질로 표지된 프로브 세트를 포함하는 고양이 골연골이형성증을 검출용 조성물을 포함하는 고양이 골연골이형성증 검출용 키트을 제공한다. Preferably, the kit is a cat comprising a composition for detecting osteochondrosis in cats comprising a primer set represented by SEQ ID NO: 2 and SEQ ID NO: 3, or a probe set labeled with a fluorescent material of SEQ ID NO: 4 and SEQ ID NO: 5 Provided is a kit for detecting osteochondrosis.

본 발명의 키트는 선택적으로, PCR 증폭에 필요한 시약, 예컨대, 완충액, DNA 중합효소(예컨대, Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis 또는 Pyrococcus furiosus (Pfu)로부터 수득한 열 안정성 DNA 중합효소), DNA 중합 효소 조인자 및 dNTPs를 포함할 수 있다. 본 발명의 키트는 상기한 시약 성분을 포함하는 다수의 별도 패키징 또는 컴파트먼트로 제작될 수 있다. 결국 본 발명은 상기 프라이머와 프로브 세트를 이용하여 고양이로부터 채취된 DNA 중에서 실시간 PCR 반응에 의해 상기 전술한 DNA 단편으로부터 증폭되는 목적하는 DNA만을 신속하고, 정확하게 증폭하며, 그 증폭량을 정량적으로 측정할 수 있다.The kit of the present invention optionally includes reagents necessary for PCR amplification, such as a buffer, a DNA polymerase (eg, Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis or Pyrococcus furiosus (Pfu)) thermostable DNA polymerase obtained from ), DNA polymerase cofactors and dNTPs. The kit of the present invention may be manufactured in a number of separate packaging or compartments containing the reagent components described above. After all, the present invention can rapidly and accurately amplify only the desired DNA amplified from the above-mentioned DNA fragment by a real-time PCR reaction among DNA collected from cats using the primer and probe set, and quantitatively measure the amount of amplification. have.

이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상세하게 설명하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, the action and effect of the invention will be described in more detail through specific examples of the invention. However, these embodiments are merely presented as an example of the invention, and the scope of the invention is not defined thereby.

1. 시료 수집 및 DNA 추출 1. Sample Collection and DNA Extraction

(1) 시료 수집 (1) sample collection

고양이 시료는 해마루동물병원의 협조를 얻어 연골 또는 골성장에 이상이 흔한 품종인 Scottish, American Curl 및 Munchkin 등 총 216 두의 구강상피세포를 확보하였으며, 표1은 골연골이형성증 DNA 마커 개발에 이용된 품종을 보여주는 것이다. 또한, 결과의 재현성을 위해 고양이의 목정맥 또는 요골피정맥으로 부터 약 0.5~1mL의 혈액을 채혈하였다. 수집한 시료 중에서 Case 군은 Scottish, Munchkin 품종이 각각 81.3%와 18.7%를 차지하였고, Control 군은 Persian 44.6%, American Short Hair 27%, Munchkin 16.1% 그리고 Scottish 12.5%의 비율을 차지하였다. 전체적으로는 Persian 75두(34.7%)로 가장 많았고, 다음으로 Scottish 60두(27.8%), Munchkin 36두(16.7%)의 순위를 차지하였다. A total of 216 oral epithelial cells, including Scottish, American Curl, and Munchkin, which are breeds with common cartilage or bone growth abnormalities, were obtained with cooperation from Haemaru Animal Hospital. to show the breed. In addition, for the reproducibility of the results, about 0.5 to 1 mL of blood was collected from the cat's jugular or radial cortical vein. Among the collected samples, in the Case group, Scottish and Munchkin varieties accounted for 81.3% and 18.7%, respectively, and in the Control group, Persian 44.6%, American Short Hair 27%, Munchkin 16.1%, and Scottish 12.5% accounted for the proportions. Overall, 75 Persian heads (34.7%) were the most common, followed by Scottish 60 heads (27.8%) and Munchkin 36 heads (16.7%).

BreedsBreeds Case Case Control Control TotalTotal NN %% NN %% NN %% ScottishScottish 3939 81.381.3 2121 12.512.5 6060 27.827.8 MunchkinMunchkin 99 18.718.7 2727 16.116.1 3636 16.716.7 American CurlAmerican Curl 00 00 33 1.81.8 33 1.41.4 American Short HairAmerican Short Hair 00 00 2727 16.116.1 2727 12.412.4 British Short HairBritish Short Hair 00 00 1515 8.98.9 1515 7.07.0 PersianPersian 00 00 7575 44.644.6 7575 34.734.7 4848 100100 168168 100100 216216 100100

(2) DNA 추출 (2) DNA extraction

총 216 두의 고양이 혈액 및 구강상피세포로부터 채취된 시료의 DNA 분리는 Nucleogen kit(Nucleogen, KOR)을 이용하여 제조사의 매뉴얼에 따라 DNA를 추출하였다. 추출된 DNA는 NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, USA)를 사용하여 DNA 농도 및 순도를 각각 측정한 후, 분석하기 전까지 - 20℃에 냉동보관 하였다. 시료로부터 추출된 DNA의 평균 농도는 129.78 ng/㎕ 이었고, 260/280와 260/230 값은 각각 1.74와 1.82로 비교적 양호한 것으로 확인되었다.For DNA isolation of samples collected from a total of 216 cat blood and oral epithelial cells, DNA was extracted using a Nucleogen kit (Nucleogen, KOR) according to the manufacturer's manual. The extracted DNA was measured for DNA concentration and purity using a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, USA), and stored frozen at -20°C until analysis. The average concentration of DNA extracted from the sample was 129.78 ng/μl, and the values of 260/280 and 260/230 were 1.74 and 1.82, respectively, which were confirmed to be relatively good.

2. 고양이 골연골이형성증과 관련된 유전자의 다형성 분석 2. Polymorphism Analysis of Genes Associated with Feline Osteochondrosis

(1) 골연골이형성증과 관련된 후보유전자 영역 (1) Candidate gene regions related to osteochondrosis

골연골이형성증과 관련된 후보유전자들을 아래 표2와 같이 선별하였다. Candidate genes related to osteochondrosis were selected as shown in Table 2 below.

No.No. Gene NameGene Name Coding exonCoding exon Protein functionProtein function No.No. Gene NameGene Name Coding Coding
exonexon
Protein functionsProtein functions
1One COL1A1 COL1A1 5151 Type 1 collagenType 1 collagen 1717 PLOD2 PLOD2 1919 ER procollagen processingER procollagen processing 22 COL1A2COL1A2 5252 Type 1 collagenType 1 collagen 1818 TCIRG1TCIRG1 1919 Osteoclast functionOsteoclast function 33 BMP1BMP1 2020 C-propeptide cleavageC-propeptide cleavage 1919 CLCN7CLCN7 2424 Osteoclast functionOsteoclast function 44 CRTAPCRTAP 77 Collagen hydroxylationCollagen hydroxylation 2020 OSTM1OSTM1 66 Osteoclast homeostasisOsteoclast homeostasis 55 FKBP10FKBP10 99 Collagen processingCollagen processing 2121 PLEKHM3PLEKHM3 77 Osteoclast functionOsteoclast function 66 IFITM5IFITM5 22 MineralizationMineralization 2222 CA2CA2 77 Osteoclast functionOsteoclast function 77 P3H1P3H1 1515 Collagen hydroxylationCollagen hydroxylation 2323 SNX10SNX10 77 Osteoclast homeostasisOsteoclast homeostasis 88 PLS3PLS3 1818 Actin bindingActin binding 2424 TRPV4TRPV4 1515 Ion channel transport Ion channel transport 99 PPIBPPIB 55 Collagen hydroxyCollagen hydroxy 2525 TNFRSF11A TNFRSF11A 99 Osteoclast activation (RANK)Osteoclast activation (RANK) 1010 SEC24DSEC24D 2222 ER procollagen processingER procollagen processing 2626 TNFSF11TNFSF11 44 Osteoclast activation (RANKL)Osteoclast activation (RANKL) 1111 SERPINF1SERPINF1 77 Collagen chaperoningCollagen chaperoning 2727 CTSKCTSK 77 Osteoclast functionOsteoclast function 1212 SERPINH1SERPINH1 44 MineralizationMineralization 2828 SOSTSOST 55 Osteoblast activation/Wnt signalling (antagonistOsteoblast activation/Wnt signaling (antagonist 1313 SP7SP7 1One Osteoblast regulationOsteoblast regulation 2929 LRP5LRP5 2222 Osteoblast activation/Wnt signalling (receptor)Osteoblast activation/Wnt signaling (receptor) 1414 TMEM38BTMEM38B 66 Cation channelCation channel 3030 NOTCH2NOTCH2 3535 Notch signallingNotch signaling 1515 WNT1WNT1 44 Osteoblast activation/Wnt signalling (ligand)Osteoblast activation/Wnt signaling (ligand) 3131 WNT3AWNT3A 44 Wnt signalling (ligand)Wnt signaling (ligand) 1616 P4HBP4HB 1212 ER procollagen processingER procollagen processing 3232 MTHFRMTHFR 1212 Homocysteine metabolismHomocysteine metabolism

(2) 골연골이형성증과 관련된 유전자의 엑손영역 증폭을 위한 primer 설계(2) Primer design for exon region amplification of genes related to osteochondrosis

고양이 골연골이형성증과 연관된 SNP를 탐색하기 위해 골연골이형성증과 관련이 있다고 보고된 유전자들을 선택하여 엑손(exon) 영역만 특이적으로 증폭할 수 있는 primer를 Primer3 프로그램(http://primer3.ut.ee/)을 이용하여 설계하였고, 바이오닉스 및 엠바이오텍에 의뢰하여 Primer를 합성하였다. 표3은 TRPV4의 유전자의 primer 염기서열 및 증폭산물의 크기를 보여주는 것이며, 타겟 후보 유전자에 대하여도 동일하게 설계하고 합성하였다.In order to search for SNPs related to osteochondrosis in cats, the Primer3 program (http://primer3.ut. ee/), and the Primer was synthesized at the request of Bionics and MBiotech. Table 3 shows the primer nucleotide sequence of the TRPV4 gene and the size of the amplification product, and the target candidate gene was designed and synthesized in the same way.

