KR102673713B1 - High-efficiency catalyst for hydrogen production through direct decomposition of methane and its preparation method - Google Patents
High-efficiency catalyst for hydrogen production through direct decomposition of methane and its preparation method Download PDFInfo
- Publication number
- KR102673713B1 KR102673713B1 KR1020210178054A KR20210178054A KR102673713B1 KR 102673713 B1 KR102673713 B1 KR 102673713B1 KR 1020210178054 A KR1020210178054 A KR 1020210178054A KR 20210178054 A KR20210178054 A KR 20210178054A KR 102673713 B1 KR102673713 B1 KR 102673713B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- methane
- highly efficient
- stirring
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 239000003054 catalyst Substances 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 73
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 239000001257 hydrogen Substances 0.000 title claims abstract description 51
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 51
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims abstract description 50
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 238000003756 stirring Methods 0.000 claims abstract description 27
- 239000002243 precursor Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 17
- 239000000047 product Substances 0.000 claims abstract description 17
- 239000004088 foaming agent Substances 0.000 claims abstract description 16
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 238000010298 pulverizing process Methods 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000012257 stirred material Substances 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical group C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 26
- 239000001569 carbon dioxide Substances 0.000 description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 description 13
- 239000003575 carbonaceous material Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000002407 reforming Methods 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 229940011182 cobalt acetate Drugs 0.000 description 4
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 description 4
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000002803 fossil fuel Substances 0.000 description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000004312 hexamethylene tetramine Substances 0.000 description 3
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- XEVRDFDBXJMZFG-UHFFFAOYSA-N carbonyl dihydrazine Chemical compound NNC(=O)NN XEVRDFDBXJMZFG-UHFFFAOYSA-N 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- SWRGUMCEJHQWEE-UHFFFAOYSA-N ethanedihydrazide Chemical compound NNC(=O)C(=O)NN SWRGUMCEJHQWEE-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000629 steam reforming Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 description 1
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001651 catalytic steam reforming of methanol Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/22—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
- C01B3/24—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
- C01B3/26—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
본 발명은 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 및 그 제조 방법에 관한 것으로, 본 발명에 따르면, 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매를 제조하는 방법에 있어서, 고온의 물에 질화 몰리브덴(Molybdenum nitride, MoN) 및 기포제(Foaming agent)를 용해시켜 혼합물을 제조하는 혼합단계; 상기 혼합물에 질산 마그네슘(Magnesium nitrate, MgN)을 첨가하고 교반하여 1차 교반물을 제조하는 1차 교반단계; 상기 1차 교반물에 전구체 용액을 첨가하고 교반하여 2차 교반물을 제조하는 2차 교반단계; 상기 2차 교반물을 연소시켜 반응생성물을 획득하는 반응단계 및 상기 반응생성물을 분쇄하는 분쇄단계를 포함하는 고효율 촉매 제조 방법을 제공할 수 있다.The present invention relates to a highly efficient catalyst for hydrogen production through direct decomposition of methane and a method for producing the same. According to the present invention, in the method for producing a highly efficient catalyst for hydrogen production through direct decomposition of methane, nitrification is performed in high temperature water. A mixing step of preparing a mixture by dissolving molybdenum nitride (MoN) and a foaming agent; A primary stirring step of adding magnesium nitrate (MgN) to the mixture and stirring to prepare a primary stirred product; A secondary stirring step of preparing a secondary stirred product by adding a precursor solution to the first stirred product and stirring it; A highly efficient catalyst production method can be provided, including a reaction step of burning the secondary stirred material to obtain a reaction product and a pulverization step of pulverizing the reaction product.
Description
본 발명은 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 및 그 제조 방법에 관한 것으로, 더욱 자세하게는 메탄의 직접 분해가 가능한 촉매를 제조함으로써, 이산화탄소 배출이 없는 친환경적인 수소 생산이 가능하도록 할 뿐만 아니라 수소 생산 효율이 우수한 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 및 그 제조 방법에 관한 것이다.The present invention relates to a highly efficient catalyst for hydrogen production through direct decomposition of methane and a method for producing the same. More specifically, by manufacturing a catalyst capable of direct decomposition of methane, it not only enables environmentally friendly hydrogen production without carbon dioxide emissions, but also enables environmentally friendly hydrogen production without carbon dioxide emissions. It relates to a highly efficient catalyst for hydrogen production through direct decomposition of methane, which has excellent hydrogen production efficiency, and a method for producing the same.
지구온난화 및 기후변화의 가속화에 따라 재생에너지를 활용한 전력 생산에 대한 관심이 높아지고 있다.As global warming and climate change accelerate, interest in electricity production using renewable energy is increasing.
재생에너지 중 수소 에너지의 활용에 대한 기술이 주목받으면서, 이에 따른 수소 생산에 대한 이슈도 함께 주목받고 있다.As technology for utilizing hydrogen energy among renewable energy sources receives attention, the issue of hydrogen production is also receiving attention.
