[go: up one dir, main page]

KR102309349B1 - Semiconductor device and method for forming the same - Google Patents

Semiconductor device and method for forming the same Download PDF

Info

Publication number
KR102309349B1
KR102309349B1 KR1020190112010A KR20190112010A KR102309349B1 KR 102309349 B1 KR102309349 B1 KR 102309349B1 KR 1020190112010 A KR1020190112010 A KR 1020190112010A KR 20190112010 A KR20190112010 A KR 20190112010A KR 102309349 B1 KR102309349 B1 KR 102309349B1
Authority
KR
South Korea
Prior art keywords
region
conductive bumps
design
bump
pattern density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020190112010A
Other languages
Korean (ko)
Other versions
KR20200037079A (en
Inventor
링-웨이 리
청-린 황
민-타르 리우
푸-캉 치아오
매트 초우
춘-옌 로
체-정 추
웬-밍 첸
쿠오-치오 리우
Original Assignee
타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/448,755 external-priority patent/US11211318B2/en
Application filed by 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 filed Critical 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드
Publication of KR20200037079A publication Critical patent/KR20200037079A/en
Application granted granted Critical
Publication of KR102309349B1 publication Critical patent/KR102309349B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
    • H01L25/0657Stacked arrangements of devices
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/18Chip packaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13164Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16146Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1712Layout
    • H01L2224/1713Square or rectangular array
    • H01L2224/17132Square or rectangular array being non uniform, i.e. having a non uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1751Function
    • H01L2224/17515Bump connectors having different functions
    • H01L2224/17517Bump connectors having different functions including bump connectors providing primarily mechanical support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
    • H01L25/0652Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
    • H01L25/0655Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/384Bump effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Architecture (AREA)
  • Wire Bonding (AREA)

Abstract

방법은 인터포저의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인 - 제1 디자인 내의 도전성 범프들은 동일한 단면적을 가짐 - 을 수용하는 단계; 제1 디자인의 도전성 범프들을 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프로 그룹화하는 단계로서, 제2 영역의 범프 패턴 밀도는 제1 영역의 범프 패턴 밀도보다 낮은 것인 도전성 범프들을 그룹화하는 단계; 제1 디자인을 수정하는 것 - 제1 디자인을 수정하는 것은 제2 영역에 있는 제2 그룹의 도전성 범프의 단면적을 수정하는 것을 포함함 - 에 의해 제2 디자인을 형성하는 단계; 및 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계를 포함하고, 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계 후, 제1 그룹의 도전성 범프와 제2 그룹의 도전성 범프는 상이한 단면적을 갖는다.The method includes receiving a first design for a conductive bump on a first surface of an interposer, the conductive bumps in the first design having the same cross-sectional area; grouping the conductive bumps of the first design into a first group of conductive bumps in a first region of the first surface and a second group of conductive bumps in a second region of the first surface; grouping the conductive bumps, the pattern density being lower than the bump pattern density of the first region; forming a second design by modifying the first design, wherein modifying the first design includes modifying the cross-sectional area of the second group of conductive bumps in the second region; and forming a conductive bump on the first surface of the interposer according to a second design, wherein after forming the conductive bump on the first surface of the interposer according to the second design, the conductivity of the first group The bumps and the second group of conductive bumps have different cross-sectional areas.

Figure R1020190112010
Figure R1020190112010

Description

반도체 디바이스 및 반도체 디바이스의 제조 방법 {SEMICONDUCTOR DEVICE AND METHOD FOR FORMING THE SAME}A semiconductor device and a method of manufacturing a semiconductor device

우선권 주장 및 교차 참조Priority Claims and Cross-References

본 출원은 “공면성 향상을 위한 범프 레이아웃(Bump Layout for Coplanarity Improvement)”이라는 발명의 명칭으로 2018년 9월 28일자로 출원된 미국 가특허출원 제62/738,929호에 대한 우선권을 주장한다.This application claims priority to U.S. Provisional Patent Application No. 62/738,929, filed on September 28, 2018 under the title of "Bump Layout for Coplanarity Improvement".

반도체 산업은 다양한 전자부품(예컨대, 트랜지스터, 다이오드, 레지스터, 커패시터 등)의 집적 밀도의 지속적인 향상으로 인해 급격한 성장을 경험했다. 대부분의 경우, 집적 밀도의 이러한 향상은 최소 피쳐(feature) 크기의 반복적인 감소에 기인하는 것이며, 이는 더 많은 구성요소가 주어진 영역에 집적되도록 한다. The semiconductor industry has experienced rapid growth due to the continuous improvement in the integration density of various electronic components (eg, transistors, diodes, resistors, capacitors, etc.). In most cases, this improvement in integration density is due to iterative reduction in minimum feature size, which allows more components to be integrated in a given area.

전자 디바이스의 소형화에 대한 요구가 증가하고 있기 때문에, 보다 작고 보다 창의적인 반도체 다이의 패키징 기술에 대한 필요성이 대두되었다. 상기한 패키징 시스템의 일례는 패키지 온 패키지(Package-on-Package; PoP) 기술이다. PoP 디바이스에서, 상부 반도체 패키지는 저부 반도체 패키지의 상부에 적층되어, 높은 수준의 집적도 및 구성요소 밀도를 제공한다. 다른 예는 칩 온 웨이퍼 온 기판(Chip-On-Wafer-On-Substrate; CoWoS) 구조이다. 몇몇 실시예에서는, CoWoS 구조를 형성하기 위해 복수 개의 반도체 칩이 웨이퍼에 부착되고, 다음에 웨이퍼를 복수 개의 인터포저(interposer)로 분리하기 위해 다이싱 프로세스가 수행되며, 각각의 인터포저에는 하나 이상의 반도체 칩이 부착된다. 반도체 칩(들)이 부착된 인터포저는 몇몇 실시예에서 칩 온 웨이퍼(Chip-On-Wafer; CoW) 구조라고 칭한다. CoW 구조는 그 후에 기판(예컨대, 인쇄 회로 기판)에 부착되어, CoWoS 구조를 형성한다. 이들 및 다른 진보된 패키징 기술은 향상된 기능 및 소형 풋프린트를 갖는 반도체 디바이스의 생산을 가능하게 한다.As the demand for miniaturization of electronic devices increases, the need for smaller and more creative semiconductor die packaging technologies has emerged. An example of the above-described packaging system is a Package-on-Package (PoP) technology. In PoP devices, a top semiconductor package is stacked on top of a bottom semiconductor package, providing a high level of integration and component density. Another example is a Chip-On-Wafer-On-Substrate (CoWoS) structure. In some embodiments, a plurality of semiconductor chips are attached to a wafer to form a CoWoS structure, and then a dicing process is performed to separate the wafer into a plurality of interposers, each interposer having one or more A semiconductor chip is attached. The interposer to which the semiconductor chip(s) is attached is referred to as a Chip-On-Wafer (CoW) structure in some embodiments. The CoW structure is then attached to a substrate (eg, a printed circuit board) to form the CoWoS structure. These and other advanced packaging technologies enable the production of semiconductor devices with improved functionality and small footprints.

실시예에서, 방법은 인터포저의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인 - 제1 디자인 내의 도전성 범프들은 동일한 단면적을 가짐 - 을 수용하는 단계; 제1 디자인의 도전성 범프들을 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프로 그룹화하는 단계로서, 제2 영역의 범프 패턴 밀도는 제1 영역의 범프 패턴 밀도보다 낮은 것인 도전성 범프를 그룹화하는 단계; 제1 디자인을 수정하는 것 - 제1 디자인을 수정하는 것은 제2 영역에 있는 제2 그룹의 도전성 범프의 단면적을 수정하는 것을 포함함 - 에 의해 제2 디자인을 형성하는 단계; 및 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계를 포함하고, 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계 후, 제1 그룹의 도전성 범프와 제2 그룹의 도전성 범프는 상이한 단면적을 갖는다. 실시예에서, 제1 그룹의 도전성 범프의 크기는 제1 디자인과 제2 디자인에서 변경되지 않은 채 유지된다. 실시예에서, 도전성 범프를 형성하는 단계는, 인터포저의 제1 표면 위에, 범프 개구를 갖는 패턴화 마스크층을 형성하는 단계; 및 패턴화 마스크층의 범프 개구 내에 도전성 재료를 형성하도록 도금 프로세스를 수행하는 단계를 포함한다. 실시예에서, 제1 영역에 있는 범프 개구의 크기는 제2 영역에 있는 범프 개구의 크기보다 작다. 실시예에서, 제1 영역의 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 제2 디자인에서는 제1 그룹의 도전성 범프가 제1 치수를 갖는 제1 단면을 갖고, 제2 그룹의 도전성 범프가 별개의 제2 치수를 갖는 제2 단면을 가지며, 제2 영역의 범프 패턴 밀도가 약 15 % 내지 약 25 %인 경우, 제2 치수는 제1 치수의 약 1.1배 내지 약 1.25배이고, 제2 영역의 범프 패턴 밀도가 약 15 % 미만인 경우, 제2 치수는 제1 치수의 약 1.35배 내지 약 1.55배이다. 실시예에서, 제1 디자인의 도전성 범프들을 그룹화하는 단계는, 제1 표면의 제3 영역에 있는 제3 그룹의 도전성 범프를 그룹화하는 것을 더 포함하고, 제3 영역의 범프 패턴 밀도는 제2 영역의 범프 패턴 밀도보다 낮다. 실시예에서, 제2 디자인을 형성하는 단계는, 제3 영역에 있는 제3 그룹의 도전성 범프의 단면적을 수정하는 것을 더 포함한다. 실시예에서, 제1 영역의 범프 패턴 밀도는 약 25 %보다 크고, 제2 영역의 범프 패턴 밀도는 약 15 % 내지 약 25 %이며, 제3 영역의 범프 패턴 밀도는 약 15 % 미만이다. 실시예에서, 제2 디자인에서는 제1 그룹의 도전성 범프는 제1 치수를 지닌 제1 단면을 갖고, 제2 그룹의 도전성 범프는 별개의 제2 치수를 갖는 제2 단면을 가지며, 제3 그룹의 도전성 범프는 별개의 제3 치수를 갖는 제3 단면을 갖고, 제2 치수는 제1 치수의 약 1.1배 내지 약 1.25배이고, 제3 치수는 제1 치수의 약 1.35배 내지 약 1.55배이다. 실시예에서, 제1 단면, 제2 단면 및 제3 단면은 기하학적으로 유사한 형상을 갖는다. 실시예에서, 상기 방법은 인터포저의 도전성 범프에 기판을 부착하는 것을 더 포함한다.In an embodiment, a method comprises: receiving a first design for a conductive bump on a first surface of an interposer, the conductive bumps in the first design having the same cross-sectional area; grouping the conductive bumps of the first design into a first group of conductive bumps in a first region of the first surface and a second group of conductive bumps in a second region of the first surface; grouping the conductive bumps, wherein the pattern density is less than the bump pattern density of the first region; forming a second design by modifying the first design, wherein modifying the first design includes modifying the cross-sectional area of the second group of conductive bumps in the second region; and forming a conductive bump on the first surface of the interposer according to a second design, wherein after forming the conductive bump on the first surface of the interposer according to the second design, the conductivity of the first group The bumps and the second group of conductive bumps have different cross-sectional areas. In an embodiment, the size of the conductive bumps of the first group remains unchanged in the first design and the second design. In an embodiment, forming the conductive bumps comprises: forming, over the first surface of the interposer, a patterned mask layer having bump openings; and performing a plating process to form a conductive material within the bump openings of the patterned mask layer. In an embodiment, the size of the bump opening in the first region is smaller than the size of the bump opening in the second region. In an embodiment, the bump pattern density of the first region is greater than about 25%. In an embodiment, in a second design, the first group of conductive bumps has a first cross-section having a first dimension, the second group of conductive bumps has a second cross-section having a second, distinct dimension, and When the bump pattern density is from about 15% to about 25%, the second dimension is from about 1.1 times to about 1.25 times the first dimension, and when the bump pattern density of the second region is less than about 15%, the second dimension is the first dimension from about 1.35 times to about 1.55 times the dimension. In an embodiment, grouping the conductive bumps of the first design further comprises grouping the third group of conductive bumps in a third region of the first surface, wherein the bump pattern density of the third region is the second region. lower than the bump pattern density of In an embodiment, forming the second design further comprises modifying the cross-sectional area of the third group of conductive bumps in the third region. In an embodiment, the bump pattern density of the first region is greater than about 25%, the bump pattern density of the second region is between about 15% and about 25%, and the bump pattern density of the third region is less than about 15%. In an embodiment, in a second design, the first group of conductive bumps has a first cross-section having a first dimension, the second group of conductive bumps has a second cross-section having a second, distinct dimension, and The conductive bumps have a third cross-section having a third distinct dimension, the second dimension being from about 1.1 times to about 1.25 times the first dimension, and the third dimension being from about 1.35 times to about 1.55 times the first dimension. In an embodiment, the first cross-section, the second cross-section and the third cross-section have geometrically similar shapes. In an embodiment, the method further comprises attaching the substrate to the conductive bump of the interposer.

실시예에서, 방법은 워크피스의 제1 표면 상의 도전성 범프를 위한 제1 디자인을 분석하는 단계로서, 상기 분석은 워크피스의 제1 표면을 제1 도전성 범프를 갖는 제1 영역과, 제2 도전성 범프를 갖는 제2 영역으로 나누는 것을 포함하고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 패턴 밀도는 제2 영역에 있는 제2 도전성 범프의 제2 범프 패턴 밀도보다 크고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 피치는 제2 영역에 있는 제2 도전성 범프의 제2 범프 피치보다 작은 것인 제1 디자인을 분석하는 단계; 제2 디자인을 형성하도록 제1 디자인을 수정하는 단계 - 제1 디자인을 수정하는 단계는 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 단계를 포함함 - ; 제2 디자인에 따라 워크피스의 제1 표면 상에 도전성 범프와 더미 범프를 형성하는 단계; 및 도전성 범프를 통해 워크피스를 기판에 접합하는 단계를 포함한다. 실시예에서, 제1 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 더미 범프는 도전성 범프와 동일한 재료로 형성되고, 더미 범프는 전기적으로 격리된다.In an embodiment, the method comprises analyzing a first design for a conductive bump on a first surface of a workpiece, wherein the analysis comprises a first surface of the workpiece with a first region having a first conductive bump and a second conductive bump dividing into a second region having bumps, wherein a first bump pattern density of first conductive bumps in the first region is greater than a second bump pattern density of second conductive bumps in the second region, and wherein analyzing the first design, wherein a first bump pitch of the first conductive bumps in the second region is less than a second bump pitch of the second conductive bumps in the second region; modifying the first design to form a second design, wherein modifying the first design includes adding dummy bumps to the second region to reduce the second bump pitch; forming a conductive bump and a dummy bump on the first surface of the workpiece according to a second design; and bonding the workpiece to the substrate through the conductive bumps. In an embodiment, the first bump pattern density is greater than about 25%. In an embodiment, the dummy bumps are formed of the same material as the conductive bumps, and the dummy bumps are electrically isolated.

실시예에서, 반도체 디바이스는 인터포저의 상부면에 부착되는 다이; 인터포저의 하부면의 제1 영역 - 제1 영역은 제1 범프 패턴 밀도를 가짐 - 에 있는 제1 도전성 범프; 인터포저의 하부면의 제2 영역 - 제2 영역은 제1 범프 패턴 밀도보다 작은 제2 범프 패턴 밀도를 가짐 - 에 있는 제2 도전성 범프; 및 인터포저의 하부면의 둘레 영역 - 둘레 영역은 제1 영역과 제2 영역을 둘러쌈 - 에 있는 더미 범프를 포함한다. 실시예에서, 제1 영역의 제1 도전성 범프는 제1 범프 피치를 갖고, 제2 영역의 제2 도전성 범프는 제1 범프 피치보다 큰 제2 범프 피치를 가지며, 둘레 영역의 더미 범프는 제1 범프 피치에 매칭되는 제3 범프 피치를 갖는다. 실시예에서, 반도체 디바이스는 인터포저의 하부면의 제3 영역 - 제3 영역은 제2 범프 패턴 밀도보다 작은 제3 범프 패턴 밀도와 제2 범프 피치보다 큰 제4 범프 피치를 가짐 - 에 있는 제3 도전성 범프를 더 포함하고, 이때 둘레 영역은 제1 영역, 제2 영역 및 제3 영역을 둘러싼다. 실시예에서, 제1 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 제1 도전성 범프와 제2 도전성 범프는 동일한 단면적을 갖는다.In an embodiment, a semiconductor device includes a die attached to a top surface of an interposer; a first conductive bump in a first region of the lower surface of the interposer, the first region having a first bump pattern density; a second conductive bump in a second region of the lower surface of the interposer, the second region having a second bump pattern density less than the first bump pattern density; and a dummy bump in a perimeter region of the lower surface of the interposer, the perimeter region surrounding the first region and the second region. In an embodiment, the first conductive bumps in the first region have a first bump pitch, the second conductive bumps in the second region have a second bump pitch greater than the first bump pitch, and the dummy bumps in the perimeter region have the first bump pitch. and a third bump pitch matching the bump pitch. In an embodiment, the semiconductor device comprises a second region in a third region of the lower surface of the interposer, wherein the third region has a third bump pattern density less than the second bump pattern density and a fourth bump pitch greater than the second bump pitch. 3 further conductive bumps, wherein the perimeter region surrounds the first region, the second region and the third region. In an embodiment, the first bump pattern density is greater than about 25%. In an embodiment, the first conductive bump and the second conductive bump have the same cross-sectional area.

