KR102276421B1 - Copper base film-forming method - Google Patents
Copper base film-forming method Download PDFInfo
- Publication number
- KR102276421B1 KR102276421B1 KR1020140154255A KR20140154255A KR102276421B1 KR 102276421 B1 KR102276421 B1 KR 102276421B1 KR 1020140154255 A KR1020140154255 A KR 1020140154255A KR 20140154255 A KR20140154255 A KR 20140154255A KR 102276421 B1 KR102276421 B1 KR 102276421B1
- Authority
- KR
- South Korea
- Prior art keywords
- copper
- group
- forming
- film
- based film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010949 copper Substances 0.000 title claims abstract description 73
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 62
- 239000012530 fluid Substances 0.000 claims abstract description 27
- 238000000151 deposition Methods 0.000 claims abstract description 17
- 150000001875 compounds Chemical class 0.000 claims description 71
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 42
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 18
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 18
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 12
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 8
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 7
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 7
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 7
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical group CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 6
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 claims description 6
- 150000002430 hydrocarbons Chemical group 0.000 claims description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 6
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 claims description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 229960004132 diethyl ether Drugs 0.000 claims description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- FZTLLUYFWAOGGB-UHFFFAOYSA-N 1,4-dioxane dioxane Chemical compound C1COCCO1.C1COCCO1 FZTLLUYFWAOGGB-UHFFFAOYSA-N 0.000 claims 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 238000000354 decomposition reaction Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 150000001879 copper Chemical class 0.000 abstract 1
- 239000007789 gas Substances 0.000 abstract 1
- 239000007792 gaseous phase Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 69
- 239000002994 raw material Substances 0.000 description 13
- 230000008021 deposition Effects 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- ALKZAGKDWUSJED-UHFFFAOYSA-N dinuclear copper ion Chemical compound [Cu].[Cu] ALKZAGKDWUSJED-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004699 copper complex Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- -1 diketone copper complex Chemical class 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004808 supercritical fluid chromatography Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/08—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Chemically Coating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
(과제) 초임계 유체중에서의 분해온도가 낮고, C, O의 혼입이 일어나서 구리막의 품질이 저하되는 문제가 일어나지 않아, 용이하게 고품질의 구리막을 형성할 수 있는 기술을 제공하는 것이다.
(해결수단) 본 발명은, 초임계 유체중에 있어서 기체상에 구리계 막을 형성하는 방법으로서, 초임계 유체중에 (N,N'-디이소프로필프로피온아미디네이트)구리2양체를 용해하고 기체상에 구리를 퇴적시켜서 구리계 막을 형성하는 방법이다.(Project) To provide a technology capable of easily forming a high-quality copper film because the decomposition temperature in the supercritical fluid is low and the quality of the copper film does not deteriorate due to the mixing of C and O.
(Solution) The present invention is a method for forming a copper-based film in a gas phase in a supercritical fluid, by dissolving (N,N'-diisopropylpropionamidinate) copper dimers in a gaseous phase It is a method of forming a copper-based film by depositing copper on the
Description
본 발명은 구리계 막(銅系膜)의 형성기술에 관한 것이다.
The present invention relates to a technology for forming a copper-based film.
구리 또는 구리합금(간단히 구리라고도 한다) 등의 막은 각종 분야에서 사용되고 있다. 예를 들면 ULSI(ultra large scale integration)에는 배선막(配線膜)으로서 사용되고 있다. 구리배선의 제작에는, 전해도금법(電解鍍金法), 스퍼터법(sputter法), CVD법(chemical vapor deposition法), ALD법(atomic layer deposition法), SCFD(초임계 유체퇴적(超臨界 流體堆積))법(supercritical fluid deposition法)이 제창(提唱)되어 있다. 전해도금법이나 스퍼터법은 실용화되어 있다. 그러나 배선 폭이 나노 스케일이 되면, 전해도금법이나 스퍼터법으로는 곤란하다고 이야기되고 있다. 개구부가 나노 스케일 폭의 깊은 홈(groove)이거나 구멍인 곳에서의 막형성은, CVD법, ALD법 또는 SCFD법이 기대되고 있다. CVD법이나 ALD법에서는 원료화합물의 휘발(기화)이 필수적이다. SCFD법에서는 원료화합물이 초임계 유체중에 용해되면 되고 기화의 요건은 요구되지 않는다. 이 점에 있어서 CVD법이나 ALD법에 사용되는 원료화합물과 SCFD법에 사용되는 원료화합물은 요건이 다르다.BACKGROUND ART Films such as copper or copper alloy (also simply referred to as copper) are used in various fields. For example, it is used as a wiring film for ULPI (ultra large scale integration). Copper wiring is manufactured by electroplating, sputtering, chemical vapor deposition, atomic layer deposition, and SFC. )) method (supercritical fluid deposition method) is proposed. Electrolytic plating and sputtering have been put to practical use. However, when the wiring width becomes nanoscale, it is said that it is difficult to use an electrolytic plating method or a sputtering method. For film formation where the opening is a deep groove or hole having a width of a nanoscale, the DCV method, the ALD method, or the SCD method is expected. In the DCVD method or the ALD method, volatilization (vaporization) of the raw material compound is essential. In the SCD method, the raw material compound needs to be dissolved in the supercritical fluid, and vaporization is not required. In this regard, the requirements for the raw material compound used in the DCD method or the ALD method and the raw material compound used in the SCD method are different.
SCFD법에 의한 구리막 형성기술로서 하기의 문헌이 알려져 있다.
The following literature is known as a copper film formation technique by the SCD method.