수소는 수소 생산 방식과 친환경성 정도에 따라서 구분 될 수 있는데, 화석연료 개질을 통해 생산하는 그레이 수소, 화석연료 개질과 이산화탄소 포집을 동시에 진행하여 생산하는 블루 수소, 수전해 방식으로 물 분해를 통해 생산하는 그린 수소 등이 있다.Hydrogen can be classified according to the hydrogen production method and degree of eco-friendliness: gray hydrogen produced through fossil fuel reforming, blue hydrogen produced through fossil fuel reforming and carbon dioxide capture simultaneously, and water electrolysis produced through water decomposition. There is green hydrogen, etc.
현재 전세계의 생산되는 수소의 약 70% 수준이 화석연료 개질을 통한 그레이 수소이다. 그러나 화석연료 개질을 통하여 생산된 그래이 수소의 경우 이산화탄소 배출이 동반되는 문제가 있다.Currently, about 70% of the hydrogen produced around the world is gray hydrogen through fossil fuel reforming. However, gray hydrogen produced through fossil fuel reforming has the problem of carbon dioxide emissions.
이에 수소 생산 방식을 블루 수소, 그린 수소 등과 같이 친환경적인 수소 생산 방식으로 확대해가는 추세이다.Accordingly, there is a trend to expand hydrogen production methods to eco-friendly hydrogen production methods such as blue hydrogen and green hydrogen.
한편, 기존까지 천연 가스의 수성 가스 개질을 통한 생산 방식의 경우, 하기 식(1), (2)와 같이 이산화탄소 배출이 발생하는 단점이 있으며, 최종적으로 수소 1kg 생산 시 이산화탄소 10kg 배출하는 결과가 나타난다.Meanwhile, the existing production method through water gas reforming of natural gas has the disadvantage of generating carbon dioxide emissions as shown in equations (1) and (2) below, and ultimately results in the emission of 10 kg of carbon dioxide per 1 kg of hydrogen produced. .
식 (1) CH4 + H2O → CO + 3H2 Equation (1) CH 4 + H 2 O → CO + 3H 2
식 (2) CO + H2O → CO2 + H2 Equation (2) CO + H 2 O → CO 2 + H 2
반면, 메탄 가스의 직접 분해를 통한 생산 방식의 경우, 하기 식(3)과 같이 이산화탄소가 배출되지 않는다.On the other hand, in the case of a production method through direct decomposition of methane gas, carbon dioxide is not emitted as shown in equation (3) below.
식 (3) CH4 → C(s) + 2H2 Equation (3) CH 4 → C(s) + 2H 2
따라서, 이산화탄소 배출이 발생하지 않는 수소 생산 방식에 대한 개발이 필요한 실정이다.Therefore, there is a need to develop a hydrogen production method that does not generate carbon dioxide emissions.
상기와 같은 문제를 해결하고자, 본 발명은 메탄의 직접 분해가 가능한 촉매를 제조함으로써, 이산화탄소 배출이 없는 친환경적인 수소 생산이 가능하도록 할 뿐만 아니라 수소 생산 효율이 우수한 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 및 그 제조 방법을 제공하는 데 목적이 있다.In order to solve the above problems, the present invention manufactures a catalyst capable of direct decomposition of methane, which not only enables environmentally friendly hydrogen production without carbon dioxide emissions, but also enables hydrogen production through direct decomposition of methane with excellent hydrogen production efficiency. The purpose is to provide a highly efficient catalyst and a method for producing the same.
상기와 같은 과제를 해결하기 위하여, 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 제조 방법은 고온의 물에 질화 몰리브덴(Molybdenum nitride, MoN) 및 기포제(Foaming agent)를 용해시켜 혼합물을 제조하는 혼합단계; 상기 혼합물에 질산 마그네슘(Magnesium nitrate, MgN)을 첨가하고 교반하여 1차 교반물을 제조하는 1차 교반단계; 상기 1차 교반물에 전구체 용액을 첨가하고 교반하여 2차 교반물을 제조하는 2차 교반단계; 상기 2차 교반물을 연소시켜 반응생성물을 획득하는 반응단계 및 상기 반응생성물을 분쇄하는 분쇄단계를 포함하는 고효율 촉매 제조 방법을 제공할 수 있다.In order to solve the above problems, the method for producing a highly efficient catalyst for hydrogen production through direct decomposition of methane according to an embodiment of the present invention dissolves molybdenum nitride (MoN) and a foaming agent in high temperature water. A mixing step of preparing a mixture; A primary stirring step of adding magnesium nitrate (MgN) to the mixture and stirring to prepare a primary stirred product; A secondary stirring step of preparing a secondary stirred product by adding a precursor solution to the first stirred product and stirring it; A highly efficient catalyst production method can be provided, including a reaction step of burning the secondary stirred material to obtain a reaction product and a pulverization step of pulverizing the reaction product.