본 개시의 양태는 첨부도면과 함께 읽어볼 때에 아래의 상세한 설명으로부터 가장 잘 이해된다. 업계에서의 기준 실무에 따르면, 다양한 피쳐들이 실척으로 도시되지 않는다는 점에 주목하라. 사실상, 다양한 피쳐들의 치수는 설명의 명확성을 위해 임의로 증가 또는 감소될 수 있다.
도 1은 몇몇 실시예에 따른, 반도체 디바이스의 단면도를 예시한다.
도 2는 몇몇 실시예에서의, 인터포저의 표면 상의 도전성 범프의 레이아웃을 예시한다.
도 3은 몇몇 실시예에서의, 인터포저의 표면적 내의 도전성 범프를 예시한다.
도 4a 및 도 4b는 몇몇 실시예에서의 상이한 형상을 지닌 도전성 범프의 평면도를 예시한다.
도 5는 도전성 범프의 공면성을 향상시키는 방법의 실시예를 예시한다.
도 6은 도전성 범프의 공면성을 향상시키는 방법의 실시예를 예시한다.
도 7a 및 도 7b는 도 6에 예시된 방법을 적용하기 전후의 인터포저의 표면적 내의 도전성 범프의 실시예를 예시한다.
도 8a는 몇몇 실시예에서의 인터포저의 표면 상의 도전성 범프의 레이아웃을 예시한다.
도 8b는 도 8a에 예시한 레이아웃의 일부의 확대도를 예시한다.
도 9는 몇몇 실시예에서의 반도체 디바이스의 형성 방법을 위한 흐름도를 예시한다.
도 10은 몇몇 실시예에서의 반도체 디바이스의 형성 방법을 위한 흐름도를 예시한다.
도 11은 몇몇 실시예에서의 반도체 디바이스의 형성 방법을 위한 흐름도를 예시한다.
Aspects of the present disclosure are best understood from the following detailed description when read in conjunction with the accompanying drawings. Note that, in accordance with standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of description.
1 illustrates a cross-sectional view of a semiconductor device, in accordance with some embodiments.
2 illustrates the layout of conductive bumps on a surface of an interposer, in some embodiments.
3 illustrates conductive bumps in the surface area of an interposer, in some embodiments.
4A and 4B illustrate top views of conductive bumps with different shapes in some embodiments.
5 illustrates an embodiment of a method for improving coplanarity of conductive bumps.
6 illustrates an embodiment of a method for improving coplanarity of conductive bumps.
7A and 7B illustrate embodiments of conductive bumps in the surface area of an interposer before and after applying the method illustrated in FIG. 6 .
8A illustrates the layout of conductive bumps on the surface of an interposer in some embodiments.
8B illustrates an enlarged view of a portion of the layout illustrated in FIG. 8A .
9 illustrates a flow diagram for a method of forming a semiconductor device in some embodiments.
10 illustrates a flow diagram for a method of forming a semiconductor device in some embodiments.
11 illustrates a flow diagram for a method of forming a semiconductor device in some embodiments.

아래의 개시는 본 발명의 상이한 피쳐들을 구현하기 위한 여러 상이한 실시예들 또는 예들을 제시한다. 본 개시를 간략하게 하기 위해, 구성요소 및 배치의 특정예들이 아래에서 설명된다. 이들은 단순히 예일 뿐임은 물론이며, 제한하는 것으로 의도되지 않는다. 예컨대, 후속하는 설명에 있어서 제2 피쳐 위에 또는 제2 피쳐 상에 제1 피쳐의 형성은, 제1 및 제2 피쳐가 직접 접촉한 상태로 형성되는 실시예를 포함할 수 있고, 제1 피쳐와 제2 피쳐가 직접 접촉할 수 없도록 제1 피쳐와 제2 피쳐 사이에 다른 피쳐가 형성될 수 있는 실시예도 또한 포함할 수 있다. 또한, 본 개시는 다양한 예에 있어서 참조부호 및/또는 문자를 반복할 수 있다. 설명 전반에 걸쳐, 달리 상술하지 않는 한, 유사한 참조부호는 동일하거나 유사한 재료(들)를 사용하여 동일하거나 유사한 방법에 의해 형성된 동일하거나 유사한 구성요소를 일컫는다.The disclosure below presents several different embodiments or examples for implementing different features of the invention. To simplify the present disclosure, specific examples of components and arrangements are described below. These are, of course, merely examples and are not intended to be limiting. For example, in the description that follows, the formation of a first feature on or on a second feature may include an embodiment in which the first and second features are formed in direct contact, and the first feature and Embodiments may also be included in which other features may be formed between the first and second features such that the second features cannot be in direct contact. Also, the present disclosure may repeat reference signs and/or letters in various examples. Throughout the description, unless otherwise specified, like reference numerals refer to the same or similar components formed by the same or similar methods using the same or similar material(s).

더욱이, “아래(beneath)”, “밑(below)”, “하부(lower)”, “위(above)”, “상부(upper)” 등과 같은 공간적 상대 용어는 여기에서는 도면에 예시된 바와 같은 하나의 요소 또는 피쳐의 다른 요소(들) 또는 피쳐(들)에 대한 관계를 기술하는 설명의 편의성을 위해 사용될 수 있다. 공간적인 상대 용어는 도면에 도시한 방위뿐만 아니라 사용 시 또는 공정 시에 디바이스의 상이한 방위를 포괄하는 것으로 의도된다. 장치는 달리 배향될 수 있고(90도 회전되거나 다른 방위로 배향됨), 본 명세서에서 사용되는 공간적으로 상대적인 기술어는 그에 따라 해석될 수 있다.Moreover, spatially relative terms such as “beneath”, “below”, “lower”, “above”, “upper”, etc. are used herein as exemplified in the drawings. It may be used for convenience of description that describes the relationship of one element or feature to another element(s) or feature(s). Spatially relative terms are intended to encompass different orientations of the device in use or in processing, as well as orientations shown in the figures. The device may be otherwise oriented (rotated 90 degrees or oriented at other orientations), and spatially relative descriptors used herein may be interpreted accordingly.

본 개시의 실시예는 도전성 범프를 형성하는 것과 관련해서, 특히 인터포저의 표면(예컨대, 하부면)에서의 평탄도가 향상된 도전성 범프를 형성하는 것과 관련해서 설명된다. 몇몇 실시예에서, 범프 패턴 밀도가 낮은 영역에서의 도전성 범프의 크기(예컨대, 단면적)가 범프 패턴 밀도가 높은 영역에서의 도전성 범프의 크기에 비해 증가된다. 몇몇 실시예에서, 범프 패턴 밀도가 낮은 영역에서의 도전성 범프들 사이에 더미 범프가 형성되어, 범프 패턴 밀도가 낮은 영역에서의 범프 피치를 감소시키고, 범프 패턴 밀도가 높은 영역에서는 더미 범프가 형성되지 않는다. 몇몇 실시예에서, 더미 범프는 둘레 영역에서의 범프 피치를 감소시키기 위해 인터포저의 표면의 둘레 영역에 형성되고, 둘레 영역으로 둘러싸이는 표면의 다른 영역에서의 범프 피치는 변하지 않은 상태로 유지된다(예컨대, 다른 영역에는 더미 범프가 형성되지 않는다). Embodiments of the present disclosure are described in relation to forming a conductive bump, and in particular, in relation to forming a conductive bump having improved flatness on a surface (eg, a lower surface) of an interposer. In some embodiments, the size (eg, cross-sectional area) of the conductive bumps in the area with the low bump pattern density is increased compared to the size of the conductive bumps in the area with the high bump pattern density. In some embodiments, dummy bumps are formed between the conductive bumps in regions with low bump pattern density to reduce bump pitch in regions with low bump pattern density, and dummy bumps are not formed in regions with high bump pattern density. does not In some embodiments, dummy bumps are formed in a perimeter region of the surface of the interposer to reduce bump pitch in the perimeter region, while the bump pitch in other regions of the surface surrounded by the perimeter region remains unchanged. For example, no dummy bumps are formed in other regions).

도 1은 몇몇 실시예에 따른, 반도체 디바이스(100)의 일부의 단면도를 예시한다. 반도체 디바이스(100)는 칩 온 웨이퍼 온 기판(CoWoS) 구조를 갖는다. 간결성을 위해, 도 1은 단지 반도체 디바이스(100)의 좌측 부분만을 보여주고, 반도체 디바이스(100)의 우측 부분은 당업자가 쉽게 이해하는 바와 같이 도 1에 도시한 좌측 부분과 동일(예컨대, 대칭)하거나 유사할 수 있다. 1 illustrates a cross-sectional view of a portion of a semiconductor device 100 , in accordance with some embodiments. The semiconductor device 100 has a chip-on-wafer-on-substrate (CoWoS) structure. For the sake of brevity, FIG. 1 shows only the left portion of the semiconductor device 100 , and the right portion of the semiconductor device 100 is identical (eg, symmetrical) to the left portion shown in FIG. 1 as will be readily understood by those skilled in the art. or similar.

반도체 디바이스(100)를 형성하기 위해, 하나 이상의 다이(101)(반도체 다이, 칩 또는 집적 회로(IC) 다이라고도 할 수 있음)가 인터포저(200)에 부착되어 칩 온 웨이퍼(CoW) 구조를 형성하고, 그 다음에 CoW 구조가 기판(300)(예컨대, 인쇄 회로 기판)에 부착되어 칩 온 웨이퍼 온 기판(CoWoS) 구조를 형성한다. 다이(101)는 몇몇 실시예에서 동일한 타입의 다이(예컨대, 메모리 다이 또는 로직 다이)이다. 다른 실시예에서, 다이(101)는 상이한 타입의 것이며, 예컨대 몇몇 다이(101)는 로직 다이이고, 다른 다이(101)는 메모리 다이이다. To form the semiconductor device 100, one or more dies 101 (which may also be referred to as semiconductor dies, chips, or integrated circuit (IC) dies) are attached to an interposer 200 to form a chip-on-wafer (CoW) structure. formed, and then the CoW structure is attached to a substrate 300 (eg, a printed circuit board) to form a chip on wafer on substrate (CoWoS) structure. Die 101 is, in some embodiments, the same type of die (eg, a memory die or a logic die). In other embodiments, the dies 101 are of different types, eg, some dies 101 are logic dies and other dies 101 are memory dies.

각각의 다이(101)는 기판, 기판 내에/상에 형성된 전기 소자(예컨대, 트랜지스터, 레지스터, 커패시터, 다이오드 등) 및 전기 소자들을 연결하여 다이(101)의 기능성 회로를 형성하는 기판 위의 상호 접속 구조를 포함한다. 다이(101)는 다이(101)의 회로에 대한 전기 접속을 제공하는 도전성 필러(pillar)(103)(다이 커넥터라고도 함)도 또한 포함한다. 간결성을 위해, 다이(101)의 모든 피쳐가 예시되지는 않는다.Each die 101 has a substrate, electrical components formed in/on the substrate (eg, transistors, resistors, capacitors, diodes, etc.) and interconnects over the substrate that connect the electrical components to form a functional circuit of the die 101 . includes structure. The die 101 also includes a conductive pillar 103 (also referred to as a die connector) that provides electrical connections to the circuitry of the die 101 . For the sake of brevity, not all features of die 101 are illustrated.

다이(101)의 기판은 반도체 기판, 도핑형 또는 언도핑형, 또는 실리콘 온 인슐레이터(Silicon-On-Insulator; SOI) 기판의 활성층일 수 있다. 일반적으로, SOI 기판은 실리콘, 게르마늄, 실리콘 게르마늄, SOI, 실리콘 게르마늄 온 인슐레이터(Silicon Germanium On Insulator; SGOI) 또는 이들의 조합과 같은 반도체 재료층을 포함한다. 사용 가능한 다른 기판으로는 다층 기판, 그래디언트 기판(gradient substrate) 또는 하이브리드 배향 기판(hybrid orientation substrate)이 있다.The substrate of the die 101 may be a semiconductor substrate, doped or undoped, or an active layer of a silicon-on-insulator (SOI) substrate. In general, an SOI substrate includes a layer of semiconductor material such as silicon, germanium, silicon germanium, SOI, Silicon Germanium On Insulator (SGOI), or a combination thereof. Other substrates that may be used include multilayer substrates, gradient substrates, or hybrid orientation substrates.

다이(101)의 전기 소자는 광범위한 능동 디바이스(예컨대, 트랜지스터) 및 수동 디바이스(예컨대, 커패시터, 레지스터, 인덕터) 등을 포함한다. 다이(101)의 전기 소자는 임의의 적절한 방법을 이용하여 다이(101)의 기판 내에 또는 기판 상에 형성될 수 있다. 다이(101)의 상호 접속 구조는 하나 이상의 유전층에 형성된 하나 이상의 금속화층(예컨대, 구리층)을 포함하고, 기능 회로를 형성하기 위해 다양한 전기 소자들을 접속시키는 데 사용된다. 실시예에서, 상호 접속 구조는 교호하는 유전층과 도전재(예컨대, 구리)층으로 형성되고, 임의의 적절한 프로세스(증착, 다마신, 이중 다마신 등)를 통해 형성될 수 있다. The electrical components of die 101 include a wide variety of active devices (eg, transistors) and passive devices (eg, capacitors, resistors, inductors), and the like. The electrical components of the die 101 may be formed in or on the substrate of the die 101 using any suitable method. The interconnect structure of die 101 includes one or more metallization layers (eg, copper layers) formed on one or more dielectric layers and is used to connect various electrical components to form functional circuits. In embodiments, the interconnect structure is formed of alternating layers of dielectric and conductive material (eg, copper), and may be formed through any suitable process (deposition, damascene, dual damascene, etc.).

다이(101)의 하부 구조를 위한 일정 보호도를 제공하기 위해, 하나 이상의 패시베이션층이 다이(101)의 상호 접속 구조 위에 형성될 수 있다. 패시베이션층은 산화규소, 질화규소, 탄소 도핑 산화물과 같은 저유전상수 유전체(low-k dielectrics), 다공성 탄소 도핑 이산화규소와 같은 극저유전상수 유전체, 이들의 조합 등으로 이루어질 수 있다. 패시베이션층은 화학적 기상 증착(Chemical Vapor Deposition; CVD)과 같은 프로세스를 통해 형성될 수 있지만, 임의의 적절한 프로세스가 활용될 수 있다. To provide some degree of protection for the underlying structure of the die 101 , one or more passivation layers may be formed over the interconnect structure of the die 101 . The passivation layer may be made of low-k dielectrics such as silicon oxide, silicon nitride, or carbon-doped oxide, ultra-low-k dielectrics such as porous carbon-doped silicon dioxide, a combination thereof, or the like. The passivation layer may be formed through a process such as Chemical Vapor Deposition (CVD), although any suitable process may be utilized.

도전성 패드는 패시베이션층 위에 형성될 수 있고, 패시베이션층을 통과하여 다이(101)의 상호 접속 구조와 전기 접촉하도록 연장될 수 있다. 도전성 패드는 알루미늄을 포함할 수 있지만, 구리와 같은 다른 재료도 대안으로서 사용될 수 있다. A conductive pad may be formed over the passivation layer and may extend through the passivation layer into electrical contact with the interconnect structure of the die 101 . The conductive pad may comprise aluminum, although other materials such as copper may alternatively be used.

다이(101)의 도전성 필러(103)는 도전성 패드 상에 형성되어, 다이(101)의 회로에 전기 접속되는 도전성 영역을 마련한다. 도전성 필러(103)는 구리 필러, 마이크로 범프와 같은 접촉 범프 등일 수 있고, 구리, 주석, 은과 같은 재료 또는 다른 적절한 재료를 포함할 수 있다.A conductive filler 103 of the die 101 is formed on the conductive pads to provide conductive regions for electrical connection to the circuitry of the die 101 . The conductive pillars 103 may be copper pillars, contact bumps such as micro bumps, or the like, and may include materials such as copper, tin, silver, or other suitable materials.