상기 문헌에 있어서는, 구리의 헥사플루오로아세틸아세토네이토 착물(hexafluoroacetylacetonato 錯物)[Cu(hfac)2]이나 디이소부틸메타네이토 착물(diisobutylmethanato 錯物)[Cu(dibm)2] 등의 β디케톤 구리착물(β-diketone 銅錯物)이 사용되어, CO2의 초임계 유체중에서 구리의 퇴적(구리막 형성)이 이루어졌다. 즉 SCFD법에 의하여 구리막이 형성되었다.In the above document, hexafluoroacetylacetonato complex of copper [Cu(hfac) 2 ] and βb(di) 2 of diisobutylmethanato complex [Cu(di) 2] A diketone copper complex (β-diketone 銅錯物) was used, and deposition of copper (copper film formation) in a supercritical fluid of CO 2 was achieved. That is, the copper film was formed by the SCD method.
그러나 얻어진 구리막은 불순물의 양이 많은 것이었다. 이 원인의 탐색이 이루어졌다. 그 결과 Cu(hfac)2, Cu(dibm)2 등의 화합물은 초임계 유체중에서의 분해에 높은 온도가 필요한 것이 알려져 왔다. 이 결과 리간드의 β디케톤이 분해되어 구리막중에 C, O가 혼입(混入)되어버린 것이라고 추찰(推察)되었다. 또한 Cu(hfac)2가 사용된 경우에는 F가 구리막중에 검출되었다. 구리막이 F를 함유하고 있기 때문에 바탕막과 구리막의 밀착성이 뒤떨어지고 있었다.However, the obtained copper film had a large amount of impurities. An investigation into this cause was made. As a result, it has been known that a high temperature is required for decomposition in a supercritical fluid of compounds such as Cc(hfac) 2 and CCu(dibm) 2 . As a result, it was speculated that the β-diketone of the ligand was decomposed and C and O were mixed in the copper film. In addition, when C(a) 2 was used, F was detected in the copper film. Since the copper film contained F, the adhesion between the base film and the copper film was inferior.
이러한 점 때문에, SCFD법에 사용되는 원료화합물은 단지 초임계 유체중에 용해되면 되는 것은 아니라고 알려져 왔다.For this reason, it has been known that the raw material compound used in the SCD method does not need only to be dissolved in a supercritical fluid.
따라서, 본 발명이 해결하고자 하는 과제는 상기의 문제점을 해결하는 것이다. 특히, 초임계 유체중에서의 분해온도가 낮고, C, O의 혼입이 일어나게 되어 구리막의 품질이 저하되는 문제가 일어나지 않아, 고품질의 구리막을 용이하게 형성할 수 있는 기술을 제공하는 것이다.
Accordingly, the problem to be solved by the present invention is to solve the above problems. In particular, it is to provide a technology capable of easily forming a high-quality copper film because the decomposition temperature in the supercritical fluid is low, and there is no problem that the quality of the copper film is deteriorated due to the mixing of C and O.
상기의 과제를 해결하기 위한 검토가 본 발명자에 의하여 예의(銳意) 추진되어 갔다. 그 결과, 하기 일반식 [I]로 나타내어지는 화합물(구리 아미디네이트 착물(copper amidinate 錯物))을 초임계 유체중에 용해시켜 그대로 초임계 유체중에서 퇴적 반응이 이루어졌을 경우에, 퇴적막(堆積膜)에 있어서 불순물(C, O)의 혼입량이 적고, 고품질인 Cu계 막이 나노 스케일의 홈이나 구멍 안에 안정하게 형성될 수 있음이 발견되기에 이르렀다.Investigation for solving the above-mentioned subject was vigorously promoted by the present inventors. As a result, when the compound represented by the following general formula [I] (copper amidinate complex) is dissolved in the supercritical fluid and the deposition reaction is performed in the supercritical fluid as it is, the deposition film (堆積)膜), it has been found that a small amount of impurities (C, O) mixed and a high-quality Cu-based film can be stably formed in nanoscale grooves or pores.
상기 지견(知見)에 의거하여 본 발명을 하였다.The present invention was made based on the above knowledge.
본 발명은, 초임계 유체중에 용해된 화합물의 분해에 의하여 기체(基體)상에 구리계 막을 형성하기 위한 재료로서, 상기 화합물은 하기 일반식 [I]로 나타내어지는 화합물인 것을 특징으로 하는 구리계 막 형성재료를 제안한다.The present invention is a material for forming a copper-based film on a substrate by decomposition of a compound dissolved in a supercritical fluid, wherein the compound is a compound represented by the following general formula [I] A film-forming material is proposed.
본 발명은, 초임계 유체중에서 기체상에 구리계 막을 형성하는 방법으로서, 초임계 유체중에 하기 일반식 [I]로 나타내어지는 화합물을 용해하고, 기체상에 구리를 퇴적시켜서 구리계 막을 형성하는 것을 특징으로 하는 구리계 막 형성방법을 제안한다.The present invention is a method for forming a copper-based film on a gas phase in a supercritical fluid, dissolving a compound represented by the following general formula [I] in a supercritical fluid and depositing copper on the gas phase to form a copper-based film A method for forming a copper-based film is proposed.
일반식 [I]general formula [I]
[R1, R2, R3, R4, R5, R6은 탄소수 1∼10의 탄화수소기. R1, R2, R3, R4, R5, R6은 모두가 동일하거나 다르게 되어 있어도 좋다.]
[R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are hydrocarbon groups having 1 to 10 carbon atoms. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 may all be the same or different.]
C, O 등의 불순물 혼입량이 적고, 고품질의 Cu계 막이 나노 스케일의 홈이나 구멍 안에 안정하게 형성될 수 있다.
The amount of impurities such as C and O mixed is small, and a high-quality Cu-based film can be stably formed in nanoscale grooves or holes.
도1은 SCFD장치의 개략도이다.
도2는 전자현미경 사진이다.
도3은 전자현미경 사진이다.1 is a schematic diagram of a SCD device.
2 is an electron microscope photograph.
3 is an electron microscope photograph.
제1의 본 발명은 구리계 막(銅系膜) 형성방법이다. 본 방법은, 초임계 유체(超臨界 流體)중에 하기의 일반식 [I]로 나타내어지는 화합물을 용해하여 기체(基體)상에 구리를 퇴적시켜서 구리계 막을 형성하는 방법이다.A first aspect of the present invention is a method for forming a copper-based film. This method is a method of forming a copper-based film by dissolving a compound represented by the following general formula [I] in a supercritical fluid and depositing copper on a substrate.