GeneGene Primer no.Primer no. Exon No.Exon No. Primer FPrimer F Primer RPrimer R SizeSize TRPV4TRPV4 1One Exon01Exon01 ATTACAACGGTGGCTTTGAAATTACAACGGTGGCTTTGAA AGACGGGTGAACAGACAAGTAGACGGGTGAACAGACAAGT 660660 22 Exon02Exon02 GGTCTGGTTCCACGCTAGGGGTCTGGTTCCACGCTAGG GGGAAGACGCTAAGAGGAAAGGGAAGACGCTAAGAGGAAA 391391 33 Exon03Exon03 GATAGGGAGAGGCTCAGAGGGATAGGGAGAGGCTCAGAGG TGGAAGGGGTAGTTATCGTTCTGGAAGGGGTAGTTATCGTTC 455455 44 Exon04Exon04 TGGGTGGAGACGGTCAAGTGGGTGGAGACGGTCAAG GAGGCTCAGGGAGGTGAGGAGGCTCAGGGAGGTGAG 390390 55 Exon05Exon05 GACGTGGACACGGACTGTGACGTGGACACGGACTGT AGCAAGTGGGTGTGCATATTAGCAAGTGGGTGTGCATTT 564564 66 Exon06Exon06 GCCCAGGACATGCTAAGTAAGCCCAGGACATGCTAAGTAA AGCTGGGACTCAGAGAGGTTAGCTGGGACTCAGAGAGGTT 490490 77 Exon07Exon07 ATCCTCGAGTGTCGCTCAATCCTCGAGTGTCGCTCA TGTTCCTCAGCTCTCTCCTGTGTTCCTCAGCTCTCTCCTG 386386 88 Exon08Exon08 AGGGACAGGAGAGAGCTGAGAGGGACAGGAGAGAGCTGAG GGAGGAAAAAGCAGAGAAGGGGAGGAAAAAGCAGAGAAGG 403403 99 Exon09Exon09 CCCTCCTTCTCTGCTTTTTCCCCTCCTTCTCTGCTTTTTC GTCCTGATGTTGGGCTACAGGTCCTGATGTTGGGCTACAG 353353 1010 Exon10Exon10 CCAGTGCATCCACTTTGTTTCCAGTGCATCCACTTTGTTT ACCTCCACCCTATCCCTTCACCTCCACCCTATCCCTTC 445445 1111 Exon11Exon11 GATCTGGGATGGAAAAGACCGATCTGGGATGGAAAAGACC ACTCAGCACACGCTGGTTACTCAGCACACGCTGGTT 250250 1212 Exon12Exon12 CTTTCCCCGCTGTCAAATCTTTCCCCGCTGTCAAAT GGTCTCTCCGTTCTGGAAGGGTCTCTCCGTTCTGGAAG 483483 1313 Exon13Exon13 ACCTTGAGGGCAGTAGGCACCTTGAGGGCAGTAGGC ATTGCAATGGGTAGAAAGCAATTGCAATGGGTAGAAAGCA 272272 1414 Exon14Exon14 AAAGGGATCAAAAGGCAAACAAAGGGATCAAAAGGCAAAC AGAGGACAGCTCAGAGCAAAAGAGGACAGCTCAGAGCAAA 380380 1515 Exon15Exon15 ATAAGCATACCTGCCCCTTCATAAGCATACCTGCCCCTTC GGGTGGAGTAGAAACAGGTGGGGTGGAGTAGAAACAGGTG 349349

(3) 후보유전자의 PCR 증폭 (3) PCR amplification of candidate genes

상기에서 준비한 시료를 이용하여 표3에 제시된 유전자 exon 영역을 PCR로 증폭하였다. PCR 반응은 95 ℃에서 15분간 pre-denaturation을 실시한 후, 95 ℃에서 30초간denaturation 하고, 58 ℃에서 30초 동안 annealing 그리고 72 ℃에서 30초 ~ 1분(product size가 1kb 이상일 경우는 1분간 extension 하였다. 총 35회 연속반응 시킨 후 마지막으로 72 ℃에서 10분간 최종 extension 한 뒤, PCR 증폭산물을 2% agarose gel 상에서 전기영동 하였다. PCR 증폭산물을 확인한 결과, 총 32개 유전자 296종의 Primer 세트로 증폭된 각 PCR 산물은 표 4에 나타낸 바와 같으며, 기타 타겟의 후보 유전자들에 대하여도 동일하게 수행하였다.Using the sample prepared above, the gene exon region shown in Table 3 was amplified by PCR. The PCR reaction is pre-denatured at 95 °C for 15 minutes, then denatured at 95 °C for 30 seconds, annealed at 58 °C for 30 seconds, and at 72 °C for 30 seconds to 1 minute (if the product size is more than 1 kb, extension for 1 minute) After a total of 35 consecutive reactions, the final extension was performed at 72 ° C. for 10 minutes, and the PCR amplification product was electrophoresed on 2% agarose gel. As a result of confirming the PCR amplification product, a total of 32 genes and 296 kinds of primer sets Each PCR product amplified is shown in Table 4, and the same was performed for candidate genes of other targets.

TRPV4TRPV4

Figure 112019103251051-pat00001

Lane 1~15 : exon 1~15
Figure 112019103251051-pat00001

Lane 1~15 : exon 1~15

(4) 후보유전자의 DNA 염기서열 분석을 통한 SNP 탐색 (4) SNP search through DNA sequencing of candidate genes

고양이 품종별로 증폭된 골연골이형성증과 관련된 유전자의 exon 영역 증폭산물을 LaboPass PCR purification system(Cosmogenetech, Korea)을 사용하여 정제한 후, BigDye v3.1(Applied Biosystens, USA)를 이용해 염기서열을 분석하였으며, 다른 타겟 후보유전자에 대한 염기서열도 동일하게 수행하였다. After purifying the exon region amplification product of the osteochondrosis-related gene amplified for each cat breed using the LaboPass PCR purification system (Cosmogenetech, Korea), the nucleotide sequence was analyzed using BigDye v3.1 (Applied Biosystens, USA). , nucleotide sequences for other target candidate genes were also performed in the same manner.

반응액은 ZR DNA Sequencing Clean-up Kit(Zymo Research, USA)로 정제한 후, POP-4 polymer(Applied Biosystems, USA), 36 cm X 16 channel capillary(Applied Biosystems, USA), 3130xl Genetic Analyzer(Applied Biosystems, USA)로 전기영동을 실시하였다. 염기서열 분석은 Sequencing Analysis v5.2과 SeqMan Version 7.0.0.0(DNASTAR Inc, USA) 소프트웨어를 이용하여 분석하였다. 아래 표 5는 TRPV4유전자 exon의 염기서열 결과 및 변이유무를 보여주는 것이며, 다른 타겟 후보 유전자들에 대하여도 동일하게 수행하였다. The reaction solution was purified with ZR DNA Sequencing Clean-up Kit (Zymo Research, USA), and then POP-4 polymer (Applied Biosystems, USA), 36 cm X 16 channel capillary (Applied Biosystems, USA), 3130xl Genetic Analyzer (Applied) Biosystems, USA) was used for electrophoresis. Sequencing analysis was performed using Sequencing Analysis v5.2 and SeqMan Version 7.0.0.0 (DNASTAR Inc, USA) software. Table 5 below shows the nucleotide sequence results and the presence or absence of mutations of exon of the TRPV4 gene, and the same was performed for other target candidate genes.

ExonExon No. No. Exon region sequence (5'→ 3')Exon region sequence (5'→ 3') Exon내 변이확인Mutation confirmation in Exon 1One ATGGCGGATCCCAGCGGAGGCCCCYACRCAGGGCCYGGGGAGGTGGCTGAGACCCCCGGGGACGAGAGCGGGACCCCCGGGGCTGAGGCCTTCCCCCTCTCTTCTCTGGCCAACCTGTTTGAAGGGGAGGATGGCTCCCCCTCCCCCTCCCCGGCTGACACCAGCCGCYCCGCTGGGCCAGGTGATGGGCGACCAAATCTGCGCATGAAGTTCCAGGGTGCCTTCCGCAAGGGGGTGCCCAACCCCATTGACCTGCTGGAGTCCACCCTGTATGAGTCCTCGGTGGTGCCTGGACCCAAGAAGGCACCCATGGACTCGCTCTTTGACTATGGCACCTATCGTCATCACCCCAGCGACAACAGGCGGTGGAGGAAGAAGGTCATCGAATGGCGGATCCCAGCGGAGGCCCCYACRCAGGGCCYGGGGAGGTGGCTGAGACCCCCGGGGACGAGAGCGGGACCCCCGGGGCTGAGGCCTTCCCCCTCTCTTCTCTGGCCAACCTGTTTGAAGGGGAGGATGGCTCCCCCTCCCCCTCCCCGGCTGACACCAGCCGCYCCGCTGGGCCAGGTGATGGGCGACCAAATCTGCGCATGAAGTTCCAGGGTGCCTTCCGCAAGGGGGTGCCCAACCCCATTGACCTGCTGGAGTCCACCCTGTATGAGTCCTCGGTGGTGCCTGGACCCAAGAAGGCACCCATGGACTCGCTCTTTGACTATGGCACCTATCGTCATCACCCCAGCGACAACAGGCGGTGGAGGAAGAAGGTCATCGA TAC→CAC (Tyrosine→Histidine / Missense)
GCA→ACA (Alanine→Threonine / Missense)
GGA→GGG (Glycine / Synonymous)
CCT→CCC (Proline / Synonymous)
GAT→GAC (Aspartic acid / Synonymous)
CCC→TCC (Proline → Serine / Missense)
TAC→CAC (Tyrosine→Histidine / Missense)
GCA→ACA (Alanine→Threonine / Missense)
GGA→GGG (Glycine / Synonymous)
CCT→CCC (Proline / Synonymous)
GAT→GAC (Aspartic acid / Synonymous)
CCC→TCC (Proline → Serine / Missense)
22
GAAGCAGCCGCAGAGCCCCAAAGCTCCTGCACCCCAGCCGCCCCCCATCCTTAAAGTCTTCAACCGGCCTATCCTCTTTGACATCGTGTCCCGGGGCTCTACTACTGACCTGGATGGGCTGCTTCCCTTCTTGCTGACCCACAAGAAGCGCCTGACTGACGAGGAGTTCCGGG