인터포저(200)를 보면(워크피스라고도 할 수 있음) 기판(211), 관통 비아(215)[기판 관통 비아(TSV)라고도 함], 기판(211)의 상부면 상의 도전성 패드(213), 기판(211)의 하부면 상의 UBM(Under-Bump-Metallurgy) 구조(230), 및 UBM 구조(230) 상의 도전성 범프(231)(범프, 커넥터 또는 도전성 필러라고도 할 수 있음)를 포함한다. 도 1은 또한 기판(211)의 표면 유전층(219)(예컨대, 최하위 유전층)도 또한 예시한다. UBM 구조(230)는 표면 유전층(219)을 관통하여 연장되어 인터포저(200)의 도전성 피쳐[예컨대, 관통 비아(215)]와 전기적으로 커플링된다.Looking at the interposer 200 (which may also be referred to as a workpiece), a substrate 211 , a through-via 215 (also called a through-substrate via (TSV)), a conductive pad 213 on the top surface of the substrate 211 , an Under-Bump-Metallurgy (UBM) structure 230 on the lower surface of the substrate 211 , and conductive bumps 231 (which may also be referred to as bumps, connectors, or conductive pillars) on the UBM structure 230 . 1 also illustrates a surface dielectric layer 219 (eg, a bottommost dielectric layer) of the substrate 211 . UBM structure 230 extends through surface dielectric layer 219 and is electrically coupled with conductive features (eg, through vias 215 ) of interposer 200 .

기판(211)은, 예컨대 실리콘 기판, 도핑형 또는 언도핑형, 또는 실리콘 온 인슐레이터(SOI) 기판의 활성층일 수 있다. 그러나, 기판(211)은 대안으로서 유리 기판, 세라믹 기판, 폴리머 기판 또는 적절한 보호 및/또는 상호 접속 기능을 제공할 수 있는 임의의 다른 기판일 수 있다. The substrate 211 may be, for example, a silicon substrate, a doped or undoped type, or an active layer of a silicon on insulator (SOI) substrate. However, the substrate 211 may alternatively be a glass substrate, a ceramic substrate, a polymer substrate, or any other substrate capable of providing suitable protection and/or interconnection functionality.

몇몇 실시예에서, 기판(211)은 레지스터, 커패시터, 신호 분배 회로, 이들의 조합 등과 같은 전기 소자를 포함할 수 있다. 이들 전기 소자는 능동형, 수동형 또는 그 조합형일 수 있다. 다른 실시예에서, 기판(211)은 내부에 능동 전기 소자 및 수동 전기 소자 모두가 없다. 그러한 조합 모두는 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다.In some embodiments, the substrate 211 may include electrical components such as resistors, capacitors, signal distribution circuits, combinations thereof, and the like. These electrical components may be active, passive or a combination thereof. In another embodiment, the substrate 211 is devoid of both active and passive electrical components therein. All such combinations are entirely intended to be included within the scope of this disclosure.

관통 비아(215)는 기판(211)의 상부면에서부터 기판(211)의 하부면까지 연장되고, 도전성 패드(213)와 도전성 펌프(231) 사이의 전기 접속을 제공한다. 관통 비아(215)는 구리, 텅스텐, 알루미늄, 합금, 도핑된 폴리실리콘, 이들의 조합 등과 같은 적절한 도전성 재료로 형성될 수 있다. 배리어층이 관통 비아(215)와 기판(211) 사이에 형성될 수 있다. 배리어층은 티탄 질화물과 같은 적절한 재료를 포함할 수 있지만, 대안으로서 탄탈 질화물, 티타늄 등과 같은 다른 재료가 활용될 수도 있다.The through via 215 extends from the top surface of the substrate 211 to the bottom surface of the substrate 211 , and provides an electrical connection between the conductive pad 213 and the conductive pump 231 . The through via 215 may be formed of a suitable conductive material, such as copper, tungsten, aluminum, an alloy, doped polysilicon, combinations thereof, or the like. A barrier layer may be formed between the through via 215 and the substrate 211 . The barrier layer may comprise a suitable material such as titanium nitride, but alternatively other materials such as tantalum nitride, titanium, etc. may be utilized.

실시예에서, UBM 구조(230)는 티탄층, 구리층 및 니켈층과 같은 3개의 도전성 재료층을 포함한다. 그러나, 크롬/크롬-구리 합금/구리/금의 배치, 티탄/티탄 텅스텐/구리의 배치 또는 구리/니켈/금의 배치와 같은, UBM 구조(230)의 형성에 적절한 여러 적절한 재료 및 층의 배치가 있다. UBM 구조(230)를 위해 사용 가능한 임의의 적절한 재료 또는 재료층이 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다.In an embodiment, the UBM structure 230 includes three layers of conductive material, such as a titanium layer, a copper layer and a nickel layer. However, disposition of various suitable materials and layers suitable for forming the UBM structure 230, such as a chromium/chromium-copper alloy/copper/gold arrangement, a titanium/titanium tungsten/copper arrangement, or a copper/nickel/gold arrangement. there is Any suitable material or material layer usable for the UBM structure 230 is intended to be included entirely within the scope of this disclosure.

UBM 구조(230)는 기판(211) 내의 도전성 피쳐[예컨대, 관통 비아(215)에 전기적으로 커플링되는 도전성 패드]를 노출시키도록 표면 유전층(219)에 개구를 형성하는 것; 표면 유전층(219) 위에 그리고 표면 유전층(219)에 있는 개구의 내부를 따라 시드층을 형성하는 것; 시드층 위에 패턴화 마스크층(예컨대, 포토레지스트)를 형성하는 것; 패턴화 마스크층의 개구 내에 그리고 시드층 위에 (예컨대, 도금에 의해) 도전성 재료(들)를 형성하는 것; 마스크층을 제거하는 것; 및 도전성 재료(들)가 형성되지 않은 시드층의 부분을 제거하는 것에 의해 형성될 수 있다. UBM 구조(230)를 형성하기 위한 다른 방법도 가능하고, 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다.The UBM structure 230 includes forming openings in the surface dielectric layer 219 to expose conductive features in the substrate 211 (eg, conductive pads electrically coupled to the through vias 215 ); forming a seed layer over the surface dielectric layer 219 and along the interior of the openings in the surface dielectric layer 219; forming a patterned mask layer (eg, photoresist) over the seed layer; forming (eg, by plating) conductive material(s) in the opening of the patterned mask layer and over the seed layer; removing the mask layer; and removing the portion of the seed layer where the conductive material(s) is not formed. Other methods for forming the UBM structure 230 are possible and are intended to be included entirely within the scope of the present disclosure.

도전성 범프(231)는 마이크로범프, 구리 필러, C4(controlled collapse chip connection) 범프, 구리층, 니켈층, 무연(Lead Free; LF)층, ENEPIG(Electroless Nickel Electroless Palladium Immersion Gold)층, Cu/LF층, Sn/Ag층, Sn/Pb층, 이들의 조합 등과 같은 임의의 적절한 타입의 외부 컨택트일 수 있다. The conductive bumps 231 include micro bumps, copper fillers, controlled collapse chip connection (C4) bumps, copper layers, nickel layers, lead free (LF) layers, ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) layers, Cu/LF It can be any suitable type of external contact, such as a layer, a Sn/Ag layer, a Sn/Pb layer, combinations thereof, and the like.

몇몇 실시예에서, 도전성 범프(231)는, 예컨대 전해도금 또는 무전해도금과 같은 도금 프로세스에 의해 형성되는 구리 필러와 같은 금속 필러일 수도 있고, 이 금속 필러를 포함할 수도 있다. 도전성 범프(231)는 UBM 구조(230)를 노출시키는 개구를 지닌 패턴화 마스크층(예컨대, 포토레지스트)를 형성하는 것; (예컨대, 도금에 의해) 패턴화 마스크층의 개구 내에 그리고 UBM 구조(230) 위에 도전성 재료(들)를 형성하는 것; 및 마스크층을 제거하는 것에 의해 형성될 수 있다. 도전성 범프(231)를 형성하기 위한 다른 방법도 가능하고, 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다. 도 1의 예에서, UBM 구조(230)와 각각의 도전성 범프(231)는 동일한 폭을 갖는다.In some embodiments, the conductive bumps 231 may be, or may include, a metal pillar such as a copper pillar formed by a plating process such as electroplating or electroless plating, for example. The conductive bumps 231 are formed by forming a patterned mask layer (eg, photoresist) having openings exposing the UBM structure 230; forming the conductive material(s) in the opening of the patterned mask layer and over the UBM structure 230 (eg, by plating); and removing the mask layer. Other methods for forming the conductive bumps 231 are possible and are intended to be included entirely within the scope of the present disclosure. In the example of FIG. 1 , the UBM structure 230 and each conductive bump 231 have the same width.

몇몇 실시예에서, (예컨대, 도금 프로세스를 통해) 도전성 범프(231)를 형성하는 데 사용되는 마스크층(예컨대, 포토레지스트)에 있는 개구의 크기는 도전성 범프(231)의 단면적에 대응하고(예컨대, 동일하고), 이에 따라 이 도전성 범프의 단면적을 결정한다. 도전성 범프(231)의 단면적은 몇몇 실시예에서는 도 1의 단면 A-A를 따른 도전성 범프(231)의 단면적을 일컫는다. 도전성 범프(231)의 단면은, 예컨대 원형 형상이나 타원 형상을 가질 수 있다. 설명을 용이하게 하기 위해, (예컨대, 도금 프로세스를 통해) 도전성 범프(231)를 형성하는 데 사용되는 패턴화 마스크층(예컨대, 포토레지스트)에 있는 개구는 이후에서는 범프 개구라고 할 수 있다. In some embodiments, the size of the opening in the mask layer (eg, photoresist) used to form the conductive bumps 231 (eg, via a plating process) corresponds to a cross-sectional area of the conductive bumps 231 (eg, via a plating process). , equal to), thus determining the cross-sectional area of this conductive bump. The cross-sectional area of the conductive bump 231 refers, in some embodiments, to the cross-sectional area of the conductive bump 231 along the cross-section A-A of FIG. 1 . The cross-section of the conductive bump 231 may have, for example, a circular shape or an elliptical shape. For ease of explanation, openings in the patterned mask layer (eg, photoresist) used to form conductive bumps 231 (eg, via a plating process) may be referred to hereinafter as bump openings.

도 1에 예시된 바와 같이, 다이(101)의 도전성 필러(103)는, 예컨대 땜납 영역(105)에 의해 인터포저(200)의 도전성 패드(213)에 접합된다. 다이(101)를 인터포저(200)에 접합하기 위해 리플로우 프로세스(reflow process)가 수행될 수 있다.As illustrated in FIG. 1 , the conductive pillars 103 of the die 101 are bonded to the conductive pads 213 of the interposer 200 by, for example, solder regions 105 . A reflow process may be performed to bond the die 101 to the interposer 200 .

다이(101)가 인터포저(200)에 접합된 후, 언더필 재료(107)가 다이(101)와 인터포저(200) 사이에 형성된다. 언더필 재료(107)는, 예컨대 분배 니들이나 다른 적절한 분배 툴을 사용하여 다이(101)와 인터포저(200) 사이의 갭에 분배된 다음 경화되는 액체 에폭시를 포함할 수 있다. 도 1에 예시된 바와 같이, 언더필 재료(107)는 다이(101)와 인터포저(200) 사이의 갭을 충전하고, 또한 다이(101)들의 측벽 사이의 갭을 충전할 수도 있다. After the die 101 is bonded to the interposer 200 , an underfill material 107 is formed between the die 101 and the interposer 200 . The underfill material 107 may include a liquid epoxy that is dispensed into the gap between the die 101 and the interposer 200 using, for example, a dispensing needle or other suitable dispensing tool and then cured. As illustrated in FIG. 1 , the underfill material 107 fills the gap between the die 101 and the interposer 200 , and may also fill the gap between the sidewalls of the dies 101 .

다음에, 몰딩 재료(109)가 인터포저(200) 위에 그리고 다이(101) 주변에 형성된다. 몰딩 재료(109)는 언더필 재료(107)도 또한 둘러싼다. 몰딩 재료(109)는, 예컨대 에폭시, 유기 폴리머, 실리카계 필러 또는 유리 필러가 첨가되거나 첨가되지 않은 폴리머, 또는 다른 재료를 포함할 수 있다. 몇몇 실시예에서, 몰딩 재료(109)는 도포될 때에 젤 타입 액체인 LMC(Liquid Molding Compound)를 포함한다. 몰딩 재료(109)는 도포될 때에 액체 또는 고체도 또한 포함할 수 있다. 대안으로서, 몰딩 재료(109)는 다른 격리 및/또는 캡슐화 재료를 포함할 수 있다. 몰딩 재료(109)는 몇몇 실시예에서 웨이퍼 레벨 몰딩 프로세스(wafer level molding process)를 이용하여 도포된다. 몰딩 재료(109)는, 예컨대 압축 성형, 이송 성형, MUF(Molded UnderFill) 또는 다른 방법을 이용하여 몰딩될 수 있다. Next, a molding material 109 is formed over the interposer 200 and around the die 101 . The molding material 109 also surrounds the underfill material 107 . The molding material 109 may include, for example, an epoxy, an organic polymer, a polymer with or without a silica-based filler or glass filler, or other materials. In some embodiments, the molding material 109 includes Liquid Molding Compound (LMC) that is a gel-type liquid when applied. The molding material 109 may also contain a liquid or a solid when applied. Alternatively, the molding material 109 may include other isolating and/or encapsulating materials. Molding material 109 is applied using a wafer level molding process in some embodiments. The molding material 109 may be molded using, for example, compression molding, transfer molding, Molded UnderFill (MUF), or other methods.

다음에, 몰딩 재료(109)는 몇몇 실시예에서 경화 프로세스를 이용하여 경화된다. 경화 프로세스는 어닐링 프로세스 또는 다른 가열 프로세스를 이용하여 몰딩 재료(109)를 정해진 기간 동안 정해진 온도로 가열하는 것을 포함할 수 있다. 경화 프로세스는 또한 자외(UV)광 노출 프로세스, 적외선(IR) 에너지 노출 프로세스, 이들의 조합이나, 이들과 가열 프로세스의 조합을 포함할 수 있다. 대안으로서, 몰딩 재료(109)는 다른 방법을 이용하여 경화될 수 있다. 몇몇 실시예에서는, 경화 프로세스가 포함되지 않는다. The molding material 109 is then cured using a curing process in some embodiments. The curing process may include heating the molding material 109 to a defined temperature for a defined period of time using an annealing process or other heating process. The curing process may also include an ultraviolet (UV) light exposure process, an infrared (IR) energy exposure process, a combination thereof, or a combination of these and a heating process. Alternatively, the molding material 109 may be cured using other methods. In some embodiments, no curing process is included.

몰딩 재료(109)가 형성된 후, 화학적 및 기계적 평탄화(CMP)와 같은 평탄화 프로세스가 수행되어, 다이(101) 위에서 몰딩 재료(109)의 과량의 부분을 제거할 수 있고, 이에 따라 몰딩 재료(109)와 다이(101)가 동일 높이의 상부면을 갖는다. 도 1에 예시된 바와 같이, 몰딩 재료(109)는 기판(211)에 인접한다. After the molding material 109 is formed, a planarization process such as chemical and mechanical planarization (CMP) may be performed to remove an excess portion of the molding material 109 over the die 101 , thus the molding material 109 . ) and the die 101 have the same top surface. As illustrated in FIG. 1 , the molding material 109 is adjacent the substrate 211 .

도 1의 예에서, CoW 구조는 인터포저(200), 다이(101), 언더필 재료(107) 및 몰딩 재료(109)를 포함한다. 다음으로, CoW 구조는 기판(300) - 인쇄 회로 기판(PCB)일 수 있음 - 에 접합되어, CoWoS 구조를 형성할 수 있다. In the example of FIG. 1 , the CoW structure includes an interposer 200 , a die 101 , an underfill material 107 , and a molding material 109 . Next, the CoW structure may be bonded to a substrate 300 - which may be a printed circuit board (PCB) - to form a CoWoS structure.

