KR102280948B1 - Fluorescent probe for protein-acetylaton detection - Google Patents
Fluorescent probe for protein-acetylaton detection Download PDFInfo
- Publication number
- KR102280948B1 KR102280948B1 KR1020190155622A KR20190155622A KR102280948B1 KR 102280948 B1 KR102280948 B1 KR 102280948B1 KR 1020190155622 A KR1020190155622 A KR 1020190155622A KR 20190155622 A KR20190155622 A KR 20190155622A KR 102280948 B1 KR102280948 B1 KR 102280948B1
- Authority
- KR
- South Korea
- Prior art keywords
- protein
- compound
- present
- formula
- acetylation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2440/00—Post-translational modifications [PTMs] in chemical analysis of biological material
- G01N2440/10—Post-translational modifications [PTMs] in chemical analysis of biological material acylation, e.g. acetylation, formylation, lipoylation, myristoylation, palmitoylation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Food Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Materials Engineering (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
본 발명은 세포 투과성이 뛰어나 사용량 및 반응 시간을 줄일 수 있으며, 형광을 통해 살아있는 세포 내에서 실시간으로 단백질 아세틸화 검출이 가능한 프로브에 대한 것이다.The present invention relates to a probe that has excellent cell permeability, which can reduce usage and reaction time, and can detect protein acetylation in real time in living cells through fluorescence.
Description
본 발명은 단백질 아세틸화 검출을 위한 형광 프로브에 대한 것이다.The present invention relates to a fluorescent probe for detecting protein acetylation.
단백질 아세틸화는 번역 후 변형 과정의 일종으로 세포 내 여러 반응의 주요 조절 인자로 알려져 있다. 예컨대, 히스톤 라이신 잔기의 아세틸화는 염색질의 구조와 기능을 조절하고 유전자 발현을 조절하며, 또한 히스톤이 아닌 단백질의 아세틸화는 세포 사멸, 생존 및 증식과 같은 여러 세포 반응과 세포 신호 전달 과정에서 중요한 역할을 수행하다고 보고되고 있다. 따라서, 하기의 특허문헌처럼 단백질 아세틸화 기전을 분석함으로써 여러 질병을 제어하기 위한 연구가 최근 진행되고 있다.Protein acetylation is a type of post-translational modification and is known to be a major regulator of various intracellular responses. For example, the acetylation of histone lysine residues regulates the structure and function of chromatin and regulates gene expression, and the acetylation of non-histone proteins is important in several cellular responses such as apoptosis, survival and proliferation and in cell signaling processes. reported to play a role. Therefore, studies for controlling various diseases by analyzing the protein acetylation mechanism as in the following patent documents are being conducted recently.
<특허문헌><Patent Literature>
특허공개공보 제10-2005-0086529호(2005. 08. 30. 공개) "아세틸화 단백질"Patent Laid-Open Publication No. 10-2005-0086529 (published on August 30, 2005) "Acetylated protein"
기존의 단백질 아세틸화 검출을 위한 프로브로는 세포 내 대사를 통한 표지 방법으로 단백질 아세틸화 검출을 위한 알키닐 아세테이트(alkynyl-acetate) 프로브 등이 있으나, 상기 프로브는 세포 투과성이 좋지 않아 높은 농도의 화합물을 오랜 시간 동안 세포에 처리하여야 하였기에 세포독성(cytotoxicity)이 높았으며, 프로브를 표지한 뒤 여러 과정을 통해야만 단백질 아세틸화를 확인할 수 있었기에 효율성이 떨어지는 문제가 있다.Existing probes for detecting protein acetylation include an alkynyl-acetate probe for detecting protein acetylation as a labeling method through intracellular metabolism, but the probe has poor cell permeability and thus contains a high concentration of compound The cytotoxicity was high because the cells had to be treated for a long time, and there is a problem in that the efficiency is lowered because protein acetylation can be confirmed only through several processes after labeling the probe.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로,The present invention has been devised to solve the above problems,
본 발명은 세포 투과성이 뛰어나 사용량 및 반응 시간을 줄일 수 있으며, 형광을 통해 살아있는 세포 내에서 실시간으로 단백질 아세틸화 검출이 가능한 프로브를 제공하는데 그 목적이 있다.An object of the present invention is to provide a probe capable of reducing the amount of use and reaction time due to excellent cell permeability and capable of detecting protein acetylation in real time in living cells through fluorescence.