또한 상기 혼합단계는, 상기 물 40 내지 60중량부에 질화 몰리브덴(MoN) 2 내지 6중량부 및 기포제 12 내지 30중량부를 첨가하여 용해시키는 것을 특징으로 한다.In addition, the mixing step is characterized by adding and dissolving 2 to 6 parts by weight of molybdenum nitride (MoN) and 12 to 30 parts by weight of a foaming agent in 40 to 60 parts by weight of water.
또한 상기 기포제는, 우레아(urea), 글리신(glycine), 수크로스(sucrose), 글루코스(glucose), 시트르산(citric acid), 카보하이드라진(carbohydrazide), 옥살릴디하이드라자이드(oxalyldihydrazide), 헥사메틸렌테트라민(hexamethylenetetramine), 헥사메틸렌다이아민(hexamethylenediamine) 및 아세틸아세톤(acetylacetone) 중 하나 이상인 것을 특징으로 한다.In addition, the foaming agent includes urea, glycine, sucrose, glucose, citric acid, carbohydrazide, oxalyldihydrazide, and hexamethylene. It is characterized by being one or more of tetramine (hexamethylenetetramine), hexamethylenediamine, and acetylacetone.
또한 상기 1차 교반단계는, 상기 혼합물에 질산 마그네슘(MgN) 40 내지 60중량부를 첨가하는 것을 특징으로 한다.Additionally, the first stirring step is characterized by adding 40 to 60 parts by weight of magnesium nitrate (MgN) to the mixture.
또한 상기 1차 교반단계는, 상기 1차 교반물을 제조함에 따라, 몰리브덴(Mo)과 마그네슘(Mg)의 몰 비(Mo/Mg)가 1 내지 10이 되도록 하는 것을 특징으로 한다.In addition, the primary stirring step is characterized in that the molar ratio (Mo/Mg) of molybdenum (Mo) and magnesium (Mg) is 1 to 10 as the primary stirred product is prepared.
또한 상기 전구체 용액은, 물 20 내지 30중량부에 전구체 0.5 내지 4중량부를 용해시켜 제조된 것을 특징으로 한다.In addition, the precursor solution is characterized in that it is prepared by dissolving 0.5 to 4 parts by weight of the precursor in 20 to 30 parts by weight of water.
또한 상기 전구체는, FeS(iron sulfide), FeN (iron nitrate), FeCl2(iron(Ⅱ) chloride), FeCl3(iron(Ⅲ) chloride), CoS(cobalt sulfide), CoA(cobalt acetate), CoN(cobalt nitrate), NiS(nickel sulfide), NiCl2(nickel chloride) 및 NiN(nickel nitrate) 중 하나 이상인 것을 특징으로 한다.In addition, the precursors include FeS (iron sulfide), FeN (iron nitrate), FeCl 2 (iron(Ⅱ) chloride), FeCl 3 (iron(Ⅲ) chloride), CoS (cobalt sulfide), CoA (cobalt acetate), CoN It is characterized in that it is one or more of (cobalt nitrate), NiS (nickel sulfide), NiCl 2 (nickel chloride), and NiN (nickel nitrate).
또한 상기 반응단계는, 상기 2차 교반물을 400 내지 800℃로 연소 반응시키는 것을 특징으로 한다.Additionally, the reaction step is characterized by subjecting the secondary stirred material to a combustion reaction at 400 to 800°C.
또한 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 제조 방법을 통해 제조된 고효율 촉매를 제공할 수 있다.In addition, a highly efficient catalyst manufactured through a method for producing a highly efficient catalyst for hydrogen production through direct decomposition of methane according to an embodiment of the present invention can be provided.
여기서 고효율 촉매는, 메탄을 분해할 시, 700 내지 1000℃에서 반응하는 것을 특징으로 한다.Here, the high-efficiency catalyst is characterized by reacting at 700 to 1000°C when decomposing methane.
상기와 같은 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 및 그 제조 방법은 메탄의 직접 분해 반응으로 수소 생산이 가능함으로써, 이산화탄소 배출이 없는 친환경적인 수소 생산이 가능하도록 할 수 있다.The high-efficiency catalyst for hydrogen production through direct decomposition of methane and its manufacturing method according to the embodiment of the present invention as described above enable the production of hydrogen through a direct decomposition reaction of methane, thereby enabling environmentally friendly hydrogen production without carbon dioxide emissions. You can.
또한 기존 열 분해 촉매 대비 질량당 수소 생산 효율이 개선되어 고효율을 나타낼 수 있다.In addition, the hydrogen production efficiency per mass is improved compared to existing thermal decomposition catalysts, resulting in high efficiency.
또한 기존에 보고된 촉매 제조 비용 대비 비교적 저렴한 비용으로 제조가 가능하여 가격 경쟁력이 우수할 수 있다.In addition, it can be manufactured at a relatively low cost compared to the previously reported catalyst manufacturing cost, so price competitiveness can be excellent.