기판(300)을 보면, 몇몇 실시예에서 기판(300)은 다층 회로 기판이다. 예컨대, 기판(300)은 BT(Bismaleimide Triazine) 수지, FR-4(방염성의 에폭시 수지 바인더를 지닌 유리섬유 직물로 이루어진 복합재), 세라믹, 유리, 플라스틱, 테이프, 필름 또는 다른 지지 재료로 형성되는 하나 이상의 유전층(321/323/325)을 포함할 수 있다. 기판(300)은 기판(300) 내/상에 형성된 전기 도전성 피쳐[예컨대, 도전성 라인(327) 및 비아(329)]를 포함할 수 있다. 도 1에 예시된 바와 같이, 기판(300)은 기판(300)의 상부면 상에 형성된 도전성 패드(326)와, 기판(300)의 하부면 상에 형성된 도전성 패드(328)를 가지며, 도전성 패드(326/238)는 기판(300)의 도전성 피쳐와 전기적으로 커플링된다. 땜납 볼, 구리 필러 또는 상부에 땜납을 지닌 구리 필러와 같은 외부 커넥터(331)가 도 1에 예시된 바와 같이 도전성 패드(328) 상에 형성된다.Turning to substrate 300 , in some embodiments substrate 300 is a multilayer circuit board. For example, the substrate 300 may be one formed of Bismaleimide Triazine (BT) resin, FR-4 (composite made of glass fiber fabric with a flame retardant epoxy resin binder), ceramic, glass, plastic, tape, film, or other support material. The above dielectric layers 321/323/325 may be included. Substrate 300 may include electrically conductive features (eg, conductive lines 327 and vias 329 ) formed in/on substrate 300 . As illustrated in FIG. 1 , a substrate 300 has a conductive pad 326 formed on an upper surface of the substrate 300 and a conductive pad 328 formed on a lower surface of the substrate 300 , the conductive pad 326/238 are electrically coupled with conductive features of the substrate 300 . An external connector 331, such as a solder ball, copper pillar, or copper pillar with solder thereon, is formed on the conductive pad 328 as illustrated in FIG.

인터포저(200)는 기판(300)에 접합된다. 인터포저(200)를, 예컨대 땜납 영역(217)을 통해 기판(300)에 전기적 그리고 기계적으로 커플링하기 위해 리플로우 프로세스가 수행될 수 있다. 다음에, 언더필 재료(112)가 인터포저(200)와 기판(300) 사이에 형성된다. 언더필 재료(112)는 언더필 재료(107)와 동일하거나 유사할 수 있고, 언더필 재료(107)와 동일하거나 유사한 형성 방법으로 형성될 수 있으므로, 그 상세는 반복하지 않는다. 인터포저(200)가 기판(300)에 접합된 후, 도 1의 CoWoS 구조가 형성된다.The interposer 200 is bonded to the substrate 300 . A reflow process may be performed to electrically and mechanically couple the interposer 200 to the substrate 300 via, for example, a solder region 217 . Next, an underfill material 112 is formed between the interposer 200 and the substrate 300 . The underfill material 112 may be the same as or similar to the underfill material 107 , and may be formed by the same or similar forming method as the underfill material 107 , so the details thereof will not be repeated. After the interposer 200 is bonded to the substrate 300 , the CoWoS structure of FIG. 1 is formed.

반도체 디바이스(100)의 집적 밀도가 증가하기 때문에, 더 많은 다이(101)가 인터포저(200)에 부착되어, 반도체 패키지 내에서 보다 많은 기능을 달성할 수 있다, 그 결과, 인터포저(200)의 크기가 증가할 수 있다. 인터포저(200)의 크기가 증가하기 때문에, 인터포저(200)의 하부면에 있는 도전성 범프(231)과 같은, 인터포저(200)의 도전성 범프들의 공면성(예컨대, 평탄도 및 레벨)을 유지하기가 점점 어려워진다. 도전성 범프(231)들의 공면성은 기판(211)에 대해 원위에 있는 도전성 범프들의 단부면 사이의 최대 오프셋에 의해 측정될 수 있다. 예컨대, 도전성 범프(231)들의 공면성은 인터포저(200)의 중심 영역 및 둘레 영역에 위치하는 도전성 범프(231)들의 최하위 표면 사이의 최대차(예컨대, 최대 오프셋)을 산출하는 것에 의해 측정될 수 있다. 다른 예로서, 도전성 범프(231)들의 공면성은 피크 대 최소 제곱 평균(Least Mean Square; LMS) 방법과 같은 적절한 측정 방법을 이용하는 상용 장비를 사용하여 측정될 수 있다. 따라서, 도전성 범프들의 최하위 표면 사이의 차이가 크다는 것은 공면성이 불량하다는 것을 나타내고, 이는 콜드 조인트(cold-joint) 또는 브리징(bridging)(예컨대, 도전성 범프들 사이의 누전)과 같은 문제를 일으킬 수 있고, 이에 따라 제조 프로세스의 수율을 떨어뜨릴 수 있다. 본 개시에서의 다양한 실시예 방법과 구조는 도전성 범프(231)의 공면성을 향상시키고, 이에 따라 형성되는 반도체 디바이스(100)의 신뢰성을 향상시키고 생산 수율을 향상시킨다.As the integration density of the semiconductor device 100 increases, more dies 101 can be attached to the interposer 200 to achieve more functions within the semiconductor package. As a result, the interposer 200 may increase in size. As the size of the interposer 200 increases, the coplanarity (eg, flatness and level) of the conductive bumps of the interposer 200, such as the conductive bumps 231 on the lower surface of the interposer 200, is reduced. It becomes increasingly difficult to maintain. The coplanarity of the conductive bumps 231 may be measured by the maximum offset between the end surfaces of the conductive bumps distal to the substrate 211 . For example, the coplanarity of the conductive bumps 231 can be measured by calculating the maximum difference (eg, maximum offset) between the lowermost surfaces of the conductive bumps 231 located in the central region and the peripheral region of the interposer 200 . have. As another example, the coplanarity of the conductive bumps 231 may be measured using commercially available equipment using an appropriate measurement method such as a peak-to-least mean square (LMS) method. Therefore, a large difference between the lowermost surfaces of the conductive bumps indicates poor coplanarity, which may cause problems such as cold-joints or bridging (eg, short circuit between conductive bumps). and, accordingly, the yield of the manufacturing process may be reduced. Various embodiment methods and structures in the present disclosure improve the coplanarity of the conductive bumps 231 , thereby improving the reliability of the semiconductor device 100 formed thereby and improving the production yield.

도 2는 몇몇 실시예에서의 도 1의 인터포저(200)의 하부면 상에 있는 도전성 펌프(231)를 위한 레이아웃(레이아웃 디자인 또는 디자인이라고도 할 수 있음)을 예시한다. 따라서, 도 2는 인터포저(200)의 하부면의 평면도이다. 특히, 도 2는 도전성 범프(231)가 형성된, 인터포저(200)의 하부면의 영역[예컨대, 401, 402, 403]을 예시하고, 각각의 영역은 상이한 범프 패턴 밀도를 가질 수 있고, 도 2의 레이아웃에 관한 상세(예컨대, 상이한 영역들의 경계를 결정하는 방법)는 이후에 설명된다. 간결성을 위해, 영역[예컨대, 401, 402, 403]에 있는 도전성 범프(231)는 도 2에는 예시되어 있지 않고, 도 3에 예시되어 있다. FIG. 2 illustrates a layout (which may also be referred to as a layout design or design) for a conductive pump 231 on the underside of the interposer 200 of FIG. 1 in some embodiments. Accordingly, FIG. 2 is a plan view of the lower surface of the interposer 200 . In particular, FIG. 2 illustrates regions (eg, 401 , 402 , 403 ) of the lower surface of interposer 200 in which conductive bumps 231 are formed, each region having a different bump pattern density, as shown in FIG. Details regarding the layout of 2 (eg, how to determine the boundaries of different regions) are described later. For the sake of brevity, conductive bumps 231 in regions (eg, 401 , 402 , 403 ) are not illustrated in FIG. 2 , but are illustrated in FIG. 3 .

도 3은 도전성 범프(231)가 형성되는 인터포저(200)의 하부면의 영역을 도시한다. 도 3에 예시된 영역은 도 2에 예시된 영역들 중 임의의 영역 또는 도 2에 예시된 영역(예컨대, 401, 402, 403)들의 부분일 수 있다. 도 3의 범프(231)의 형상의 예가 도 4a 및 도 4b에 예시되어 있다. 특히, 도 4a는 직경(R)을 지닌 원형 단면을 갖는 범프(231)를 예시하고, 도 4b는 제1 치수(R1) 및 제2 치수(R2)를 지닌 타원형 단면을 갖는 범프(231)를 예시하며, 제2 치수(R2)는 타원 형상의 길이방향(예컨대, 타원 형상의 장축을 따르는 방향)을 따라 측정되고, 제1 치수(R1)는 길이방향에 수직한 방향을 따라 측정된다. 예시된 실시예에서, 도 3의 평면도에서의 범프(231)의 형상 및 크기는 (도 1의 단면 A-A를 따른) 범프(231)의 단면의 형상 및 크기와 동일하다. 따라서, 범프(231)의 형상 및 크기는 몇몇 실시예에서는 전술한 바와 같이 범프(231)를 형성하는 데 사용되는 마스크층에 있는 범프 개구의 형상 및 크기에 대응한다(예컨대, 동일하다).3 shows the region of the lower surface of the interposer 200 in which the conductive bumps 231 are formed. The region illustrated in FIG. 3 may be any of the regions illustrated in FIG. 2 or part of the regions illustrated in FIG. 2 (eg, 401 , 402 , 403 ). An example of the shape of the bump 231 of FIG. 3 is illustrated in FIGS. 4A and 4B . In particular, FIG. 4A illustrates a bump 231 having a circular cross-section with a diameter R, and FIG. 4B illustrates a bump 231 having an elliptical cross-section having a first dimension R1 and a second dimension R2. For example, the second dimension R2 is measured along a longitudinal direction of the elliptical shape (eg, a direction along a major axis of the elliptical shape), and the first dimension R1 is measured along a direction perpendicular to the longitudinal direction. In the illustrated embodiment, the shape and size of the bump 231 in the top view of FIG. 3 is the same as the shape and size of the cross section of the bump 231 (along the cross section A-A of FIG. 1 ). Accordingly, the shape and size of the bump 231 corresponds to (eg, is equal to) the shape and size of the bump opening in the mask layer used to form the bump 231 as described above in some embodiments.

다시, 도 2를 참고하면, 영역(401)은 범프(231)를 위한 제1 패턴 밀도를 갖는 영역을 나타내고, 영역(402)은 범프(231)를 위한 제2 패턴 밀도를 갖는 영역을 나타내며, 영역(403)은 범프(231)를 위한 제3 패턴 밀도를 갖는 영역을 나타내고, “패턴 밀도”라는 용어는 소정 영역[예컨대 인터포저(200)의 하부면의 영역] 내에서의 범프(231)의 밀도를 일컫는다. Referring again to FIG. 2 , region 401 represents an area having a first pattern density for bumps 231 , and region 402 represents an area having a second pattern density for bumps 231 , Region 403 denotes a region having a third pattern density for bump 231 , and the term “pattern density” refers to bump 231 within a predetermined region (eg, the region of the lower surface of interposer 200 ). refers to the density of

소정 영역에서의 범프(231)의 패턴 밀도는 해당 영역에서의 범프(231)들의 총 면적을 해당 영역의 면적으로 나누는 것에 의해 산출될 수 있다. 도 3의 예에서, 예시된 영역은 폭 b 및 길이 a를 갖는 직사각형 영역이고, 이에 따라 a×b의 면적을 갖는다. 상기 영역에서의 범프(231)의 총 면적은 이 영역 내부의 범프(231)들의 면적(예컨대, 도 3의 평면도에서 범프(231)의 원형 형상 또는 타원 형상의 면적)의 합계이다. 아래의 설명에서, 소정 영역에서의 범프(231)의 패턴 밀도는 해당 영역의 패턴 밀도 또는 해당 영역의 범프 패턴 밀도라고 칭할 수 있다. 예시된 실시예에서, 영역(401)은 약 25 %를 초과하는 패턴 밀도를 갖고, 영역(402)은 약 15 % 내지 약 25 %의 패턴 밀도를 가지며, 영역(403)은 약 15 % 미만의 패턴 밀도를 갖는다. 아래의 설명에서, 영역(401)은 높은 패턴 밀도 영역이라고 칭할 수 있고, 영역(402)은 중간 패턴 밀도 영역이라고 칭할 수 있으며, 영역(403)은 낮은 패턴 밀도 영역이라고 칭할 수 있다.The pattern density of the bumps 231 in the predetermined region may be calculated by dividing the total area of the bumps 231 in the corresponding region by the area of the corresponding region. In the example of FIG. 3 , the illustrated region is a rectangular region having a width b and a length a, and thus has an area of a×b. The total area of the bumps 231 in the region is the sum of the areas of the bumps 231 inside this region (eg, the areas of the circular shape or the elliptical shape of the bumps 231 in the plan view of FIG. 3 ). In the following description, the pattern density of the bumps 231 in a predetermined region may be referred to as the pattern density of the corresponding region or the bump pattern density of the corresponding region. In the illustrated embodiment, region 401 has a pattern density greater than about 25%, region 402 has a pattern density of between about 15% and about 25%, and region 403 has a pattern density of less than about 15%. It has a pattern density. In the description below, region 401 may be referred to as a high pattern density region, region 402 may be referred to as a medium pattern density region, and region 403 may be referred to as a low pattern density region.

도 2의 예에서, 영역(401)은 연속적인 영역(예컨대, 직사각형 형상 영역)을 포함하고, 영역(402)은 4개의 별개의 영역(예컨대, 4개의 직사각형 형상 영역)을 포함하며, 영역(403)은 영역(401, 402) 이외의, 인터포저(200)의 하부면의 영역을 포함한다. 도 2에서의 영역(예컨대, 401, 402, 403)의 개수, 영역의 위치 및 영역의 형상은 단지 예시적인 것이지, 제한하는 것은 아니며, 영역의 다른 개수, 영역의 다른 위치 및 영역의 다른 형상도 또한 가능하며, 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다.In the example of FIG. 2 , region 401 includes a continuous region (eg, rectangular-shaped region), region 402 includes four distinct regions (eg, four rectangular-shaped regions), and region ( 403 includes regions of the lower surface of interposer 200 other than regions 401 and 402 . The number of regions (eg, 401 , 402 , 403 ) in FIG. 2 , positions of regions, and shapes of regions are illustrative only and not limiting, and different numbers of regions, different positions of regions, and different shapes of regions are also shown. It is also possible and is intended to be included entirely within the scope of this disclosure.

본 개시를 사용하지 않는 이전 프로세싱에서는, 상이한 영역[예컨대, 401, 402, 403]에 범프(231)를 형성하기 위한 범프 개구들의 크기가 동일하고, 이에 따라 상이한 영역에 형성되는 도전성 범프(231)가 동일한 단면적을 갖는다. 그러나, 동일한 범프 개구 크기를 사용하는 것에 의해, 높은 패턴 밀도로 영역에 형성되는 범프(231)는, 낮은 패턴 밀도로 영역에 형성되는 범프(231)보다 낮은 높이를 가질 수 있다는 것이 관찰된다. 상이한 패턴 밀도를 지닌 영역에 있는 도전성 범프(231)의 높이차는 패턴 밀도 변화로 인한 도전성 범프(231)(의 높이)의 로딩 이펙트(loading effect)라고 칭할 수 있다. 로딩 이펙트는 도전성 범프(231)의 공면성 악화에 기여한다. 특별한 이론으로 제한되는 일 없이, 범프(231)를 형성하기 위한 도금 프로세스 동안, 화학 유체가 실질적으로 균일한 금속 이온 농도를 갖고, 이에 따라 높은 패턴 밀도를 지닌 영역은 범프(231)마다 보다 적은 금속 이온을 가질 수 있으며, 이에 따라 높은 패턴 밀도 영역에 형성된 범프(231)는 낮은 패턴 밀도 영역에 형성된 범프(231)보다 낮은 높이를 가질 수 있다.In previous processing not using the present disclosure, the sizes of bump openings for forming bumps 231 in different regions (eg, 401, 402, 403) are the same, and thus conductive bumps 231 formed in different regions. has the same cross-sectional area. However, it is observed that by using the same bump opening size, bumps 231 formed in regions with higher pattern density can have a lower height than bumps 231 formed in regions with lower pattern density. The difference in height of the conductive bumps 231 in regions having different pattern densities may be referred to as a loading effect of (the height of) the conductive bumps 231 due to a change in the pattern density. The loading effect contributes to deterioration of coplanarity of the conductive bumps 231 . Without wishing to be bound by a particular theory, during the plating process to form bumps 231 , the chemical fluid has a substantially uniform metal ion concentration, so that regions with high pattern density have less metal per bump 231 . ions, and thus the bumps 231 formed in the high pattern density region may have a lower height than the bumps 231 formed in the low pattern density region.