본 발명은 앞서 본 목적을 달성하기 위하여 다음과 같은 구성을 가진 실시예에 의해 구현된다.The present invention is implemented by an embodiment having the following configuration in order to achieve the above object.
본 발명의 일 실시예에 따르면, 본 발명에 따른 화합물은 하기 화학식 1로 표시되며, 상기 화학식 1에서 n은 2, 3, 4 또는 8인 것을 특징으로 한다.According to an embodiment of the present invention, the compound according to the present invention is represented by the following formula (1), wherein n is 2, 3, 4 or 8 in the formula (1).
[화학식 1][Formula 1]
본 발명의 다른 실시예에 따르면, 본 발명에 따른 화합물은 단백질 아세틸화 검출을 위해 사용되는 것을 특징으로 한다.According to another embodiment of the present invention, the compound according to the present invention is characterized in that it is used for the detection of protein acetylation.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 화합물은 세포 내 전달되어 효소에 의해 플루오레세인과 애시드 화합물로 분해되어 형광 켜짐이 발생하는 것을 특징으로 한다.According to another embodiment of the present invention, the compound according to the present invention is delivered intracellularly and is decomposed into fluorescein and an acid compound by an enzyme to generate fluorescence.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 화합물은 단백질 아세틸레이션 사이트를 검출하기 위해 사용되는 것을 특징으로 한다.According to another embodiment of the present invention, the compound according to the present invention is used to detect a protein acetylation site.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 단백질 아세틸화 검출을 위한 형광 프로브는 하기 화학식 1로 표시되며, 상기 화학식 1에서 n은 2, 3, 4 또는 8인 것을 특징으로 한다.According to another embodiment of the present invention, the fluorescent probe for detecting protein acetylation according to the present invention is represented by the following Chemical Formula 1, wherein n is 2, 3, 4 or 8 in Chemical Formula 1.
[화학식 1][Formula 1]
본 발명은 앞서 본 실시예에 의해 다음과 같은 효과를 얻을 수 있다.The present invention can obtain the following effects by the present embodiment above.
본 발명은 세포 투과성이 뛰어나 사용량 및 반응 시간을 줄일 수 있으며, 형광을 통해 살아있는 세포 내에서 실시간으로 단백질 아세틸화 검출이 가능한 효과가 있다.The present invention has excellent cell permeability, which can reduce the amount of use and reaction time, and has the effect of real-time detection of protein acetylation in living cells through fluorescence.
도 1은 본 발명의 일 실시예에 따른 화합물에 의한 단백질 아세틸레이션 검출을 확인하기 위한 Western blot 분석 결과를 나타내는 이미지.
도 2는 본 발명의 일 실시예에 따른 화합물의 효율성을 확인하기 위한 Western blot 분석 결과를 나타내는 이미지.
도 3은 본 발명의 일 실시예에 따른 화합물을 세포 내에 전달한 후 얻은 형광현미경 이미지.1 is an image showing the results of Western blot analysis for confirming the detection of protein acetylation by the compound according to an embodiment of the present invention.
Figure 2 is an image showing the results of Western blot analysis to confirm the efficiency of the compound according to an embodiment of the present invention.
3 is a fluorescence microscope image obtained after delivery of a compound according to an embodiment of the present invention into cells.
이하에서는 본 발명에 따른 단백질 아세틸화 검출을 위한 형광 프로브를 첨부된 도면을 참조하여 상세히 설명한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적 의미와 동일하고 만약 본 명세서에 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에 사용된 정의에 따른다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대해 상세한 설명은 생략한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, a fluorescent probe for detecting protein acetylation according to the present invention will be described in detail with reference to the accompanying drawings. Unless otherwise defined, all terms in this specification have the same general meaning as understood by those skilled in the art to which the present invention belongs, and in case of conflict with the meaning of the terms used in this specification, the According to the definition used in the specification. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted. Throughout the specification, when a part "includes" a certain element, it means that other elements may be further included, rather than excluding other elements, unless otherwise stated.