또한 부가적으로 얻은 탄소소재의 활용으로 경제적 효과를 기대할 수 있다.Additionally, economic effects can be expected through the use of additionally obtained carbon materials.
도 1은 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 제조 방법을 개략적으로 나타낸 흐름도.
도 2는 도 1의 제조 방법을 통해 제조된 고효율 촉매의 사진.
도 3은 고효율 촉매의 몰 비(Mo/Mg)와 반응 온도에 따른 메탄 가스 전환율 측정 결과 그래프.
도 4는 고효율 촉매의 메탄 분해를 통해 얻어진 탄소소재를 분석한 SEM 사진.
도 5는 고효율 촉매의 메탄 분해를 통해 얻어진 탄소소재의 강도를 측정한 결과 그래프.1 is a flow chart schematically showing a method for producing a highly efficient catalyst for hydrogen production through direct decomposition of methane according to an embodiment of the present invention.
Figure 2 is a photograph of a highly efficient catalyst manufactured through the manufacturing method of Figure 1.
Figure 3 is a graph of methane gas conversion rate measurement results according to the molar ratio (Mo/Mg) of the high-efficiency catalyst and reaction temperature.
Figure 4 is an SEM photo analyzing the carbon material obtained through methane decomposition using a high-efficiency catalyst.
Figure 5 is a graph showing the results of measuring the strength of a carbon material obtained through methane decomposition using a high-efficiency catalyst.
본 발명은 다 양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can be subject to various changes and have various forms, specific embodiments will be described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 구성요소 등을 조합한 것이 존재함을 지정하려 는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성요소 등을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the existence of a combination of features, numbers, steps, components, etc. described in the specification, but are not limited to one or more other features or numbers, It should be understood that the existence or addition possibility of combinations of steps, components, etc. is not excluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자 에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having meanings consistent with the meanings they have in the context of the related technology, and unless clearly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Here, repeated descriptions, known functions that may unnecessarily obscure the gist of the present invention, and detailed descriptions of configurations are omitted. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명은 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 및 그 제조 방법에 관한 것으로, 메탄을 직접 분해하여 수소를 생산할 수 있는 열 촉매를 제조하여, 이를 수소 생산에 적용함으로써, 이산화탄소 배출이 없는 친환경적인 수소 생산이 가능하도록 함과 더불어 수소 생산 효율이 개선되어 고효율을 확보하도록 하고자 하는 것이다.The present invention relates to a highly efficient catalyst for hydrogen production through direct decomposition of methane and a method for producing the same. By manufacturing a thermal catalyst that can produce hydrogen by directly decomposing methane and applying it to hydrogen production, it is eco-friendly and does not emit carbon dioxide. The goal is to enable efficient hydrogen production and improve hydrogen production efficiency to ensure high efficiency.
즉, 메탄의 직접 분해가 가능한 촉매를 통해 수소 생산 기술을 확보하는 것으로, 이산화탄소 배출이 동반되는 기존의 수소 생산 기술을 대체 가능하도록 하고자 한다.In other words, the goal is to secure hydrogen production technology through a catalyst that can directly decompose methane, thereby replacing existing hydrogen production technology that involves carbon dioxide emissions.
이하, 본 발명의 실시 예를 설명하기 위한 도 1 내지 도 5를 참조하여 상세히 설명하기로 한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 5.
도 1은 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 제조 방법을 개략적으로 나타낸 흐름도이며, 도 2는 도 1의 제조 방법을 통해 제조된 고효율 촉매의 사진이다.Figure 1 is a flowchart schematically showing a method for manufacturing a high-efficiency catalyst for hydrogen production through direct decomposition of methane according to an embodiment of the present invention, and Figure 2 is a photograph of the high-efficiency catalyst manufactured through the manufacturing method of Figure 1.
도 1을 참조하면, 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 제조 방법은 혼합단계(S100), 1차 교반단계(S200), 2차 교반단계(S300), 반응단계(S400) 및 분쇄단계(S500)를 포함할 수 있다.Referring to Figure 1, the method for producing a high-efficiency catalyst for hydrogen production through direct decomposition of methane according to an embodiment of the present invention includes a mixing step (S100), a first stirring step (S200), a second stirring step (S300), and reaction. It may include a step (S400) and a grinding step (S500).
혼합단계(S100)는 고온의 물에 질화 몰리브덴(Molybdenum nitride, MoN) 및 기포제(Foaming agent)를 용해시켜 혼합물을 제조하는 단계로, 물 40 내지 60중량부에 질화 몰리브덴(MoN) 2 내지 6중량부 및 기포제 12 내지 30중량부를 첨가하여 용해시킬 수 있다.The mixing step (S100) is a step of preparing a mixture by dissolving molybdenum nitride (MoN) and a foaming agent in high temperature water. 2 to 6 parts by weight of molybdenum nitride (MoN) is added to 40 to 60 parts by weight of water. It can be dissolved by adding 12 to 30 parts by weight of foaming agent.