GAAGCAGCCGCAGAGCCCCAAAGCTCCTGCACCCCAGCCGCCCCCCATCCTTAAAGTCTTCAACCGGCCTATCCTCTTTGACATCGTGTCCCGGGGCTCTACTACTGACCTGGATGGGCTGCTTCCCTTCTTGCTGACCCACAAGAAGCGCCTGACTGACGAGGAGTTCCGGG
--
33
AGCCGTCCACAGGGAAGACCTGTCTGCCCAAGGCCCTGCTGAATCTGAGCAGTGGCCGTAATGACACCATCCCTGTGCTCCTGGACATCGCCGAGCGGACAGGCAACATGCGGGAGTTCATCAACTCGCCTTTCCGGGACATCTACTACCGAG

AGCCGTCCACAGGGAAGACCTGTCTGCCCAAGGCCCTGCTGAATCTGAGCAGTGGCCGTAATGACACCATCCCTGTGCTCCTGGACATCGCCGAGCGGACAGGCAACATGCGGGAGTTCATCAACTCGCCTTTCCGGGACATCTACTACCGAG
--
44
GCCAGACTGCCCTGCACATCGCCATCGAGCGCCGCTGCAAACACTACGTGGAGCTCCTGGTGGCCCAAGGAGCTGACGTCCATGCCCAGGCCCGGGGGCGCTTCTTCCAGCCCAAGGACGAGGGAGGCTATTTCTACTTTG

GCCAGACTGCCCTGCACATCGCCATCGAGCGCCGCTGCAAACACTACGTGGAGCTCCTGGTGGCCCAAGGAGCTGACGTCCATGCCCAGGCCCGGGGGCGCTTCTTCCAGCCCAAGGACGAGGGAGGCTATTTCTACTTTG
--
55
GCGAGCTGCCCCTGTCGCTGGCCGCCTGCACCAACCAGCCCCACATCGTCAACTACCTGACAGAGAACCCGCACAAGAAGGCGGACATGCGGCGGCAGGACTCCCGCGGMAACACGGTGCTGCACGCGCTGGTGGCCATCGCCGACAACACCCGTGAGAACACCAAGTTCKTCACCAAGATGTACGACCTGCTGCTGCTCAAGTGTGCCCGCCTCTTCCCCGACAGCAACCTGGAGGCCGTGCTCAACAAYGATGGGCTCTCGCCCCTCATGATGGCCGCCAAGACCGGCAAGATTGGG

GCGAGCTGCCCCTGTCGCTGGCCGCCTGCACCAACCAGCCCCACATCGTCAACTACCTGACAGAGAACCCGCACAAGAAGGCGGACATGCGGCGGCAGGACTCCCGCGGMAACACGGTGCTGCACGCGCTGGTGGCCATCGCCGACAACACCCGTGAGGGAACTTACCAAGTTCKTCACCAAGAGATGCTCCAGTCAGGCCAACCGTGCAGTCAGTCAGCAGGCTGGCAGCTGGCTGCAGTCCAGCTGGA
GGA→GGC (Glycine / Synonymous)
GTC→TTC (Valine→Phenylalanine/Missense)
AAT→AAC (Asparagine / Synonymous)
GGA→GGC (Glycine / Synonymous)
GTC→TTC (Valine→Phenylalanine/Missense)
AAT→AAC (Asparagine / Synonymous)
66
GTCTTTCAGCACATCATTCGCCGGGAGGTGACAGACGAGGATACGAGGCACCTGTCCCGCAAGTTCAAGGACTGGGCCTACGGGCCGGTGTATTCCTCGCTGTATGACCTCTCCTCCCTGGACACGTGTGGGGAAGAGGCCTCTGTGCTGGAGATCCTGGTGTATAACAGCAAGATCGAG

GTCTTTCAGCACATCATTCGCCGGGAGGTGACAGACGAGGATACGAGGCACCTGTCCCGCAAGTTCAAGGACTGGGCCTACGGGCCGGTGTATTCCTCGCTGTATGACCTCTCCTCCCTGGACACGTGGGGAAGAGGCCTCTGTGCTGGAGATCCTGGTATAACAGCAAGATCGAG
--
77
AACCGCCACGAGATGCTGGCCGTGGAGCCCATCAATGAACTGCTGAGGGACAAGTGGCGCAAGTTCGGGGCTGTCTCCTTCTACATCAACGTGGTCTCCTATCTGTGCGCCATGGTCATCTTCACCCTCACCGCCTACTACCAGCCACTGGAGGGCACT

AACCGCCACGAGATGCTGGCCGTGGAGCCCATCAATGAACTGCTGAGGGACAAGTGGCGCAAGTTCGGGGCTGTCTCCTTCTACATCAACGTGGTCTCCTATCTGTGCGCCATGGTCATCTTCACCCTCACCGCCTACTACCAGCCACTGGAGGGCACT
--
88
CCTCCGTACCCTTACCGCACCACCGTGGACTACCTGAGGCTGGCGGGCGAGATCATCACGCTCTTGACCGGCATCCTGTTCTTCTTTACCAAC

CCTCCGTACCCTTACCGCACCACCGTGGACTACCTGAGGCTGGCGGGCGAGATCATCACGCTCTTGACCGGCATCCTGTTCTTCTTTACCAAC
--
99
ATCAAAGACTTGTTCATGAAGAAATGCCCGGGAGTGAATTCTCTCTTCATCGATGGCTCCTTCCAGCTACTCTA

ATCAAAGACTTGTTCATGAAGAAATGCCCGGGAGTGAATTCTCTCTTCATCGATGGCTCCTTCCAGCTACTCTA
--
1010
CTTCATCTACTCTGTGCTAGTGATTGTCTCAGCGGCCCTCTACCTGGCRGGAATTGAAGCCTACCTGGCTGTCATGGTCTTTGCCTTGGTCCTGGGCTGGATGAACGCCCTTTACTTTACCCGCGGGCTGAAGCTGACGGGAACCTATAGCATCATGATCCAGAAG

CTTCATCTACTCTGTGCTAGTGATTGTCTCAGCGGCCCTCTACCTGGCRGGAATTGAAGCCTACCTGGCTGTCATGGTCTTTGCCTTGGTCCTGGGCTGGATGAACGCCCTTTACTTTACCCGCGGGCTGAAGCTGACGGGAACCTATAGCATCATGATCCAGAAG
GCG→GCA (Alanine / Synonymous) GCG→GCA (Alanine / Synonymous)
1111
ATCCTCTTCAAAGACCTTTTCCGCTTCCTGCTGGTCTACTTGCTCTTCATGATTGGCTATGCTTCAG

ATCCTCTTCAAAGACCTTTTCCGCTTCCTGCTGGTCTACTTGCTCTTCATGATTGGCTTATGCTTCAG
--
1212
CCCTGGTGTCCCTCCTGAACCCGTGCGCCAACATGA
AGGTGTGCGGCGAGGACCACACCAACTGCACGGTGCCCACGTACCCGTCCTGCCGCGACAGCGAGACCTTCAGCACCTTCCTCCTGGACCTCTTCAAGCTGACCATCGGCATGRGTGACCTGGAGATGCTGAGCAGCACCAAGTACCCCGTGGTCTTCATCATCCTGCTCGTCACTTACATCATCCTCACCTTCGTGCTACTTCTCAACATGCTCATCGCCCTCATGGGGGAGACGGTGGGCCAGGTGTCCAAGGAGAGCAAGCACATCTGGAAGCTGCAG

CCCTGGTGTCCCTCCTGAACCCGTGCGCCAACATGA
AGGTGTGCGGCGAGGACCACACCAACTGCACGGTGCCCACGTACCCGTCCTGCCGCGACAGCGAGACCTTCAGCACCTTCCTCCTGGACCTCTTCAAGCTGACCATCGGCATGRGTGACCTGGAGATGCTGAGCAGCACCAAGTACCCCGTGGTCTTCATCATCCTGCTCGTCACTTACATCATCATCCGGCTGACTGACTGACATGGAGCTGGCAGCATGCATGAGCA
--
1313
TGGGCCACCACCATTCTGGACATCGAGCGTTCCTTCCCCGTGTTCCTGAGGAAGGCCTTCCGCTCTGGCGAGATGGTGACCGTGGGCAAGAGCTCAGACGGCACCCCAGACCGCAGGTGGTGCTTCAG

TGGGCCACCACCATTCTGGACATCGAGCGTTCCTTCCCCGTGTTCCTGAGGAAGGCCTTCCGCTCTGGCGAGATGGTGACCGTGGGCAAGAGCTCAGACGGCACCCCAGACCGCAGGTGGTGCTTCAG
--
1414
GGTGGACGAGGTGAACTGGTCTCACTGGAACCAGAACTTGGGCATCATCAATGAGGACCCGGGCAAGAGCGAGAACTACCAGTACTATGGTTTCTCGCACACCGTGGGCCGGCTCCGGAGGG

GGTGGACGAGGTGAACTGGTCTCACTGGAACCAGAACTTGGGCATCATCAATGAGGACCCGGGCAAGAGCGAGAACTACCAGTACTATGGTTTCTCGCACACCGTGGGCCGGCTCCGGAGGG
AGT→AAT (Serine→Asparagine / Missense) AGT→AAT (Serine→Asparagine / Missense)
1515
ATCGGTGGTCCTCGGTGGTGCCGCGCGTGGTGGAGCTGAACAAGAACTCAAACCCAGACGACGTGGTGGTGCCTCTGGACAACATGGGGACCCCCAGCTGCGACGGCCACCAGCAGAGTTACCCCCCCAAGTGGAGGACAGATGCCGCTCCCCTCTAG

ATCGGTGGTCCTCGGTGGTGCCGCGCGTGGTGGAGCTGAACAAGAACTCAAACCCAGACGACGTGGTGGTGCCTCTGGACAACATGGGGACCCCCAGCTGCGACGGCCACCAGCAGAGTTACCCCCCCAAGTGGAGGACAGATGCCGCTCCCCTCTAG
--

(5) (5) TRPV4TRPV4 유전자 SNP의 대립유전자 빈도 및 연관성 분석 Allele Frequency and Association Analysis of Gene SNPs

총 32개 후보유전자 중 10개 유전자에서 SNP mutation 47개가 확인되었고, 아미노산의 변화가 없는 synonymous cSNP 31개와 아미노산 치환을 유도하는 missense cSNP 16개가 각각 확인되었다. 아래 표 6은 골연골이형성증 후보유전자 exon 영역에서 확인된 SNPs를 보여주는 것이다.Among the total 32 candidate genes, 47 SNP mutations were identified in 10 genes, 31 synonymous cSNPs without amino acid change and 16 missense cSNPs inducing amino acid substitution were identified, respectively. Table 6 below shows the SNPs identified in the exon region of the osteochondrosis candidate gene.