본 개시의 다양한 방법은 상이한 패턴 밀도를 지닌 영역에 있는 범프(231)들의 높이차를 줄이고, 이에 따라 범프(231)들의 공면성을 향상시킨다. 도 5는 상이한 영역(예컨대, 401, 402, 403)에 있는 범프(231)들의 크기가 달라지도록 범프(231)들의 크기(예컨대, 단면)을 조정하는 것에 의해 범프(231)들이 높이차를 줄이는 방법을 예시한다. 특히, 낮은 패턴 밀도 영역(403)에 있는 범프(231)의 크기와 중간 밀도 영역(402)에 있는 범프(231)의 크기는 높은 패턴 밀도 영역에 있는 범프(231)의 크기에 비해 증가된다(상세는 아래를 참조하라). 범프(231)의 크기를 조정하는 것은 전술한 바와 같이 범프(231)를 형성하는 데 사용되는 마스크층에 있는 범프 개구의 크기를 조정하는 것에 의해 달성될 수 있다.Various methods of the present disclosure reduce the height difference between the bumps 231 in regions having different pattern densities, and thus improve the coplanarity of the bumps 231 . 5 shows that the bumps 231 reduce the height difference by adjusting the size (eg, cross-section) of the bumps 231 so that the sizes of the bumps 231 in different regions (eg, 401 , 402 , 403 ) are different. exemplify the method. In particular, the size of the bump 231 in the low pattern density region 403 and the size of the bump 231 in the medium density region 402 are increased compared to the size of the bump 231 in the high pattern density region ( See below for details). Adjusting the size of the bump 231 may be accomplished by adjusting the size of the bump opening in the mask layer used to form the bump 231 as described above.

몇몇 실시예에서, 도 5에 예시된 방법은 도전성 범프(231)를 위한 제1 레이아웃 디자인(예컨대, 여기에 개시된 방법을 이용하여 공면성을 향상시키기 위해 시작점으로서 이용되는 기존 디자인)을 수용하는 것에 의해 시작된다. 제1 레이아웃 디자인(제1 디자인이라고 칭할 수도 있음)은 범프(231)의 크기(예컨대, 단면적)와 범프(231)의 위치를 포함할 수 있다. 아래의 설명에서, 도 2의 레이아웃 디자인은, 모든 영역(예컨대, 401, 402, 403)에 있는 범프(231)들이 동일한 크기(예컨대, 단면적)를 갖는다고 가정할 때에 제1 디자인의 예로서 이용될 수 있다. 도 2의 디자인은 결국 범프(231)를 위한 향상된 공면성을 달성하는 제2 디자인을 형성하도록 수정되고, 그 상세는 아래에서 설명된다. In some embodiments, the method illustrated in FIG. 5 includes accepting a first layout design for conductive bumps 231 (eg, an existing design used as a starting point to improve coplanarity using the methods disclosed herein). is started by The first layout design (which may be referred to as a first design) may include a size (eg, a cross-sectional area) of the bump 231 and a location of the bump 231 . In the description below, the layout design of FIG. 2 is used as an example of the first design, assuming that the bumps 231 in all regions (eg, 401, 402, 403) have the same size (eg, cross-sectional area). can be The design of FIG. 2 is modified to eventually form a second design that achieves improved coplanarity for bumps 231 , the details of which are described below.

다음에, 도 5의 방법은 인터포저(200)의 하부면에 있는 상이한 영역에서의 범프 패턴 밀도를 평가(예컨대, 산출)한다. 상이한 영역들에 있어서의 범프(231)들의 패턴 밀도에 기초하여, 도 5의 방법은 범프(231)들을 높은 패턴 밀도 영역(401)(예컨대, 패턴 밀도가 25 % 이상), 중간 패턴 밀도 영역(402)(예컨대, 패턴 밀도가 약 15 % 내지 약 25 %) 또는 낮은 패턴 밀도 영역(403)(예컨대, 패턴 밀도가 15 % 이하)으로 그룹화한다. 즉, 상기 방법은 인터포저(200)의 하부면을 높은 패턴 밀도 영역(401), 중간 패턴 밀도 영역(402) 및 낮은 패턴 밀도 영역(403)과 같은 3개의 영역(도 2의 401, 402, 403 참고)으로 나눈다. Next, the method of FIG. 5 evaluates (eg, calculates) the bump pattern density in different areas on the underside of the interposer 200 . Based on the pattern density of bumps 231 in different regions, the method of FIG. 5 divides bumps 231 into high pattern density regions 401 (e.g., 25% or greater pattern density), medium pattern density regions ( 402) (eg, having a pattern density of about 15% to about 25%) or low pattern density regions 403 (eg, having a pattern density of 15% or less). That is, the method described above describes the lower surface of the interposer 200 into three regions (401, 402 in FIG. 2 , 401, 402 in FIG. 403)).

몇몇 실시예에서, 상이한 영역(예컨대, 401, 402, 403)들의 경계를 결정하는 것은, 인터포저(200)의 하부면을 복수 개의 비중첩 그리드형 소형 영역(예컨대, 크기가 약 1 mm × 약 0.5 mm인 직사각형 영역)으로 나누는 것, 각각의 소형 영역에서 범프 패턴 밀도를 산출하는 것, 및 각각의 소형 영역을 산출된 패턴 밀도에 기초하여 영역(예컨대, 401, 402, 403) 중 하나로 할당하는 것을 포함할 수 있다. 몇몇 실시예에서, 제1 디자인은 클러스터로 형성된 범프(231)를 가질 수 있고, 각각의 범프 클러스터는 상이한 범프 패턴 밀도를 가지며, 이 경우에 각각의 범프(231) 클러스터의 경계는 범프 클러스터가 할당되는 영역을 위한 경계로서 사용될 수 있다. 상이한 영역들의 경계를 결정하는 이들 방식 및 다른 방식은 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다. In some embodiments, determining the boundaries of the different regions (eg, 401 , 402 , 403 ) may include dividing the lower surface of interposer 200 into a plurality of non-overlapping grid-like small regions (eg, about 1 mm in size by about 1 mm in size). 0.5 mm rectangular area), calculating the bump pattern density in each small area, and assigning each small area to one of the areas (e.g., 401, 402, 403) based on the calculated pattern density. may include In some embodiments, the first design may have bumps 231 formed in clusters, each bump cluster having a different bump pattern density, in which case the boundaries of each bump 231 cluster are assigned by the bump clusters. It can be used as a boundary for an area to be These and other ways of determining the boundaries of different regions are entirely intended to be included within the scope of the present disclosure.

다음에, 도 5의 방법은 제2 레이아웃 디자인(제2 디자인이라고 칭할 수도 있음)을 형성하도록 제1 레이아웃 디자인을 수정한다. 특히, 제2 레이아웃 디자인에서는, 낮은 패턴 밀도 영역(403)에 있는 범프(231)의 크기(예컨대, 단면적)와, 중간 패턴 밀도 영역(402)에 있는 범프(231)의 크기(예컨대, 단면적)가, 높은 밀도 영역(401)에 있는 범프(231)의 크기(예컨대, 단면적)보다 크도록 조정된다(예컨대, 증가된다). 높은 패턴 밀도 영역(401)에 있는 범프(231)의 크기는 예시된 실시예에서는 제1 레이아웃 디자인과 제2 레이아웃 디자인 간에 변하지 않고 유지된다. Next, the method of FIG. 5 modifies the first layout design to form a second layout design (which may also be referred to as a second design). In particular, in the second layout design, the size (eg, cross-sectional area) of the bumps 231 in the low pattern density region 403 and the size (eg, cross-sectional area) of the bumps 231 in the medium pattern density region 402 (eg, cross-sectional area) is adjusted (eg, increased) to be greater than the size (eg, cross-sectional area) of the bumps 231 in the high density region 401 . The size of the bumps 231 in the high pattern density region 401 remains unchanged between the first and second layout designs in the illustrated embodiment.

몇몇 실시예에서, 낮은 패턴 밀도 영역과 중간 패턴 밀도 영역에 있는 범프(231)의 크기(예컨대, 단면적)를 증가시키는 것은, 범프(231)를 형성하기 위해, 예컨대 도금 프로세스에서 사용되는 마스크층의 범프 개구의 크기를 증가시키는 것에 의해 달성된다. 특히, 제1 레이아웃 디자인에 있는 범프(231)가 모든 영역(예컨대, 401, 402, 403)에서 직경(R)을 갖는 원형 형상을 갖는다고 가정하여 도 5의 방법을 적용하면, 중간 패턴 밀도 영역(402)에 있는 범프 개구(예컨대, 원형 형상)의 직경(R')은 약 1.1R 내지 약 1.25R이 되도록 조정되고, 낮은 패턴 밀도 영역(403)에 있는 범프 개구의 직경(R")은 약 1.35R 내지 약 1.55R이 되도록 조정된다. 높은 패턴 밀도 영역(401)에 있는 범프 개구의 직경은 R로 유지된다.In some embodiments, increasing the size (eg, cross-sectional area) of the bumps 231 in the low and medium pattern density regions may increase the size (eg, cross-sectional area) of a mask layer used to form the bumps 231 , eg, in a plating process. This is achieved by increasing the size of the bump opening. In particular, applying the method of FIG. 5 , assuming that the bump 231 in the first layout design has a circular shape with a diameter R in all regions (eg, 401 , 402 , 403 ), the medium pattern density region The diameter R' of the bump opening (eg, circular shape) in 402 is adjusted to be from about 1.1R to about 1.25R, and the diameter R" of the bump opening in low pattern density region 403 is It is adjusted to be about 1.35 R to about 1.55 R. The diameter of the bump openings in the high pattern density region 401 is kept at R.

제1 레이아웃 디자인에 있는 개구가 모든 영역(예컨대, 401, 402, 403)에서 제1 치수(R1) 및 제2 치수(R2)를 갖는 타원 형상을 가지면, 제2 디자인에서 중간 패턴 밀도 영역(402)에 있는 범프 개구(예컨대, 타원 형상)는 제1 치수(R1') 및 제2 치수(R2')를 갖도록 조정되고, 이때 R1'은 약 1.1R1 내지 1.25R1이고, 제2 치수(R2')는 약 1.1R2 내지 약 1.25R2이다. 추가로, 낮은 밀도 영역(403)에 있는 범프 개구(예컨대, 타원 형상)는 제1 치수(R1") 및 제2 치수(R2")를 갖도록 조정되고, 이때 R1"은 약 1.35R1 내지 약 1.55R1이고, 제2 치수(R2")는 약 1.35R2 내지 약 1.55R2이다. 높은 패턴 밀도 영역(401)에 있는 개구는 여전히 제1 치수(R1) 및 제2 치수(R2)를 갖는다.If the openings in the first layout design have an elliptical shape with a first dimension R1 and a second dimension R2 in all regions (eg, 401 , 402 , 403 ), then the intermediate pattern density region 402 in the second design. ) is adjusted to have a first dimension (R1') and a second dimension (R2'), wherein R1' is about 1.1R1 to 1.25R1, and a second dimension R2' ) is from about 1.1R2 to about 1.25R2. Additionally, the bump openings (eg, oval-shaped) in the low density region 403 are adjusted to have a first dimension R1″ and a second dimension R2″, wherein R1″ is between about 1.35R1 and about 1.55. R1, and the second dimension R2″ is from about 1.35R2 to about 1.55R2. The openings in the high pattern density region 401 still have a first dimension R1 and a second dimension R2.

전술한 바와 같이, 중간 패턴 밀도 영역(402) 및 낮은 패턴 밀도 영역(403)에 있는 범프 개구의 크기는 높은 패턴 밀도 영역(401)에 있는 범프 개구의 크기보다 예정된 퍼센티지만큼 커지도록 조정된다. 범프 개구의 크기는 후속 형성되는 범프(231)의 단면적에 대응하기 때문에(예컨대, 동일하기 때문에), 제2 레이아웃 디자인을 이용하여 상이한 패턴 밀도를 지닌 영역에 형성되는 도전성 범프(231)는 상이한 단면적을 갖는다. 추가로, 전술한 상이한 영역에 있는 범프 개구들의 치수 간의 관계는 또한 제2 레이아웃 디자인을 이용하여 상이한 영역에 형성되는 도전성 범프(231)의 치수(예컨대, 도 4a에서의 원형 형상의 직경이나 도 4b에서의 타원 형상의 제1 치수 및 제2 치수)에도 또한 적용된다.As described above, the size of the bump openings in the medium pattern density region 402 and the low pattern density region 403 is adjusted to be a predetermined percentage greater than the size of the bump openings in the high pattern density region 401 . Because the size of the bump openings corresponds (eg, the same) to the cross-sectional area of the subsequently formed bumps 231 , the conductive bumps 231 formed in regions with different pattern densities using the second layout design have different cross-sectional areas. has In addition, the relationship between the dimensions of the bump openings in the different regions described above also depends on the dimensions of the conductive bumps 231 formed in the different regions using the second layout design (eg, the diameter of the circular shape in FIG. 4A or the diameter of the circular shape in FIG. 4B ). The first dimension and the second dimension of the elliptical shape in ) also apply.

도 5의 방법은 제2 레이아웃 디자인에 따라 도전성 범프(231)를 형성하는 것과 같은 추가의 프로세싱 단계를 포함할 수 있다. 도 2의 예에서, 영역(401)은 높은 패턴 밀도 영역이고, 영역(402)은 중간 패턴 밀도 영역이며, 영역(403)은 낮은 패턴 밀도 영역이다. 따라서, 제2 레이아웃 디자인에 따라 도전성 범프(231)를 형성한 후, 영역(403)에 있는 도전성 범프(231)는 영역(402)에 있는 도전성 범프(231)보다 큰 단면적을 갖고, 영역(402)에 있는 도전성 범프(231)는 영역(401)에 있는 도전성 범프(231)보다 큰 단면적을 갖는다. The method of FIG. 5 may include additional processing steps, such as forming conductive bumps 231 according to the second layout design. In the example of FIG. 2 , region 401 is a high pattern density region, region 402 is a medium pattern density region, and region 403 is a low pattern density region. Therefore, after forming the conductive bumps 231 according to the second layout design, the conductive bumps 231 in the region 403 have a larger cross-sectional area than the conductive bumps 231 in the region 402, and the region 402 The conductive bumps 231 in ) have a larger cross-sectional area than the conductive bumps 231 in the region 401 .

예로서, 높은 패턴 밀도 영역(401)에 있는 범프(231)가 70 μm의 제1 치수(R1)와 90 μm의 제2 치수(R2)를 갖는 제1 디자인을 고려하라. 낮은 패턴 밀도 영역(403)과 중간 패턴 밀도 영역(402)에서의 범프 크기가 조정된 후, 제2 디자인에서는 중간 패턴 밀도 영역(402)에 있는 범프(231)가 82 μm의 제1 치수와 105 μm의 제2 치수를 갖고, 낮은 패턴 밀도 영역(403)에 있는 범프(231)는 98 μm의 제1 치수와 125 μm의 제2 치수를 갖는다.As an example, consider a first design where the bumps 231 in the high pattern density region 401 have a first dimension R1 of 70 μm and a second dimension R2 of 90 μm. After the bump sizes in the low pattern density region 403 and the medium pattern density region 402 are adjusted, in the second design, the bumps 231 in the medium pattern density region 402 have a first dimension of 82 μm and 105 . The bumps 231 having a second dimension of μm and in the low pattern density region 403 have a first dimension of 98 μm and a second dimension of 125 μm.

도 6은 다른 실시예에서 도전성 범프(231)의 공면성을 향상시키는 방법을 예시한다. 도 6의 실시예에서, 프로세싱은 도전성 범프(231)를 위한 제1 디자인을 수용하고, 인터포저(200)의 하부면 상에 있는 상이한 영역들을 위한 범프 패턴 밀도를 평가하는 것에 의해 시작된다. 상이한 영역들에 있어서의 범프 패턴 밀도에 기초하여, 도전성 범프(231)들은 높은 패턴 밀도 영역(401)(예컨대, 패턴 밀도가 약 25 % 이상), 중간 패턴 밀도 영역(402)(예컨대, 패턴 밀도가 약 15 % 내지 약 25 %) 또는 낮은 패턴 밀도 영역(403)(예컨대, 패턴 밀도가 15 % 이하)과 같은 상이한 영역들로 그룹화된다. 프로세싱은 도 5를 참고하여 전술한 것과 유사하므로, 상세는 반복하지 않는다. 예시된 실시예에서, 제1 디자인에서는 높은 패턴 밀도 영역(401)에서의 범프 피치(P1)가 중간 패턴 밀도 영역(402)에서의 범프 피치(P2)보다 작고, 중간 패턴 밀도 영역(402)에서의 범프 피치(P2)가 낮은 패턴 밀도 영역(403)에서의 범프 피치(P3)보다 작다.6 illustrates a method of improving the coplanarity of the conductive bumps 231 in another embodiment. In the embodiment of FIG. 6 , processing begins by accepting a first design for conductive bumps 231 and evaluating the bump pattern density for different regions on the underside of interposer 200 . Based on the bump pattern density in the different regions, the conductive bumps 231 can be divided into high pattern density regions 401 (eg, having a pattern density greater than or equal to about 25%), medium pattern density regions 402 (eg, pattern density). are grouped into different regions, such as from about 15% to about 25%) or low pattern density regions 403 (eg, having a pattern density of 15% or less). The processing is similar to that described above with reference to FIG. 5 , so details are not repeated. In the illustrated embodiment, in the first design, the bump pitch P1 in the high pattern density region 401 is less than the bump pitch P2 in the medium pattern density region 402 , and in the medium pattern density region 402 , the bump pitch P1 is smaller. The bump pitch P2 of is smaller than the bump pitch P3 in the low pattern density region 403 .

다음에, 제1 디자인은 제2 디자인을 형성하도록 수정된다. 특히, 낮은 패턴 밀도 영역(403)에 있는 범프(231)의 피치와 중간 밀도 영역(402)에 있는 범프(231)의 피치는 높은 패턴 밀도 영역(401)에 있는 범프(231)의 피치와 매칭되도록 조정된다. 몇몇 실시예에서는, 인접한 범프(231/231D)들 사이의 범프 피치를 조정하기 위해(예컨대, 감소시키기 위해), 예컨대 낮은 패턴 밀도 영역(403)과 중간 패턴 밀도 영역(402)에서 기존의 범프(231)들 사이에 더미 범프(231D)(도 7b 참고)가 추가되어, 낮은 패턴 밀도 영역(403)과 중간 패턴 밀도 영역(402)에서의 조정된 범프 피치가 높은 패턴 밀도 영역(401)에서의 범프 피치와 매칭되며, 이때 더미 범프(231D)는 전기적으로 격리되는(예컨대, 다른 전기 도전성 피쳐와 전기적으로 커플링되지 않는) 도전성 범프이다. 이와 대조적으로, 각각의 도전성 범프(231)는 인터포저(200)의 적어도 하나의 전기 도전성 피쳐[예컨대, 접촉 패드, 관통 비아(215) 등]에 전기적으로 커플링된다. 더미 범프(231D)는 범프(231)와 동일한 재료(들)를 사용하여 그리고 범프(231)와 동일한 프로세싱 단계로 형성될 수 있다. 여기에서 “매칭”이라는 용어는 제조 한계 내에서의 피치들 간의 매칭 또는 소정 퍼센티지 내에서의 피치들 간의 매칭일 수 있다. 예컨대, 낮은 패턴 밀도 영역(403) 및 중간 패턴 밀도 영역(402)에서의 범프 피치는 높은 패턴 밀도 영역(401)에서의 범프 피치의 예정된 퍼센티지 이내(예컨대, ±15%, ±10% 또는 ±5% 이내)이다. Next, the first design is modified to form a second design. In particular, the pitch of bumps 231 in the low pattern density region 403 and the pitch of bumps 231 in the medium density region 402 match the pitch of the bumps 231 in the high pattern density region 401 . adjusted to be In some embodiments, to adjust (eg, reduce) bump pitch between adjacent bumps 231/231D, eg, in low pattern density regions 403 and medium pattern density regions 402 to adjust (eg, reduce) existing bumps ( A dummy bump 231D (see FIG. 7B ) is added between the 231 , so that the adjusted bump pitch in the low pattern density region 403 and the medium pattern density region 402 is increased in the high pattern density region 401 . Matching bump pitch, where dummy bumps 231D are conductive bumps that are electrically isolated (eg, not electrically coupled with other electrically conductive features). In contrast, each conductive bump 231 is electrically coupled to at least one electrically conductive feature (eg, contact pad, through via 215 , etc.) of interposer 200 . Dummy bumps 231D may be formed using the same material(s) as bumps 231 and with the same processing steps as bumps 231 . The term “matching” herein may be a match between pitches within a manufacturing limit or a match between pitches within a certain percentage. For example, the bump pitch in the low pattern density region 403 and the medium pattern density region 402 is within a predetermined percentage of the bump pitch in the high pattern density region 401 (eg, ±15%, ±10%, or ±5). % within).

예로서, 높은 패턴 밀도 영역(401)에서의 범프 피치(P1)가 150 μm이고, 중간 패턴 밀도 영역(402)에서의 범프 피치(P2)가 180 μm이며, 낮은 패턴 밀도 영역(403)에서의 범프 피치(P3)가 250 μm인 제1 디자인을 고려하라. 범프 피치를 수정한 후, 모든 영역(예컨대, 401, 402, 403)에서의 범프(231)를 위한 범프 피치는 150 μm의 동일한 범프 피치를 갖는다.For example, the bump pitch P1 in the high pattern density region 401 is 150 μm, the bump pitch P2 in the medium pattern density region 402 is 180 μm, and the bump pitch P1 in the low pattern density region 403 is Consider the first design where the bump pitch P3 is 250 μm. After correcting the bump pitch, the bump pitch for the bump 231 in all regions (eg, 401 , 402 , 403 ) has the same bump pitch of 150 μm.

예시된 실시예에서, 상이한 영역(예컨대, 401, 402, 403)에 있는 범프(231)들의 단면적은 제1 디자인과 제2 디자인 간에 변경되지 않는다. 몇몇 실시예에서, 상이한 영역(예컨대, 401, 402, 403)에 있는 범프(231)들의 단면적은 동일하다. 도 6의 방법은 제2 디자인에 따라 범프(231)와 더미 범프(231D)를 형성하는 것과 같은 추가의 프로세싱 단계를 포함할 수 있다.In the illustrated embodiment, the cross-sectional area of bumps 231 in different regions (eg, 401 , 402 , 403 ) does not change between the first design and the second design. In some embodiments, the cross-sectional areas of bumps 231 in different regions (eg, 401 , 402 , 403 ) are the same. The method of FIG. 6 may include additional processing steps, such as forming bumps 231 and dummy bumps 231D according to the second design.

도 7a 및 도 7b는 도 6에 예시된 방법을 적용하기 전후의 인터포저(200)의 하부면의 영역 내의 도전성 범프(231)를 위한 디자인의 실시예를 각각 예시한다. 도 7a 및 도 7b에 예시된 영역은, 예컨대 낮은 패턴 밀도 영역(403)의 부위 및 중간 패턴 밀도 영역(402)의 부위일 수 있다. 도 7a에 예시된 바와 같이, 제1 디자인의 범프(231)들 사이의 피치는, 예컨대 250 μm이다. 도 7b는 범프(231)들 사이에 형성된 더미 범프(231D)를 보여준다. 예컨대, 더미 범프(231D)는 동일한 열에 있는 인접한 범프(231)들 사이에 형성될 수 있다. 추가로, 도 7b는 또한 2개의 인접한 범프(231) 열 사이에 형성된 더미 범프(231D) 열을 예시한다. 형성된 더미 범프(231D)에 있어서, 범프(예컨대, 231, 231D)들의 피치는 높은 패턴 밀도 영역(401)의 피치 밀도에 매칭되도록, 예컨대 125 μm로 감소된다.7A and 7B respectively illustrate an embodiment of a design for a conductive bump 231 in the region of the lower surface of the interposer 200 before and after applying the method illustrated in FIG. 6 . The regions illustrated in FIGS. 7A and 7B may be, for example, a region of the low pattern density region 403 and a region of the medium pattern density region 402 . As illustrated in FIG. 7A , the pitch between the bumps 231 of the first design is, for example, 250 μm. 7B shows a dummy bump 231D formed between the bumps 231 . For example, the dummy bumps 231D may be formed between adjacent bumps 231 in the same column. Additionally, FIG. 7B also illustrates a row of dummy bumps 231D formed between two adjacent rows of bumps 231 . In the formed dummy bumps 231D, the pitch of the bumps (eg, 231 and 231D) is reduced to match the pitch density of the high pattern density region 401, for example, to 125 μm.

도 8a는 실시예 방법을 이용하는 인터포저(200)의 하부면 상의 도전성 범프(231)를 위한 레이아웃 디자인을 예시한다. 도 8a의 예에서, 제1 디자인(예컨대, 도 2 참고)이 수용되고 평가된다. 제1 디자인의 상이한 영역을 위한 패턴 밀도가 산출된다. 산출된 패턴 밀도에 기초하여, 범프(231)들은 높은 패턴 밀도 영역(401)(예컨대, 패턴 밀도가 25 % 이상), 중간 패턴 밀도 영역(402)(예컨대, 패턴 밀도가 약 15 % 내지 약 25 %) 및 낮은 패턴 밀도 영역(403)(예컨대, 패턴 밀도가 15 % 이하)과 같은 상이한 영역들로 그룹화된다. 도 8a의 실시예에서, 상이한 영역(예컨대, 401, 402, 403)에 있는 범프(231)들의 단면적은 동일하다. 도 8a에서, 높은 패턴 밀도 영역(401)은 범프 피치(P1)를 갖고, 중간 패턴 밀도 영역은 범프 피치(P2)를 가지며, 낮은 패턴 밀도 영역은 범프 피치(P3)를 갖는다. 예시된 실시예에서, 범프 피치(P1)는 범프 피치(P2)보다 작고, 범프 피치(P2)는 범프 피치(P3)보다 작다.8A illustrates a layout design for conductive bumps 231 on the underside of interposer 200 using an embodiment method. In the example of FIG. 8A , a first design (eg, see FIG. 2 ) is accepted and evaluated. Pattern densities for different areas of the first design are calculated. Based on the calculated pattern density, the bumps 231 are located in high pattern density regions 401 (eg, having a pattern density of 25% or more), medium pattern density regions 402 (eg, having a pattern density of about 15% to about 25%). %) and low pattern density regions 403 (eg, having a pattern density of 15% or less). In the embodiment of FIG. 8A , the cross-sectional areas of bumps 231 in different regions (eg, 401 , 402 , 403 ) are the same. In FIG. 8A , the high pattern density region 401 has a bump pitch P1 , the medium pattern density region has a bump pitch P2 , and the low pattern density region has a bump pitch P3 . In the illustrated embodiment, the bump pitch P1 is smaller than the bump pitch P2, and the bump pitch P2 is smaller than the bump pitch P3.

상이한 패턴 밀도를 지닌 영역에 있는 도전성 범프(231)들의 높이차를 줄이기 위해, 도 8a의 실시예 방법은 제2 디자인을 형성하기 위해 인터포저(200)의 둘레(200P)(예컨대, 측벽)을 따라 배치된 영역(404)(도 8a에서 음영 패턴으로 예시됨)에 더미 범프(231D)(도 8b 참고)를 추가하는 것에 의해 제1 디자인을 수정한다. 여기에서, “매칭”이라는 용어는 제조 한계 내에서의 피치들 간의 매칭 또는 높은 패턴 밀도 영역(401)에서의 범프 피치의 소정 퍼센티지 이내(예컨대, ±15%, ±10% 또는 ±5% 이내)에서의 피치들 간의 매칭일 수 있다. In order to reduce the height difference of the conductive bumps 231 in regions with different pattern densities, the embodiment method of FIG. 8A cuts the perimeter 200P (eg, sidewalls) of the interposer 200 to form a second design. The first design is modified by adding a dummy bump 231D (see FIG. 8B ) to the region 404 (illustrated as a shaded pattern in FIG. 8A ) along which it is placed. As used herein, the term “matching” refers to matching between pitches within manufacturing limits or within a certain percentage of the bump pitch in the high pattern density region 401 (eg, within ±15%, ±10%, or ±5%). may be a match between pitches in .

도 8a에 예시된 바와 같이, 영역(404)은 중공 직사각형 형상을 갖지만, 다른 적절한 형상도 또한 본 개시의 범위 내에서 고려된다. 영역(404)은 제1 디자인에서 인터포저(200)의 하부면 상에 N개의 최외측 범프 열 및/또는 N개의 최외측 범프 행(231)을 포함하도록 선택될 수 있으며, 이때 N은 5개, 10개 또는 15개와 같이 5개 내지 15개일 수 있다, 즉, 인터포저(200)의 영역(404)과 둘레(200P) 사이에는 범프(231 또는 231D)가 존재하지 않는다. 따라서, 제2 디자인에서 영역(404)은 내부에 더미 범프(231D)와 도전성 범프(231) 모두가 형성되고, 도 8a의 다른 영역(예컨대, 401, 402, 403)은 내부에 [예컨대 더미 범프(231D)가 아닌] 단지 도전성 범프(231)만이 형성된다.As illustrated in FIG. 8A , region 404 has a hollow rectangular shape, although other suitable shapes are also contemplated within the scope of the present disclosure. Region 404 may be selected to include N outermost bump columns and/or N outermost bump rows 231 on the underside of interposer 200 in a first design, where N is 5 , 10 or 15, that is, there is no bump 231 or 231D between the area 404 of the interposer 200 and the perimeter 200P. Thus, in the second design, region 404 has both dummy bumps 231D and conductive bumps 231 formed therein, and other regions (eg, 401, 402, 403) of FIG. 8A are internally [eg, dummy bumps]. (not 231D)] only conductive bumps 231 are formed.

도 8a에 예시된 실시예에서, 영역(404)은 높은 패턴 밀도 영역(401), 중간 패턴 밀도 영역(402) 및 낮은 패턴 밀도 영역(403)을 둘러싼다. 도 8a에서, 영역(404)은 이전에 낮은 패턴 밀도 영역(403)에 속했던 부위를 포함함에 주목하라. 따라서, 도 8a에 예시된 제2 디자인에서는 영역(403)이 영역(401/402) 이외에, 영역(404) 내부에 위치하는 인터포저(200)의 하부면의 부위를 포함한다.In the embodiment illustrated in FIG. 8A , region 404 surrounds high pattern density region 401 , medium pattern density region 402 and low pattern density region 403 . Note that in FIG. 8A , region 404 includes a region that previously belonged to low pattern density region 403 . Accordingly, in the second design illustrated in FIG. 8A , region 403 includes, in addition to region 401 / 402 , a portion of the lower surface of interposer 200 located inside region 404 .

예로서, 높은 패턴 밀도 영역(401)에서의 범프 피치(P1)가 150 μm이고, 중간 패턴 밀도 영역(402)에서의 범프 피치(P2)가 180 μm이며, 낮은 패턴 밀도 영역(403)에서의 범프 피치(P3)가 250 μm인 제1 디자인을 고려하라. 제2 디자인에서, 영역(404)에는 더미 범프(231D)가 형성되어, 범프들 사이(예컨대, 231과 231D 사이)의 범프 피치(P4)는 150 μm이다. 도 8a의 방법은 제2 디자인에 따라 범프(231)와 더미 범프(231D)를 형성하는 것과 같은 추가의 프로세싱 단계를 포함할 수 있다.For example, the bump pitch P1 in the high pattern density region 401 is 150 μm, the bump pitch P2 in the medium pattern density region 402 is 180 μm, and the bump pitch P1 in the low pattern density region 403 is Consider the first design where the bump pitch P3 is 250 μm. In the second design, dummy bumps 231D are formed in region 404, so that bump pitch P4 between bumps (eg, between 231 and 231D) is 150 μm. The method of FIG. 8A may include additional processing steps, such as forming bumps 231 and dummy bumps 231D according to the second design.

도 8a의 실시예에서, 모든 영역(401, 402, 403)에 있는 범프(231)들의 단면적은 동일하고, 제1 디자인과 제2 디자인 간에 변경되지 않는다. 더욱이, 예시된 실시예에서 영역(404)에 있는 더미 범프(231D)의 단면적은 도전성 범프(231)의 단면적과 동일하다. In the embodiment of FIG. 8A , the cross-sectional area of bumps 231 in all regions 401 , 402 , 403 is the same and does not change between the first design and the second design. Moreover, in the illustrated embodiment, the cross-sectional area of the dummy bump 231D in the region 404 is equal to the cross-sectional area of the conductive bump 231 .

도 8b는 도 8a에 예시된 영역(404)의 일부(210)의 확대도를 예시한다. 도 8b에 예시된 바와 같이, 더미 범프(231D)는 범프(231)들 사이에 형성된다. 도 8b는 또한 2개의 도전성 범프(231) 열 사이에 형성된 더미 범프(231D) 열을 예시한다. 영역(404)의 (예컨대 231과 231D 사이의) 범프 피치는 P4이며, P4는 높은 패턴 밀도 영역(401)의 범프 피치(P1)와 매칭된다.8B illustrates an enlarged view of a portion 210 of the region 404 illustrated in FIG. 8A . As illustrated in FIG. 8B , dummy bumps 231D are formed between the bumps 231 . 8B also illustrates a row of dummy bumps 231D formed between two rows of conductive bumps 231 . The bump pitch (eg, between 231 and 231D) of region 404 is P4 , P4 matches bump pitch P1 of high pattern density region 401 .

개시된 실시예에 대한 변형이 가능하며, 이는 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다. 예컨대, 다양한 실시예 방법이 범프 크기(예컨대, 단면적) 또는 범프 피치를 조정하지만, 범프 크기와 범프 피치 모두를 조정하는 것에 의해 범프(231)의 공면성을 향상시키는 것도 가능하다. 예컨대, 다양한 영역(예컨대, 401, 402, 403)에서의 범프 개구 크기는, 다양한 영역에서의 범프 피치가 조정되는 동안 조정될 수 있다. 추가로, 본 개시는 인터포저(200)의 하부면 상에 도전성 범프(231)를 형성하는 것과 관련하여 설명되지만, 개시된 방법은 다른 구성요소 및/또는 다른 표면(예컨대, 하부면 대신 상부면) 상에 형성되는 도전성 범프의 공면성을 향상시키기 위해 이용될 수 있다.Modifications to the disclosed embodiments are possible and are intended to be included entirely within the scope of the present disclosure. For example, although various embodiment methods adjust bump size (eg, cross-sectional area) or bump pitch, it is also possible to improve the coplanarity of bumps 231 by adjusting both bump size and bump pitch. For example, the bump opening size in the various regions (eg, 401 , 402 , 403 ) may be adjusted while the bump pitch in the various regions is adjusted. Additionally, while the present disclosure is described in the context of forming conductive bumps 231 on the lower surface of interposer 200 , the disclosed method may be used to form other components and/or other surfaces (eg, a top surface instead of a bottom surface). It can be used to improve the coplanarity of the conductive bumps formed thereon.

실시예들은 여러 장점을 달성할 수 있다. 도전성 범프(231)의 디자인에서 범프 크기(예컨대, 단면적) 또는 범프 피치를 조정하는 것에 의해, 상이한 패턴 밀도를 지닌 영역에서의 범프들의 높이차가 감소되고, 도전성 범프의 공면성이 향상된다. 향상된 공면성은 범프의 콜드 조인트(예컨대, 2개 디바이스의 도전성 범프들을 적절히 접합하는 데 실패하게 되는 불량하게 형성된 땜납 영역) 및 브리징과 같은 문제를 방지하거나 줄이고, 이에 따라 형성된 디바이스의 신뢰성을 향상시키고, 생산 수율을 향상시킨다. 현재 개시된 방법을 사용하지 않고 도전성 범프의 공면성을 위한 요건을 충족하기 위해서, 참조 방법(reference method)은 전해도금 속도를 줄여야만 할 수도 있고/있거나, 전해도금을 위해 사용되는 화학 유체에서 금속 이온 농도(예컨대, Ag의 농도)를 증가시켜야만 할 수도 있으며, 이는 생산 처리량을 감소시키고 제조비를 증가시킨다. 본 개시는 이들 문제를 피하고, 이에 따라 증가된 처리량(예컨대, 보다 높은 전해도금 속도)과 감소된 제조비를 달성한다.Embodiments may achieve several advantages. By adjusting the bump size (eg, cross-sectional area) or bump pitch in the design of the conductive bumps 231 , the height difference of the bumps in regions with different pattern densities is reduced, and the coplanarity of the conductive bumps is improved. Improved coplanarity prevents or reduces problems such as cold joints of bumps (e.g., poorly formed solder regions that fail to properly bond the conductive bumps of two devices) and bridging, thereby improving the reliability of the formed device; Improve production yield. To meet the requirements for coplanarity of conductive bumps without using the presently disclosed method, the reference method may have to reduce the electroplating rate and/or metal ions in the chemical fluid used for electroplating. It may be necessary to increase the concentration (eg, the concentration of Ag), which reduces production throughput and increases manufacturing costs. The present disclosure avoids these problems and thus achieves increased throughput (eg, higher electroplating rates) and reduced manufacturing costs.

도 9, 도 10 및 도 11은 몇몇 실시예에 따른, 반도체 디바이스의 제조 방법(1000, 2000, 300)에 관한 흐름도를 각각 예시한다. 도 9, 도 10 및 도 11에 도시한 실시예 방법은 단순히 여러 가능한 실시예 방법들의 일례임을 이해해야만 한다. 당업자라면, 여러가지 변형, 대안 및 수정을 이해할 것이다. 예컨대, 도 9, 도 10 및 도 11에 예시된 다양한 단계는 추가, 제거, 교체, 재구성 및 반복될 수 있다.9 , 10 , and 11 each illustrate a flowchart of a method 1000 , 2000 , and 300 of manufacturing a semiconductor device, in accordance with some embodiments. It should be understood that the embodiment methods shown in FIGS. 9 , 10 and 11 are merely examples of several possible embodiment methods. Numerous variations, alternatives, and modifications will be apparent to those skilled in the art. For example, the various steps illustrated in FIGS. 9 , 10 and 11 may be added, removed, replaced, reconfigured, and repeated.

도 9를 참고하면, 방법(1000)의 블럭(1010)에서는 인터포저의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인을 수용하며, 제1 디자인의 도전성 범프는 동일한 단면적을 갖는다. 블럭 1020에서, 제1 디자인의 도전성 범프를 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프로 그룹화되고, 이때 제2 영역의 범프 패턴 밀도는 제1 영역의 범프 패턴 밀도보다 낮다. 블럭 1030에서, 제1 디자인을 수정하는 것에 의해 제2 디자인이 형성되고, 제1 디자인을 수정하는 것은 제2 영역에 있는 제2 그룹의 도전성 범프의 단면적을 수정하는 것을 포함한다. 블럭 1040에서, 인터포저의 제1 표면 상에 제2 디자인에 따라 도전성 범프가 형성되고, 이때 제1 그룹의 도전성 범프와 제2 그룹의 도전성 범프는 형성된 후에 상이한 단면적을 갖는다.Referring to FIG. 9 , a block 1010 of method 1000 receives a first design for conductive bumps on a first surface of an interposer, the conductive bumps of the first design having the same cross-sectional area. At a block 1020, the conductive bumps of the first design are grouped into a first group of conductive bumps in a first region of the first surface and a second group of conductive bumps in a second region of the first surface, wherein the second The bump pattern density of the region is lower than the bump pattern density of the first region. At a block 1030, a second design is formed by modifying the first design, wherein modifying the first design includes modifying the cross-sectional area of the second group of conductive bumps in the second region. At a block 1040, conductive bumps are formed on the first surface of the interposer according to a second design, wherein the first group of conductive bumps and the second group of conductive bumps have different cross-sectional areas after being formed.

도 10을 참고하면, 방법(2000)의 블럭 2010에서, 워크피스의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인이 분석되고, 상기 분석은 워크피스의 제1 표면을 제1 도전성 범프를 갖는 제1 영역과 제2 도전성 범프를 갖는 제2 영역으로 나누는 것을 포함하고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 패턴 밀도는 제2 영역에 있는 제2 도전성 범프의 제2 범프 패턴 밀도보다 크며, 제1 영역에 있는 제1 도전성 범프의 제1 범프 피치는 제2 영역에 있는 제2 도전성 범프의 제2 범프 피치보다 작다. 블럭 2020에서, 제1 디자인은 제2 디자인을 형성하도록 수정되고, 제1 디자인을 수정하는 것은 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 것을 포함한다. 블럭 2030에서, 제2 디자인에 따라 워크피스의 제1 표면 상에 도전성 범프와 더미 범프가 형성된다. 블럭 2040에서, 워크피스는 도전성 범프를 통해 기판에 접합된다.Referring to FIG. 10 , at block 2010 of method 2000, a first design for a conductive bump on a first surface of a workpiece is analyzed, wherein the analysis causes the first surface of the workpiece to form a first conductive bump. and dividing into a first region having a first region and a second region having a second conductive bump, wherein the first bump pattern density of the first conductive bumps in the first region is a second bump pattern of the second conductive bumps in the second region greater than the density, and a first bump pitch of the first conductive bumps in the first region is less than a second bump pitch of the second conductive bumps in the second region. At block 2020, the first design is modified to form a second design, and modifying the first design includes adding dummy bumps to the second region to reduce the second bump pitch. At a block 2030, conductive bumps and dummy bumps are formed on the first surface of the workpiece according to the second design. At a block 2040, the workpiece is bonded to the substrate via the conductive bumps.

도 11을 참고하면, 방법(3000)의 블럭 3010에서는 워크피스의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인 - 도전성 범프들이 동일한 단면적을 가짐 - 이 수용되고, 이때 도전성 범프는 제1 표면의 제1 영역에 있는 제1 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 도전성 범프를 포함하며, 제2 영역은 제1 영역을 둘러싸고, 제2 범프는 제1 범프의 제1 범프 피치보다 큰 제2 범프 피치를 갖는다. 블럭 3020에서, 제1 디자인은, 제2 범프 피치가 실질적으로 제1 범프 피치에 매칭되도록 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 것에 의해 제2 디자인으로 변경된다. 블럭 3030에서, 워크피스의 제1 표면 상에 제2 디자인에 따라 도전성 범프가 형성된다.Referring to FIG. 11 , at block 3010 of method 3000, a first design for conductive bumps on a first surface of a workpiece, the conductive bumps having the same cross-sectional area, is received, wherein the conductive bumps have the same cross-sectional area as the first surface. a first conductive bump in a first region of and a second bump pitch greater than the pitch. At a block 3020, the first design is changed to the second design by adding dummy bumps to the second region to reduce the second bump pitch such that the second bump pitch substantially matches the first bump pitch. At a block 3030, a conductive bump is formed on the first surface of the workpiece according to a second design.

실시예에서, 방법은 인터포저의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인 - 제1 디자인 내의 도전성 범프들은 동일한 단면적을 가짐 - 을 수용하는 단계; 제1 디자인의 도전성 범프들을 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프로 그룹화하는 단계로서, 제2 영역의 범프 패턴 밀도는 제1 영역의 범프 패턴 밀도보다 낮은 것인 도전성 범프를 그룹화하는 단계; 제1 디자인을 수정하는 것 - 제1 디자인을 수정하는 것은 제2 영역에 있는 제2 그룹의 도전성 범프의 단면적을 수정하는 것을 포함함 - 에 의해 제2 디자인을 형성하는 단계; 및 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계를 포함하고, 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계 후, 제1 그룹의 도전성 범프와 제2 그룹의 도전성 범프는 상이한 단면적을 갖는다. 실시예에서, 제1 그룹의 도전성 범프의 크기는 제1 디자인과 제2 디자인에서 변경되지 않은 채 유지된다. 실시예에서, 도전성 범프를 형성하는 단계는, 인터포저의 제1 표면 위에, 범프 개구를 갖는 패턴화 마스크층을 형성하는 단계; 및 패턴화 마스크층의 범프 개구 내에 도전성 재료를 형성하도록 도금 프로세스를 수행하는 단계를 포함한다. 실시예에서, 제1 영역에 있는 범프 개구의 크기는 제2 영역에 있는 범프 개구의 크기보다 작다. 실시예에서, 제1 영역의 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 제2 디자인에서는 제1 그룹의 도전성 범프가 제1 치수를 갖는 제1 단면을 갖고, 제2 그룹의 도전성 범프가 별개의 제2 치수를 갖는 제2 단면을 가지며, 제2 영역의 범프 패턴 밀도가 약 15 % 내지 약 25 %인 경우, 제2 치수는 제1 치수의 약 1.1배 내지 약 1.25배이고, 제2 영역의 범프 패턴 밀도가 약 15 % 미만인 경우, 제2 치수는 제1 치수의 약 1.35배 내지 약 1.55배이다. 실시예에서, 제1 디자인의 도전성 범프들을 그룹화하는 단계는, 제1 표면의 제3 영역에 있는 제3 그룹의 도전성 범프를 그룹화하는 것을 더 포함하고, 제3 영역의 범프 패턴 밀도는 제2 영역의 범프 패턴 밀도보다 낮다. 실시예에서, 제2 디자인을 형성하는 단계는, 제3 영역에 있는 제3 그룹의 도전성 범프의 단면적을 수정하는 것을 더 포함한다. 실시예에서, 제1 영역의 범프 패턴 밀도는 약 25 %보다 크고, 제2 영역의 범프 패턴 밀도는 약 15 % 내지 약 25 %이며, 제3 영역의 범프 패턴 밀도는 약 15 % 미만이다. 실시예에서, 제2 디자인에서는 제1 그룹의 도전성 범프는 제1 치수를 지닌 제1 단면을 갖고, 제2 그룹의 도전성 범프는 별개의 제2 치수를 갖는 제2 단면을 가지며, 제3 그룹의 도전성 범프는 별개의 제3 치수를 갖는 제3 단면을 갖고, 제2 치수는 제1 치수의 약 1.1배 내지 약 1.25배이고, 제3 치수는 제1 치수의 약 1.35배 내지 약 1.55배이다. 실시예에서, 제1 단면, 제2 단면 및 제3 단면은 기하학적으로 유사한 형상을 갖는다. 실시예에서, 상기 방법은 인터포저의 도전성 범프에 기판을 부착하는 것을 더 포함한다.In an embodiment, a method comprises: receiving a first design for a conductive bump on a first surface of an interposer, the conductive bumps in the first design having the same cross-sectional area; grouping the conductive bumps of the first design into a first group of conductive bumps in a first region of the first surface and a second group of conductive bumps in a second region of the first surface; grouping the conductive bumps, wherein the pattern density is less than the bump pattern density of the first region; forming a second design by modifying the first design, wherein modifying the first design includes modifying the cross-sectional area of the second group of conductive bumps in the second region; and forming a conductive bump on the first surface of the interposer according to a second design, wherein after forming the conductive bump on the first surface of the interposer according to the second design, the conductivity of the first group The bumps and the second group of conductive bumps have different cross-sectional areas. In an embodiment, the size of the conductive bumps of the first group remains unchanged in the first design and the second design. In an embodiment, forming the conductive bumps comprises: forming, over the first surface of the interposer, a patterned mask layer having bump openings; and performing a plating process to form a conductive material within the bump openings of the patterned mask layer. In an embodiment, the size of the bump opening in the first region is smaller than the size of the bump opening in the second region. In an embodiment, the bump pattern density of the first region is greater than about 25%. In an embodiment, in a second design, the first group of conductive bumps has a first cross-section having a first dimension, the second group of conductive bumps has a second cross-section having a second, distinct dimension, and When the bump pattern density is from about 15% to about 25%, the second dimension is from about 1.1 times to about 1.25 times the first dimension, and when the bump pattern density of the second region is less than about 15%, the second dimension is the first dimension from about 1.35 times to about 1.55 times the dimension. In an embodiment, grouping the conductive bumps of the first design further comprises grouping the third group of conductive bumps in a third region of the first surface, wherein the bump pattern density of the third region is the second region. lower than the bump pattern density of In an embodiment, forming the second design further comprises modifying the cross-sectional area of the third group of conductive bumps in the third region. In an embodiment, the bump pattern density of the first region is greater than about 25%, the bump pattern density of the second region is between about 15% and about 25%, and the bump pattern density of the third region is less than about 15%. In an embodiment, in a second design, the first group of conductive bumps has a first cross-section having a first dimension, the second group of conductive bumps has a second cross-section having a second, distinct dimension, and The conductive bumps have a third cross-section having a third distinct dimension, the second dimension being from about 1.1 times to about 1.25 times the first dimension, and the third dimension being from about 1.35 times to about 1.55 times the first dimension. In an embodiment, the first cross-section, the second cross-section and the third cross-section have geometrically similar shapes. In an embodiment, the method further comprises attaching the substrate to the conductive bump of the interposer.

실시예에서, 방법은 워크피스의 제1 표면 상의 도전성 범프를 위한 제1 디자인을 분석하는 단계로서, 상기 분석은 워크피스의 제1 표면을 제1 도전성 범프를 갖는 제1 영역과, 제2 도전성 범프를 갖는 제2 영역으로 나누는 것을 포함하고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 패턴 밀도는 제2 영역에 있는 제2 도전성 범프의 제2 범프 패턴 밀도보다 크고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 피치는 제2 영역에 있는 제2 도전성 범프의 제2 범프 피치보다 작은 것인 제1 디자인을 분석하는 단계; 제2 디자인을 형성하도록 제1 디자인을 수정하는 단계 - 제1 디자인을 수정하는 단계는 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 단계를 포함함 - ; 제2 디자인에 따라 워크피스의 제1 표면 상에 도전성 범프와 더미 범프를 형성하는 단계; 및 도전성 범프를 통해 워크피스를 기판에 접합하는 단계를 포함한다. 실시예에서, 제1 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 더미 범프는 도전성 범프와 동일한 재료로 형성되고, 더미 범프는 전기적으로 격리된다.In an embodiment, the method comprises analyzing a first design for a conductive bump on a first surface of a workpiece, wherein the analysis comprises a first surface of the workpiece with a first region having a first conductive bump and a second conductive bump dividing into a second region having bumps, wherein a first bump pattern density of first conductive bumps in the first region is greater than a second bump pattern density of second conductive bumps in the second region, and wherein analyzing the first design, wherein a first bump pitch of the first conductive bumps in the second region is less than a second bump pitch of the second conductive bumps in the second region; modifying the first design to form a second design, wherein modifying the first design includes adding dummy bumps to the second region to reduce the second bump pitch; forming a conductive bump and a dummy bump on the first surface of the workpiece according to a second design; and bonding the workpiece to the substrate through the conductive bumps. In an embodiment, the first bump pattern density is greater than about 25%. In an embodiment, the dummy bumps are formed of the same material as the conductive bumps, and the dummy bumps are electrically isolated.