본 발명의 일 실시예는 단백질 아세틸화 검출을 위한 화합물에 대한 것으로, 상기 화합물은 화학식 1로 표기되며, 상기 화학식 1에서 n은 2, 3, 4 또는 8이다. 세포 내에서 애시드 형태(acid form)로 흘러다니는 대사물(metabolite)을 CoA가 잡아 아세틸(acetyl) CoA가 생성되고, 상기 아세틸 CoA가 이용되어 단백질 아세틸레이션(acetylation)이 이루어지게 되는데, 세포 투과성이 뛰어난 상기 화학식 1로 표기되는 화합물은 세포 내에 존재하는 효소(esterase)에 의해 플루오레세인(fluorescein)과 애시드 화합물로 분해되고, 애시드 화합물은 세포 내에 존재하는 CoA와 결합하여 아세틸 CoA를 형성하며, 단백질이 아세틸레이션될 때 아세틸 CoA는 아세틸기를 제공하여 애시드 화합물의 아세틸기가 단백질 아세틸레이션 사이트(site)에 붙게 된다. 이후, 공지의 방법(예컨대, click 반응)으로 아세틸레이션된 단백질을 표지하여, 단백질 아세틸레이션 사이트를 확인할 수 있게 된다. 또한, 상기 화합물이 세포 내에서 효소(esterase)에 의해 분해될 때 형광 켜짐이 발생하므로, 상기 화합물이 세포 내에 효과적으로 전달되었는지 확인할 수 있으며, 상기 세포 내에서 분해되어 형성되는 애시드 화합물을 CoA와 결합하여 아세틸 CoA가 생성되고 상기 아세틸 CoA가 단백질 아세틸레이션에 이용되므로 형광 켜짐을 통해 단백질의 아세틸레이션이 이루어졌음을 확인하는 것 또한 가능하게 된다. 또한, 종래의 프로브는 애시드 화합물을 세포 내에 효과적으로 전달하는 것이 어려웠는데, 본 발명의 상기 화합물은 세포 인지질 이중층에 대한 투과성이 높은 플루오레세인에 애시드 화합물이 결합되어 형성되므로, 애시드 화합물이 단독으로 있을 때보다 세포 투과성이 뛰어나며, 세포 내 효소에 의해 빠르게 분해되어 사용량 및 반응 시간을 줄일 수 있으며, 형광을 통해 살아있는 세포 내에서 실시간으로 단백질 아세틸화 검출을 가능하게 한다. 상기 애시드 화합물은 화학식 1로 표기되는 화학식에서 n이 2인 경우 4-pentynoic acid이고, n이 3인 경우 5-hexynoic acid이며, n이 4인 경우 6-heptynoic acid이고, n이 8인 경우 10-undecynoic acid이다.An embodiment of the present invention relates to a compound for detecting protein acetylation, wherein the compound is represented by Formula 1, wherein n is 2, 3, 4, or 8 in Formula 1. CoA catches metabolites flowing in acid form in the cell to generate acetyl CoA, and the acetyl CoA is used to perform protein acetylation, and cell permeability The excellent compound represented by Formula 1 is decomposed into fluorescein and an acid compound by an enzyme present in the cell, and the acid compound combines with CoA present in the cell to form acetyl CoA, and protein During this acetylation, acetyl CoA provides an acetyl group so that the acetyl group of the acid compound is attached to the protein acetylation site. Thereafter, the protein acetylation site can be identified by labeling the acetylated protein by a known method (eg, a click reaction). In addition, since the fluorescence is turned on when the compound is decomposed by an enzyme (esterase) in the cell, it can be checked whether the compound is effectively delivered into the cell, and the acid compound formed by decomposition in the cell is combined with CoA Since acetyl CoA is generated and the acetyl CoA is used for protein acetylation, it is also possible to confirm that protein acetylation has been achieved through fluorescence on. In addition, it was difficult for the conventional probe to effectively deliver the acid compound into the cell. Since the compound of the present invention is formed by binding the acid compound to fluorescein, which has high permeability to the cellular phospholipid bilayer, the acid compound may be used alone. It has superior cell permeability and is rapidly degraded by intracellular enzymes to reduce usage and reaction time, and enables real-time detection of protein acetylation in living cells through fluorescence. The acid compound is 4-pentynoic acid when n is 2 in the formula represented by Formula 1, 5-hexynoic acid when n is 3, 6-heptynoic acid when n is 4, and 10 when n is 8 -It is undecynoic acid.
[화학식 1][Formula 1]
본 발명의 다른 실시예는 상기 화학식 1로 표시되는 단백질 아세틸화 검출을 위한 형광 프로브에 대한 것이다.Another embodiment of the present invention relates to a fluorescent probe for detecting acetylation of the protein represented by Formula 1 above.