제2의 본 발명은 구리계 막 형성재료이다. 본 재료는, 초임계 유체 중에 용해된 화합물의 분해에 의하여 기체 상에 구리계 막을 형성하기 위한 재료이다. 상기 화합물은 하기 일반식 [I]로 나타내어지는 화합물이다.The second aspect of the present invention is a copper-based film-forming material. This material is a material for forming a copper-based film on a substrate by decomposition of a compound dissolved in a supercritical fluid. The compound is a compound represented by the following general formula [I].
일반식 [I] general formula [I]
상기 R1, R2, R3, R4, R5, R6은 탄소수가 1∼10인 탄화수소기이다. 탄화수소기는 지방족 탄화수소기(脂肪族 炭化水素基)이더라도 방향족 탄화수소기(芳向族 炭化水素基)이더라도 좋다. 상기 탄화수소기는 치환기(置換基)를 가지는 경우와 치환기를 가지지 않는 경우가 있다. 치환기는 Si를 구비하는 관능기(官能基)인 경우가 있다. 상기 R1, R2, R3, R4, R5, R6은 모두가 동일하거나 다르게 되어 있어도 좋다. 바람직하게는 R1, R2, R4, R5와, R3, R6은 다르다.R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are a hydrocarbon group having 1 to 10 carbon atoms. The hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group. The hydrocarbon group may have a substituent and may not have a substituent. A substituent may be a functional group provided with S. All of said R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 may be the same or different. Preferably R 1 , R 2 , R 4 , R 5 and R 3 , R 6 are different.
상기 일반식 [I]로 나타내어지는 화합물은 고체인 것이 많다. 고체인 경우에, 상기 화합물을 그대로 초임계 유체중에 공급하는 것보다 용매에 용해시킨 형태(용액형태)로 초임계 유체중에 공급하여, 상기 화합물을 상기 초임계 유체중에 용해시키도록 하는 것이 바람직하다. 상기 용매는 상기 화합물 및 상기 초임계 유체에 악영향을 끼치지 않는 것이면 어떠한 것이더라도 좋다. 바람직한 용매로서는, 예를 들면 펜탄(pentane), 헥산(hexane), 헵탄(heptane), 옥탄(octane), 노난(nonane), 데칸(decane), 아세톤(acetone), 메틸이소부틸케톤(methylisobutylketone), 디에틸에테르(diethylether), 테트라하이드로퓨란(tetrahydrofuran) 및 디옥산(dioxane)의 군 중에서 선택되는 1종 또는 2종 이상이다. 상기 탄화수소는 직쇄(直鎖; normal chain) 지방족 탄화수소, 분기쇄(分岐鎖)를 구비하는 지방족 탄화수소, 환상(環狀) 탄화수소 중에서 어느 형태의 것이더라도 좋다.The compound represented by the said general formula [I] is a solid thing in many cases. In the case of a solid, rather than supplying the compound as it is in the supercritical fluid, it is preferable to supply the compound in the form of dissolving it in a solvent (solution form) into the supercritical fluid so that the compound is dissolved in the supercritical fluid. The solvent may be any as long as it does not adversely affect the compound and the supercritical fluid. Preferred solvents include, for example, pentane, hexane, heptane, octane, nonane, decane, acetone, methylisobutylketone, One or two or more selected from the group of diethylether, tetrahydrofuran, and dioxane. The hydrocarbon may be any type of a straight-chain aliphatic hydrocarbon, a branched-chain aliphatic hydrocarbon, and a cyclic hydrocarbon.
상기 일반식 [I]로 나타내어지는 화합물로서 가장 바람직한 화합물은, 상기 R1, R2, R4, R5가 iso-프로필기(iso-propyl基), 상기 R3, R6이 에틸기(ethyl基)(즉,(N,N'-디이소프로필프로피온아미디네이트(diisopropylpropionamidinate))구리2양체(量體))인 경우이다.The most preferable compound as a compound represented by the general formula [I] is that R 1 , R 2 , R 4 , R 5 is an iso-propyl group, R 3 , R 6 is an ethyl group (ethyl)基) (ie, (N,N'-diisopropylpropionamidinate) copper dimer (量体)).
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 iso-프로필기, 상기 R3, R6이 메틸기(methyl基)(즉, (N,N'-디이소프로필아세트아미디네이트(diisopropylacetamidinate))구리2양체)인 경우이다.As a compound preferable as a compound represented by the said general formula [I], said R 1 , R 2 , R 4 , R 5 is an iso-propyl group, said R 3 , R 6 is a methyl group (that is, (N ,N'-diisopropylacetamidinate (copper dimer) is the case.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 iso-프로필기, 상기 R3, R6이 n-부틸기(n-butyl基)(즉 아미디네이트구리)인 경우이다.As a compound preferable as a compound represented by the said general formula [I], said R 1 , R 2 , R 4 , R 5 is an iso-propyl group, said R 3 , R 6 is an n-butyl group (n-butyl group) (i.e., copper amidinate).