여기서 고온의 물은 질화 몰리브덴(MoN)과 기포제의 용해 잘 이루어지도록 80 내지 100℃의 물일 수 있으나, 이에 한정되지는 않는다.Here, the high-temperature water may be water of 80 to 100° C. to facilitate dissolution of molybdenum nitride (MoN) and the foaming agent, but is not limited thereto.
또한 물이 40중량부 미만일 경우 질화 몰리브덴(MoN), 기포제 등의 용해가 이루어지지 않을 수 있으며, 60중량부 초과일 경우 연소 반응 효율이 저하되어 반응생성물 생성에 문제가 발생할 수 있다.In addition, if the water is less than 40 parts by weight, molybdenum nitride (MoN), foaming agent, etc. may not be dissolved, and if it is more than 60 parts by weight, combustion reaction efficiency may decrease and problems may occur in the production of reaction products.
질화 몰리브덴(Molybdenum nitride, MoN)은 촉매가 응집되지 않고 고르게 분산될 수 있도록 도와주는 역할로, 몰리브덴산암모늄(ammonium molybdate tetrahydrate)이 사용될 수 있으나, 이에 한정되지는 않는다. Molybdenum nitride (MoN) helps the catalyst to be evenly dispersed without agglomerating, and ammonium molybdate tetrahydrate may be used, but is not limited to this.
또한 질화 몰리브덴(MoN)은 2 내지 6중량부로 혼합될 수 있는데, 2 중량부 미만일 경우 촉매 응집 방지 효과가 미흡하여 기공특성이 저하될 수 있고, 이에 촉매 효율이 떨어질 수 있으며, 6중량부 초과일 경우 내구성, 형태안정성 등이 저하될 수 있다.In addition, molybdenum nitride (MoN) can be mixed in an amount of 2 to 6 parts by weight. If it is less than 2 parts by weight, the effect of preventing catalyst agglomeration is insufficient and pore characteristics may decrease, which may reduce catalyst efficiency. If it is more than 6 parts by weight, the pore characteristics may be reduced. In this case, durability, dimensional stability, etc. may be reduced.
기포제(Foaming agent)1차 교반단계(S200)는 추후 질산 마그네슘(Magnesium nitrate, MgN)이 첨가되어 교반 될 시, 포말의 형성을 촉진시키는 것으로, 표면적을 확대시켜 표면장력을 저하시킬 수 있다.The foaming agent first stirring step (S200) promotes the formation of foam when magnesium nitrate (MgN) is added and stirred later, and can reduce surface tension by expanding the surface area.
이러한 기포제는 우레아(urea), 글리신(glycine), 수크로스(sucrose), 글루코스(glucose), 시트르산(citric acid), 카보하이드라진(carbohydrazide), 옥살릴디하이드라자이드(oxalyldihydrazide), 헥사메틸렌테트라민(hexamethylenetetramine), 헥사메틸렌다이아민(hexamethylenediamine) 및 아세틸아세톤(acetylacetone) 중 하나 이상일 수 있으며, 이 중 시트르산(citric acid)이 사용되는 것이 바람직하나, 이에 한정되지는 않는다.These foaming agents include urea, glycine, sucrose, glucose, citric acid, carbohydrazide, oxalyldihydrazide, and hexamethylenetetramine. It may be one or more of hexamethylenetetramine, hexamethylenediamine, and acetylacetone, of which citric acid is preferably used, but is not limited thereto.
또한 기포제는 12 내지 30중량부로 혼합될 수 있는데, 12중량부 미만일 경우 기포제의 기능이 미흡하게 나타날 수 있고, 30중량부 초과일 경우 촉매의 가스분해율이 저하 될 수 있다. In addition, the foaming agent can be mixed in an amount of 12 to 30 parts by weight. If it is less than 12 parts by weight, the function of the foaming agent may be insufficient, and if it is more than 30 parts by weight, the gas decomposition rate of the catalyst may be reduced.
이는 추후 첨가되는 질산 마그네슘(MgN)의 중량을 고려하여 설정된 것으로, 질산 마그네슘(MgN) 중량 대비 30 내지 50중량% 정도로 첨가되는 것이 바람직할 수 있어, 그에 따라 설정된 것이다.This is set in consideration of the weight of magnesium nitrate (MgN) to be added later, and it may be desirable to add about 30 to 50% by weight relative to the weight of magnesium nitrate (MgN), so it is set accordingly.
S100 단계는 고온의 물에 질화 몰리브덴(MoN)을 첨가하여 완전히 용해시킨 다음, 기포제를 첨가하여 완전히 용해시키는 것으로 진행될 수 있으나, 이에 한정되지는 않는다.Step S100 may be performed by adding molybdenum nitride (MoN) to high temperature water to completely dissolve it, and then adding a foaming agent to completely dissolve it, but is not limited to this.