이하, 실시예를 통해서 본 발명을 보다 상세히 설명하기로 한다. 하지만, 이들은 본 발명을 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these are only for describing the present invention in more detail, and the scope of the present invention is not limited thereto.
<실시예 1> 단백질 아세틸화 검출을 위한 화합물의 제조<Example 1> Preparation of compound for detection of protein acetylation
1. fluorescein(1당량)을 methylene chloride 20mL에 녹이고, 4-pentynoic acid(2당량), N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide.HCl(EDC.HCl, 2당량) 및 4-Dimethylaminopyridine(DMAP, 0.1당량)을 상온에서 첨가하고 밤새 교반시켰다. 이후, 용매를 제거하고, 혼합물을 컬럼 크로마토 그래피로 정제하여 화학식 2로 표시되는 화합물(FL-PENT)을 수득하였다(상기 화합물이 화학식 2로 표기되는 것을 proton NMR 분광기 및 carbon NMR 분광기 결과를 통해 확인함).1. Dissolve fluorescein (1 eq.) in 20 mL of methylene chloride, 4-pentynoic acid (2 eq.), N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide . HCl (EDC . HCl, 2 eq.) and 4-Dimethylaminopyridine (DMAP, 0.1 eq.) were added at room temperature and stirred overnight. Thereafter, the solvent was removed, and the mixture was purified by column chromatography to obtain a compound represented by Formula 2 (FL-PENT) (It was confirmed through proton NMR spectroscopy and carbon NMR spectroscopy that the compound represented by Formula 2) box).
2. 4-pentynoic acid 대신에 5-hexynoic acid가 사용된 것을 제외하고는 다른 조건을 실시예 1의 1과 동일하게 하여 화학식 3으로 표시되는 화합물(FL-HEX)을 수득하였다(상기 화합물이 화학식 3으로 표기되는 것을 proton NMR 분광기 및 carbon NMR 분광기 결과를 통해 확인함).2. Except that 5-hexynoic acid was used instead of 4-pentynoic acid, the other conditions were the same as in Example 1 1 to obtain a compound represented by Formula 3 (FL-HEX) (the compound represented by Formula 3 was 3 was confirmed through the results of proton NMR spectroscopy and carbon NMR spectroscopy).
3. 4-pentynoic acid 대신에 6-heptynoic acid가 사용된 것을 제외하고는 다른 조건을 실시예 1의 1과 동일하게 하여 화학식 4로 표시되는 화합물(FL-HEPT)을 수득하였다(상기 화합물이 화학식 4으로 표기되는 것을 proton NMR 분광기 및 carbon NMR 분광기 결과를 통해 확인함).3. A compound represented by Chemical Formula 4 (FL-HEPT) was obtained in the same manner as in Example 1 except that 6-heptynoic acid was used instead of 4-pentynoic acid. 4 was confirmed through the results of proton NMR spectroscopy and carbon NMR spectroscopy).
4. 4-pentynoic acid 대신에 10-undecynoic acid가 사용된 것을 제외하고는 다른 조건을 실시예 1의 1과 동일하게 하여 화학식 5로 표시되는 화합물(FL-Undec)을 수득하였다(상기 화합물이 화학식 5로 표기되는 것을 proton NMR 분광기 및 carbon NMR 분광기 결과를 통해 확인함).4. Except that 10-undecynoic acid was used instead of 4-pentynoic acid, the other conditions were the same as those of Example 1 1 to obtain a compound (FL-Undec) represented by Chemical Formula 5 (the compound represented by Chemical Formula 5) 5) was confirmed through the results of proton NMR spectroscopy and carbon NMR spectroscopy).
<실시예 2> 실시예 1에서 제조된 화합물에 의한 단백질 아세틸레이션 검출 확인<Example 2> Confirmation of detection of protein acetylation by the compound prepared in Example 1
1. 실시예 1에서 제조된 FL-PENT, FL-HEX, FL-HEPT, FL-Undec 각각을 HeLa 세포에 10μM씩 처리한 후 2시간 동안 37℃에서 배양하고, HeLa 세포를 sonicator를 이용하여 용해시켜 단백질을 얻었다.1. Each of FL-PENT, FL-HEX, FL-HEPT, and FL-Undec prepared in Example 1 was treated with 10 μM of each of HeLa cells, incubated at 37° C. for 2 hours, and HeLa cells were lysed using a sonicator. to obtain protein.