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 n-프로필기, 상기 R3, R6이 메틸기(즉 아미디네이트구리)인 경우이다.As for the compound preferable as a compound represented by the said general formula [I], when said R<1> , R<2> , R<4> , R<5> is an n-propyl group, and said R<3> , R<6> is a methyl group (ie, copper amidinate) to be.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 n-프로필기, 상기 R3, R6이 에틸기(즉 아미디네이트구리)인 경우이다.As for the compound preferable as a compound represented by the said general formula [I], when said R<1> , R<2> , R<4> , R<5> is n-propyl group, and said R<3> , R<6> is an ethyl group (that is, copper amidinate) to be.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 n-프로필기, 상기 R3, R6이 n-부틸기(즉 아미디네이트구리)인 경우이다.As for the compound preferable as a compound represented by the said general formula [I], said R<1> , R<2> , R<4> , R<5> is n-propyl group, said R<3> , R<6> is n-butyl group (ie, copper amidinate) ) is the case.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 n-부틸기, 상기 R3, R6이 메틸기(즉 아미디네이트구리)인 경우이다.As for the compound preferable as a compound represented by the said general formula [I], when said R<1> , R<2> , R<4> , R<5> is an n-butyl group, and said R<3> , R<6> is a methyl group (ie, copper amidinate) to be.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 n-부틸기, 상기 R3, R6이 에틸기(즉 아미디네이트구리)인 경우이다.As for the compound preferable as a compound represented by the said general formula [I], when said R<1> , R<2> , R<4> , R<5> is n-butyl group, and said R<3> , R<6> is an ethyl group (ie, copper amidinate) to be.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 iso-부틸기, 상기 R3, R6이 메틸기(즉 아미디네이트구리)인 경우이다.As for the compound preferable as a compound represented by the said general formula [I], when said R<1> , R<2> , R<4> , R<5> is an iso- butyl group, and said R<3> , R<6> is a methyl group (ie, copper amidinate) to be.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 iso-부틸기, 상기 R3, R6이 에틸기(즉 아미디네이트구리)인 경우이다.As for the compound preferable as a compound represented by the said general formula [I], when said R<1> , R<2> , R<4> , R<5> is an iso- butyl group, and said R<3> , R<6> is an ethyl group (ie, copper amidinate) to be.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 iso-부틸기, 상기 R3, R6이 n-부틸기(즉 아미디네이트구리)인 경우이다.As for a compound preferable as a compound represented by the said general formula [I], said R 1 , R 2 , R 4 , R 5 is an iso-butyl group, said R 3 , R 6 is an n-butyl group (ie, copper amidinate) ) is the case.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 sec-부틸기, 상기 R3, R6이 메틸기(즉 아미디네이트구리)인 경우이다.As for a compound preferable as a compound represented by the said general formula [I], when said R<1> , R<2> , R<4> , R<5> is a sec-butyl group, and said R<3> , R<6> is a methyl group (that is, copper amidinate) to be.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 sec-부틸기, 상기 R3, R6이 에틸기(즉 아미디네이트구리)인 경우이다.As a compound preferable as a compound represented by the said general formula [I], when said R<1> , R<2> , R<4> , R<5> is a sec-butyl group, and said R<3> , R<6> is an ethyl group (ie, copper amidinate) to be.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 sec-부틸기, 상기 R3, R6이 n-부틸기(즉 아미디네이트구리)인 경우이다.As for a compound preferable as a compound represented by the said general formula [I], said R 1 , R 2 , R 4 , R 5 is a sec-butyl group, said R 3 , R 6 is an n-butyl group (that is, copper amidinate) ) is the case.
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 페닐기(phenyl基), 상기 R3, R6이 메틸기(즉 아미디네이트구리)인 경우이다.A compound preferable as a compound represented by the general formula [I] is that R 1 , R 2 , R 4 , R 5 is a phenyl group, R 3 , R 6 is a methyl group (ie, copper amidinate) is the case
상기 일반식 [I]로 나타내어지는 화합물로서 바람직한 화합물은, 상기 R1, R2, R4, R5가 페닐기, 상기 R3, R6이 에틸기(즉 아미디네이트구리)인 경우이다.A preferable compound as a compound represented by the said general formula [I] is a case where said R<1> , R<2> , R<4> , R<5> is a phenyl group, and said R<3> , R<6> is an ethyl group (namely, amidinate copper).
이하, 보다 구체적인 실시예를 든다. 다만, 본 발명은 이하의 실시예만으로 한정되지 않는다. 본 발명의 특징이 크게 손상되지 않는 한 각종 변형예나 응용예도 본 발명에 포함된다.Hereinafter, a more specific example is given. However, the present invention is not limited only to the following examples. As long as the characteristics of the present invention are not significantly impaired, various modifications and application examples are also included in the present invention.
[실시예1: (N,N'-디이소프로필프로피온아미디네이트)구리착물을 사용한 CO2 초임계 유체중에서의 구리의 퇴적][Example 1: Deposition of copper in CO 2 supercritical fluid using (N,N'-diisopropylpropionamidinate) copper complex]
도1은 본 발명의 구리계 막 형성방법이 실시되는 SCFD장치의 개략도이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram of a SCD device in which a method for forming a copper-based film of the present invention is implemented.
도1에 있어서, 1은 CO2 고압봄베(高壓bombe), 2는 H2 고압봄베, 3은 냉각장치(冷却裝置), 4는 압력펌프(壓力pump)(10MPa), 5는 혼합기(混合器), 6은 용기(容器), 7은 가열기(加熱器), 8은 예비 가열실(豫備 加熱室), 9는 반응실(反應室), 10은 기판(基板)(루테늄 박막(ruthenium 薄膜)이 형성된 실리콘 기판), 11은 배압제어장치(背壓制御裝置)이다.1, 1 is a CO 2 high-pressure cylinder, 2 is a H 2 high-pressure cylinder, 3 is a cooling device, 4 is a pressure pump (10MP), 5 is a mixer (混合器) ), 6 is the vessel, 7 is the heater, 8 is the preheating chamber, 9 is the reaction chamber, 10 is the substrate (ruthenium thin film) ) formed on a silicon substrate), and
(N,N'-디이소프로필프로피온아미디네이트)구리2양체의 아세톤 용액(농도 3.34×10-5mol)이 용기(6)중에 들어가 있다.A solution of (N,N'-diisopropylpropionamidinate) in acetone (concentration of 3.34×10 −5 mol) of copper diomer is placed in a container (6).