GeneGene Exon No.Exon No. Nucleotide changeNucleotide change Amino acid changeamino acid change Mutation typeMutation type COL1A1COL1A1 1717 T/CT/C Arginine Arginine synonymoussynonymous 1818 C/TC/T AsparagineAsparagine synonymous synonymous 1919 T/AT/A AlanineAlanine synonymoussynonymous 1919 C/TC/T GlycineGlycine synonymoussynonymous 2525 C/TC/T GlycineGlycine synonymoussynonymous COL1A2COL1A2 1414 G/TG/T Arginine Arginine synonymoussynonymous 1919 T/CT/C GlycineGlycine synonymoussynonymous 3434 A/CA/C AlanineAlanine synonymoussynonymous 4949 T/CT/C GlycineGlycine synonymoussynonymous FKBP10FKBP10 0606 T/CT/C Serine → ProlineSerine → Proline missensemissense P3H1P3H1 0101 A/GA/G ThreonineThreonine synonymoussynonymous 0606 C/TC/T PhenylalaninePhenylalanine synonymoussynonymous 0808 A/GA/G Glutamic acid Glutamic acid synonymoussynonymous 1515 T/CT/C AsparagineAsparagine synonymous synonymous 1515 G/CG/C Alanine → ProlineAlanine → Proline missensemissense 1515 G/AG/A Valine → IsoleucineValine → Isoleucine missensemissense 1515 G/AG/A Arginine → HistidineArginine → Histidine missensemissense P4HBP4HB 0707 G/AG/A Arginine →Histidine Arginine → Histidine missensemissense TRPV4TRPV4 0101 T/CT/C Tyrosine → Histidine Tyrosine → Histidine missensemissense 0101 G/AG/A Alanine → ThreonineAlanine → Threonine missensemissense 0101 A/GA/G GlycineGlycine synonymous synonymous 0101 T/CT/C ProlineProline synonymous synonymous 0101 T/CT/C Aspartic acidAspartic acid synonymous synonymous 0101 C/TC/T Proline → Serine Proline → Serine missensemissense 0505 A/CA/C GlycineGlycine synonymous synonymous 0505 G/TG/T Valine → PhenylalanineValine → Phenylalanine missensemissense 0505 T/CT/C AsparagineAsparagine synonymous synonymous 1010 G/AG/A AlanineAlanine synonymous synonymous 1212 G/AG/A Glycine → SerineGlycine → Serine missensemissense 1414 G/AG/A Serine → AsparagineSerine → Asparagine missensemissense TNFRSF11ATNFRSF11A 0606 G/CG/C LeucineLeucine synonymous synonymous 0808 G/AG/A Glutamic acid → Lysine Glutamic acid → Lysine missensemissense 0808 G/AG/A Alanine → ThreonineAlanine → Threonine missensemissense 0808 C/TC/T Threonine → MethionineThreonine → Methionine missensemissense 0808 T/CT/C CysteineCysteine synonymous synonymous 0808 T/CT/C Methionine → ThreonineMethionine → Threonine missensemissense 0808 A/GA/G ArginineArginine synonymous synonymous LRP5LRP5 0707 T/CT/C ProlineProline synonymous synonymous 0808 A/GA/G AlanineAlanine synonymous synonymous 0808 G/TG/T ThreonineThreonine synonymous synonymous 0808 G/AG/A Alanine → ThreonineAlanine → Threonine missensemissense 1818 T/CT/C CysteineCysteine synonymous synonymous 1818 T/CT/C CysteineCysteine synonymous synonymous NOTCH2NOTCH2 0707 C/TC/T AlanineAlanine synonymous synonymous 3333 T/CT/C Aspartic acidAspartic acid synonymous synonymous MTHFRMTHFR 0808 G/AG/A Glutamic acidGlutamic acid synonymous synonymous 0909 C/TC/T Aspartic acidAspartic acid synonymous synonymous

고양이 골연골이형성증과 연관성이 있는지 여부를 조사하기 위해 질병군과 대조군의 대립유전자 빈도 차이를 비교하여 우성(dominant), 열성(recessive) 및 공우성(additive)으로 나누어 로지스틱 회귀분석을 실시하고, 상대적 위험도(OR : odd ratio)와 95% 신뢰구간 및 유의수준(p>0.05)을 각각 산출하였다.To investigate whether there is a correlation with osteochondrosis in cats, logistic regression analysis was performed by comparing the difference in allele frequency between the disease group and the control group and dividing them into dominant, recessive and additive, and the relative risk (OR: odd ratio) and 95% confidence interval and significance level (p>0.05) were calculated, respectively.

총 32개 후보유전자를 대상으로 확인된 SNPs를 대상으로 로지스틱 회귀분석을 실시한 결과, TRPV4(Transient Receptor Potential Vanilloid Family Member 4)를 제외한 나머지 유전자에서는 통계적 유의성이 전혀 확인되지 않았다. TRPV4는 체내의 세포막에서 칼슘신호 또는 탈분극을 일으켜 뼈의 형성에 관여하는 유전자로 알려져 있다. As a result of logistic regression analysis on the SNPs identified for a total of 32 candidate genes, no statistical significance was confirmed for the rest of the genes except TRPV4 (Transient Receptor Potential Vanilloid Family Member 4). TRPV4 is known as a gene involved in bone formation by causing calcium signal or depolarization in the cell membrane of the body.

TRPV4 유전자에서 확인된 6개의 cSNP 중에서 c.169 C>T와 c.2041 G>A를 제외한 4개의 cSNP가 모두 통계적 유의성(P<0.0001)이 높은 것으로 확인되었으나, 특히 c.1127 G>T SNP의 T 대립유전자는 질병군이 대조군에 비해 유전자형 빈도가 매우 유의적(p<0.0001)으로 높았고, 또한 질병군 168두 모두가 GG형을 갖고 있는 반면 대조군은 GG형이 전혀 관찰되지 않아 고양이 골연골이형성증을 위한 조기진단 DNA 마커로 결정하여 키트개발에 이용될 수 있음을 확인되었다. 도1은 TRPV4 후보유전자에서 확인된 6개의 cSNP를 보여주는 것이다. Among the 6 cSNPs identified in the TRPV4 gene, all 4 cSNPs except c.169 C>T and c.2041 G>A were found to have high statistical significance (P<0.0001), but especially the c.1127 G>T SNP. In the T allele of the disease group, the genotype frequency was significantly (p<0.0001) higher than that of the control group. In addition, all 168 disease groups had GG type, whereas the control group did not observe any GG type, suggesting cat osteochondrosis. It was confirmed that it can be used for kit development by determining it as an early diagnosis DNA marker for 1 shows six cSNPs identified in TRPV4 candidate genes.

1. TRPV4 유전자의 실시간 중합효소 연쇄반응용 프라이머 및 프로브의 제작1. Preparation of primers and probes for real-time polymerase chain reaction of TRPV4 gene

상기와 같이 실시예 1을 통하여 도출된 SNP 검출을 위한 유전자로 TRPV4 유전자를 검증하기 위하여 동일한 시료추출 및 DNA 분리 및 정제 과정을 반복하며, 실시간 중합소효 연쇄반응을 위하여 프라이머 및 프로브는 제작하였다. 도2에 기재된 NCBI에 등록된 TRPV4 유전자의 유전체 염기서열을 근거로 G1127T 부위가 포함되어 증폭되도록 서열번호 2 및 서열번호 3 염기서열로 표시되는 PCR 프라이머 세트를 설계하여 제작하였다. 서열번호 4 및 5는 1127번의 GG 형을 검출할 수 있는 프로브세트로 서열번호 4은FAM을 형광물질로 표지하였고, 서열번호 5는 1127번의 TT 형을 검출하는 프로브 세트로 VIC을 형광물질로 표지하였다. 또한 1127번이 GT 형과 같이 이형접합자인 경우 FAM과 VIC 형광 값이 함께 검출되도록 설계하였으며, 모든 프로브의 3'말단에는 NFQ(Non Fluorescent quencher)-MGB(Minor Groove Binder)를 퀀칭(quenching)하였다. 표 7은 프라이머 및 프로브의 서열을 보여주는 것이다. TRPV4 as a gene for SNP detection derived through Example 1 as described above To verify the gene, the same sampling and DNA isolation and purification processes were repeated, and primers and probes were prepared for real-time polymerase chain reaction. Based on the genome sequence of the TRPV4 gene registered in the NCBI described in FIG. 2, a PCR primer set represented by SEQ ID NO: 2 and SEQ ID NO: 3 was designed so that the G1127T region was included and amplified. SEQ ID NOs: 4 and 5 are probe sets capable of detecting the GG type of No. 1127, SEQ ID NO: 4 is FAM labeled with a fluorescent material, SEQ ID NO: 5 is a probe set that detects the TT type of No. 1127, and VIC is labeled with a fluorescent material did. In addition, when 1127 is heterozygous such as GT type, it was designed to detect both FAM and VIC fluorescence values, and NFQ (Non Fluorescent quencher)-MGB (Minor Groove Binder) was quenched at the 3' end of all probes. . Table 7 shows the sequences of primers and probes.

