[go: up one dir, main page]

KR102497484B1 - Cvd film for cutting tool with excellent peel resistance - Google Patents

Cvd film for cutting tool with excellent peel resistance Download PDF

Info

Publication number
KR102497484B1
KR102497484B1 KR1020200187332A KR20200187332A KR102497484B1 KR 102497484 B1 KR102497484 B1 KR 102497484B1 KR 1020200187332 A KR1020200187332 A KR 1020200187332A KR 20200187332 A KR20200187332 A KR 20200187332A KR 102497484 B1 KR102497484 B1 KR 102497484B1
Authority
KR
South Korea
Prior art keywords
layer
plane
altin
cutting tool
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020200187332A
Other languages
Korean (ko)
Other versions
KR20220095633A (en
Inventor
안진우
강재훈
김옥길
이동열
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Priority to KR1020200187332A priority Critical patent/KR102497484B1/en
Publication of KR20220095633A publication Critical patent/KR20220095633A/en
Application granted granted Critical
Publication of KR102497484B1 publication Critical patent/KR102497484B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

본 발명의 목적은 밀착력이 우수하고, 내마모성과 인성이 향상된 절삭공구용 경질피막을 제공함에 있다.
본 발명에 따른 절삭공구용 피막은, CVD법으로 형성되며, 상기 피막은 제1층과 제1층의 상부에 형성된 제2층을 포함하고, 상기 제1층은 TiCxNy(x+y=1, x>0, y>0)을 주상으로 포함하고, X-선 회절분석 시에 (311)면 및/또는 (422)면의 피크 강도가 가장 크도록 배향되어 있고, 상기 제2층은 Ti1-xAlxC1-yNy (0.6≤x<1.0, 0≤y≤1)을 주상으로 포함하고, X-선 회절분석 시에 (111)면의 피크 강도가 가장 크도록 배향되어 있는 것을 특징으로 한다.
An object of the present invention is to provide a hard coating for a cutting tool having excellent adhesion and improved wear resistance and toughness.
A film for a cutting tool according to the present invention is formed by the CVD method, and the film includes a first layer and a second layer formed on top of the first layer, and the first layer is TiC x N y (x + y = 1, x>0, y>0) as a main phase, and is oriented so that the peak intensity of the (311) plane and / or (422) plane is the largest in X-ray diffraction analysis, and the second layer contains Ti 1-x Al x C 1-y N y (0.6≤x<1.0, 0≤y≤1) as a main phase, and has the highest peak intensity on the (111) plane during X-ray diffraction analysis It is characterized by being oriented.

Description

내박리성이 우수한 CVD 절삭공구용 피막 {CVD FILM FOR CUTTING TOOL WITH EXCELLENT PEEL RESISTANCE}Coating for CVD cutting tools with excellent exfoliation resistance {CVD FILM FOR CUTTING TOOL WITH EXCELLENT PEEL RESISTANCE}

본 발명은 절삭공구용 피막으로 화학기상증착법(Chemical Vapour Deposition)으로 형성되며, Al의 함량이 높은 AlTiN층을 포함하고, 내산화성, 내마모성 및 내박리성이 우수한 절삭공구용 피막에 관한 것이다.The present invention relates to a coating for a cutting tool, which is formed by chemical vapor deposition as a coating for a cutting tool, includes an AlTiN layer having a high Al content, and has excellent oxidation resistance, wear resistance, and peeling resistance.

절삭성능 향상 및 수명개선을 위해 초경합금, 서멧(cermet), 엔드밀, 드릴류 등의 경질기체 위에 경질피막인 TiN, TiAlN, AlTiN, Al2O3와 같은 박막을 증착하는 방식이 사용되고 있다.In order to improve cutting performance and life, a method of depositing a thin film such as TiN, TiAlN, AlTiN, Al 2 O 3 which is a hard film on a hard substrate such as cemented carbide, cermet, end mill, drill, etc. is used.

1980년대까지는 절삭공구에 TiN을 코팅하여 절삭성능 및 수명을 향상시키고자 하였으나, 일반적인 절삭가공시 약 600 ~ 700℃ 정도 열이 발생하게 되므로, 1980년대 후반에는 기존의 TiN 보다 경도와 내산화성이 높은 TiAlN으로 코팅기술이 변천되었고, 내마모성 및 내산화성을 더욱 향상시키기 위해 Al을 더 첨가시킨 AlTiN 박막이 개발되었다. AlTiN 박막은 Al2O3 산화층을 형성함으로써, 고온 내산화성과 내마모성을 향상시키는 효과를 얻었으나, 경질 기체와의 결합력이 약한 문제가 있다.Until the 1980s, cutting tools were coated with TiN to improve cutting performance and lifespan, but since heat of about 600 ~ 700℃ is generated during general cutting, in the late 1980s, TiN has higher hardness and oxidation resistance than TiN. The coating technology was changed to TiAlN, and an AlTiN thin film with more Al was developed to further improve wear resistance and oxidation resistance. The AlTiN thin film has an effect of improving high-temperature oxidation resistance and wear resistance by forming an Al 2 O 3 oxide layer, but has a problem in that it has a weak bonding force with a hard substrate.

최근 들어, 피삭재는 점차 고경도화되고 있으며, 열전도도가 낮고 공구와 용착이 심한 난삭재에 대한 절삭가공이 많아지고 있다. 이러한 고경도 피삭재에 대한 고속 절삭 가공 및 난삭재에 대한 고속 절삭 가공 시 우수한 절삭성능 및 수명을 얻기 위해서는 우수한 내산화성과 내마모성을 가지는 것이 중요하다.In recent years, workpieces have become increasingly hard, and cutting operations for difficult-to-cut materials that have low thermal conductivity and severe adhesion to tools are increasing. It is important to have excellent oxidation resistance and wear resistance in order to obtain excellent cutting performance and lifespan during high-speed cutting of such high-hardness workpieces and high-speed cutting of difficult-to-cut materials.

이러한 요구에 대하여, Al과 Ti 중에서 Al의 함량을 몰비로 0.7 이상 증가시켜 내산화성과 내마모성이 우수한 CVD법으로 형성한 AlTiN 박막이 새로운 대안으로서 부각되고 있으나, 낮은 내박리특성과 인성이 문제가 되어 적용 범위를 넓히는데 제약이 되고 있다.In response to this demand, an AlTiN thin film formed by a CVD method with excellent oxidation resistance and wear resistance by increasing the Al content by 0.7 or more in terms of molar ratio among Al and Ti has emerged as a new alternative, but low exfoliation resistance and toughness have become a problem. The scope of application is limited.

일례로, 하기 특허문헌에서는 라멜라 구조를 가지면서 동시에 특정한 결정면으로 우선 배향시킨 집합조직을 갖는 AlTiN 박막을 통해 보다 향상된 내마모성을 구현한 경질피막에 대해 개시하고 있다. 하지만, AlTiN 박막의 적용에 가장 문제가 되는 경질 기체와의 결합력을 향상시키는 기술에 대해서는 개시하지 않고 있다.For example, the following patent literature discloses a hard coating having improved wear resistance through an AlTiN thin film having a lamellar structure and a texture preferentially oriented in a specific crystal plane. However, the technology for improving the bonding force with the hard substrate, which is the most problematic for the application of the AlTiN thin film, is not disclosed.

대한민국 공개특허공보 제2016-0130752호Republic of Korea Patent Publication No. 2016-0130752

본 발명의 목적은 내박리성이 우수하면서 내마모성과 인성이 향상된 절삭공구용 피막을 제공함에 있다.An object of the present invention is to provide a coating for a cutting tool having excellent peeling resistance and improved abrasion resistance and toughness.

상기와 같은 목적을 달성하기 위해, 본 발명은 CVD법으로 형성되는 피막으로, 상기 피막은 제1층과, 상기 제1층의 상부에 형성된 제2층을 포함하고, 상기 제1층은 TiCxNy(x+y=1, x>0, y>0)을 주상으로 포함하고, X-선 회절분석 시에 (311)면 및/또는 (422)면의 피크 강도가 가장 크도록 배향되어 있고, 상기 제2층은 Ti1-xAlxC1-yNy (0.6≤x<1.0, 0≤y≤1)을 주상으로 포함하고, X-선 회절분석 시에 (111)면의 피크 강도가 가장 크도록 배향되어 있는 절삭공구용 피막을 제공한다.In order to achieve the above object, the present invention is a film formed by a CVD method, wherein the film includes a first layer and a second layer formed on top of the first layer, wherein the first layer is TiC x It includes N y (x+y=1, x>0, y>0) as a main phase, and is oriented so that the peak intensity of the (311) plane and / or (422) plane is the greatest in X-ray diffraction analysis And, the second layer includes Ti 1-x Al x C 1-y N y (0.6≤x<1.0, 0≤y≤1) as a main phase, and at the time of X-ray diffraction analysis, the (111) plane Provided is a coating for a cutting tool that is oriented to have the highest peak intensity.

본 발명에 따른 피막은, Al의 함량이 높은 AlTiN층을 포함하기 때문에 내산화성이 우수하고, 라멜라 조직을 갖는 AlTiN을 주상으로 하여 인성이 우수하다.The film according to the present invention has excellent oxidation resistance because it includes an AlTiN layer having a high Al content, and has excellent toughness because AlTiN having a lamellar structure is used as the main phase.

특히, 본 발명에 따른 피막은 AlTiN 층의 하부에 AlTiN층과의 결합력을 향상시키도록 배향되고 내마모성도 우수한 TiCN층을 배치함으로써 피막의 내박리성과 내마모성을 향상시켜 절삭공구의 수명을 연장시킨다.In particular, the film according to the present invention is oriented to improve the bonding force with the AlTiN layer and has excellent wear resistance under the AlTiN layer, thereby improving the peeling resistance and wear resistance of the film, thereby extending the life of the cutting tool.

도 1은 본 발명의 일 실시형태에 따른 경질피막의 구조에 대한 모식도이다.
도 2는 본 발명의 일 실시형태에 따라 제조된 피막의 단면에 대한 주사전자현미경이미지이다.
도 3은 본 발명의 일 실시형태에 따라 제조된 피막의 X선 회절분석 결과로, TiCN층의 피크 중에서 강도가 높은 결정면의 피크(적색 점선 박스)를 나타낸 것이다.
도 4는 본 발명의 일 실시형태에 따라 제조된 피막의 X선 회절분석 결과로, AlTiN층의 피크 중에서 가장 강도가 높은 결정면의 피크(적색 점선 박스)를 나타낸 것이다.
1 is a schematic view of the structure of a hard coating according to an embodiment of the present invention.
2 is a scanning electron microscope image of a cross-section of a film prepared according to an embodiment of the present invention.
3 is a result of X-ray diffraction analysis of a film prepared according to an embodiment of the present invention, and shows peaks (red dotted line boxes) of crystal planes with high intensity among the peaks of the TiCN layer.
FIG. 4 is a result of X-ray diffraction analysis of a film prepared according to an embodiment of the present invention, and shows a crystal plane peak (red dotted line box) with the highest intensity among peaks of an AlTiN layer.

이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

그러나 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.However, the embodiments of the present invention exemplified below may be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

본 발명에 따른 절삭공구용 피막은, CVD법으로 형성되며, 상기 피막은 제1층과 제1층의 상부에 형성된 제2층을 포함하고, 상기 제1층은 TiCxNy(x+y=1, x>0, y>0)을 주상으로 포함하고, X-선 회절분석 시에 (311)면 및/또는 (422)면의 피크 강도가 가장 크도록 배향되어 있고, 상기 제2층은 Ti1-xAlxC1-yNy (0.6≤x<1.0, 0≤y≤1)을 주상으로 포함하고, X-선 회절분석 시에 (111)면의 피크 강도가 가장 크도록 배향되어 있는 것을 특징으로 한다.A film for a cutting tool according to the present invention is formed by the CVD method, and the film includes a first layer and a second layer formed on top of the first layer, and the first layer is TiC x N y (x + y = 1, x>0, y>0) as a main phase, and is oriented so that the peak intensity of the (311) plane and / or (422) plane is the largest in X-ray diffraction analysis, and the second layer contains Ti 1-x Al x C 1-y N y (0.6≤x<1.0, 0≤y≤1) as a main phase, and has the highest peak intensity on the (111) plane during X-ray diffraction analysis It is characterized by being oriented.

도 1에서 도시된 것과 같이, 본 발명에 따른 피막은, 초경합금이나 서멧(cermet)과 같은 절삭공구용으로 사용되는 모재(100) 상에 형성되어 사용되는 것으로, 모재에 접하거나 인접하여 TiCxNy(x+y=1, x>0, y>0, 이하 'TiCN' 이라 함)을 주상으로하는 제1층(200)이 형성되고, 그 위에 다시 Ti1-xAlxC1-yNy (0.6≤x<1.0, 0≤y≤1, 이하 'AlTiN'이라 함)을 주상으로하는 제2층(300)이 형성되는 구조를 가진다.As shown in FIG. 1, the film according to the present invention is formed and used on a base material 100 used for cutting tools such as cemented carbide or cermet, and is in contact with or adjacent to the base material to TiC x N A first layer 200 having y (x+y=1, x>0, y>0, hereinafter referred to as 'TiCN') as a main phase is formed, and Ti 1-x Al x C 1-y is formed thereon. It has a structure in which a second layer 300 having N y (0.6≤x<1.0, 0≤y≤1, hereinafter referred to as 'AlTiN') as a main phase is formed.

본 발명에 있어서 '주상'이란 제1층 또는 제2층을 구성하는 부피분율로 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 가장 바람직하게는 99% 이상을 이루는 상(phase)을 의미한다.In the present invention, the term 'main phase' is a phase that constitutes 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more in volume fraction constituting the first or second layer. (phase) means.

Al이 몰비로 0.6 이상으로 Ti에 비해 많이 함유되는 제2층(300)은 전술한 바와 같이 내산화성이 우수하나 내박리성이 낮은 문제점이 있다. 본 발명에서는 AlTiN층의 하부에 형성되는 제1층에 TiCN층을 배치하고, TiCN층의 X-선 회절분석 시에 (311)면 및/또는 (422)면에서 가장 강한 피크가 나타나도록 우선 배향시킴으로써, TiCN층과 AlTiN층의 결합력을 향상시키며, TiCN층은 내마모성도 우수하기 때문에 절삭공구의 수명을 더 연장시키는 효과도 얻을 수 있다.As described above, the second layer 300 in which Al is contained more than Ti at a molar ratio of 0.6 or more has excellent oxidation resistance, but has low exfoliation resistance. In the present invention, the TiCN layer is placed on the first layer formed under the AlTiN layer, and the TiCN layer is first oriented so that the strongest peaks appear on the (311) plane and / or (422) plane during X-ray diffraction analysis. By doing so, the bonding force between the TiCN layer and the AlTiN layer is improved, and since the TiCN layer has excellent wear resistance, an effect of further extending the life of the cutting tool can be obtained.

상기 TiCN층은 X-선 회절분석 시에 (311)면이 가장 강한 피크일 경우 (422)면이 두 번째로 강한 피크 상태로 있거나, (422)면이 가장 강한 피크일 경우 (311)면이 두 번째로 강한 피크 상태인 것이 바람직하다.In the TiCN layer, when the (311) plane is the strongest peak in X-ray diffraction analysis, the (422) plane is in the second strongest peak state, or if the (422) plane is the strongest peak, the (311) plane is the strongest peak. The second strongest peak state is preferred.

상기 제1층의 두께는 0.5㎛ 미만일 경우 상기한 효과를 얻기 어렵고, 15㎛ 초과일 경우 TiCN층과 AlTiN간의 결합력 저하가 발생하므로, 0.5 ~ 15㎛ 범위로 형성되는 것이 바람직하다.If the thickness of the first layer is less than 0.5 μm, it is difficult to obtain the above-mentioned effect, and if it exceeds 15 μm, the bonding force between the TiCN layer and AlTiN decreases.

상기 제1층은 미세조직상 평균 결정립 크기가 0.9㎛ 이하의 미세립으로 형성되는 것이 상부에 형성되는 AlTiN을 주상으로 하는 제2층과의 결합력 향상은 물론 피막 전체의 내마모성을 향상시키는데 바람직하다.The first layer is preferably formed of fine grains having an average crystal grain size of 0.9 μm or less in microstructure to improve bonding strength with the second layer having AlTiN as a main phase formed thereon and improving wear resistance of the entire film.

상기 제2층은 Ti와 Al의 함량이 상이한 비율을 갖는 영역이 피막의 두께 방향을 따라 교대 반복적으로 형성되는 라멜라(lamellar) 구조로 이루어지고, 상기 영역의 평균 두께는 150nm 이하일 수 있다.The second layer has a lamellar structure in which regions having different contents of Ti and Al are alternately and repeatedly formed along the thickness direction of the film, and the average thickness of the regions may be 150 nm or less.

일반적으로 AlTiN 피막은 인성이 약하여 내충격성이 낮은데, 라멜라 구조를 가지는 피막은 이러한 인성을 향상시킬 수 있는 구조여서 인성 향상 효과를 가진다. 인성 향상 효과를 얻기 위해서는 상기 영역의 평균 두께(즉, 라멜라를 구성하는 미세층 사이의 평균 간격)는 150nm 이하가 바람직하고, 100nm 이하인 것이 더 바람직하고, 50nm 이하인 것이 가장 바람직하다.In general, AlTiN coatings have low impact resistance due to weak toughness, but coatings having a lamellar structure have a toughness improvement effect because they have a structure that can improve such toughness. In order to obtain the effect of improving toughness, the average thickness of the region (ie, the average spacing between the microlayers constituting the lamella) is preferably 150 nm or less, more preferably 100 nm or less, and most preferably 50 nm or less.

상기 라멜라 구조는 상이한 조성을 가지면서 동시에 면심 입방정(fcc) 조직과 육방정 구조(hcp) 조직과 같이 결정구조도 상이한 영역의 교대 반복일 수도 있고, 동일한 결정구조 예를 들어 면심 입방정(fcc) 구조를 가지면서 상이한 조성 영역이 교대 반복되는 것일 수 있다. 라멜라 구조는 절삭공구 사용 시에 하중에 대한 저항성을 높여 수명을 연장하는데 효과적인다. 특히 교대 반복되는 2개의 영역이 동일한 면심 입방정(fcc) 구조를 가지면서 상이한 조성 영역인 것이 바람직할 수 있다.The lamellar structure may be an alternating repetition of regions having different compositions and different crystal structures, such as a face-centered cubic (fcc) structure and a hexagonal structure (hcp) structure, or the same crystal structure, for example, a face-centered cubic (fcc) structure. While having, different composition regions may be alternately repeated. The lamellar structure is effective in extending the life of the cutting tool by increasing resistance to load when using it. In particular, it may be preferable that the two alternating regions have the same face-centered cubic (fcc) structure and have different compositional regions.

또한, 상기 AlTiN 층은 결합력과 내마모성을 고려할 때 알루미늄의 함량(x)는 0.6 이상 0.95 미만이 바람직하고, 0.7 이상 0.93 이하의 범위로 리치(rich)하게 포함되는 것이 보다 바람직하다.In addition, the AlTiN Considering bonding force and wear resistance, the aluminum content (x) is preferably 0.6 or more and less than 0.95, and more preferably 0.7 or more and 0.93 or less in a rich range.

또한, 상기 제2층은 면심입방구조(fcc)를 가지는 조직의 부피분율이 90 vol% 이상일 수 있다. AlTiN 을 주상으로 하는 경질피막은 성막 조건에 따라 면심입방구조(fcc)와 조밀육방구조(hcp) 구조가 나타날 수 있는데, 내마모성, 내충격성 등에서 면심입방구조인 것이 더 유리하고 따라서 면심입방구조가 90 vol% 이상이어야 면심입방 구조에 따른 특성이 충분히 발현될 수 있기 때문에, 제2층의 결정구조는 면심입방구조가 90 vol% 이상인 것이 바람직하다.In addition, the volume fraction of tissue having a face centered cubic structure (fcc) in the second layer may be 90 vol% or more. AlTiN Hard coatings with a main phase can have a face-centered cubic structure (fcc) and a dense hexagonal structure (hcp) depending on the film formation conditions. A face-centered cubic structure is more advantageous in terms of abrasion resistance and impact resistance, % or more, the characteristics according to the face-centered cubic structure can be sufficiently expressed. Therefore, the crystal structure of the second layer preferably has a face-centered cubic structure of 90 vol% or more.

또한, 상기 제2층은 X-선 회절분석 시 (111)면, (200)면, (220)면 또는 (311)면의 피크 강도가 가장 크도록 우선 배향되는 것이 내마모성과 같은 절삭성능을 향상시키는데 바람직하다. 이중에서도 (111)면으로 우선배향되는 것이 가장 바람직하다.In addition, the second layer is preferentially oriented so that the peak intensity of the (111) plane, (200) plane, (220) plane, or (311) plane is the largest in X-ray diffraction analysis to improve cutting performance such as wear resistance. it is desirable to do Among them, it is most preferable that the (111) plane is preferentially oriented.

또한, 상기 제2층의 두께는 2 ~ 6㎛인 것이 바람직한데, 이는 제2층의 두께가 2㎛ 미만일 경우 내마모성 및 내산화성이 충분하지 않을 수 있고, 6㎛ 초과일 경우 내부응력에 의해 내박리성이 저하될 수 있기 때문이다.In addition, it is preferable that the thickness of the second layer is 2 to 6 μm, which means that when the thickness of the second layer is less than 2 μm, wear resistance and oxidation resistance may not be sufficient, and when the thickness exceeds 6 μm, resistance due to internal stress It is because peelability may fall.

또한, 상기 제1층(200)과 모재(100) 사이에는 모재와 피막 사이의 결합력을 높이기 위하여 TiN층을 더 포함할 수 있다. 이때, TiN층의 두께는 2㎛ 이하로 형성되는 것이 바람직하고, 1㎛ 이하로 형성되는 것이 더 바람직하다.In addition, a TiN layer may be further included between the first layer 200 and the base material 100 to increase bonding strength between the base material and the coating. At this time, the thickness of the TiN layer is preferably formed to 2 μm or less, and more preferably to 1 μm or less.

이하, 본 발명을 보다 구체적으로 설명하기 위해, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기에서 설명되는 실시예에 한정되지는 않는다.Hereinafter, in order to explain the present invention in more detail, a preferred embodiment according to the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein.

[실시예 1][Example 1]

먼저, 초경합금 모재는, 초경합금의 바인더로 작용하는 Co의 함량이 7중량%, 4족, 5족 또는 6족의 원소를 포함하는 탄화물 또는 탄질화물은 그 함량이 5중량%를 첨가하여 13시간 혼합 분쇄 이후 스프레이 드라이 공법을 이용하여 혼합분말을 얻는다. 얻어진 혼합분말을 가지고 SNMX1206ANN-MM 형번 제작을 위해 2ton/㎠의 압력으로 프레스를 수행하여 성형체를 제조하였다.First, the cemented carbide base material is mixed for 13 hours by adding 7% by weight of Co, which acts as a binder of cemented carbide, and 5% by weight of carbides or carbonitrides containing elements of Groups 4, 5, or 6. After pulverization, a mixed powder is obtained using a spray drying method. With the obtained mixed powder, a molded article was manufactured by performing a press at a pressure of 2 ton/cm 2 to manufacture the SNMX1206ANN-MM model.

이어서, 600℃에서 탈지(dewaxing) 공정을 수행하여, 성형체 제조과정에 투입된 유기 바인더 성분을 제거한 후, 불활성 가스 분위기에서 1 ~ 2시간 동안 소결을 진행하고, 600℃까지 불활성 가스 분위기에서 소정의 냉각속도 냉각시킨 후, 자연냉각시키는 방법으로 소결공정을 수행하여, 경질피막 형성용 모재를 제조하였다.Subsequently, a dewaxing process is performed at 600 ° C to remove the organic binder component introduced in the molded product manufacturing process, and then sintering is performed in an inert gas atmosphere for 1 to 2 hours, followed by predetermined cooling in an inert gas atmosphere up to 600 ° C. After the rate cooling, a sintering process was performed by a natural cooling method to prepare a base material for forming a hard film.

상기 제조된 모재 위에 열적 CVD 방법을 사용하여 피막을 형성하였다.A film was formed on the prepared base material using a thermal CVD method.

먼저, 핫-월(hot-wall) CVD 반응기를 사용하여, 850℃, 5mbar의 압력 하에서, 8ml/min의 TiCl4, 12ml/min의 N2, 100ml/min의 H2 가스를 도입하는 방법을 통해 두께 1㎛ 이하의 TiN층을 형성하였다.First, a method of introducing 8ml/min of TiCl 4 , 12ml/min of N 2 , and 100ml/min of H 2 gas at 850° C. under a pressure of 5 mbar using a hot-wall CVD reactor Through this, a TiN layer having a thickness of 1 μm or less was formed.

다음으로, 800℃, 50mbar의 압력하에서, 4ml/min의 TiCl4, 0.5ml/min의 CH3CN, 15ml/min의 N2, 2000ml/min의 H2 혼합 가스를 도입하여 두께 약 9㎛의 MT-TiCN층(제1층)을 형성하였다.Next, at 800° C., under a pressure of 50 mbar, a mixed gas of 4 ml/min TiCl 4 , 0.5 ml/min CH 3 CN, 15 ml/min N 2 , and 2000 ml/min H 2 was introduced to obtain a thickness of about 9 μm. An MT-TiCN layer (first layer) was formed.

이후 800℃, 5mbar의 압력하에서, 4ml/min의 TiCl4, 20ml/min의 AlCl3, 1200ml/min의 H2 혼합 가스를 도입하여 80ml/min의 NH3 및 160ml/min의 N2, 0.5ml/min의 CH3CN 혼합물을 제2 가스 공급으로 반응기 내로 통과시켰다. 25분의 코팅 시간이 지난 후, 두께 4㎛의 검은 회색층의 AlTiN층이 형성되었다. 생성된 AlTiN층의 알루미늄의 함량(x)는 0.91이었다.Then, at 800° C., under a pressure of 5 mbar, 4 ml/min of TiCl 4 , 20 ml/min of AlCl 3 , and 1200 ml/min of H 2 mixed gas were introduced, and 80 ml/min of NH 3 and 160 ml/min of N 2 , 0.5 ml /min of the CH 3 CN mixture was passed into the reactor as the second gas feed. After a coating time of 25 minutes, a black gray AlTiN layer having a thickness of 4 μm was formed. The aluminum content (x) of the resulting AlTiN layer was 0.91.

도 2는 본 발명의 실시예 1에 따른 경질피막의 단면 미세조직을 나타낸 것이다. 도 2에서 확인되는 바와 같이, 실시예 1에 따른 경질피막의 AlTiN층은 주상정으로 성장하면서, 주상정의 내부에 수평하게 자발적으로 생성되는 나노 다층 구조인 라멜라 조직이 형성되어 있음이 관찰된다. 모재 바로 위 피막인 TiCN층이 형성되어 있다.2 shows a cross-sectional microstructure of a hard film according to Example 1 of the present invention. As confirmed in FIG. 2, while the AlTiN layer of the hard film according to Example 1 grows into a columnar crystal, it is observed that a lamellar structure, which is a nano-multilayer structure that is spontaneously generated horizontally inside the columnar crystal, is formed. A TiCN layer, which is a film directly above the base material, is formed.

도 3과 도 4는 본 발명의 실시예 1에 따른 경질피막의 X선 회절분석 결과를 나타낸 것이다. 도 3에서 확인되는 바와 같이, 실시예 1에 따라 제조된 경질피막의 TiCN층의 최대 강도를 나타내는 피크는 (311)면이며, 두번째로 강한 (422) 피크가 형성되어 있다.3 and 4 show the results of X-ray diffraction analysis of the hard coating according to Example 1 of the present invention. As confirmed in FIG. 3, the peak representing the maximum intensity of the TiCN layer of the hard film prepared according to Example 1 is the (311) plane, and the second strongest (422) peak is formed.

또한, 도 4에서 확인되는 바와 같이, 실시예 1에 따라 제조된 경질피막의 AlTiN층의 최대 강도를 나타내는 피크는 (111)면이다.In addition, as confirmed in FIG. 4, the peak representing the maximum intensity of the AlTiN layer of the hard film prepared according to Example 1 is the (111) plane.

즉, 본 발명의 실시예 1에 따른 경질피막은 경질 기체(모재)의 표면에 (311)면과 (422)면으로 배향된 TiCN층을 형성한 후에 (111)면으로 배향된 AlTiN층을 형성함으로써, 결정구조의 유사성으로 양 층 간의 결합력이 향상되게 된다.That is, in the hard film according to Example 1 of the present invention, an AlTiN layer oriented in the (111) plane is formed after forming a TiCN layer oriented in the (311) plane and the (422) plane on the surface of a hard substrate (base material). By doing so, the bonding force between the two layers is improved due to the similarity of the crystal structure.

[비교예 1][Comparative Example 1]

실시예 1과 동일한 초경합금 모재에 동일한 공정으로 MT-TiCN층을 제조한 후, AlTiN층을 형성할 때, 원료 가스의 하나인 AlCl3의 투입량을 10ml/min으로, 실시예 1에 비해 적게 설정하여 AlTiN층을 형성하였다. After manufacturing the MT-TiCN layer in the same process as the cemented carbide base material as in Example 1, when forming the AlTiN layer, the input amount of AlCl 3 , one of the raw material gases, was set to 10 ml / min, less than in Example 1, An AlTiN layer was formed.

[비교예 2][Comparative Example 2]

실시예 1과 동일한 초경합금 모재에 동일한 공정으로 MT-TiCN층을 형성할 때, TiCl4의 투입량을 8ml/min 으로 실시예 1에 비해 높게 설정하여 형성하였다.When the MT-TiCN layer was formed in the same process on the same cemented carbide base material as in Example 1, the input amount of TiCl 4 was set higher than that of Example 1 at 8 ml/min.

[비교예 3][Comparative Example 3]

실시예 1과 동일한 초경합금 모재에 동일한 공정으로 MT-TiCN층을 제조한 후, AlTiN층을 형성할 때, 원료 가스의 하나인 AlCl3의 투입량을 5ml/min, TiCl4의 투입량을 2ml/min으로 높게 설정하여 형성하였다. After manufacturing the MT-TiCN layer in the same process as in Example 1 on the same cemented carbide base material, when forming the AlTiN layer, the input amount of AlCl3, one of the raw material gases, was increased to 5 ml/min and the input amount of TiCl 4 was increased to 2 ml/min. set up and formed.

[비교예 4][Comparative Example 4]

실시예 1과 동일한 초경합금 모재에 동일한 공정으로 MT-TiCN층을 제조한 후, AlTiN층을 형성할 때, AlTiN층 형성시간을 120min 으로 실시예 1에 비해 현저하게 높게 설정하여 AlTiN층을 형성하였다. After manufacturing the MT-TiCN layer in the same process as in Example 1 on the same cemented carbide base material, when forming the AlTiN layer, the AlTiN layer formation time was set to 120 min, significantly higher than in Example 1, to form an AlTiN layer.

아래 표 1은 실시예 1, 비교예 1 ~ 4의 피막을 CVD법으로 형성할 때, 각 층의 형성조건을 나타낸 것이다.Table 1 below shows conditions for forming each layer when the films of Example 1 and Comparative Examples 1 to 4 were formed by the CVD method.

실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 TiCN
(제1층)
TiCN
(1st floor)
시간hour minmin 5050 5050 5050 5050 5050
TiCNTiCN 온도temperature 800800 800800 800800 800800 800800 TiCNTiCN 압력enter mbarmbar 5050 5050 5050 5050 5050 TiCNTiCN TiCl4 TiCl 4 ml/minml/min 44 44 88 44 44 TiCNTiCN N2 N 2 ml/minml/min 1515 1515 1515 1515 1515 TiCNTiCN H2 H2 ml/minml/min balbal balbal balbal balbal balbal TiCNTiCN CH3CNCH 3 CN ml/minml/min 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 AlTiN
(제2층)
AlTiN
(2nd floor)
시간hour minmin 2525 2525 2525 2525 125125
AlTiNAlTiN 온도temperature 800800 800800 800800 800800 800800 AlTiNAlTiN 압력enter mbarmbar 55 55 55 55 55 AlTiNAlTiN TiCl4 TiCl 4 ml/minml/min 44 44 44 22 44 AlTiNAlTiN N2 N 2 ml/minml/min 160160 160160 160160 160160 160160 AlTiNAlTiN H2 H2 ml/minml/min balbal balbal balbal balbal balbal AlTiNAlTiN CH3CNCH 3 CN ml/minml/min 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 AlTiNAlTiN AlCl3 AlCl 3 ml/minml/min 2020 1010 2020 55 2020 AlTiNAlTiN NH3 NH 3 ml/minml/min 8080 8080 8080 8080 8080

아래 표 2는 실시예 1, 비교예 1 ~ 4의 피막 중, TiCN층의 C 함량과, 우선성장 결정면을 나타낸 것이다. 표 2에서 우선성장 결정면이 2개로 기재된 것은 X-선 회절분석시 나타나는 피크의 강도가 유사한 경우이다.Table 2 below shows the C content of the TiCN layer and preferentially grown crystal planes among the films of Example 1 and Comparative Examples 1 to 4. In Table 2, two preferentially grown crystal planes are described when the intensity of peaks appearing in X-ray diffraction analysis is similar. 제1층1st floor 실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 C 함량C content 0.7 이상0.7 or higher 0.7 이상0.7 or higher 0.5 이하less than 0.5 0.7 이상0.7 or higher 0.7 이상0.7 or higher 우선성장
결정면
priority growth
crystal plane
(311), (422)(311), (422) (311), (422)(311), (422) (222)(222) (311), (422)(311), (422) (311), (422)(311), (422)

아래 표 3은 실시예 1, 비교예 1 ~ 4의 피막 중, TiAlN층의 Al 함량(몰비)와, 우선성장 결정면 및 두께를 나타낸 것이다.Table 3 below shows the Al content (molar ratio) of the TiAlN layer, preferentially grown crystal plane and thickness among the films of Example 1 and Comparative Examples 1 to 4. 제2층2nd floor 실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 Al 함량Al content 0.920.92 0.650.65 0.910.91 0.440.44 0.920.92 우선성장
결정면
priority growth
crystal plane
(111)(111) (111)(111) (111)(111) (111)(111) (111)(111)
두께(㎛)Thickness (㎛) 44 3.53.5 55 33 2020

절삭성능 평가Cutting performance evaluation

본 발명의 실시예 1 및 비교예 1 ~ 4에 따라 제조한 피막을 구비한 절삭공구의 내마모성과 내치핑성을 다음과 같은 평가조건으로 평가하였다.The wear resistance and chipping resistance of cutting tools having coatings prepared according to Example 1 and Comparative Examples 1 to 4 of the present invention were evaluated under the following evaluation conditions.

(1) 내마모성 평가 : 인써트 여유면, 경사면 및 상면 마모(1) Evaluation of wear resistance: wear on the insert flank, rake and crater

피삭재: SCM440Work material: SCM440

샘플형번: SNMX1206ANN-MMSample model number: SNMX1206ANN-MM

절삭 속도: 250m/minCutting speed: 250m/min

절삭 이송: 0.15mm/toothCutting feed: 0.15mm/tooth

절삭 깊이: 1.5mmCutting Depth: 1.5mm

절삭유: 없음(건식)Coolant: none (dry)

(2) 내치핑성 평가 :인써트 인선 날부 파손(2) Evaluation of chipping resistance: Breakage of the cutting edge of the insert

피삭재: SCM440Work material: SCM440

샘플형번: SNMX1206ANN-MMSample model number: SNMX1206ANN-MM

절삭 속도: 180m/minCutting speed: 180m/min

절삭 이송: 0.15mm/toothCutting feed: 0.15mm/tooth

절삭 깊이: 2.0mmCutting Depth: 2.0mm

절삭유: 없음(건식)Coolant: none (dry)

이상과 같은 조건으로 내마모성과 내치핑성을 평가한 샘플과 그 결과를 아래 표 4에 나타내었다.Table 4 below shows the samples and results evaluated for wear resistance and chipping resistance under the above conditions.

실시예Example 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 내마모성 가공시간Wear resistance Machining time 23min23min 13min13min 20min20min 10min10min 30min30min 내치핑성 가공시간Chipping resistance Machining time 43min43min 40min40min 35min35min 41min41min 15min15min

위 표 4 에서 확인되는 바와 같이, 본 발명의 실시예1에 따른 피막은 TiCN층과 AlTiN층간의 결정 배향 및 두께조절을 통해 결합력이 향상되어, 공구 수명이 비교예들에 비해 현저하게 개선되었다.As confirmed in Table 4 above, the coating according to Example 1 of the present invention has improved bonding strength through crystal orientation and thickness control between the TiCN layer and the AlTiN layer, and the tool life was significantly improved compared to comparative examples.

100: 모재
200: 제1층
300: 제2층
100: parent material
200: first layer
300: second layer

Claims (5)

CVD법으로 형성되는 피막으로,
상기 피막은 제1층과, 상기 제1층의 상부에 형성된 제2층을 포함하고,
상기 제1층은 TiCxNy(x+y=1, x>0, y>0)을 주상으로 포함하고, X-선 회절분석 시에 (311)면 및/또는 (422)면의 피크 강도가 가장 크도록 배향되어 있고,
상기 제2층은 Ti1-xAlxC1-yNy (0.6≤x<1.0, 0≤y≤1)을 주상으로 포함하고, X-선 회절분석 시에 (111)면의 피크 강도가 가장 크도록 배향되어 있는, 절삭공구용 피막.
As a film formed by the CVD method,
The film includes a first layer and a second layer formed on top of the first layer,
The first layer includes TiC x N y (x + y = 1, x>0, y>0) as a main phase, and has a peak of (311) plane and/or (422) plane in X-ray diffraction analysis Oriented to have the greatest strength,
The second layer includes Ti 1-x Al x C 1-y N y (0.6≤x<1.0, 0≤y≤1) as a main phase, and peak intensity of (111) plane in X-ray diffraction analysis Coating for cutting tools, oriented so that is the largest.
제1항에 있어서,
상기 제2층은 Ti와 Al의 함량이 상이한 비율을 갖는 영역이 피막의 두께 방향을 따라 교대 반복적으로 형성되는 라멜라 구조로 이루어지고, 상기 영역의 평균 두께는 150nm 이하인, 절삭공구용 피막.
According to claim 1,
The second layer has a lamellar structure in which regions having different Ti and Al contents are alternately and repeatedly formed along the thickness direction of the coating, and the average thickness of the region is 150 nm or less.
제1항에 있어서,
상기 제2층은 면심입방구조(fcc)를 가지는 조직의 부피분율이 90 vol% 이상인, 절삭공구용 피막.
According to claim 1,
The second layer has a volume fraction of a tissue having a face centered cubic structure (fcc) of 90 vol% or more, a coating for a cutting tool.
제1항에 있어서,
상기 제1층의 하부에는 하지층이 더 포함되고, 상기 하지층은 TiN을 주상으로 포함하는, 절삭공구용 피막.
According to claim 1,
A base layer is further included under the first layer, and the base layer includes TiN as a main phase.
제1항에 있어서,
상기 제1층은 미세조직상 평균 결정립 크기가 0.9㎛ 이하인, 절삭공구용 피막.
According to claim 1,
The first layer has an average crystal grain size of 0.9 μm or less on a microstructure, a coating for a cutting tool.
KR1020200187332A 2020-12-30 2020-12-30 Cvd film for cutting tool with excellent peel resistance Active KR102497484B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200187332A KR102497484B1 (en) 2020-12-30 2020-12-30 Cvd film for cutting tool with excellent peel resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200187332A KR102497484B1 (en) 2020-12-30 2020-12-30 Cvd film for cutting tool with excellent peel resistance

Publications (2)

Publication Number Publication Date
KR20220095633A KR20220095633A (en) 2022-07-07
KR102497484B1 true KR102497484B1 (en) 2023-02-08

Family

ID=82397961

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200187332A Active KR102497484B1 (en) 2020-12-30 2020-12-30 Cvd film for cutting tool with excellent peel resistance

Country Status (1)

Country Link
KR (1) KR102497484B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124098A (en) 2014-12-26 2016-07-11 三菱マテリアル株式会社 Surface coated cutting tool excellent in chipping resistance and wear resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103220A1 (en) 2014-03-11 2015-09-17 Walter Ag TiAIN layers with lamellar structure
JP6620482B2 (en) * 2014-09-30 2019-12-18 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance
EP3590638B1 (en) * 2017-02-28 2024-01-17 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124098A (en) 2014-12-26 2016-07-11 三菱マテリアル株式会社 Surface coated cutting tool excellent in chipping resistance and wear resistance

Also Published As

Publication number Publication date
KR20220095633A (en) 2022-07-07

Similar Documents

Publication Publication Date Title
KR100993152B1 (en) Surface-coated cermet cutting tool
EP0685572B1 (en) Coated hard-alloy blade member
US8999532B2 (en) Coating layer for cutting tools
EP2085500B1 (en) Surface-coated cutting tool with hard coating layer having excellent abrasion resistance
US9388487B2 (en) Nanolaminated coated cutting tool
EP3470153B1 (en) Surface-coated cutting tool
US6337152B1 (en) Cutting tool made of A12O3-coated cBN-based sintered material
EP1536041B1 (en) Coated cermet cutting tool with a chipping resistant, hard coating layer
JPH068010A (en) Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
SE530755C2 (en) Coated cermet cutter and its use
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
KR102399559B1 (en) Hard coating layer for cutting tools with improved peeling resistance
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
KR102356224B1 (en) Hard coating layer for cutting tools with excellent peeling resistance
KR101179255B1 (en) Surface coating layer for cutting tools
JP3404012B2 (en) Hard coating tool
JP2002346811A (en) Coated sintered tool
KR102497484B1 (en) Cvd film for cutting tool with excellent peel resistance
JP4569743B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4968674B2 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in high-speed cutting and method for manufacturing the same
KR102509585B1 (en) Cvd film for cutting tool with enhanced wear resistance and chipping resistance
JP2876130B2 (en) Coated cutting tool
KR102629997B1 (en) Cutting insert having hard film with excellent wear resistance
KR102663474B1 (en) Cvd film for cutting tool with excellent wear resistance
JP2023148467A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

R18-X000 Changes to party contact information recorded

St.27 status event code: A-3-3-R10-R18-oth-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000