반응실(9)은 가열기(7)에 의하여 140℃로 유지되어 있다. 반응실(9)내는 초임계 유체(CO2 + H2)에 의하여 13MPa로 유지되어 있다. CO2 분압은 12MPa, H2 분압은 1MPa이었다.The reaction chamber 9 is maintained at 140° C. by a heater 7 . Supercritical fluid (CO 2 ) in the reaction chamber 9 + H 2 ) is maintained at 13 MP. CO 2 The partial pressure was 12 MPA, and the H 2 partial pressure was 1 MPA.
(N,N'-디이소프로필프로피온아미디네이트)구리2양체의 아세톤 용액이 펌프(4)에 의하여 반응실(9)내에 공급되었다. 즉 (N,N'-디이소프로필프로피온아미디네이트)구리2양체가 초임계 유체 중에 공급되었다. 이에 따라 구리막이 퇴적되었다. 원료공급 시작 15분 후에 기판(10)이 꺼내졌다. 꺼내진 기판(10) 위에 구리색의 막이 형성되어 있었다.An acetone solution of (N,N'-diisopropylpropionamidinate) copper diisomer was supplied into the reaction chamber 9 by a pump 4 . That is, (N,N'-diisopropylpropionamidinate)copper diamide was supplied in the supercritical fluid. As a result, a copper film was deposited. The
상기 기판(10)이 EDS분석(Energy dispersive X-ray spectrometry: 에너지 분산형 X선 분석)에 제공되었다. 이에 의하면, C, O는 기판(10) 표면의 막 중에 인지되지 않았다. X선회절에 의하여 상기 막은 주로 (111)로 배향된 구리박막인 것이 밝혀졌다. 전자현미경에 의하면, 기판(10)에 형성되어 있었던 홈(폭 140nm, 깊이 1.6㎛)의 내부는 구리로 완전히 메워져 있는 것이 밝혀졌다(도2를 참조).The
[실시예2] [Example 2]
실시예1에 있어서 가열기(7)에 의한 가열온도가 140℃에서 160℃로 변경된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다(도3을 참조). 일반적으로 온도가 높으면 메움성은 뒤떨어진다. 그러나 온도가 높은 쪽이 스루풋(throughput)은 좋다. 본 실시예는 160℃에서 양호한 메움성이 얻어진 것을 나타내고 있다.The same procedure was carried out in Example 1 except that the heating temperature by the heater 7 was changed from 140°C to 160°C. As a result, it was the same result as Example 1 (refer FIG. 3). In general, when the temperature is high, the fillability is inferior. However, the higher the temperature, the better the throughput. This example shows that good filling properties were obtained at 160°C.
[실시예3][Example 3]
실시예1에 있어서 아세톤 대신에 n-펜탄이 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다. 다만, 아세톤의 경우보다 용해성이 저하되며 원료용액의 농도가 낮고 퇴적시간이 약 20% 오래 걸렸다.In Example 1, the same procedure was performed except that n-pentane was used instead of acetone. As a result, it was the same result as Example 1. However, the solubility is lower than in the case of acetone, the concentration of the raw material solution is low, and the deposition time is about 20% longer.
[실시예4][Example 4]
실시예1에 있어서 아세톤 대신에 시클로헥산이 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다. 다만, 아세톤의 경우보다 용해성이 저하되며 원료용액의 농도가 낮고 퇴적시간이 약 20% 오래 걸렸다.In Example 1, the same procedure was performed except that cyclohexane was used instead of acetone. As a result, it was the same result as Example 1. However, the solubility is lower than in the case of acetone, the concentration of the raw material solution is low, and the deposition time is about 20% longer.
[실시예5][Example 5]
실시예1에 있어서 아세톤 대신에 n-헵탄이 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다. 다만, 아세톤의 경우보다 용해성이 저하되며 원료용액의 농도가 낮고 퇴적시간이 약 20% 오래 걸렸다.In Example 1, the same procedure was performed except that n-heptane was used instead of acetone. As a result, it was the same result as Example 1. However, the solubility is lower than in the case of acetone, the concentration of the raw material solution is low, and the deposition time is about 20% longer.
[실시예6][Example 6]
실시예1에 있어서 아세톤 대신에 n-옥탄이 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다. 다만, 아세톤의 경우보다 용해성이 저하되며 원료용액의 농도가 낮고 퇴적시간이 약 25% 오래 걸렸다.In Example 1, the same procedure was performed except that n-octane was used instead of acetone. As a result, the result was the same as in Example 1. However, the solubility is lower than in the case of acetone, the concentration of the raw material solution is low, and the deposition time is about 25% longer.
[실시예7][Example 7]
실시예1에 있어서 아세톤 대신에 n-노난이 사용된 것 이외에는 동일하게 실시되었다. 그 결과, 실시예1과 동일한 결과이었다. 다만, 아세톤의 경우보다 용해성이 저하되며 원료용액의 농도가 낮고 퇴적시간이 약 20% 오래 걸렸다.In Example 1, the same procedure was performed except that n-nonane was used instead of acetone. As a result, it was the same result as Example 1. However, the solubility is lower than in the case of acetone, the concentration of the raw material solution is low, and the deposition time is about 20% longer.
[실시예8][Example 8]
실시예1에 있어서, 아세톤 대신에 n-데칸이 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다. 다만, 아세톤의 경우보다 용해성이 저하되며 원료용액의 농도가 낮고 퇴적시간이 약 20% 오래 걸렸다.In Example 1, the same procedure was performed except that n-decane was used instead of acetone. As a result, it was the same result as Example 1. However, the solubility is lower than in the case of acetone, the concentration of the raw material solution is low, and the deposition time is about 20% longer.
[실시예9][Example 9]
실시예1에 있어서 아세톤 대신에 메틸이소부틸케톤이 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다.The same procedure was carried out in Example 1 except that methyl isobutyl ketone was used instead of acetone. As a result, it was the same result as Example 1.
[실시예10][Example 10]
실시예1에 있어서 아세톤 대신에 디에틸에테르가 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다. 다만, EDS분석에 있어서 Cu계 막에는 미약하게 O가 관찰되었다.In Example 1, the same procedure was performed except that diethyl ether was used instead of acetone. As a result, it was the same result as Example 1. However, in the ESD analysis, weakly O was observed in the C-based film.