2. 이후, 클릭화학(Click Chemistry) 반응인 구리 촉매 하 아자이드-알킨 고리첨가 반응(Azide-Alkyne cycloaddition)을 통해 아세틸화된 단백질에 바이오틴을 표지시킨 후, 전기영동법(SDS-PAGE)을 통해 분자량별로 분리한 뒤, membrane으로 단백질을 전이시켰다. membrane에 단백질의 전이가 잘 되었는지 Ponceau 염색으로 확인하고 씻어준 후, 단백질이 전이되지 않은 부분에 항체가 붙지 않도록 BSA를 이용하여 블로킹 처리를 해준 후, membrane에 Alexa 488이 결합된 streptavidin 항체를 넣어 아세틸화된 단백질만을 시각화하여, 그 결과를 도 1에 나타내었다.2. Then, after labeling the acetylated protein with biotin through an azide-alkyne cycloaddition under copper catalysis, which is a Click Chemistry reaction, electrophoresis (SDS-PAGE) After separation by molecular weight, the protein was transferred to a membrane. After confirming with Ponceau staining to see if protein transfer to the membrane was good, washing with BSA to prevent the antibody from adhering to the non-transferred part of the protein. After that, a streptavidin antibody bound to Alexa 488 was added to the membrane and acetylated. Only the oxidized protein was visualized, and the results are shown in FIG. 1 .
3. 도 1을 보면, 실시예 1에서 제조된 FL-PENT, FL-HEX, FL-HEPT, FL-Undec 각각을 세포에 처리한 경우, 특정 사이트에서 단백질 아세틸레이션이 일어 났음을 확인할 수 있다. 다만, FL-PENT, FL-HEX 및 FL-HEPT이 FL-Undec보다는 검출 효율이 뛰어남을 알 수 있다.3. Referring to FIG. 1, when cells were treated with each of FL-PENT, FL-HEX, FL-HEPT, and FL-Undec prepared in Example 1, it can be confirmed that protein acetylation occurred at a specific site. However, it can be seen that FL-PENT, FL-HEX and FL-HEPT have superior detection efficiency than FL-Undec.
<실시예 3> 실시예 1에서 제조된 화합물의 효율성을 확인<Example 3> Check the efficiency of the compound prepared in Example 1
1. 4-pentynoic acid, Sodium 4-pentynoate 및 실시예 1에서 제조된 FL-PENT 각각을 HeLa 세포에 농도와 배양 시간을 달리하여 37℃에서 배양하고, HeLa 세포를 sonicator를 이용하여 용해시켜 단백질을 얻었다.1. 4-pentynoic acid, Sodium 4-pentynoate, and each of the FL-PENT prepared in Example 1 were incubated in HeLa cells at different concentrations and incubation time at 37°C, and HeLa cells were lysed using a sonicator to obtain protein. got it
2. 이후, 클릭화학(Click Chemistry) 반응인 구리 촉매 하 아자이드-알킨 고리첨가 반응(Azide-Alkyne cycloaddition)을 통해 아세틸화된 단백질에 바이오틴을 표지시킨 후, 전기영동법(SDS-PAGE)을 통해 분자량별로 분리한 뒤, membrane으로 단백질을 전이시켰다. membrane에 단백질의 전이가 잘 되었는지 Ponceau 염색으로 확인하고 씻어준 후, 단백질이 전이되지 않은 부분에 항체가 붙지 않도록 BSA를 이용하여 블로킹 처리를 해준 후, membrane에 Alexa 488이 결합된 streptavidin 항체를 넣어 아세틸화된 단백질만을 시각화하여, 그 결과를 도 2에 나타내었다. 한편, 도 2에서 배양 시간이 표시되지 않은 경우는 2시간 동안 배양한 경우에 해당한다.2. Then, after labeling the acetylated protein with biotin through an azide-alkyne cycloaddition under copper catalysis, which is a Click Chemistry reaction, electrophoresis (SDS-PAGE) After separation by molecular weight, the protein was transferred to a membrane. After confirming with Ponceau staining to see if protein transfer to the membrane was good, washing with BSA to prevent the antibody from adhering to the non-transferred part of the protein. After that, a streptavidin antibody bound to
3. 도 2를 보면, 실시예 1에서 제조된 FL-PENT를 세포 내에 처리한 경우 4-pentynoic acid, Sodium 4-pentynoate 각각을 세포 내에 처리한 경우보다, 사용량 및 배양 시간이 짧아도 검출 효율이 뛰어남을 확인할 수 있어, 실시예 1에서 제조된 화합물은 세포 내 침투 효율이 뛰어나 단백질 아세틸레이션 사이트를 효과적으로 검출할 수 있음을 알 수 있다.3. Referring to FIG. 2, when the FL-PENT prepared in Example 1 was intracellularly treated, the detection efficiency was excellent even when the amount and incubation time were shorter than when 4-pentynoic acid and sodium 4-pentynoate were treated intracellularly. , it can be seen that the compound prepared in Example 1 has excellent intracellular penetration efficiency and can effectively detect protein acetylation sites.