1차 교반단계(S200)는 S100 단계에서 제조된 혼합물에 질산 마그네슘(Magnesium nitrate, MgN)을 첨가하는 단계로, 혼합물에 질산 마그네슘(MgN) 40 내지 60중량부를 첨가하고 교반하여 1차 교반물을 제조할 수 있다.The first stirring step (S200) is a step of adding magnesium nitrate (MgN) to the mixture prepared in step S100. 40 to 60 parts by weight of magnesium nitrate (MgN) is added to the mixture and stirred to form the first stirred product. It can be manufactured.
이때, 질산 마그네슘(Magnesium nitrate, MgN)이 40중량부 미만일 경우 Mo 대비 Mg 질량이 적어 촉매의 메탄 분해 효율이 저하될 수 있고, 60중량부 초과일 경우 산화가 충분히 이루어지 않고 응집이 이루어져 기공특성이 저하될 수 있다.At this time, if magnesium nitrate (MgN) is less than 40 parts by weight, the methane decomposition efficiency of the catalyst may be reduced due to the small mass of Mg compared to Mo, and if it is more than 60 parts by weight, oxidation does not occur sufficiently and agglomeration occurs, resulting in poor pore characteristics. This may deteriorate.
S200 단계는 혼합물에 질산 마그네슘을 첨가하여 1차 교반물을 제조함에 따라, 1차 교반물, 즉, 고효율 촉매의 몰리브덴(Mo)과 마그네슘(Mg)의 몰 비(Mo/Mg)가 1 내지 10이 되도록 할 수 있다.In step S200, the primary stirred product is prepared by adding magnesium nitrate to the mixture, so that the molar ratio (Mo/Mg) of molybdenum (Mo) and magnesium (Mg) of the primary stirred product, that is, the high-efficiency catalyst, is 1 to 10. This can be done.
몰 비(Mo/Mg)에 따라 고효율 촉매의 효율, 즉 메탄 분해 효율과 촉매의 반응 온도가 달라질 수 있는데, 몰 비(Mo/Mg)가 상기 범위를 벗어날 경우 촉매의 효율이 저하될 수 있기 때문에, 몰 비(Mo/Mg)가 상기 범위로 이루어지는 것이 바람직할 수 있다.The efficiency of a high-efficiency catalyst, that is, the methane decomposition efficiency and the reaction temperature of the catalyst, may vary depending on the molar ratio (Mo/Mg). If the molar ratio (Mo/Mg) is outside the above range, the efficiency of the catalyst may decrease. , it may be desirable for the molar ratio (Mo/Mg) to be within the above range.
또한 S200 단계에서는 몰 비(Mo/Mg)를 조절함에 따라 촉매의 반응온도를 제어할 수 있다.Additionally, in step S200, the reaction temperature of the catalyst can be controlled by adjusting the molar ratio (Mo/Mg).
이때, 마그네슘(Mg)의 질량(mol)은 0.02mol로 유지되고, 몰리브덴(Mo)의 질량(mol)이 변경되어 몰 비(Mo/Mg)가 조절되는 것이 바람직할 수 있으나, 이에 한정되지 않으며, mol 수 또한 다양한게 변경될 수 있다.At this time, it may be preferable that the mass (mol) of magnesium (Mg) is maintained at 0.02 mol and the mass (mol) of molybdenum (Mo) is changed to adjust the molar ratio (Mo/Mg), but it is not limited to this. , the mol number can also be changed in various ways.
예를 들어, 마그네슘(Mg)의 질량(mol)은 0.02mol이고, 몰 비(Mo/Mg)를 1에서 10까지로 조절하고자 할 경우, 몰리브덴(Mo)의 질량(mol)이 각각 0.02mol, 0.04mol, 0.06mol, 0.08mol, 0.10mol, 0.12mol, 0.14mol, 0.16mol, 0.18mol, 0.20mol이 될 수 있는 것이다.For example, the mass (mol) of magnesium (Mg) is 0.02 mol, and if you want to adjust the molar ratio (Mo/Mg) from 1 to 10, the mass (mol) of molybdenum (Mo) is 0.02 mol, respectively. It can be 0.04mol, 0.06mol, 0.08mol, 0.10mol, 0.12mol, 0.14mol, 0.16mol, 0.18mol, 0.20mol.
2차 교반단계(S300)는 S200 단계에서 제조된 1차 교반물에 전구체 용액을 첨가하고 교반하여 2차 교반물을 제조하는 단계로, 전구체 용액을 제조하여 1차 교반물에 첨가할 수 있다.The secondary stirring step (S300) is a step of preparing a secondary stirring product by adding a precursor solution to the primary stirring product prepared in step S200 and stirring. A precursor solution may be prepared and added to the primary stirring product.
먼저, S300 단계는 고온의 물 20 내지 30중량부에 전구체 0.5 내지 4중량부를 용해시켜 전구체 용액을 제조할 수 있다.First, in step S300, a precursor solution can be prepared by dissolving 0.5 to 4 parts by weight of the precursor in 20 to 30 parts by weight of high temperature water.
여기서 물은 80 내지 100℃의 고온으로 이루어져 전구체의 용해가 보다 잘 이루어지도록 할 수 있으나, 이에 한정되지는 않는다.Here, the water may be heated to a high temperature of 80 to 100°C to facilitate better dissolution of the precursor, but is not limited thereto.
이때, 물이 20중량부 미만일 경우 전구체 용해가 이루어지지 않을 수 있으며, 30중량부 초과일 경우 연소 반응 시 반응 효율이 저하되어 반응생성물 생성에 문제가 발생할 수 있다.At this time, if the water is less than 20 parts by weight, the precursor may not be dissolved, and if it is more than 30 parts by weight, the reaction efficiency during the combustion reaction may decrease and problems may occur in the production of reaction products.
또한 전구체가 0.5중량부 미만일 경우 기공특성이 저하될 수 있으며, 4중량부 초과일 경우 산화가 일정 수준까지 이루어지지 않아 기공특성이 저하될 수 있다.In addition, if the precursor is less than 0.5 parts by weight, pore characteristics may be reduced, and if it is more than 4 parts by weight, oxidation may not occur to a certain level and pore characteristics may be reduced.
한편, 전구체는 FeS(iron sulfide), FeN(iron nitrate), FeCl2(iron(Ⅱ) chloride), FeCl3(iron(Ⅲ) chloride), CoS(cobalt sulfide), CoA(cobalt acetate), CoN(cobalt nitrate), NiS(nickel sulfide), NiCl2(nickel chloride) 및 NiN(nickel nitrate) 중 하나 이상일 수 있고, FeN(iron nitrate)이 바람직할 수 있으나, 이에 한정되지 않는다. Meanwhile, the precursors include FeS (iron sulfide), FeN (iron nitrate), FeCl 2 (iron (Ⅱ) chloride), FeCl 3 (iron (Ⅲ) chloride), CoS (cobalt sulfide), CoA (cobalt acetate), CoN ( It may be one or more of cobalt nitrate), NiS (nickel sulfide), NiCl 2 (nickel chloride), and NiN (nickel nitrate), and iron nitrate (FeN) may be preferred, but is not limited thereto.
또한 전구체는 수화물 형태로 사용될 수 있으나, 이에 한정되지는 않는다.Additionally, the precursor may be used in hydrate form, but is not limited thereto.
보다 구체적으로, 전구체가 FeN(iron nitrate)인 경우를 예로 들어 설정하자면, 1차 교반물에 첨가하고 교반함에 따라, 몰리브덴(Mo)과 철(Fe)의 몰 비(Mo/Fe)가 1 내지 10이 되도록 전구체 용액이 제조될 수 있다.More specifically, taking the case where the precursor is FeN (iron nitrate) as an example, as it is added to the primary stirred material and stirred, the molar ratio of molybdenum (Mo) and iron (Fe) (Mo/Fe) is 1 to 1. A precursor solution may be prepared to have 10.
S300 단계는 이와 같이 제조된 전구체 용액을 1차 교반물에 첨가하고 교반하여 2차 교반물을 제조할 수 있다.In step S300, the precursor solution prepared in this way can be added to the first stirred water and stirred to prepare a second stirred product.
반응단계(S400)는 S300 단계에서 제조된 2차 교반물을 연소시켜 반응생성물을 획득하는 단계로, 박스퍼니스에 2차 교반물을 담은 후 뚜껑을 닫거나 닫지 않은 상태로 열을 가하여 연소 반응시킬 수 있다.The reaction step (S400) is a step of obtaining a reaction product by burning the secondary agitated material prepared in step S300. The combustion reaction can be performed by putting the secondary agitated material in a box furnace and applying heat with or without the lid closed. there is.
보다 구체적으로, S400 단계는 2차 교반물에 400 내지 800℃로 열을 가하여 연소 반응을 시킬 수 있으며, 550℃가 보다 바람직하나, 이에 한정되지는 않는다.More specifically, step S400 can cause a combustion reaction by applying heat to the secondary stirred material at 400 to 800°C, with 550°C being more preferable, but not limited thereto.
S400 단계에서 연소 반응 온도가 400℃ 미만일 경우 철 입자의 나노 사이즈화를 통한 나노 이펙트로 인하여 용해가 이루어지지 않아 촉매 제조에 문제가 발생할 수 있으며, 800℃ 초과일 경우 제조되는 촉매의 물성이 저하될 수 있다.If the combustion reaction temperature in the S400 step is less than 400℃, problems may occur in catalyst production because dissolution does not occur due to the nano effect through nano-size of iron particles, and if it exceeds 800℃, the physical properties of the manufactured catalyst may deteriorate. You can.