[실시예11][Example 11]
실시예1에 있어서 아세톤 대신에 테트라하이드로퓨란이 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다. 다만, EDS분석에 있어서 Cu계 막에는 미약하게 O가 관찰되었다.In Example 1, the same procedure was performed except that tetrahydrofuran was used instead of acetone. As a result, it was the same result as Example 1. However, in the ESD analysis, weakly O was observed in the C-based film.
[실시예12][Example 12]
실시예1에 있어서 아세톤 대신에 디옥산이 사용된 것 이외에는 동일하게 실시되었다. 그 결과 실시예1과 동일한 결과이었다. 다만, EDS분석에 있어서 Cu계 막에는 미약하게 O가 관찰되었다.Example 1 was carried out in the same manner except that dioxane was used instead of acetone. As a result, it was the same result as Example 1. However, in the ESD analysis, weakly O was observed in the C-based film.
[실시예13][Example 13]
실시예1에 있어서 (N,N'-디이소프로필프로피온아미디네이트)구리2양체 대신에 (N,N'-디이소프로필아세트아미디네이트)구리2양체가 사용된 것 이외에는 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.In Example 1, the same procedure was carried out except that (N,N'-diisopropylacetamidinate) copper dimer was used instead of (N,N'-diisopropylpropionamidinate) copper dimer. . The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예14] [Example 14]
상기 R1, R2, R4, R5가 iso-프로필기, 상기 R3, R6이 n-부틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is an iso-propyl group and R 3 , R 6 is an n-butyl group was used in the same manner as in Example 1. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예15] [Example 15]
상기 R1, R2, R4, R5가 n-프로필기, 상기 R3, R6이 메틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is an n-propyl group and R 3 , R 6 is a methyl group was used, and the same procedure as in Example 1 was used. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예16] [Example 16]
상기 R1, R2, R4, R5가 n-프로필기, 상기 R3, R6이 에틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of the general formula [I] wherein R 1 , R 2 , R 4 , R 5 is an n-propyl group and R 3 , R 6 is an ethyl group was used in the same manner as in Example 1. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예17] [Example 17]
상기 R1, R2, R4, R5가 n-프로필기, 상기 R3, R6이 n-부틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is an n-propyl group and R 3 , R 6 is an n-butyl group was used, and the same procedure as in Example 1 was used. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예18][Example 18]
상기 R1, R2, R4, R5가 n-부틸기, 상기 R3, R6이 메틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.Example 1 was carried out in the same manner as in Example 1 using a compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is an n-butyl group, and R 3 , R 6 is a methyl group. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예19][Example 19]
상기 R1, R2, R4, R5가 n-부틸기, 상기 R3, R6이 에틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is an n-butyl group and R 3 , R 6 is an ethyl group was used, and the same procedure as in Example 1 was used. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예20][Example 20]
상기 R1, R2, R4, R5가 iso-부틸기, 상기 R3, R6이 메틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is an iso-butyl group and R 3 , R 6 is a methyl group was used, and the same procedure as in Example 1 was used. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예21][Example 21]
상기 R1, R2, R4, R5가 iso-부틸기, 상기 R3, R6이 에틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of the general formula [I] wherein R 1 , R 2 , R 4 , R 5 is an iso-butyl group and R 3 , R 6 is an ethyl group was used in the same manner as in Example 1. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예22] [Example 22]
상기 R1, R2, R4, R5가 iso-부틸기, 상기 R3, R6이 n-부틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is an iso-butyl group and R 3 , R 6 is an n-butyl group was used, and the same procedure as in Example 1 was used. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예23] [Example 23]
상기 R1, R2, R4, R5가 sec-부틸기, 상기 R3, R6이 메틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is a sec-butyl group and R 3 , R 6 is a methyl group was used in the same manner as in Example 1. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예24] [Example 24]
상기 R1, R2, R4, R5가 sec-부틸기, 상기 R3, R6이 에틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is a sec-butyl group and R 3 , R 6 is an ethyl group was used, and the same procedure as in Example 1 was used. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예25][Example 25]
상기 R1, R2, R4, R5가 sec-부틸기, 상기 R3, R6이 n-부틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 20% 긴 시간이 필요하였다.The compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is a sec-butyl group and R 3 , R 6 is an n-butyl group was used, and the same procedure as in Example 1 was used. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 20% longer time was required.
[실시예26][Example 26]
상기 R1, R2, R4, R5가 페닐기, 상기 R3, R6이 메틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 30% 긴 시간이 필요하였다.Example 1 was carried out in the same manner as in Example 1 using a compound of Formula [I] wherein R 1 , R 2 , R 4 , R 5 is a phenyl group and R 3 , R 6 is a methyl group. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 30% longer time was required.
[실시예27][Example 27]
상기 R1, R2, R4, R5가 페닐기, 상기 R3, R6이 에틸기인 일반식 [I]의 화합물이 사용되어서 실시예1과 동일하게 실시되었다. 얻어진 막은 실시예1과 동일한 결과이었다. 다만, 실시예1과 동일한 막두께를 얻기 위해서는 약 25% 긴 시간이 필요하였다.Example 1 was carried out in the same manner as in Example 1 using the compound of Formula [I], wherein R 1 , R 2 , R 4 , R 5 is a phenyl group, and R 3 , R 6 is an ethyl group. The obtained film had the same result as in Example 1. However, in order to obtain the same film thickness as in Example 1, about 25% longer time was required.
[비교예1][Comparative Example 1]
실시예1의 일반식 [I]의 화합물 대신에 비스디이소부틸메타네이토구리[Cu(dibm)2]가 사용되어서 실시예1과 동일하게 실시되었다. 그러나 Cu막은 형성되지 않았다.The same procedure as in Example 1 was carried out using bisdiisobutylmethanatocopper [Cf(cnm) 2 ] instead of the compound of the general formula [I] in Example 1. However, the C film was not formed.