<실시예 4> 실시예 1에서 제조된 화합물을 이용하여 살아있는 세포에서 단백질 아세틸화 검출<Example 4> Detection of protein acetylation in living cells using the compound prepared in Example 1
1. 실시예 1에서 제조된 FL-PENT 10μM을 HeLa 세포에 처리한 후 배양 시간을 달리하여 37℃에서 배양하고, 처리된 세포를 PBS로 2번 세척한 후, 형광 현미경을 이용하여 bright field와 FITC 채널에서 세포를 촬영하여 얻은 이미지를 도 3에 나타내었다.1. After treating HeLa cells with 10 μM of the FL-PENT prepared in Example 1, incubated at 37° C. for different incubation times, the treated cells were washed twice with PBS, and bright field and An image obtained by photographing cells in the FITC channel is shown in FIG. 3 .
3. 도 3을 보면, 큰 형광이 발산되므로 세포 내에 효과적으로 실시예 1에서 제조된 화합물이 전달되었음을 알 수 있고, 배양 시간이 5분인 경우에도 형광이 발현되어 상대적으로 짧은 시간에 실시예 1에서 제조된 화합물이 세포 내에 전달되어 효소에 의해 분해됨을 알 수 있다.3. Referring to FIG. 3 , it can be seen that the compound prepared in Example 1 was effectively delivered into the cells because a large amount of fluorescence was emitted, and the fluorescence was expressed even when the incubation time was 5 minutes, and thus prepared in Example 1 in a relatively short time. It can be seen that the converted compound is delivered into the cell and degraded by an enzyme.
이상에서, 출원인은 본 발명의 바람직한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다.In the above, the applicant has described preferred embodiments of the present invention, but these embodiments are only one embodiment that implements the technical idea of the present invention, and any changes or modifications as long as the technical idea of the present invention is implemented. should be construed as within the scope.
Claims (5)
[화학식 1]
상기 화학식 1에서 n은 2, 3, 4 또는 8이다.A compound represented by the following formula (1).
[Formula 1]
In Formula 1, n is 2, 3, 4 or 8.
단백질 아세틸화 검출을 위해 사용되는 것을 특징으로 하는 화합물.The method of claim 1, wherein the compound is
A compound for use in the detection of protein acetylation.
세포 내 전달되어 효소에 의해 플루오레세인과 애시드 화합물로 분해되어 형광 켜짐이 발생하는 것을 특징으로 하는 화합물.The method of claim 1, wherein the compound is
A compound characterized in that it is delivered intracellularly and is decomposed into fluorescein and an acid compound by an enzyme to generate fluorescence.
단백질 아세틸화 사이트를 검출하기 위해 사용되는 것을 특징으로 하는 화합물.The method of claim 1, wherein the compound is
A compound for use in detecting protein acetylation sites.
[화학식 1]
상기 화학식 1에서 n은 2, 3, 4 또는 8이다.A fluorescent probe for detecting acetylation of a protein represented by the following formula (1).
[Formula 1]
In Formula 1, n is 2, 3, 4 or 8.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020190155622A KR102280948B1 (en) | 2019-11-28 | 2019-11-28 | Fluorescent probe for protein-acetylaton detection |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020190155622A KR102280948B1 (en) | 2019-11-28 | 2019-11-28 | Fluorescent probe for protein-acetylaton detection |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20210066410A KR20210066410A (en) | 2021-06-07 |
| KR102280948B1 true KR102280948B1 (en) | 2021-07-23 |
Family
ID=76374306
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020190155622A Active KR102280948B1 (en) | 2019-11-28 | 2019-11-28 | Fluorescent probe for protein-acetylaton detection |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR102280948B1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001288189A (en) | 2000-03-31 | 2001-10-16 | Bunshi Biophotonics Kenkyusho:Kk | Caged fluorescein |
| WO2006020947A2 (en) | 2004-08-13 | 2006-02-23 | Epoch Biosciences, Inc. | Phosphonate fluorescent dyes and conjugates |
| JP2014133704A (en) | 2011-04-22 | 2014-07-24 | Univ Of Tokyo | Fluorescent probe for measuring hydrogen sulfide |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6800765B2 (en) * | 2001-08-02 | 2004-10-05 | Molecular Devices Corporation | Fluorescent pH indicators for intracellular assays |
-
2019
- 2019-11-28 KR KR1020190155622A patent/KR102280948B1/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001288189A (en) | 2000-03-31 | 2001-10-16 | Bunshi Biophotonics Kenkyusho:Kk | Caged fluorescein |
| WO2006020947A2 (en) | 2004-08-13 | 2006-02-23 | Epoch Biosciences, Inc. | Phosphonate fluorescent dyes and conjugates |
| JP2014133704A (en) | 2011-04-22 | 2014-07-24 | Univ Of Tokyo | Fluorescent probe for measuring hydrogen sulfide |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20210066410A (en) | 2021-06-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Shi et al. | Label-retention expansion microscopy | |
| Zhang et al. | Proteome-wide identification of ubiquitin interactions using UbIA-MS | |
| Tomás-Gamasa et al. | Transition metal catalysis in the mitochondria of living cells | |
| Li et al. | Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens | |
| Xiao et al. | Cholesterol modification of smoothened is required for hedgehog signaling | |
| Lin et al. | Multiscale photocatalytic proximity labeling reveals cell surface neighbors on and between cells | |
| Zhao et al. | High-performance intensiometric direct-and inverse-response genetically encoded biosensors for citrate | |
| Lim et al. | Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells | |
| Chen et al. | A highly responsive and selective fluorescent probe for imaging physiological hydrogen sulfide | |
| Gomez-Sintes et al. | Targeting retinoic acid receptor alpha-corepressor interaction activates chaperone-mediated autophagy and protects against retinal degeneration | |
| Matsushita et al. | 19F MRI monitoring of gene expression in living cells through cell‐surface β‐lactamase activity | |
| Watanabe et al. | Intracellular protein labeling with prodrug‐like probes using a mutant β‐lactamase tag | |
| Nickel et al. | Chemoproteomic evaluation of the polyacetylene callyspongynic acid | |
| Jelcic et al. | A photo-clickable ATP-mimetic reveals nucleotide interactors in the membrane proteome | |
| Wang et al. | A reduction-responsive liposomal nanocarrier with self-reporting ability for efficient gene delivery | |
| Suarez et al. | Selenosulfides Tethered to gem‐Dimethyl Esters: A Robust and Highly Versatile Framework for H2S Probe Development | |
| Takimoto et al. | Esterification of an unnatural amino acid structurally deviating from canonical amino acids promotes its uptake and incorporation into proteins in mammalian cells | |
| Wagner et al. | A Coumarin Triflate Reagent Enables One‐Step Synthesis of Photo‐Caged Lipid Metabolites for Studying Cell Signaling | |
| Mattheisen et al. | Genetic code expansion to enable site‐specific bioorthogonal labeling of functional G protein‐coupled receptors in live cells | |
| Wang et al. | Organelle-specific nitric oxide detection in living cells via HaloTag protein labeling | |
| KR102280948B1 (en) | Fluorescent probe for protein-acetylaton detection | |
| Schwalm et al. | Critical assessment of LC3/GABARAP ligands used for degrader development and ligandability of LC3/GABARAP binding pockets | |
| Roeck et al. | Ferroptosis propagates to neighboring cells via cell-cell contacts | |
| Leech et al. | In vitro single molecule and bulk phase studies reveal the AP-1 transcription factor cFos binds to DNA without its partner cJun | |
| Tamura et al. | Pimonidazole-alkyne conjugate for sensitive detection of hypoxia by Cu-catalyzed click reaction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20191128 |
|
| PA0201 | Request for examination | ||
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20210428 |
|
| PG1501 | Laying open of application | ||
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210719 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20210719 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| PR1001 | Payment of annual fee |
Payment date: 20240625 Start annual number: 4 End annual number: 4 |
|
| PR1001 | Payment of annual fee |
Payment date: 20250626 Start annual number: 5 End annual number: 5 |