SNPsSNPs 종류Kinds 서열번호구분SEQ ID NO: 프라이머/프로브 염기서열(5'→3')Primer/probe sequence (5'→3') G1127TG1127T TRPV4-F primerTRPV4-F primer 서열번호 2SEQ ID NO: 2 CGACAACACCCGTGAGAACACGACAACACCCGTGAGAACA TRPV4-R primerTRPV4-R primer 서열번호 3SEQ ID NO: 3 GAGGCGGGCACACTTGAGGAGGCGGGCACACTTGAG TRPV4-G probeTRPV4-G probe 서열번호 4SEQ ID NO: 4 AAGTTCGTCACCAAGATAAGTTCGTCACCAAGAT TRPV4-T probeTRPV4-T probe 서열번호 5SEQ ID NO: 5 CAAGTTCTTCACCAAGATCAAGTTCTTCACCAAGAT

2. 프라이머 및 프로브 세트를 사용한 실시간 중합효소 연쇄반응 (Realtime PCR)2. Realtime PCR using primer and probe sets

실시간 중합효소 연쇄반응은 주형 DNA (10 ng/㎕) 2 ㎕, 프라이머 및 프로브 세트 혼합물 3 ㎕, TOPreal qPCR 2X PreMIX (TaqMan Probe, UDG plus / Enzynomics, Korea) 10 ㎕를 첨가한 후 멸균 증류수를 첨가하여 최종 20 ㎕가 되도록 반응액을 조제하였다. PCR 반응은 실시간 유전자 증폭장치 QuantStudio 3 (ABI, USA) 를 사용하여 60 ℃에서 30초간 반응시켜 PCR 산물의 오염을 제거하였고, 50 ℃에서 4분간 형광값의 pre-read 단계를 수행한 후, 실시간 PCR 증폭을 수행하였다. 증폭반응은 95 ℃ 에서 15분간 예비변성 (pre-denaturation)을 실시한 후, 95 ℃ 에서 15초간 변성 (denaturation), 65 ℃ 에서 1분간 결합 (annealing)과 연장 (extension) 을 40 사이클 수행하고, 최종적으로 60 ℃에서 30초간 post-read 단계를 실행하였다. 주형 (template)은 상술한 바와 같이 구강상피세포, 혈액, 모근 등에서 추출한 Genomic DNA를 사용하였으며, 음성대조군 (negative control) 은 증류수를 사용하여 교차오염을 확인하였다. 대립유전자 구별 그래프 (Allelic discrimination plot)와 PCR 증폭 그래프 (PCR amplication plot)는 실시간 중합효소 연쇄반응기 Quantstudio 3의 소프트웨어 프로그램 (QuantStudio™ Design & Analysis Software V.1.4.1) 을 사용하여 확인하였다. For real-time polymerase chain reaction, 2 μl of template DNA (10 ng/μl), 3 μl of primer and probe set mixture, and 10 μl of TOPreal qPCR 2X PreMIX (TaqMan Probe, UDG plus / Enzynomics, Korea) were added, and then sterile distilled water was added. Thus, a reaction solution was prepared so that the final volume was 20 μl. The PCR reaction was performed at 60 °C for 30 seconds using a real-time gene amplification device QuantStudio 3 (ABI, USA) to remove contamination of the PCR product, and after performing a pre-read step of fluorescence values at 50 °C for 4 minutes, real-time PCR amplification was performed. For the amplification reaction, pre-denaturation was performed at 95°C for 15 minutes, denaturation was performed at 95°C for 15 seconds, and 40 cycles of annealing and extension were performed at 65°C for 1 minute, and finally The post-read step was performed at 60 °C for 30 seconds. As a template, genomic DNA extracted from oral epithelial cells, blood, and hair roots was used as described above, and cross-contamination was confirmed using distilled water as a negative control. Allelic discrimination plot and PCR amplication plot were confirmed using the real-time polymerase chain reactor Quantstudio 3 software program (QuantStudio™ Design & Analysis Software V.1.4.1).

3. 대립유전자형 분석3. Allelic analysis

실시간 중합효소 연쇄반응기 QuantStudio 3 (Appplied Biosystems, USA)의 소프트웨어 프로그램 QuantStudio Design & Analysis Software V.1.4.1 (Appplied Biosystems, USA)을 이용하여 고양이 골연골이형성증을 결정하는 G1127T의 염기변이를 각각 분석하였다. 1127번 염기의 대립유전자형 판별 그래프(Allelic discrimination plot) 상에서는 세 가지 형태의 유전자형이 확인되었다. 도 3은 서열번호 2부터 서열번호 5에 해당하는 프라이머 및 프로브 세트를 이용하여 고양이 골연골이형성증을 결정하는 G1127T의 대립유전자형을 특이적으로 증폭한 것으로, (A)는 대립유전자형의 구별 그래프(Allelic discrimination plot)이며, (B)는 형광물질로 표지된 각각의 GG, GT, TT 유전자형 및 Negative Control 의 증폭 곡선을 보여주는 그래프이다. TT 유전자형은 좌측 상단으로 파란색을 보였고, GT 형은 그래프의 중앙에 녹색으로 나타났고, TT 형은 우측 하단에 빨간색으로 나타났다(도면 3). 도 4는 실시간 중합효소 연쇄반응법을 이용한 분석결과를 검증하기 위해 DNA 염기서열을 통해 분석한 결과를 나타낸 것이다. 정확하고 특이적으로 증폭되었는지 여부를 검증하기 위해 각 해당 시료의 유전자를 증폭한 후 DNA 염기서열 분석(DNA sequencing)을 통해 분석한 결과로서 각 해당하는 대립유전자형의 염기서열이 정확하게 증폭되었음을 확인할 수 있으며 G1127T의 염기변이가 정확하게 모두 일치하였음을 확인하였다. The nucleotide mutations of G1127T, which determine osteochondrosis in cats, were analyzed using the real-time polymerase chain reactor QuantStudio 3 (Appplied Biosystems, USA) software program QuantStudio ™ Design & Analysis Software V.1.4.1 (Appplied Biosystems, USA), respectively. did. Three types of genotypes were identified on the allelic discrimination plot of base 1127. Figure 3 is a specific amplification of the allele of G1127T for determining cat osteochondrosis using primers and probe sets corresponding to SEQ ID NO: 2 to SEQ ID NO: 5, (A) is a graph of allelic discrimination (Allelic); discrimination plot), and (B) is a graph showing amplification curves of each GG, GT, TT genotype and Negative Control labeled with a fluorescent substance. The TT genotype was shown in blue in the upper left corner, the GT genotype was shown in green in the center of the graph, and the TT genotype was shown in red in the lower right corner (Fig. 3). 4 shows the results of analysis through DNA sequencing in order to verify the analysis results using the real-time polymerase chain reaction method. As a result of amplifying the gene of each sample and analyzing it through DNA sequencing to verify whether it was amplified accurately and specifically, it can be confirmed that the nucleotide sequence of each corresponding allele was accurately amplified. It was confirmed that all base mutations of G1127T were exactly the same.