[비교예2][Comparative Example 2]
비교예1에 있어서 가열기(7)에 의한 가열온도가 140℃에서 240℃로 변경된 것 이외에는 동일하게 실시되었다. 본 비교예에서는 Cu막이 형성되어 있었다. 그러나 이 Cu막에는 불순물인 C, O가 검출되었다.In Comparative Example 1, the same procedure was performed except that the heating temperature by the heater 7 was changed from 140°C to 240°C. In this comparative example, a C film was formed. However, impurities C and O were detected in the C film.
[비교예3][Comparative Example 3]
실시예1의 일반식 [I]의 화합물의 대신에 비스헥사플루오로아세틸아세토네이토구리[Cu(hfac)2]가 사용되어서 실시예1과 동일하게 실시되었다. 그러나 Cu막은 형성되지 않았다.Example 1 was carried out in the same manner as in Example 1 by using bishexafluoroacetylacetonatocopper [Cf(ab)2] in place of the compound of the general formula [I] in Example 1. However, the C film was not formed.
[비교예4][Comparative Example 4]
비교예3에 있어서 가열기(7)에 의한 가열온도가 140℃에서 240℃로 변경된 것 이외에는 동일하게 실시되었다. 본 비교예에서는 Cu막이 형성되어 있었다. 그러나 이 Cu막에는 불순물인 C, O, F가 검출되었다.
In Comparative Example 3, the same procedure was performed except that the heating temperature by the heater 7 was changed from 140°C to 240°C. In this comparative example, a C film was formed. However, impurities C, O, and F were detected in this C film.
1: CO2 고압봄베
2: H2 고압봄베
3: 냉각장치
4: 압력펌프
5: 혼합기
6: 원료용기
7: 가열기
8: 예비 가열실
9: 반응실
10: 기판
11: 배압제어장치1: CO 2 high pressure cylinder
2: H 2 high pressure cylinder
3: Chiller
4: pressure pump
5: mixer
6: Raw material container
7: Burner
8: pre-heating room
9: reaction room
10: substrate
11: Back pressure control device
Claims (11)
CO2의 초임계 유체중에 하기 일반식 [I]로 나타내어지는 화합물을 용해하여 기체상에 구리를 퇴적시켜서 구리계 막을 형성하는 것을
특징으로 하는 구리계 막 형성방법.
일반식 [I]
[R1, R2, R3, R4, R5, R6은 탄소수가 1∼10인 탄화수소기(炭化水素基). R1, R2, R3, R4, R5, R6은 모두가 동일하거나 다르게 되어 있어도 좋다.]
A method of forming a copper-based film on a gas in a supercritical fluid, comprising:
Forming a copper-based film by dissolving a compound represented by the following general formula [I] in a supercritical fluid of CO 2 and depositing copper in a gas phase
A method of forming a copper-based film.
general formula [I]
[R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are hydrocarbon groups having 1 to 10 carbon atoms. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 may all be the same or different.]
용매에 용해된 상기 일반식 [I]로 나타내어지는 화합물이 상기 초임계 유체중에 공급되어서, 상기 화합물이 상기 초임계 유체중에 용해되는 것을
특징으로 하는 구리계 막 형성방법.
According to claim 1,
that the compound represented by the general formula [I] dissolved in a solvent is supplied into the supercritical fluid, so that the compound is dissolved in the supercritical fluid
A method of forming a copper-based film.
R1, R2, R4, R5는 iso-프로필기(iso-propyl基), R3, R6은 메틸기(methyl基), 에틸기(ethyl基), n-부틸기(n-butyl基)의 군 중에서 선택되는 어느 하나인 것을
특징으로 하는 구리계 막 형성방법.
3. The method of claim 1 or 2,
R 1 , R 2 , R 4 , R 5 is an iso-propyl group, R 3 , R 6 is a methyl group, an ethyl group, an n-butyl group ) that is any one selected from the group of
A method of forming a copper-based film.
R1, R2, R4, R5는 n-프로필기(n-propyl基), R3, R6은 메틸기, 에틸기, n-부틸기의 군 중에서 선택되는 어느 하나인 것을
특징으로 하는 구리계 막 형성방법.
3. The method of claim 1 or 2,
R 1 , R 2 , R 4 , R 5 is an n-propyl group (n-propyl group), R 3 , R 6 is any one selected from the group consisting of a methyl group, an ethyl group, and an n-butyl group
A method of forming a copper-based film.
R1, R2, R4, R5는 n-부틸기, R3, R6은 메틸기, 에틸기의 군 중에서 선택되는 어느 하나인 것을
특징으로 하는 구리계 막 형성방법.
3. The method of claim 1 or 2,
R 1 , R 2 , R 4 , R 5 is an n-butyl group, R 3 , R 6 is any one selected from the group consisting of a methyl group and an ethyl group
A method of forming a copper-based film.
R1, R2, R4, R5는 iso-부틸기(iso-butyl基), R3, R6은 메틸기, 에틸기, n-부틸기의 군 중에서 선택되는 어느 하나인 것을
특징으로 하는 구리계 막 형성방법.
3. The method of claim 1 or 2,
R 1 , R 2 , R 4 , R 5 is an iso-butyl group, R 3 , R 6 is any one selected from the group consisting of a methyl group, an ethyl group, and an n-butyl group
A method of forming a copper-based film.
R1, R2, R4, R5는 sec-부틸기(sec-butyl基), R3, R6은 메틸기, 에틸기, n-부틸기의 군 중에서 선택되는 어느 하나인 것을
특징으로 하는 구리계 막 형성방법.
3. The method of claim 1 or 2,
R 1 , R 2 , R 4 , R 5 is a sec-butyl group, R 3 , R 6 is any one selected from the group consisting of a methyl group, an ethyl group, and an n-butyl group
A method of forming a copper-based film.
R1, R2, R4, R5는 페닐기(phenyl基), R3, R6은 메틸기, 에틸기의 군 중에서 선택되는 어느 하나인 것을
특징으로 하는 구리계 막 형성방법.