실시예에서, 반도체 디바이스는 인터포저의 상부면에 부착되는 다이; 인터포저의 하부면의 제1 영역 - 제1 영역은 제1 범프 패턴 밀도를 가짐 - 에 있는 제1 도전성 범프; 인터포저의 하부면의 제2 영역 - 제2 영역은 제1 범프 패턴 밀도보다 작은 제2 범프 패턴 밀도를 가짐 - 에 있는 제2 도전성 범프; 및 인터포저의 하부면의 둘레 영역 - 둘레 영역은 제1 영역과 제2 영역을 둘러쌈 - 에 있는 더미 범프를 포함한다. 실시예에서, 제1 영역의 제1 도전성 범프는 제1 범프 피치를 갖고, 제2 영역의 제2 도전성 범프는 제1 범프 피치보다 큰 제2 범프 피치를 가지며, 둘레 영역의 더미 범프는 제1 범프 피치에 매칭되는 제3 범프 피치를 갖는다. 실시예에서, 반도체 디바이스는 인터포저의 하부면의 제3 영역 - 제3 영역은 제2 범프 패턴 밀도보다 작은 제3 범프 패턴 밀도와 제2 범프 피치보다 큰 제4 범프 피치를 가짐 - 에 있는 제3 도전성 범프를 더 포함하고, 이때 둘레 영역은 제1 영역, 제2 영역 및 제3 영역을 둘러싼다. 실시예에서, 제1 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 제1 도전성 범프와 제2 도전성 범프는 동일한 단면적을 갖는다.In an embodiment, a semiconductor device includes a die attached to a top surface of an interposer; a first conductive bump in a first region of the lower surface of the interposer, the first region having a first bump pattern density; a second conductive bump in a second region of the lower surface of the interposer, the second region having a second bump pattern density less than the first bump pattern density; and a dummy bump in a perimeter region of the lower surface of the interposer, the perimeter region surrounding the first region and the second region. In an embodiment, the first conductive bumps in the first region have a first bump pitch, the second conductive bumps in the second region have a second bump pitch greater than the first bump pitch, and the dummy bumps in the perimeter region have the first bump pitch. and a third bump pitch matching the bump pitch. In an embodiment, the semiconductor device comprises a second region in a third region of the lower surface of the interposer, wherein the third region has a third bump pattern density less than the second bump pattern density and a fourth bump pitch greater than the second bump pitch. 3 further conductive bumps, wherein the perimeter region surrounds the first region, the second region and the third region. In an embodiment, the first bump pattern density is greater than about 25%. In an embodiment, the first conductive bump and the second conductive bump have the same cross-sectional area.

앞의 설명은, 당업자가 본 개시의 양태를 보다 잘 이해할 수 있도록 다수의 실시예의 피쳐들을 약술한다. 당업자는, 여기에서 소개되는 실시예들의 동일한 목적을 이행하고/이행하거나 상기 실시예들의 동일한 이점을 달성하는 다른 프로세스 및 구조체를 구성 또는 수정하기 위한 기초로서 본 개시를 용이하게 사용할 수 있다는 점을 이해해야만 한다. 당업자는 또한, 그러한 등가의 구성은 본 개시의 사상 및 범위로부터 벗어나지 않으며, 당업자가 본 개시의 사상 및 범위로부터 벗어나는 일 없이 다양한 변화, 교체 및 변경을 실시할 수 있다는 점을 이해해야만 한다. The preceding description outlines features of several embodiments so that those skilled in the art may better understand aspects of the present disclosure. Those skilled in the art should understand that they may readily use the present disclosure as a basis for constructing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. only do Those skilled in the art should also understand that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that those skilled in the art may make various changes, substitutions, and alterations without departing from the spirit and scope of the present disclosure.

Claims (10)

반도체 디바이스를 형성하기 위한 방법으로서,
도전성 범프들을 위한 제1 디자인을 수용하는 단계 - 상기 제1 디자인 내의 상기 도전성 범프들은 인터포저의 제1 표면 상에 있고, 상기 제1 디자인 내의 상기 도전성 범프들은 동일한 단면적을 가짐 - ;
상기 도전성 범프들은,
상기 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프들 - 상기 제1 영역은 제1 범프 패턴 밀도를 가짐 -; 및
상기 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프들 - 제2 범프 패턴 밀도를 가지는 상기 제2 영역은 상기 제1 영역의 상기 제1 범프 패턴 밀도보다 낮음 -
을 포함하고,
상기 제1 디자인을 수정하는 것 - 상기 제1 디자인을 수정하는 것은 상기 제2 영역에 있는 상기 제2 그룹의 도전성 범프들의 단면적을 수정하는 것을 포함함 - 에 의해 상기 도전성 범프들을 위한 제2 디자인을 형성하는 단계; 및
상기 제2 디자인에 따라 상기 인터포저의 상기 제1 표면 상에 상기 도전성 범프들을 형성하는 단계 - 상기 제2 디자인에 따라 상기 인터포저의 상기 제1 표면 상에 상기 도전성 범프들이 형성된 후에, 상기 제1 그룹의 도전성 범프들 및 상기 제2 그룹의 도전성 범프들은 상이한 단면적을 가짐 -
를 포함하는 것인, 반도체 디바이스를 형성하기 위한 방법.
A method for forming a semiconductor device, comprising:
receiving a first design for conductive bumps, wherein the conductive bumps in the first design are on a first surface of an interposer, the conductive bumps in the first design have the same cross-sectional area;
The conductive bumps are
a first group of conductive bumps in a first region of the first surface, the first region having a first bump pattern density; and
a second group of conductive bumps in a second region of the first surface, wherein the second region having a second bump pattern density is lower than the first bump pattern density in the first region;
including,
modifying the first design, wherein modifying the first design comprises modifying a cross-sectional area of the second group of conductive bumps in the second region; forming; and
forming the conductive bumps on the first surface of the interposer according to the second design, after the conductive bumps are formed on the first surface of the interposer according to the second design, the first the group of conductive bumps and the second group of conductive bumps have different cross-sectional areas;
A method for forming a semiconductor device comprising:
제1항에 있어서, 상기 제1 그룹의 도전성 범프들의 크기는 상기 제1 디자인과 상기 제2 디자인에서 변경되지 않은 채 유지되는 것인, 반도체 디바이스를 형성하기 위한 방법. The method of claim 1 , wherein the size of the conductive bumps of the first group remains unchanged in the first design and the second design. 제1항에 있어서, 상기 도전성 범프들을 형성하는 단계는
상기 인터포저의 상기 제1 표면 위에, 범프 개구들을 가지는 패턴화 마스크층을 형성하는 단계; 및
상기 패턴화 마스크층의 상기 범프 개구들 내에 도전성 재료를 형성하도록 도금 프로세스를 수행하는 단계
를 포함하는 것인, 반도체 디바이스를 형성하기 위한 방법.
The method of claim 1 , wherein the forming of the conductive bumps comprises:
forming a patterned mask layer having bump openings over the first surface of the interposer; and
performing a plating process to form a conductive material in the bump openings of the patterned mask layer;
A method for forming a semiconductor device comprising:
제1항에 있어서, 상기 제1 디자인 내의 상기 도전성 범프들은, 상기 제1 표면의 제3 영역에 있는 제3 그룹의 도전성 범프들을 더 포함하고, 상기 제3 영역의 제3 범프 패턴 밀도는 상기 제2 영역의 상기 제2 범프 패턴 밀도보다 낮은 것인, 반도체 디바이스를 형성하기 위한 방법.2. The method of claim 1, wherein the conductive bumps in the first design further comprise a third group of conductive bumps in a third region of the first surface, wherein a third bump pattern density of the third region is the third region of the third region. and less than the second bump pattern density in two regions. 반도체 디바이스를 형성하기 위한 방법으로서,
제1 디자인을 수용하는 단계 - 상기 제1 디자인은 인터포저 상의 도전성 범프들을 포함하고, 상기 제1 디자인 내의 상기 도전성 범프들은 동일한 단면적을 가지며, 상기 제1 디자인 내의 상기 도전성 범프들은 상기 인터포저의 제1 측의 제1 영역에 있는 제1 그룹의 도전성 범프들을 포함하고 상기 인터포저의 상기 제1 측의 제2 영역에 있는 제2 그룹의 도전성 범프들을 포함하며, 상기 제1 그룹의 도전성 범프들은 제1 미리 결정된 범위 내에서 제1 범프 패턴 밀도를 가지고, 상기 제2 그룹의 도전성 범프들은 제2 미리 결정된 범위 내에서 제2 범프 패턴 밀도를 가지며, 상기 제1 범프 패턴 밀도는 상기 제2 범프 패턴 밀도 보다 높음 -;
상기 제1 그룹의 도전성 범프들의 단면적을 상기 제1 디자인으로부터 변경하지 않은 채로 유지하면서, 상기 제2 그룹의 도전성 범프들의 단면적을 증가시키는 것에 의해 상기 도전성 범프들에 대한 제2 디자인을 형성하도록 상기 제1 디자인을 수정하는 단계; 및
상기 제2 디자인에 따라 상기 인터포저 상에 상기 도전성 범프들을 형성하는 단계를 포함하는 것인, 반도체 디바이스를 형성하는 방법.
A method for forming a semiconductor device, comprising:
accepting a first design, wherein the first design includes conductive bumps on an interposer, the conductive bumps in the first design have the same cross-sectional area, and the conductive bumps in the first design include conductive bumps on the interposer. a first group of conductive bumps in a first area on a first side and a second group of conductive bumps in a second area on the first side of the interposer, wherein the first group of conductive bumps comprises a first 1 has a first bump pattern density within a predetermined range, the second group of conductive bumps has a second bump pattern density within a second predetermined range, wherein the first bump pattern density is the second bump pattern density higher than -;
to form a second design for the conductive bumps by increasing the cross-sectional area of the second group of conductive bumps while leaving the cross-sectional area of the first group of conductive bumps unchanged from the first design. 1 modify the design; and
and forming the conductive bumps on the interposer according to the second design.
제5항에 있어서, 상기 제2 디자인에 따라 상기 인터포저 상에 상기 도전성 범프들이 형성된 후에, 상기 제1 그룹의 도전성 범프들 및 상기 제2 그룹의 도전성 범프들은 상이한 단면적을 가지는 것인, 반도체 디바이스를 형성하는 방법.The semiconductor device of claim 5 , wherein after the conductive bumps are formed on the interposer according to the second design, the first group of conductive bumps and the second group of conductive bumps have different cross-sectional areas. how to form 제5항에 있어서, 상기 제1 미리 결정된 범위는 25 %를 초과하고, 상기 제2 미리 결정된 범위는 15 % 내지 25 %인 것인, 반도체 디바이스를 형성하기 위한 방법.The method of claim 5 , wherein the first predetermined range is greater than 25% and the second predetermined range is between 15% and 25%. 제7항에 있어서, 상기 제1 디자인을 수정하는 단계는 상기 제2 그룹의 도전성 범프들의 치수를 10 % 내지 25 % 증가시키는 단계를 포함하는 것인, 반도체 디바이스를 형성하는 방법.8. The method of claim 7, wherein modifying the first design comprises increasing the dimension of the second group of conductive bumps by 10% to 25%. 반도체 디바이스를 형성하는 방법으로서,
도전성 범프들을 위한 제1 디자인을 상기 도전성 범프들을 위한 제2 디자인으로 수정하는 단계 - 상기 제1 디자인 내의 상기 도전성 범프들은 동일한 단면적을 가지고 인터포저의 제1 측 상에 있음 -; 및
상기 제1 디자인의 상기 도전성 범프들은,
제1 범프 패턴 밀도를 가지고, 상기 인터포저의 상기 제1 측의 제1 영역에 있는 제1 그룹의 도전성 범프들; 및
제2 범프 패턴 밀도를 가지고, 상기 인터포저의 상기 제1 측의 제2 영역에 있는 제2 그룹의 도전성 범프들 - 상기 제1 범프 패턴 밀도는 상기 제2 범프 패턴 밀도보다 높음 - 를 포함하고,
상기 제1 디자인을 상기 도전성 범프들을 위한 상기 제2 디자인으로 수정하는 단계는 상기 제2 영역에 있는 상기 제2 그룹의 도전성 범프들의 단면적을 증가시키는 단계를 포함하며,
상기 제2 디자인에 따라 상기 인터포저의 상기 제1 측 상의 상기 도전성 범프들을 형성하는 단계를 포함하는 것인, 반도체 디바이스를 형성하는 방법.
A method of forming a semiconductor device, comprising:
modifying the first design for conductive bumps to a second design for the conductive bumps, wherein the conductive bumps in the first design have the same cross-sectional area and are on a first side of an interposer; and
The conductive bumps of the first design are,
a first group of conductive bumps having a first bump pattern density and in a first area on the first side of the interposer; and
a second group of conductive bumps having a second bump pattern density and in a second region of the first side of the interposer, wherein the first bump pattern density is higher than the second bump pattern density;
modifying the first design to the second design for the conductive bumps comprises increasing the cross-sectional area of the second group of conductive bumps in the second region;
and forming the conductive bumps on the first side of the interposer according to the second design.
제9항에 있어서, 상기 제1 그룹의 도전성 범프들의 단면적은 상기 제1 디자인과 상기 제2 디자인 사이에서 변경되지 않고 유지되는 것인, 반도체 디바이스를 형성하는 방법.10. The method of claim 9, wherein the cross-sectional area of the conductive bumps of the first group remains unchanged between the first design and the second design.
KR1020190112010A 2018-09-28 2019-09-10 Semiconductor device and method for forming the same Active KR102309349B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862738929P 2018-09-28 2018-09-28
US62/738,929 2018-09-28
US16/448,755 US11211318B2 (en) 2018-09-28 2019-06-21 Bump layout for coplanarity improvement
US16/448,755 2019-06-21

Publications (2)

Publication Number Publication Date
KR20200037079A KR20200037079A (en) 2020-04-08
KR102309349B1 true KR102309349B1 (en) 2021-10-08

Family

ID=69946065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190112010A Active KR102309349B1 (en) 2018-09-28 2019-09-10 Semiconductor device and method for forming the same

Country Status (2)

Country Link
KR (1) KR102309349B1 (en)
CN (1) CN110970396B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344824A (en) * 2005-06-09 2006-12-21 Nec Electronics Corp Semiconductor device and method for manufacturing semiconductor device
JP2014072487A (en) * 2012-10-01 2014-04-21 Panasonic Corp Semiconductor device and manufacturing method of the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4101042C1 (en) * 1991-01-16 1992-02-20 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Contact and encapsulation of micro-circuits using solder laser - and laser transparent contact film segments with conductor sheets of solderable material, geometrically associated with solder protuberances
KR100379678B1 (en) * 2001-05-17 2003-04-10 송오성 Construction of dummy edge pads for COB package
KR100702969B1 (en) * 2005-04-19 2007-04-03 삼성전자주식회사 Board Mount Structure of BA Type Semiconductor Chip Package with Dummy Solder Ball
US8686560B2 (en) * 2010-04-07 2014-04-01 Maxim Integrated Products, Inc. Wafer-level chip-scale package device having bump assemblies configured to mitigate failures due to stress
KR101130498B1 (en) * 2010-04-27 2012-03-27 앰코 테크놀로지 코리아 주식회사 Semiconductor device having bump
CN108886353B (en) * 2016-04-11 2022-03-22 株式会社村田制作所 Elastic wave element and elastic wave device
US9905527B1 (en) * 2016-12-15 2018-02-27 Micron Technology, Inc. Uniform electrochemical plating of metal onto arrays of pillars having different lateral densities and related technology

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344824A (en) * 2005-06-09 2006-12-21 Nec Electronics Corp Semiconductor device and method for manufacturing semiconductor device
JP2014072487A (en) * 2012-10-01 2014-04-21 Panasonic Corp Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
CN110970396B (en) 2023-05-02
KR20200037079A (en) 2020-04-08
CN110970396A (en) 2020-04-07

Similar Documents

Publication Publication Date Title
US12224247B2 (en) Fan-out package having a main die and a dummy die
US11476125B2 (en) Multi-die package with bridge layer
US11901255B2 (en) Semiconductor device and method of forming the same
US20250233119A1 (en) Integrated circuit package and method of forming same
KR20190055709A (en) Integrated fan-out packages and methods of forming the same
US11304290B2 (en) Semiconductor structures and methods
US12308343B2 (en) Semiconductor device and method of forming the same
KR20160018349A (en) Semiconductor structure and manufacturing method of the same
US20220359335A1 (en) Semiconductor package and manufacturing method thereof
US11211318B2 (en) Bump layout for coplanarity improvement
TWI852376B (en) Semiconductor device and method of forming the same
KR102309349B1 (en) Semiconductor device and method for forming the same
US20240063083A1 (en) Redistribution Structure with Warpage Tuning Layer
US20250309086A1 (en) Package structure and method for forming the same
CN116741715A (en) Semiconductor device and method of forming the same

Legal Events

Date Code Title Description
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5