<110> (Korea Gene Information Institute Co., Ltd <120> A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats <130> INP19-143 <160> 50 <170> KoPatentIn 3.0 <210> 1 <211> 3290 <212> RNA <213> Felis catus <400> 1 aggagagtcg cgcggcgcgg gcgggcgggc gccggacggc cgggattcag gaagcgcctc 60 gcggtcccgg aggccgagca gcgcagacgg gtcccgggtc agcatggcgg atcccagcgg 120 aggcccccac gcaggacccg gggaggtggc tgagaccccc ggggatgaga gtgggacccc 180 cggggctgag gccttccccc tctcttctct ggccaacctg tttgaagggg aggatggctc 240 cccctccccc tccccggctg acaccagccg ccccgctggg ccaggtgatg ggcgaccaaa 300 tctgcgcatg aagttccagg gtgccttccg caagggggtg cccaacccca ttgacctgct 360 ggagtccacc ctgtatgagt cctcggtggt gcctggaccc aagaaggcac ccatggactc 420 gctctttgac tatggcacct atcgtcatca ccccagcgac aacaggcggt ggaggaagaa 480 ggtcatcgag aagcagccgc agagccccaa agctcctgca ccccagccgc cccccatcct 540 taaagtcttc aaccggccta tcctctttga catcgtgtcc cggggctcta ctactgacct 600 ggatgggctg cttcccttct tgctgaccca caagaagcgc ctgactgacg aggagttccg 660 ggagccgtcc acagggaaga cctgtctgcc caaggccctg ctgaatctga gcagtggccg 720 taatgacacc atccctgtgc tcctggacat cgccgagcgg acaggcaaca tgcgggagtt 780 catcaactcg cctttccggg acatctacta ccgaggccag actgccctgc acatcgccat 840 cgagcgccgc tgcaaacact acgtggagct cctggtggcc caaggagctg acgtccatgc 900 ccaggcccgg gggcgcttct tccagcccaa ggacgaggga ggctatttct actttggcga 960 gctgcccctg tcgctggccg cctgcaccaa ccagccccac atcgtcaact acctgacaga 1020 gaacccgcac aagaaggcgg acatgcggcg gcaggactcc cgcggaaaca cggtgctgca 1080 cgcgctggtg gccatcgccg acaacacccg tgagaacacc aagttcgtca ccaagatgta 1140 cgacctgctg ctgctcaagt gtgcccgcct cttccccgac agcaacctgg aggccgtgct 1200 caacaacgat gggctctcgc ccctcatgat ggccgccaag accggcaaga ttggggtctt 1260 tcagcacatc attcgccggg aggtgacaga cgaggatacg aggcacctgt cccgcaagtt 1320 caaggactgg gcctacgggc cggtgtattc ctcgctgtat gacctctcct ccctggacac 1380 gtgtggggaa gaggcctctg tgctggagat cctggtgtat aacagcaaga tcgagaaccg 1440 ccacgagatg ctggccgtgg agcccatcaa tgaactgctg agggacaagt ggcgcaagtt 1500 cggggctgtc tccttctaca tcaacgtggt ctcctatctg tgcgccatgg tcatcttcac 1560 cctcaccgcc tactaccagc cactggaggg cactcctccg tacccttacc gcaccaccgt 1620 ggactacctg aggctggcgg gcgagatcat cacgctcttg accggcatcc tgttcttctt 1680 taccaacatc aaagacttgt tcatgaagaa atgcccggga gtgaattctc tcttcatcga 1740 tggctccttc cagctactct acttcatcta ctctgtgcta gtgattgtct cagcggccct 1800 ctacctggca ggaattgaag cctacctggc tgtcatggtc tttgccttgg tcctgggctg 1860 gatgaacgcc ctttacttta cccgcgggct gaagctgacg ggaacctata gcatcatgat 1920 ccagaagatc ctcttcaaag accttttccg cttcctgctg gtctacttgc tcttcatgat 1980 tggctatgct tcagccctgg tgtccctcct gaacccgtgc gccaacatga aggtgtgcgg 2040 cgaggaccac accaactgca cggtgcccac gtacccgtcc tgccgcgaca gcgagacctt 2100 cagcaccttc ctcctggacc tcttcaagct gaccatcggc atgggtgacc tggagatgct 2160 gagcagcacc aagtaccccg tggtcttcat catcctgctc gtcacttaca tcatcctcac 2220 cttcgtgcta cttctcaaca tgctcatcgc cctcatgggg gagacggtgg gccaggtgtc 2280 caaggagagc aagcacatct ggaagctgca gtgggccacc accattctgg acatcgagcg 2340 ttccttcccc gtgttcctga ggaaggcctt ccgctctggc gagatggtga ccgtgggcaa 2400 gagctcagac ggcaccccag accgcaggtg gtgcttcagg gtggacgagg tgaactggtc 2460 tcactggaac cagaacttgg gcatcatcag tgaggacccg ggcaagagcg agaactacca 2520 gtactatggt ttctcgcaca ccgtgggccg gctccggagg gatcggtggt cctcggtggt 2580 gccgcgcgtg gtggagctga acaagaactc aaacccagac gacgtggtgg tgcctctgga 2640 caacatgggg acccccagct gcgacggcca ccagcagagt taccccccca agtggaggac 2700 agatgccgct cccctctagg ggctgtgggc ggggcagggt ctctggcctg ccgtccagcc 2760 ccgtcccccc acccacctgt ttctactcca cccgcatttc agtggtgcct cccagggcat 2820 cccccacgtg ctcccttgac ccccagaggc gagggccggg cggagatgaa ggggaggctc 2880 caggaccctc tggtccccag gctgcccccc cagctctgcc tccccacctg ggctcctggc 2940 tgcctgtctt actcccatgg agtcacataa gccaatgcca gggcctctct gtcccggggg 3000 gccccgacac ctgcctctcc attatttatt tgctctgcac tcaggaaagt ggtgtgatcc 3060 ctgcccccaa atggaacctg ggccgaggcc tcaggacctc attccaggtc actgccggcc 3120 agcccccagc cccagccggc gccctgggct gcgcacagca ccctgcgcag cagcggggtg 3180 gctttgctgt ggggccgggg ccctagggcg tggggccgcg cctgcggtgt gttctgtaaa 3240 gggtctggga tttgtcggtg ctcaataaat gcgcattcac tgatggtgaa 3290 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4-F primer <400> 2 cgacaacacc cgtgagaaca 20 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4-R primer <400> 3 gaggcgggca cacttgag 18 <210> 4 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> TRPV4-G probe <400> 4 aagttcgtca ccaagat 17 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4-T probe <400> 5 caagttcttc accaagat 18 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 6 attacaacgg tggctttgaa 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 7 agacgggtga acagacaagt 20 <210> 8 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 8 ggtctggttc cacgctagg 19 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 9 gggaagacgc taagaggaaa 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 10 gatagggaga ggctcagagg 20 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 11 tggaaggggt agttatcgtt c 21 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 12 tgggtggaga cggtcaag 18 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 13 gaggctcagg gaggtgag 18 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 14 gacgtggaca cggactgt 18 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 15 agcaagtggg tgtgcatatt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 16 gcccaggaca tgctaagtaa 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 17 agctgggact cagagaggtt 20 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 18 atcctcgagt gtcgctca 18 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 19 tgttcctcag ctctctcctg 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 20 agggacagga gagagctgag 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 21 ggaggaaaaa gcagagaagg 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 22 ccctccttct ctgctttttc 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 23 gtcctgatgt tgggctacag 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 24 ccagtgcatc cactttgttt 20 <210> 25 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 25 acctccaccc tatcccttc 19 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 26 gatctgggat ggaaaagacc 20 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 27 actcagcaca cgctggtt 18 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 28 ctttccccgc tgtcaaat 18 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 29 ggtctctccg ttctggaag 19 <210> 30 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 30 accttgaggg cagtaggc 18 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 31 attgcaatgg gtagaaagca 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 32 aaagggatca aaaggcaaac 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 33 agaggacagc tcagagcaaa 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 34 ataagcatac ctgccccttc 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 35 gggtggagta gaaacaggtg 20 <210> 36 <211> 386 <212> DNA <213> felis catus <400> 36 atggcggatc ccagcggagg ccccyacrca gggccygggg aggtggctga gacccccggg 60 gacgagagcg ggacccccgg ggctgaggcc ttccccctct cttctctggc caacctgttt 120 gaaggggagg atggctcccc ctccccctcc ccggctgaca ccagccgcyc cgctgggcca 180 ggtgatgggc gaccaaatct gcgcatgaag ttccagggtg ccttccgcaa gggggtgccc 240 aaccccattg acctgctgga gtccaccctg tatgagtcct cggtggtgcc tggacccaag 300 aaggcaccca tggactcgct ctttgactat ggcacctatc gtcatcaccc cagcgacaac 360 aggcggtgga ggaagaaggt catcga 386 <210> 37 <211> 173 <212> DNA <213> felis catus <400> 37 gaagcagccg cagagcccca aagctcctgc accccagccg ccccccatcc ttaaagtctt 60 caaccggcct atcctctttg acatcgtgtc ccggggctct actactgacc tggatgggct 120 gcttcccttc ttgctgaccc acaagaagcg cctgactgac gaggagttcc ggg 173 <210> 38 <211> 153 <212> DNA <213> felis catus <400> 38 agccgtccac agggaagacc tgtctgccca aggccctgct gaatctgagc agtggccgta 60 atgacaccat ccctgtgctc ctggacatcg ccgagcggac aggcaacatg cgggagttca 120 tcaactcgcc tttccgggac atctactacc gag 153 <210> 39 <211> 141 <212> DNA <213> felis catus <400> 39 gccagactgc cctgcacatc gccatcgagc gccgctgcaa acactacgtg gagctcctgg 60 tggcccaagg agctgacgtc catgcccagg cccgggggcg cttcttccag cccaaggacg 120 agggaggcta tttctacttt g 141 <210> 40 <211> 299 <212> DNA <213> felis catus <400> 40 gcgagctgcc cctgtcgctg gccgcctgca ccaaccagcc ccacatcgtc aactacctga 60 cagagaaccc gcacaagaag gcggacatgc ggcggcagga ctcccgcggm aacacggtgc 120 tgcacgcgct ggtggccatc gccgacaaca cccgtgagaa caccaagttc ktcaccaaga 180 tgtacgacct gctgctgctc aagtgtgccc gcctcttccc cgacagcaac ctggaggccg 240 tgctcaacaa ygatgggctc tcgcccctca tgatggccgc caagaccggc aagattggg 299 <210> 41 <211> 180 <212> DNA <213> felis catus <400> 41 gtctttcagc acatcattcg ccgggaggtg acagacgagg atacgaggca cctgtcccgc 60 aagttcaagg actgggccta cgggccggtg tattcctcgc tgtatgacct ctcctccctg 120 gacacgtgtg gggaagaggc ctctgtgctg gagatcctgg tgtataacag caagatcgag 180 180 <210> 42 <211> 159 <212> DNA <213> felis catus <400> 42 aaccgccacg agatgctggc cgtggagccc atcaatgaac tgctgaggga caagtggcgc 60 aagttcgggg ctgtctcctt ctacatcaac gtggtctcct atctgtgcgc catggtcatc 120 ttcaccctca ccgcctacta ccagccactg gagggcact 159 <210> 43 <211> 93 <212> DNA <213> felis catus <400> 43 cctccgtacc cttaccgcac caccgtggac tacctgaggc tggcgggcga gatcatcacg 60 ctcttgaccg gcatcctgtt cttctttacc aac 93 <210> 44 <211> 74 <212> DNA <213> felis catus <400> 44 atcaaagact tgttcatgaa gaaatgcccg ggagtgaatt ctctcttcat cgatggctcc 60 ttccagctac tcta 74 <210> 45 <211> 166 <212> DNA <213> felis catus <400> 45 cttcatctac tctgtgctag tgattgtctc agcggccctc tacctggcrg gaattgaagc 60 ctacctggct gtcatggtct ttgccttggt cctgggctgg atgaacgccc tttactttac 120 ccgcgggctg aagctgacgg gaacctatag catcatgatc cagaag 166 <210> 46 <211> 67 <212> DNA <213> felis catus <400> 46 atcctcttca aagacctttt ccgcttcctg ctggtctact tgctcttcat gattggctat 60 gcttcag 67 <210> 47 <211> 317 <212> DNA <213> felis catus <400> 47 ccctggtgtc cctcctgaac ccgtgcgcca acatgaaggt gtgcggcgag gaccacacca 60 actgcacggt gcccacgtac ccgtcctgcc gcgacagcga gaccttcagc accttcctcc 120 tggacctctt caagctgacc atcggcatgr gtgacctgga gatgctgagc agcaccaagt 180 accccgtggt cttcatcatc ctgctcgtca cttacatcat cctcaccttc gtgctacttc 240 tcaacatgct catcgccctc atgggggaga cggtgggcca ggtgtccaag gagagcaagc 300 acatctggaa gctgcag 317 <210> 48 <211> 128 <212> DNA <213> felis catus <400> 48 tgggccacca ccattctgga catcgagcgt tccttccccg tgttcctgag gaaggccttc 60 cgctctggcg agatggtgac cgtgggcaag agctcagacg gcaccccaga ccgcaggtgg 120 tgcttcag 128 <210> 49 <211> 122 <212> DNA <213> felis catus <400> 49 ggtggacgag gtgaactggt ctcactggaa ccagaacttg ggcatcatca atgaggaccc 60 gggcaagagc gagaactacc agtactatgg tttctcgcac accgtgggcc ggctccggag 120 gg 122 <210> 50 <211> 158 <212> DNA <213> felis catus <400> 50 atcggtggtc ctcggtggtg ccgcgcgtgg tggagctgaa caagaactca aacccagacg 60 acgtggtggt gcctctggac aacatgggga cccccagctg cgacggccac cagcagagtt 120 acccccccaa gtggaggaca gatgccgctc ccctctag 158 <110> (Korea Gene Information Institute Co., Ltd.) <120> A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats <130> INP19-143 <160> 50 <170> KoPatentIn 3.0 <210> 1 <211> 3290 <212> RNA <213> Felis catus <400> 1 aggagagtcg cgcggcgcgg gcgggcgggc gccggacggc cgggattcag gaagcgcctc 60 gcggtcccgg aggccgagca gcgcagacgg gtcccgggtc agcatggcgg atcccagcgg 120 aggccccccac gcaggacccg gggaggtggc tgagaccccc ggggatgaga gtgggacccc 180 cggggctgag gccttccccc tctcttctct ggccaacctg tttgaagggg aggatggctc 240 cccctccccc tccccggctg acaccagccg ccccgctggg ccaggtgatg ggcgaccaaa 300 tctgcgcatg aagttccagg gtgccttccg caagggggtg cccaacccca ttgacctgct 360 ggagtccacc ctgtatgagt cctcggtggt gcctggaccc aagaaggcac ccatggactc 420 gctctttgac tatggcacct atcgtcatca ccccagcgac aacaggcggt ggaggaagaa 480 ggtcatcgag aagcagccgc agagccccaa agctcctgca ccccagccgc cccccatcct 540 taaagtcttc aaccggccta tcctctttga catcgtgtcc cggggctcta ctactgacct 600 ggatgggctg cttcccttct tgctgaccca caagaagcgc ctgactgacg aggagttccg 660 ggagccgtcc acagggaaga cctgtctgcc caaggccctg ctgaatctga gcagtggccg 720 taatgacacc atccctgtgc tcctggacat cgccgagcgg acaggcaaca tgcgggagtt 780 catcaactcg cctttccggg acatctacta ccgaggccag actgccctgc acatcgccat 840 cgagcgccgc tgcaaacact acgtggagct cctggtggcc caaggagctg acgtccatgc 900 ccaggcccgg gggcgcttct tccagcccaa ggacgaggga ggctatttct actttggcga 960 gctgcccctg tcgctggccg cctgcaccaa ccagccccac atcgtcaact acctgacaga 1020 gaacccgcac aagaaggcgg acatgcggcg gcaggactcc cgcggaaaca cggtgctgca 1080 cgcgctggtg gccatcgccg acaacacccg tgagaacacc aagttcgtca ccaagatgta 1140 cgacctgctg ctgctcaagt gtgcccgcct cttccccgac agcaacctgg aggccgtgct 1200 caacaacgat gggctctcgc ccctcatgat ggccgccaag accggcaaga ttggggtctt 1260 tcagcacatc attcgccggg aggtgacaga cgaggatacg aggcacctgt cccgcaagtt 1320 caaggactgg gcctacgggc cggtgtattc ctcgctgtat gacctctcct ccctggacac 1380 gtgtggggaa gaggcctctg tgctggagat cctggtgtat aacagcaaga tcgagaaccg 1440 ccacgagatg ctggccgtgg agcccatcaa tgaactgctg agggacaagt ggcgcaagtt 1500 cggggctgtc tccttctaca tcaacgtggt ctcctatctg tgcgccatgg tcatcttcac 1560 cctcaccgcc tactaccagc cactggaggg cactcctccg tacccttacc gcaccaccgt 1620 ggactacctg aggctggcgg gcgagatcat cacgctcttg accggcatcc tgttcttctt 1680 taccaacatc aaagacttgt tcatgaagaa atgcccggga gtgaattctc tcttcatcga 1740 tggctccttc cagctactct acttcatcta ctctgtgcta gtgattgtct cagcggccct 1800 ctacctggca ggaattgaag cctacctggc tgtcatggtc tttgccttgg tcctgggctg 1860 gatgaacgcc ctttacttta cccgcgggct gaagctgacg ggaacctata gcatcatgat 1920 ccagaagatc ctcttcaaag accttttccg cttcctgctg gtctacttgc tcttcatgat 1980 tggctatgct tcagccctgg tgtccctcct gaacccgtgc gccaacatga aggtgtgcgg 2040 cgaggaccac accaactgca cggtgcccac gtacccgtcc tgccgcgaca gcgagacctt 2100 cagcaccttc ctcctggacc tcttcaagct gaccatcggc atgggtgacc tggagatgct 2160 gagcagcacc aagtaccccg tggtcttcat catcctgctc gtcacttaca tcatcctcac 2220 cttcgtgcta cttctcaaca tgctcatcgc cctcatgggg gagacggtgg gccaggtgtc 2280 caaggagagc aagcacatct ggaagctgca gtgggccacc accattctgg acatcgagcg 2340 ttccttcccc gtgttcctga ggaaggcctt ccgctctggc gagatggtga ccgtgggcaa 2400 gagctcagac ggcaccccag accgcaggtg gtgcttcagg gtggacgagg tgaactggtc 2460 tcactggaac cagaacttgg gcatcatcag tgaggacccg ggcaagagcg agaactacca 2520 gtactatggt ttctcgcaca ccgtgggccg gctccggagg gatcggtggt cctcggtggt 2580 gccgcgcgtg gtggagctga acaagaactc aaacccagac gacgtggtgg tgcctctgga 2640 caacatgggg acccccagct gcgacggcca ccagcagagt taccccccca agtggaggac 2700 agatgccgct cccctctagg ggctgtgggc ggggcagggt ctctggcctg ccgtccagcc 2760 ccgtcccccc acccacctgt ttctactcca cccgcatttc agtggtgcct cccagggcat 2820 cccccacgtg ctcccttgac ccccagaggc gagggccggg cggagatgaa ggggaggctc 2880 caggaccctc tggtccccag gctgcccccc cagctctgcc tccccacctg ggctcctggc 2940 tgcctgtctt actcccatgg agtcacataa gccaatgcca gggcctctct gtcccggggg 3000 gccccgacac ctgcctctcc attatttatt tgctctgcac tcaggaaagt ggtgtgatcc 3060 ctgcccccaa atggaacctg ggccgaggcc tcaggacctc attccaggtc actgccggcc 3120 agcccccagc cccagccggc gccctgggct gcgcacagca ccctgcgcag cagcggggtg 3180 gctttgctgt ggggccgggg ccctagggcg tggggccgcg cctgcggtgt gttctgtaaa 3240 gggtctggga tttgtcggtg ctcaataaat gcgcattcac tgatggtgaa 3290 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4-F primer <400> 2 cgacaacacc cgtgagaaca 20 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4-R primer <400> 3 gaggcgggca cacttgag 18 <210> 4 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> TRPV4-G probe <400> 4 aagttcgtca ccaagat 17 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4-T probe <400> 5 caagttcttc accaagat 18 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 6 attacaacgg tggctttgaa 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 7 agacgggtga acagacaagt 20 <210> 8 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 8 ggtctggttc cacgctagg 19 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 9 gggaagacgc taagaggaaa 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 10 gatagggaga ggctcagagg 20 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 11 tggaaggggt agttatcgtt c 21 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 12 tgggtggaga cggtcaag 18 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 13 gaggctcagg gaggtgag 18 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 14 gacgtggaca cggactgt 18 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 15 agcaagtggg tgtgcatatt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 16 gcccaggaca tgctaagtaa 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 17 agctgggact cagagaggtt 20 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 18 atcctcgagt gtcgctca 18 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 19 tgttcctcag ctctctcctg 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 20 agggacagga gagagctgag 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 21 ggaggaaaaa gcagagaagg 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 22 ccctccttct ctgctttttc 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 23 gtcctgatgt tgggctacag 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 24 ccagtgcatc cactttgttt 20 <210> 25 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 25 acctccaccc tatcccttc 19 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 26 gatctgggat ggaaaagacc 20 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 27 actcagcaca cgctggtt 18 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 28 ctttccccgc tgtcaaat 18 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 29 ggtctctccg ttctggaag 19 <210> 30 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 30 accttgaggg cagtaggc 18 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 31 attgcaatgg gtagaaagca 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 32 aaagggatca aaaggcaaac 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 33 agaggacagc tcagagcaaa 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer F <400> 34 ataagcatac ctgccccttc 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TRPV4 primer R <400> 35 gggtggagta gaaacaggtg 20 <210> 36 <211> 386 <212> DNA <213> felis catus <400> 36 atggcggatc ccagcggagg ccccyacrca gggccygggg aggtggctga gacccccggg 60 gacgagagcg ggacccccgg ggctgaggcc ttccccctct cttctctggc caacctgttt 120 gaaggggagg atggctcccc ctccccctcc ccggctgaca ccagccgcyc cgctgggcca 180 ggtgatgggc gaccaaatct gcgcatgaag ttccagggtg ccttccgcaa gggggtgccc 240 aaccccattg acctgctgga gtccaccctg tatgagtcct cggtggtgcc tggacccaag 300 aaggcaccca tggactcgct ctttgactat ggcacctatc gtcatcaccc cagcgacaac 360 aggcggtgga ggaagaaggt catcga 386 <210> 37 <211> 173 <212> DNA <213> felis catus <400> 37 gaagcagccg cagagcccca aagctcctgc accccagccg ccccccatcc ttaaagtctt 60 caaccggcct atcctctttg acatcgtgtc ccggggctct actactgacc tggatgggct 120 gcttcccttc ttgctgaccc acaagaagcg cctgactgac gaggagttcc ggg 173 <210> 38 <211> 153 <212> DNA <213> felis catus <400> 38 agccgtccac agggaagacc tgtctgccca aggccctgct gaatctgagc agtggccgta 60 atgacaccat ccctgtgctc ctggacatcg ccgagcggac aggcaacatg cgggagttca 120 tcaactcgcc tttccgggac atctactacc gag 153 <210> 39 <211> 141 <212> DNA <213> felis catus <400> 39 gccagactgc cctgcacatc gccatcgagc gccgctgcaa acactacgtg gagctcctgg 60 tggcccaagg agctgacgtc catgcccagg cccgggggcg cttcttccag cccaaggacg 120 agggaggcta tttctacttt g 141 <210> 40 <211> 299 <212> DNA <213> felis catus <400> 40 gcgagctgcc cctgtcgctg gccgcctgca ccaaccagcc ccacatcgtc aactacctga 60 cagagaaccc gcacaagaag gcggacatgc ggcggcagga ctcccgcggm aacacggtgc 120 tgcacgcgct ggtggccatc gccgacaaca cccgtgagaa caccaagttc ktcaccaaga 180 tgtacgacct gctgctgctc aagtgtgccc gcctcttccc cgacagcaac ctggaggccg 240 tgctcaacaa ygatgggctc tcgcccctca tgatggccgc caagaccggc aagattggg 299 <210> 41 <211> 180 <212> DNA <213> felis catus <400> 41 gtctttcagc acatcattcg ccgggaggtg acagacgagg atacgaggca cctgtcccgc 60 aagttcaagg actgggccta cgggccggtg tattcctcgc tgtatgacct ctcctccctg 120 gacacgtgtg gggaagaggc ctctgtgctg gagatcctgg tgtataacag caagatcgag 180 180 <210> 42 <211> 159 <212> DNA <213> felis catus <400> 42 aaccgccacg agatgctggc cgtggagccc atcaatgaac tgctgaggga caagtggcgc 60 aagttcgggg ctgtctcctt ctacatcaac gtggtctcct atctgtgcgc catggtcatc 120 ttcaccctca ccgcctacta ccagccactg gagggcact 159 <210> 43 <211> 93 <212> DNA <213> felis catus <400> 43 cctccgtacc cttaccgcac caccgtggac tacctgaggc tggcgggcga gatcatcacg 60 ctcttgaccg gcatcctgtt cttctttacc aac 93 <210> 44 <211> 74 <212> DNA <213> felis catus <400> 44 atcaaagact tgttcatgaa gaaatgcccg ggagtgaatt ctctcttcat cgatggctcc 60 ttccagctac tcta 74 <210> 45 <211> 166 <212> DNA <213> felis catus <400> 45 cttcatctac tctgtgctag tgattgtctc agcggccctc tacctggcrg gaattgaagc 60 ctacctggct gtcatggtct ttgccttggt cctgggctgg atgaacgccc tttactttac 120 ccgcgggctg aagctgacgg gaacctatag catcatgatc cagaag 166 <210> 46 <211> 67 <212> DNA <213> felis catus <400> 46 atcctcttca aagacctttt ccgcttcctg ctggtctact tgctcttcat gattggctat 60 gcttcag 67 <210> 47 <211> 317 <212> DNA <213> felis catus <400> 47 ccctggtgtc cctcctgaac ccgtgcgcca acatgaaggt gtgcggcgag gaccacacca 60 actgcacggt gcccacgtac ccgtcctgcc gcgacagcga gaccttcagc accttcctcc 120 tggacctctt caagctgacc atcggcatgr gtgacctgga gatgctgagc agcaccaagt 180 accccgtggt cttcatcatc ctgctcgtca cttacatcat cctcaccttc gtgctacttc 240 tcaacatgct catcgccctc atgggggaga cggtgggcca ggtgtccaag gagagcaagc 300 acatctggaa gctgcag 317 <210> 48 <211> 128 <212> DNA <213> felis catus <400> 48 tgggccacca ccattctgga catcgagcgt tccttccccg tgttcctgag gaaggccttc 60 cgctctggcg agatggtgac cgtgggcaag agctcagacg gcaccccaga ccgcaggtgg 120 tgcttcag 128 <210> 49 <211> 122 <212> DNA <213> felis catus <400> 49 ggtggacgag gtgaactggt ctcactggaa ccagaacttg ggcatcatca atgaggaccc 60 gggcaagagc gagaactacc agtactatgg tttctcgcac accgtgggcc ggctccggag 120 gg 122 <210> 50 <211> 158 <212> DNA <213> felis catus <400> 50 atcggtggtc ctcggtggtg ccgcgcgtgg tggagctgaa caagaactca aacccagacg 60 acgtggtggt gcctctggac aacatgggga cccccagctg cgacggccac cagcagagtt 120 acccccccaa gtggaggaca gatgccgctc ccctctag 158

Claims (12)

삭제delete 삭제delete 삭제delete 서열번호 1의 TRPV4(Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 1127번째의 염기가 G 또는 T인 것인 단일염기다형성(single nucleotide polymorphism, SNP)를 포함하는 폴리뉴클레오티드를 증폭 또는 검출할 수 있는 서열번호 2 및 서열번호 3의 프라이머 세트와, 서열번호 4 및 서열번호 5의 프로브 세트를 포함하는, 고양이의 골연골이형성증 예측 또는 진단용 SNP 마커 조성물. SEQ ID NO: 1 TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4 ) The 1127th base of the gene is G or T Single nucleotide polymorphism (single nucleotide polymorphism, SNP) containing a polynucleotide amplifying or detecting A SNP marker composition for predicting or diagnosing osteochondrosis in cats, comprising a primer set of SEQ ID NO: 2 and SEQ ID NO: 3, and a probe set of SEQ ID NO: 4 and SEQ ID NO: 5. 삭제delete 삭제delete 삭제delete 제4항에 있어서,
상기 서열번호 4 및 서열번호 5의 5'말단에 형광물질인 VIC 또는 FAM으로 표지되고 서열번호 4 및 서열번호 5의 3'말단에는 NFQ(Non Fluorescent quencher)-MGB(Minor Groove Binder)가 결합되는 것인, 고양이의 골연골이형성증 예측 또는 진단용 SNP 마커 조성물.
5. The method of claim 4,
The 5' end of SEQ ID NO: 4 and SEQ ID NO: 5 is labeled with a fluorescent substance VIC or FAM, and NFQ (Non Fluorescent quencher)-MGB (Minor Groove Binder) is coupled to the 3' end of SEQ ID NO: 4 and SEQ ID NO: 5 The SNP marker composition for predicting or diagnosing osteochondrosis in cats.
제4항에 있어서,
상기 검출은 Taqman 프로브를 이용한 실시간 중합효소 연쇄반응법(Realtime PCR)분석법에 의하여 검출되는 것인, 고양이의 골연골이형성증 예측 또는 진단용 SNP 마커 조성물.
5. The method of claim 4,
The detection is a SNP marker composition for predicting or diagnosing osteochondrodysplasia in cats, which is detected by a realtime PCR analysis method using a Taqman probe.
1) 고양이로부터 DNA 시료를 채취하는 단계;
2) 상기 단계 1)의 채취된 DNA를 주형으로 서열번호 1의 TRPV4(Transient Receptor Potential cation channel, subfamily V, member 4) 유전자의 1127번째의 염기가 G 또는 T인 것인 단일염기다형성(single nucleotide polymorphism, SNP)을 증폭 또는 검출할 있는 서열번호 2 및 서열번호 3의 프라이머세트와, 서열번호 4 및 서열번호 5의 프로브 세트를 이용하여 PCR을 수행하는 단계;
3) 상기 단계 2)에서 PCR로 증폭된 산물의 형광값을 조사하는 단계;
를 포함하는 고양이의 골연골이형성증 예측 또는 진단 방법.
1) collecting a DNA sample from the cat;
2) Using the DNA collected in step 1) as a template, the 1127th base of the TRPV4 (Transient Receptor Potential cation channel, subfamily V, member 4 ) gene of SEQ ID NO: 1 is G or T single nucleotide polymorphism (single nucleotide) performing PCR using a primer set of SEQ ID NO: 2 and SEQ ID NO: 3 and a probe set of SEQ ID NO: 4 and SEQ ID NO: 5 capable of amplifying or detecting polymorphism (SNP);
3) examining the fluorescence value of the product amplified by PCR in step 2);
A method for predicting or diagnosing osteochondrosis in cats, comprising a.
제10항에 있어서, 상기 PCR은 Taqman 프로브를 이용한 실시간 중합효소 연쇄반응법(Realtime PCR)분석법에 따라 수행되는 것인, 고양이의 골연골이형성증 예측 또는 진단 방법.The method of claim 10, wherein the PCR is performed according to a realtime PCR analysis method using a Taqman probe. 제4항의 조성물을 포함하는 고양이의 골연골이형성증 예측 또는 진단용 키트.


A kit for predicting or diagnosing osteochondrosis in cats comprising the composition of claim 4 .


KR1020190125378A 2019-10-10 2019-10-10 A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats Active KR102269653B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190125378A KR102269653B1 (en) 2019-10-10 2019-10-10 A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190125378A KR102269653B1 (en) 2019-10-10 2019-10-10 A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats

Publications (2)

Publication Number Publication Date
KR20210042614A KR20210042614A (en) 2021-04-20
KR102269653B1 true KR102269653B1 (en) 2021-06-28

Family

ID=75743124

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190125378A Active KR102269653B1 (en) 2019-10-10 2019-10-10 A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats

Country Status (1)

Country Link
KR (1) KR102269653B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862380B (en) * 2021-11-22 2024-09-17 广东海洋大学 PH-related molecular marker of slaughtered meat of yak Wnt3a gene and application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Journal of the American Animal Hospital Association (2019.06.) 55(3):e553-04
NCBI Reference Sequence: XM_003994850.2 (2014.02.24.)*
NCBI Reference Sequence: XM_023241517.1 (2017.12.12.)
Osteoarthritis and Cartilage (2016) 24(8):1441-1450*

Also Published As

Publication number Publication date
KR20210042614A (en) 2021-04-20

Similar Documents

Publication Publication Date Title
KR102018122B1 (en) Biomarkers for Individual confirmation of Hanwoo Beef and uses thereof
KR101777161B1 (en) A Multiplex SNP marker composition and a method for diagnosis or prediction of canine hip dysplasia using same marker
KR101929391B1 (en) Novel SNP marker for discriminating increasedthe number of nipples of pigs and use thereof
KR101684832B1 (en) A composition for determining the feline blood types by realtime PCR and a detection method using it
JPH1099085A (en) Polymorphism of human mitochondrial dna
KR102269653B1 (en) A SNP marker composition and a method for diagnosis or prediction of osteochondrodyplasia in cats
MXPA06009452A (en) Leptin promoter polymorphisms and uses thereof.
CN110894531A (en) STR locus set for pig and application
KR101728023B1 (en) Detection of mutations in ATP7B gene using PCR-LDR
JP5897704B2 (en) Detection of Brachyspina mutation
TW201311908A (en) Method and kit for diagnosis of canine glaucoma
KR102001528B1 (en) Gene marker for discrimination of Korean Native pig and use thereof
KR102083675B1 (en) Method for identification of Chikso breed using single nucleotide polymorphism markers
RU2671156C1 (en) Method of preimplantation genetic diagnostics of type 1 spinal muscular atrophy
KR101997453B1 (en) Composition for diagnosis of Korean native cattle F11 deficiency and uses thereof
RU2777086C1 (en) Method for pre-implantation genetic testing of epidermolysis bullosa
KR102336624B1 (en) Marker for predicting collagen content in pork and use thereof
RU2772938C1 (en) Method for pre-implantation genetic testing of familial hypertrophic cardiomyopathy
CN112553318B (en) Taqman probe-based deletion type alpha-thalassemia detection kit and detection method thereof
KR20130064197A (en) Single nucleotide polymorphism marker useful for identification of hanwoo from imported cow and its use
CA2533078A1 (en) Improving production characteristics of cattle
JP6435139B2 (en) Chromosome chimera detection method
JP6963271B2 (en) Genetic diagnosis of canine hereditary gastrointestinal neoplasia
Al-Awadi et al. Sex determination of unknown ovine samples gathered from slaughters.
KR101796160B1 (en) SNP markers of DACT3 gene for prediction of pigs litter size and methods for selection of fecund pigs using the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20191010

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20201005

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210611

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210621

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210621

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20240620

Start annual number: 4

End annual number: 4