3. The method of claim 1 or 2,
R 1 , R 2 , R 4 , R 5 is a phenyl group, R 3 , R 6 is any one selected from the group consisting of a methyl group and an ethyl group
A method of forming a copper-based film.
상기 용매가, 펜탄(pentane), 헥산(hexane), 헵탄(heptane), 옥탄(octane), 노난(nonane), 데칸(decane), 아세톤(acetone), 메틸이소부틸케톤(methylisobutylketone), 디에틸에테르(diethylether), 테트라하이드로퓨란(tetrahydrofuran) 및 디옥산(dioxane)의 군 중에서 선택되는 1종 또는 2종 이상인 것을
특징으로 하는 구리계 막 형성방법.
3. The method of claim 2,
The solvent is pentane, hexane, heptane, octane, nonane, decane, acetone, methyl isobutyl ketone, diethyl ether (diethylether), tetrahydrofuran (tetrahydrofuran) and dioxane (dioxane) one or two or more selected from the group
A method of forming a copper-based film.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JPJP-P-2013-247065 | 2013-11-29 | ||
| JP2013247065 | 2013-11-29 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20150062938A KR20150062938A (en) | 2015-06-08 |
| KR102276421B1 true KR102276421B1 (en) | 2021-07-12 |
Family
ID=53198861
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020140154255A Active KR102276421B1 (en) | 2013-11-29 | 2014-11-07 | Copper base film-forming method |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20150211100A1 (en) |
| JP (1) | JP5734540B1 (en) |
| KR (1) | KR102276421B1 (en) |
| TW (1) | TWI684663B (en) |
| WO (1) | WO2015079914A1 (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011111676A (en) * | 2009-11-30 | 2011-06-09 | Denso Corp | Film deposition method, film deposition apparatus, and layered film |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7166732B2 (en) * | 2004-06-16 | 2007-01-23 | Advanced Technology Materials, Inc. | Copper (I) compounds useful as deposition precursors of copper thin films |
| US7858525B2 (en) * | 2007-03-30 | 2010-12-28 | Intel Corporation | Fluorine-free precursors and methods for the deposition of conformal conductive films for nanointerconnect seed and fill |
-
2014
- 2014-11-07 KR KR1020140154255A patent/KR102276421B1/en active Active
- 2014-11-07 TW TW103138741A patent/TWI684663B/en active
- 2014-11-12 WO PCT/JP2014/079959 patent/WO2015079914A1/en active Application Filing
- 2014-11-12 JP JP2015509228A patent/JP5734540B1/en active Active
- 2014-11-12 US US14/428,541 patent/US20150211100A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011111676A (en) * | 2009-11-30 | 2011-06-09 | Denso Corp | Film deposition method, film deposition apparatus, and layered film |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5734540B1 (en) | 2015-06-17 |
| WO2015079914A1 (en) | 2015-06-04 |
| KR20150062938A (en) | 2015-06-08 |
| TWI684663B (en) | 2020-02-11 |
| TW201520360A (en) | 2015-06-01 |
| JPWO2015079914A1 (en) | 2017-03-16 |
| US20150211100A1 (en) | 2015-07-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI519666B (en) | High molecular weight alkyl-allyl cobalttricarbonyl complexes and use thereof for preparing dielectric thin films | |
| US7973188B2 (en) | Processes for the production of organometallic compounds | |
| Miikkulainen et al. | Atomic layer deposition of molybdenum nitride from bis (tert-butylimido)-bis (dimethylamido) molybdenum and ammonia onto several types of substrate materials with equal growth per cycle | |
| TWI516628B (en) | A cobalt-based film forming method, a cobalt-based film forming material, and a novel compound | |
| TWI611038B (en) | Chemical vapor deposition raw material containing organoruthenium compound and chemical vapor deposition method using the chemical vapor deposition raw material | |
| US10253408B2 (en) | Compound, thin film-forming material, and thin film manufacturing method | |
| JP2021507123A (en) | Method of forming a metal-containing film | |
| EP3296424A1 (en) | Chemical vapor deposition starting material comprising heterogeneous polynuclear complex, and chemical vapor deposition method using said chemical vapor deposition starting material | |
| CN1361784A (en) | Copper source reagent compositions, methods of manufacture and use in microelectronic device structures | |
| US20090136684A1 (en) | Organometallic compounds, processes for the preparation thereof and methods of use thereof | |
| JP2016526100A (en) | Method for depositing tungsten-containing film using tungsten compound and precursor composition for depositing tungsten-containing film containing the tungsten compound | |
| JP2017505858A (en) | Method for producing inorganic thin film | |
| KR102276421B1 (en) | Copper base film-forming method | |
| US9540730B2 (en) | Deposition of metal films based upon complementary reactions | |
| TWI526561B (en) | Chemical vapor deposition raw material comprising organic nickel compound and method of chemical vapor deposition using the chemical vapor deposition raw material | |
| Lay et al. | New CVD precursors capable of depositing copper metal under mixed O2/Ar atmosphere | |
| JP5424715B2 (en) | Titanium complex, method for producing the same, titanium-containing thin film and method for producing the same | |
| JP2005515300A (en) | Contamination prevention in chemical film deposition by fluid | |
| JP4674260B2 (en) | Cyclooctatetraentylcarbonyl ruthenium complex and method for producing the same, and method for producing a film using the complex as a raw material | |
| EP3384063B1 (en) | Process for the generation of thin inorganic films | |
| KR20220104805A (en) | Ruthenium Pyrazolate Precursor for Atomic Layer Deposition and Similar Processes | |
| JP6655838B2 (en) | Mg-based material forming material, Mg-based material forming method, and novel compound | |
| Martin et al. | A Volatile Dialane Complex from |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20141107 |
|
| PG1501 | Laying open of application | ||
| A201 | Request for examination | ||
| PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20190411 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20141107 Comment text: Patent Application |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210113 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20210701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210706 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20210706 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration |