[go: up one dir, main page]

KR102335694B1 - A method for synthesizing phase-separated PbSeTe nanoparticles - Google Patents

A method for synthesizing phase-separated PbSeTe nanoparticles Download PDF

Info

Publication number
KR102335694B1
KR102335694B1 KR1020150025240A KR20150025240A KR102335694B1 KR 102335694 B1 KR102335694 B1 KR 102335694B1 KR 1020150025240 A KR1020150025240 A KR 1020150025240A KR 20150025240 A KR20150025240 A KR 20150025240A KR 102335694 B1 KR102335694 B1 KR 102335694B1
Authority
KR
South Korea
Prior art keywords
nanoparticles
lead
selenium
telluride
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020150025240A
Other languages
Korean (ko)
Other versions
KR20160102763A (en
Inventor
성윤모
김민석
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020150025240A priority Critical patent/KR102335694B1/en
Publication of KR20160102763A publication Critical patent/KR20160102763A/en
Application granted granted Critical
Publication of KR102335694B1 publication Critical patent/KR102335694B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 상분리된 셀렌 텔루르화 납 나노입자를 대량으로 생산할 수 있는 상분리된 셀렌 텔루르화 납 나노입자의 합성방법에 관한 것이다. 본 발명에 따른 상분리된 셀렌 텔루르화 납 나노입자의 합성방법은 용매에 납을 포함하는 용질을 용해하여 혼합액을 제조하는 단계와, 상기 혼합액에 셀레늄(Se)을 공급하여 셀렌화 납(PbSe) 나노입자를 합성하는 단계와, 상기 셀렌화 납 나노입자가 합성된 혼합액에 텔레늄(Te)을 공급하여 셀렌 텔루르화 납(PbSeTe) 나노입자를 합성하는 단계를 포함한다. The present invention relates to a method for synthesizing phase-separated lead selenium telluride nanoparticles capable of producing a large amount of phase-separated lead selenium telluride nanoparticles. The method of synthesizing phase-separated lead selenium telluride nanoparticles according to the present invention comprises the steps of preparing a mixed solution by dissolving a solute containing lead in a solvent, and supplying selenium (Se) to the mixed solution to lead selenide (PbSe) nano A step of synthesizing the particles, and supplying tellurium (Te) to the mixed solution in which the lead selenide nanoparticles are synthesized includes the step of synthesizing lead selenide telluride (PbSeTe) nanoparticles.

Description

상분리된 셀렌 텔루르화 납 나노입자의 합성방법{A method for synthesizing phase-separated PbSeTe nanoparticles}A method for synthesizing phase-separated selenium lead telluride nanoparticles {A method for synthesizing phase-separated PbSeTe nanoparticles}

본 발명은 용액합성법을 통하여 상분리 거동을 보이는 셀렌 텔루르화 납 나노입자를 대량 생산하는 방법에 관한 것이다.The present invention relates to a method for mass-producing selenium lead telluride nanoparticles exhibiting a phase separation behavior through a solution synthesis method.

나노 물질은 기존의 벌크 물질에 비하여 새로운 특징을 보인다. 대표적인 예로 벌크 상태에서 약 700 나노미터(nm) 파장의 붉은색 빛을 발광하는 셀렌화 카드뮴(CdSe)을 나노입자 형태로 제조하고 크기가 약 10 나노미터 이하로 작아짐에 따라 약 450-570 나노미터의 녹색 빛 및 청색 빛을 발광할 수 있다. 이는 반도체 나노 물질에서 흔히 일어나는 양자구속효과 (quantum confinement effect)에 따른 것으로, 많은 종류의 반도체 나노입자가 지니는 특수한 성질 즉, 일정 크기 이하에서 나노입자의 크기가 점점 작아짐에 따라 밴드갭의 에너지가 점점 증가되는 현상 때문에 발생한다. 이런 현상은 반도체 나노물질 뿐만 아니라 금속 나노물질에서도 발견되며 이는 양자구속효과가 아닌 표면 플라스몬 공명 효과 (surface plasmon resonance effect) 때문에 일어난다고 알려져 있다. Nanomaterials show new characteristics compared to conventional bulk materials. As a representative example, cadmium selenide (CdSe), which emits red light with a wavelength of about 700 nanometers (nm) in the bulk state, is prepared in the form of nanoparticles and the size is reduced to about 10 nanometers or less, about 450-570 nanometers. of green light and blue light can be emitted. This is due to the quantum confinement effect, which is common in semiconductor nanomaterials, and is a special property of many types of semiconductor nanoparticles. This occurs because of an increase in This phenomenon is found not only in semiconductor nanomaterials but also in metal nanomaterials, and it is known that this occurs because of the surface plasmon resonance effect, not the quantum confinement effect.

또한, 나노물질은 벌크 물질에 비하여 단위 체적 당 큰 표면적 비(surface to volume ratio)를 지닌다. 단위 체적 당 큰 표면적 비는 각각의 나노입자가 외부에 대해서 큰 반응성을 지닌다는 것을 의미한다. 이는 나노물질 자체의 크기 (10의 마이너스 7승 이하의 차수) 때문에 일어나는 높은 집적화의 가능성과 함께 물질의 극미량을 검출할 수 있는 센서(가스센서, 바이오센서, 광센서 등), 효율 높은 에너지 변환 소자 (전지, 압전체, 열전 소자)의 구현을 가능케 한다. In addition, nanomaterials have a large surface to volume ratio per unit volume compared to bulk materials. The large surface area ratio per unit volume means that each nanoparticle has a large reactivity to the outside. This is due to the high integration potential caused by the size of the nanomaterial itself (the order of 10 to the minus 7th power), as well as sensors that can detect trace amounts of substances (gas sensors, biosensors, photosensors, etc.), high-efficiency energy conversion devices (battery, piezoelectric element, thermoelectric element) enable the realization.

상기의 내용을 포함하여 나노물질은 벌크물질과 다른 열적, 전기적, 역학적 등 성질을 지닌다. 하지만 나노물질의 실생활에서의 이용, 응용을 위해서는 나노물질을 대량으로 합성할 수 있는 기술이 필요하다. Including the above, nanomaterials have thermal, electrical, and mechanical properties that are different from bulk materials. However, for the use and application of nanomaterials in real life, a technology capable of synthesizing nanomaterials in large quantities is required.

대한민국 공개특허 10-2014-0075038(발명의 명칭 : 나노 결정 합성 방법 및 나노 결정 조성물)Korean Patent Laid-Open Patent No. 10-2014-0075038 (Title of the Invention: Nanocrystal Synthesis Method and Nanocrystal Composition)

본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 상분리된 셀렌 텔루르화 납 나노입자를 대량으로 생산할 수 있는 방법을 제공하는 것이다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a method capable of mass-producing phase-separated selenium telluride nanoparticles.

본 발명에 따른 상분리된 셀렌 텔루르화 납 나노입자의 합성방법은 용매에 납을 포함하는 용질을 용해하여 혼합액을 제조하는 단계와, 상기 혼합액에 셀레늄(Se)을 공급하여 셀렌화 납(PbSe) 나노입자를 합성하는 단계와, 상기 셀렌화 납 나노입자가 합성된 혼합액에 텔레늄(Te)을 공급하여 셀렌 텔루르화 납(PbSeTe) 나노입자를 합성하는 단계를 포함하는 것을 특징으로 한다.The method of synthesizing phase-separated lead selenium telluride nanoparticles according to the present invention comprises the steps of preparing a mixed solution by dissolving a solute containing lead in a solvent, and supplying selenium (Se) to the mixed solution to lead selenide (PbSe) nano It characterized in that it comprises the step of synthesizing the particles, and synthesizing lead selenide telluride (PbSeTe) nanoparticles by supplying helenium (Te) to the mixed solution in which the lead selenide nanoparticles are synthesized.

본 발명에 따르면, 상기 혼합액은 150℃ ~ 300℃로 가열되는 것이 바람직하다.According to the present invention, the mixed solution is preferably heated to 150 ℃ ~ 300 ℃.

또한, 본 발명에 따르면 상기 혼합액에는 계면활성제가 더 포함되는 것이 바람직하다.In addition, according to the present invention, it is preferable that the mixed solution further contains a surfactant.

또한, 본 발명에 따르면 상기 용매는 트라이옥틸 포스핀(trioctylphosphine)이며, 상기 계면활성제는 다이페닐에테르(diphenyl ether)와 옥탄산(octanoic acid)을 포함하는 것이 바람직하다.Further, according to the present invention, the solvent is trioctylphosphine, and the surfactant preferably includes diphenyl ether and octanoic acid.

본 발명에 따르면 상분리된 셀렌 텔루르화 납 나노입자를 대량으로 생산할 수 있다.According to the present invention, phase-separated selenium lead telluride nanoparticles can be produced in large quantities.

도 1은 셀렌화 납(PbSe), 텔루르화 납 (PbTe)의 상태도이다.
도 2는 셀렌화 납 나노 입자와 상분리가 이루어진 셀렌 텔루르화 납 나노 입자 합성 방법의 개략적인 모식도이다.
도 3은 셀렌화 납(PbSe) 나노 입자와 스피노달 상분리가 이루어진 셀렌 텔루르화 납(PbSeTe) 나노 입자의 X-선 회절 (X-ray diffraction: XRD) 그래프이다.
도 4는 셀렌화 납 나노 입자와 셀렌 텔루르화 납 나노 입자의 투과전자현미경 (Transmissio Electron Microscopy: TEM) 이미지이다.
도 5는 셀렌 텔루르화 납 나노 입자의 고해상능 투과전자현미경 (High-Resolution Transmission Electron Microscopy: HRTEM) 이미지와 고속푸리에변환 (Fast Fourier Transformation: FFT) 패턴 및 그에 따르는 패턴 분석의 이미지이다.
1 is a state diagram of lead selenide (PbSe) and lead telluride (PbTe).
2 is a schematic diagram of a method for synthesizing lead selenide nanoparticles and lead selenide nanoparticles in which phase separation is performed.
FIG. 3 is an X-ray diffraction (XRD) graph of lead selenide (PbSe) nanoparticles and selenized lead telluride (PbSeTe) nanoparticles with spinodal phase separation.
Figure 4 is a transmission electron microscope (Transmissio Electron Microscopy: TEM) image of lead selenide nanoparticles and selenium lead telluride nanoparticles.
Figure 5 is a high-resolution transmission electron microscope (High-Resolution Transmission Electron Microscopy: HRTEM) image and Fast Fourier Transformation (FFT) pattern of selenium lead telluride nanoparticles and an image of pattern analysis followed therewith.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 상분리된 셀렌 텔루르화 납 나노입자의 합성 방법에 관하여 설명한다.Hereinafter, a method for synthesizing phase-separated selenium lead telluride nanoparticles according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

도 1은 셀렌화 납(PbSe) 및 텔루르화 납(PbTe)의 상태도이다. 1 is a state diagram of lead selenide (PbSe) and lead telluride (PbTe).

도 1에 도시된 셀렌화 납(PbSe) 및 텔루르화 납 (PbTe)의 상태도를 참조하면, 셀렌화 납과 텔루르화 납은 특정 온도, 조성 구간에서 핵생성 및 성장 혹은 스피노달 분해에 의한 상분리를 일으킨다는 것을 확인할 수 있다. 이에, 본 발명에서는 나노입자에 포함되는 셀레늄과 텔레늄의 양을 조절하여 각각의 조성비가 다른 나노입자의 합성하고자 한다. Referring to the phase diagram of lead selenide (PbSe) and lead telluride (PbTe) shown in FIG. 1, lead selenide and lead telluride undergo phase separation by nucleation and growth or spinodal decomposition at a specific temperature and composition section. It can be confirmed that causing Accordingly, in the present invention, by adjusting the amounts of selenium and telenium contained in the nanoparticles, it is intended to synthesize nanoparticles having different composition ratios.

도 2는 본 발명의 일 실시예에 따른 셀렌 텔루르화 납 나노입자 합성방법의 개략적인 흐름도이며, 이를 참조하여 본 실시예에 따른 상분리된 셀렌 텔루르화 납 나노입자의 합성방법에 관하여 설명한다.2 is a schematic flowchart of a method for synthesizing lead selenium telluride nanoparticles according to an embodiment of the present invention, and with reference to this, a method for synthesizing phase-separated lead selenium telluride nanoparticles according to this embodiment will be described.

먼저, 용기에 산화납 용질과 트라이옥틸 포스핀(trioctylphosphine) 용매을 넣고, 추가적으로 계면활성제(surfactant) 예를 들어 다이페닐에테르(diphenyl ether)와 옥탄산(octanoic acid)을 넣는다. 이후, 혼합액(산화납 용질, 용매 및 계면활성제의 혼합물)이 담긴 용기를 150℃ 이상(300℃ 이하)으로 가열하여, 용매에 산화납 용질이 완전히 녹인다(dissolution). 참고로, 도 2의 (a)는 위의 용질과 용매가 포함된 상태로 150℃ 이상으로 가열된 용액이 삼구 플라스크 (three-neck flask)에 담겨져 있는 것을 표현한 것이다. 열전대(thermocouple)는 혼합액의 온도를 측정하여, 혼합액을 일정한 온도로 유지하기 위한 것이다. First, a solute lead oxide and a trioctylphosphine solvent are put in a container, and additionally, a surfactant, for example, diphenyl ether and octanoic acid is added. Thereafter, the container containing the mixed solution (a mixture of a solute lead oxide, a solvent and a surfactant) is heated to 150° C. or higher (300° C. or less), and the lead oxide solute is completely dissolved in the solvent (dissolution). For reference, (a) of FIG. 2 shows that a solution heated to 150° C. or more in a state containing the above solute and solvent is contained in a three-neck flask. A thermocouple measures the temperature of the mixed solution to maintain the mixed solution at a constant temperature.

그런 다음, 셀레늄 분말을 용매인 트라이옥틸 포스핀에 완전히 용해시킨 후, 상기의 혼합액에 주입한다(셀레늄 샷, Se shot). 그러면, 셀레늄과 납이 반응하여 셀렌화 납(PbSe) 나노입자가 합성된다. 이때, 나노 입자의 성장을 위해, 셀레늄 주입 후 3~10분 동안 기다리며, 기다리는 시간에 따라 나노입자의 크기를 10~50nm 범위에서 조절할 수 있다.Then, after completely dissolving the selenium powder in trioctyl phosphine as a solvent, it is injected into the mixed solution (selenium shot, Se shot). Then, selenium and lead react to synthesize lead selenide (PbSe) nanoparticles. At this time, for the growth of nanoparticles, after selenium injection, wait for 3 to 10 minutes, and depending on the waiting time, the size of the nanoparticles can be adjusted in the range of 10 to 50 nm.

이후, 텔레늄 분말을 트라이부틸 포스핀(tributylphosphine)에 완전히 용해시킨 후, 이를 혼합액에 주입한다(텔레늄 샷, Te shot). 그러면, 셀렌화 납과 텔레늄이 반응하여, 스피노달 상분리가 이루어진 셀렌 텔루르화 납(PbSeTe) 나노입자가 합성된다. Then, after completely dissolving the telenium powder in tributylphosphine, it is injected into the mixed solution (Tele shot, Te shot). Then, lead selenide and telenium react, and lead selenide telluride (PbSeTe) nanoparticles with spinodal phase separation are synthesized.

이후, 합성된 나노입자를 상온까지 냉각한 후 세척액으로 세척하고, 이후 원심분리기를 이용하여 나노입자만을 분리하면 된다. 이때, 세척액으로는 아세톤(Acetone), 메탄올(Methanol), 에탄올(Ethanol), 톨루엔(Toluene) 등이 이용될 수 있으며, 보다 바람직하게는 2가지 종류 이상의 세척액으로 순차적으로 세척을 하는 것이 바람직하다. Thereafter, the synthesized nanoparticles are cooled to room temperature, washed with a washing solution, and then only the nanoparticles are separated using a centrifuge. At this time, as the washing solution, acetone, methanol, ethanol, toluene, etc. may be used, and more preferably, washing sequentially with two or more types of washing solution is preferable.

도 3은 셀렌화 납(PbSe) 나노 입자와 스피노달 상분리가 이루어진 셀렌 텔루르화 납(PbSeTe) 나노 입자의 X-선 회절 (X-ray diffraction: XRD) 그래프이다. FIG. 3 is an X-ray diffraction (XRD) graph of lead selenide (PbSe) nanoparticles and selenized lead telluride (PbSeTe) nanoparticles with spinodal phase separation.

도 3을 참조하면, 셀렌화 납(도 3의 (a))에서는 보이지 않는 XRD의 패턴이 셀렌 텔루화 납(도 3의 (b))에서는 나타난다. 이 패턴은 텔루르화 납에 대한 패턴으로, 특징적인 것은 셀렌화 납과 텔루르화 납의 패턴이 독립적으로 나타난다는 것이다. 이는 합성된 셀렌 텔레루화 납이 합금화(alloying) 상태가 아닌 나노 입자 안에 PbSe1 - xTex와 PbSe1 - yTey 구획된 두 부분이 존재한다는 것을 의미하며, 이는 셀렌 텔루화 납이 스피노달 분해되어 있다는 증거가 된다. Referring to FIG. 3 , an XRD pattern not seen in lead selenide (FIG. 3 (a)) appears in lead selenide telluride (FIG. 3 (b)). This pattern is for lead telluride, and what is characteristic is that the patterns of lead selenide and lead telluride appear independently. This is the result of PbSe 1 - x Te x and PbSe 1 - y Te y in nanoparticles in which the synthesized lead selenide teleluide is not in an alloying state. It means that there are two partitioned parts, which is evidence that the selenium lead telluride is spinodal decomposed.

도 4는 셀렌화 납 나노 입자와 셀렌 텔루르화 납 나노 입자의 투과전자현미경 (Transmissio Electron Microscopy: TEM) 이미지이다. 4 is a transmission electron microscope (TEM) image of lead selenide nanoparticles and selenide lead telluride nanoparticles.

도 4의 (a)는 순수한 셀렌화 납 나노 입자의 이미지이며, 도 4의 (b)는 셀렌 텔루르 화 납 나노 입자의 이미지이다. 참고로, 앞서 설명한 바와 같이 셀렌화 납(도 4의 (a))의 단계에서, 텔레늄 샷의 추가하면 도 4의 (b)의 형상의 구현이 가능하다. 구형의 10~15 나노미터의 사이즈를 보이던 셀렌화 납 나노 입자는 텔레늄 샷의 추가 후 30~40 나노 미터의 사이즈를 보이는 셀렌 텔루르화 납 나노입자로 변한 것을 알 수 있다. 또한, 셀렌 텔루르 화 납의 나노입자에서는 흔히 스피노달 분해 현상에서 자주 보이는 연속된 띠 모양의 형상을 관찰할 수 있었다. Fig. 4 (a) is an image of pure lead selenide nanoparticles, and Fig. 4 (b) is an image of lead selenide telluride nanoparticles. For reference, as described above, in the step of lead selenide (FIG. 4 (a)), the addition of a telenium shot enables the implementation of the shape of FIG. 4 (b). It can be seen that the spherical lead selenide nanoparticles, which had a size of 10 to 15 nanometers, were changed to lead selenide nanoparticles having a size of 30 to 40 nanometers after the addition of the telenium shot. In addition, in the nanoparticles of lead selenide telluride, a continuous band-like shape, often seen in spinodal decomposition, could be observed.

도 5는 셀렌 텔루르화 납 나노입자의 고해상능 투과전자현미경 (High-Resolution Transmission Electron Microscopy: HRTEM) 이미지와 고속푸리에변환 (Fast Fourier Transformation: FFT) 패턴 및 그에 따르는 패턴 분석의 이미지이다. 5 is a High-Resolution Transmission Electron Microscopy (HRTEM) image of lead selenium telluride nanoparticles and a Fast Fourier Transformation (FFT) pattern and an image of the pattern analysis according thereto.

도 5를 참조하면, HRTEM 이미지에서도 연속된 띠 모양을 띤 나노입자를 관찰할 수 있으며, FFT의 점에 대한 분석에서 확인할 수 있듯이(inverse FFT) 하나의 나노입자 안에서 다른 분포를 지닌 패턴 이미지를 확인할 수 있다. 이는, 다른 조성이 하나의 나노입자 안에서 다른 위치에 존재함을 의미하며, 이 또한 셀렌 텔루르화 납 나노입자가 스피노달 분해되었음을 나타내는 증거가 된다. Referring to FIG. 5 , continuous band-shaped nanoparticles can be observed in the HRTEM image, and as can be seen in the analysis of the points of FFT (inverse FFT), pattern images with different distributions within one nanoparticle can be confirmed. can This means that different compositions exist at different positions in one nanoparticle, which is also evidence that selenium lead telluride nanoparticles are spinodal decomposed.

이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.Although preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific preferred embodiments described above, and in the technical field to which the present invention pertains without departing from the gist of the present invention as claimed in the claims Anyone with ordinary skill in the art can make various modifications, of course, and such changes are within the scope of the claims.

Claims (4)

산화납, 다이페닐에테르(diphenyl ether), 및 옥탄산(octanoic acid)을 트라이옥틸 포스핀(trioctylphosphine)에 혼합하여, 혼합액을 제조하는 단계;
상기 혼합액을 150℃ ~ 300℃로 가열하는 단계;
가열된 상기 혼합액에, 셀레늄(Se) 분말이 트라이옥틸 포스핀(trioctylphosphine)에 용해된 셀레늄 샷을 주입하여, 셀렌화 납(PbSe) 나노입자를 합성하는 단계; 및
상기 셀렌화 납 나노입자가 합성된 상기 혼합액에, 텔레늄(Te) 분말이 트라이부틸 포스핀(tributylphosphine)에 용해된 텔레늄 샷을 주입하여, 셀렌 텔루르화 납(PbSeTe) 나노입자를 합성하는 단계;를 포함하고,
상기 셀렌 텔루르화 납(PbSeTe) 나노입자는 직경 30 ~ 40 ㎚의 구형 나노입자인 상분리된 셀렌 텔루르화 납 나노입자의 합성방법.
Mixing lead oxide, diphenyl ether, and octanoic acid with trioctylphosphine to prepare a mixed solution;
heating the mixture to 150° C. to 300° C.;
synthesizing lead selenide (PbSe) nanoparticles by injecting a selenium shot in which selenium (Se) powder is dissolved in trioctylphosphine to the heated mixture; and
In the mixed solution in which the lead selenide nanoparticles are synthesized, a shot of telenium in which a telenium (Te) powder is dissolved in tributylphosphine is injected to synthesize lead selenide telluride (PbSeTe) nanoparticles including;
The selenium lead telluride (PbSeTe) nanoparticles are spherical nanoparticles having a diameter of 30 to 40 nm. A method of synthesizing phase-separated lead selenium telluride nanoparticles.
삭제delete 삭제delete 삭제delete
KR1020150025240A 2015-02-23 2015-02-23 A method for synthesizing phase-separated PbSeTe nanoparticles Active KR102335694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150025240A KR102335694B1 (en) 2015-02-23 2015-02-23 A method for synthesizing phase-separated PbSeTe nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150025240A KR102335694B1 (en) 2015-02-23 2015-02-23 A method for synthesizing phase-separated PbSeTe nanoparticles

Publications (2)

Publication Number Publication Date
KR20160102763A KR20160102763A (en) 2016-08-31
KR102335694B1 true KR102335694B1 (en) 2021-12-03

Family

ID=56877321

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150025240A Active KR102335694B1 (en) 2015-02-23 2015-02-23 A method for synthesizing phase-separated PbSeTe nanoparticles

Country Status (1)

Country Link
KR (1) KR102335694B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114056A (en) 2007-11-08 2009-05-28 Toyota Motor Engineering & Manufacturing North America Inc Synthesis of Pb alloys and core / shell nanowires

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876258B1 (en) * 2007-01-25 2008-12-26 고려대학교 산학협력단 Method of manufacturing manganese doped cadmium selenide quantum dots
KR101046072B1 (en) * 2008-04-14 2011-07-01 삼성엘이디 주식회사 Metal chalcogenide nanoparticles and preparation method thereof
KR101644053B1 (en) 2012-12-07 2016-08-01 삼성전자 주식회사 Processes for synthesizing nanocrystals and nanocrystal compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114056A (en) 2007-11-08 2009-05-28 Toyota Motor Engineering & Manufacturing North America Inc Synthesis of Pb alloys and core / shell nanowires

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Z. Quan et al., "Synthesis of PbSeTe Single Ternary Alloy and Core/Shell Heterostructured Nanocubes", J. Am. Chem. Soc., Vol.133, pp 17590-17593 (2011) 1부.*

Also Published As

Publication number Publication date
KR20160102763A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
Lv et al. Monodisperse CdSe quantum dots encased in six (100) facets via ligand-controlled nucleation and growth
Singh et al. Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential
Zhang et al. Stable zero-dimensional cesium indium bromide hollow nanocrystals emitting blue light from self-trapped excitons
Gu et al. Soft chemistry of metastable metal chalcogenide nanomaterials
Wang et al. Epitaxial growth of shape-controlled Bi2Te3− Te heterogeneous nanostructures
Pradhan Journey of making cesium lead halide perovskite nanocrystals: what’s next
Li et al. Size-and shape-controlled synthesis of PbSe and PbS nanocrystals via a facile method
Ding et al. Chemoaffinity-mediated synthesis of NaRES2-based nanocrystals as versatile nano-building blocks and durable nano-pigments
JP2005101601A (en) Improvement of quantum efficiency by surface treatment of semiconductor nanocrystals
Su et al. Synthesis of highly uniform Cu 2 O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color
Yu et al. Synthesis and photoluminescence properties of Bi2S3 nanowires via surfactant micelle-template inducing reaction
Li et al. Microwave-assisted synthesis and interfacial features of CdS/kaolinite nanocomposite
US7906084B2 (en) Method for control of shape and size of PB-chalcogenide nanoparticles
Liu et al. A general and rapid room-temperature synthesis approach for metal sulphide nanocrystals with tunable properties
Nistor et al. Sequential thermal decomposition of the shell of cubic ZnS/Zn (OH) 2 core–shell quantum dots observed with Mn2+ probing ions
Salavati-Niasari et al. Single-Source Molecular Precursor for Synthesis of CdS Nanoparticles and Nanoflowers.
Thuy et al. Low temperature synthesis of InP nanocrystals
Wang et al. A facile phosphine‐free method for synthesizing PbSe nanocrystals with strong optical limiting effects
Cao et al. Template-free preparation and characterization of hollow indium sulfide nanospheres
Ahlawat et al. Optical, morphological and thermal investigation of Cu doped ternary semiconducting (Cd1-xZnxS: Cu) nanomaterials
KR102335694B1 (en) A method for synthesizing phase-separated PbSeTe nanoparticles
Luo et al. Surfactant-free fabrication of Cu2O nanosheets from Cu colloids and their tunable optical properties
CN105152144B (en) Method for synthesizing ternary wurtzite sulfur selenide manganese nanorods
Ji et al. A versatile approach for shape-controlled synthesis of ultrathin perovskite nanostructures
CN110627125B (en) Method for synthesizing manganese sulfide and lead sulfide nanorod with core-shell structure

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20150223

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20200224

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20150223

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20201211

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210928

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20211201

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20211201

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20241126

Start annual number: 4

End annual number: 4