S400 단계를 통해 도 2에 나타난 바와 같은, 반응생성물이 생성될 수 있다. 박스퍼니스의 뚜껑을 닫지 않고 반응시킬 경우 왼쪽과 같은 반응생성물이 생성될 수 있으며, 뚜껑을 닫고 받응 시킬 경우 오른쪽과 같은 반응생성물이 생성될 수 있다.Through step S400, a reaction product as shown in FIG. 2 can be produced. If the reaction is carried out without closing the lid of the box furnace, a reaction product like the one on the left may be produced, and if the reaction is carried out with the lid closed, a reaction product like the one on the right may be produced.
여기서 박스퍼니스의 뚜껑의 열고 닫음에 따라, 철의 산화되는 정도가 달라질 수 있고, 이에 고효율 촉매의 가스 분해율이 다르게 나타날 수 있다.Here, depending on opening and closing the lid of the box furnace, the degree of iron oxidation may vary, and thus the gas decomposition rate of the high-efficiency catalyst may vary.
또한 생성되는 반응생성물의 밀도가 다르게 나타날 수 있는데, 뚜껑을 닫고 제조한 경우가 닫지 않고 제조한 경우 보다 밀도가 높게 나타날 수 있다.Additionally, the density of the reaction product produced may appear different; when manufactured with the lid closed, the density may appear higher than when manufactured without the lid closed.
이러한 S400 단계에서 반응생성물이 부풀어 오르며 생성될 수 있는데, 부풀어 오름에 따라 촉매의 분산이 원활하게 이루어질 수 있으며, 이에 기공특성이 보다 우수하게 나타날 수 있다. In this S400 step, the reaction product may be generated by swelling. As the reaction product swells, the catalyst may be smoothly dispersed, and thus the pore characteristics may be improved.
분쇄단계(S500)는 S400 단계에서 제조된 반응생성물을 분쇄하는 단계로, 박스퍼니스에서 생성된 반응생성물을 회수하여 믹서를 통해 분쇄할 수 있는데, 분쇄시간에 따라 촉매의 입자 사이즈 및 겉보기 밀도가 달라지기 때문에, 분쇄시간이 중요하다고 할 수 있다.The pulverizing step (S500) is a step of pulverizing the reaction product produced in step S400. The reaction product generated in the box furnace can be recovered and pulverized through a mixer. The particle size and apparent density of the catalyst vary depending on the pulverizing time. Because of this, grinding time can be said to be important.
여기서 분쇄시간은 8 내지 10초로 이루어지는 것이 바람직할 수 있는데, 8초 미만일 경우 촉매가 메탄 가스와 접촉되는 면적이 작을 수 있고, 10초 초과일 경우 촉매의 겉보기 밀도가 너무 낮아져 메탄 분해 효율이 저하될 수 있다.Here, it may be desirable for the pulverization time to be 8 to 10 seconds. If it is less than 8 seconds, the area in which the catalyst is in contact with methane gas may be small, and if it is more than 10 seconds, the apparent density of the catalyst may be too low and methane decomposition efficiency may be reduced. You can.
상기와 같은 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 제조 방법을 통해 제조된 고효율 촉매를 제공할 수 있다.It is possible to provide a high-efficiency catalyst manufactured through the method for producing a high-efficiency catalyst for hydrogen production through direct decomposition of methane according to the embodiment of the present invention as described above.
상기 방법으로 제조된 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매는 메탄을 분해할 시, 700 내지 1000℃에서 반응하여 메탄 분해를 수행할 수 있다. 여기서 고효율 촉매는 최대 84%의 메탄 분해율을 가질 수 있다.The highly efficient catalyst for hydrogen production through direct decomposition of methane according to an embodiment of the present invention prepared by the above method can perform methane decomposition by reacting at 700 to 1000 ° C. when decomposing methane. Here, a high-efficiency catalyst can have a methane decomposition rate of up to 84%.
한편, 고효율 촉매는 메탄 분해를 수행함에 따라 탄소소재를 형성시킬 수 있는데, 여기서 형성된 탄소소재가 카본 블랙, CNT 등과 같은 물질이기 때문에, 이를 활용하도록 하여 부가적인 가치를 얻도록 할 수 있다.Meanwhile, a high-efficiency catalyst can form carbon materials as it decomposes methane. Since the carbon materials formed here are materials such as carbon black and CNT, they can be utilized to obtain additional value.
상기에서 설명한 바와 같이, 본 발명의 실시예에 따른 메탄의 직접 분해를 통한 수소 생산용 고효율 촉매 및 그 제조 방법은 메탄의 직접 분해 반응으로 수소 생산이 가능함으로써, 이산화탄소 배출이 없는 친환경적인 수소 생산이 가능하도록 할 수 있다.As described above, the highly efficient catalyst for hydrogen production through direct decomposition of methane according to an embodiment of the present invention and its manufacturing method enable the production of hydrogen through a direct decomposition reaction of methane, thereby enabling eco-friendly hydrogen production without carbon dioxide emissions. It can be made possible.
또한 기존 열 분해 촉매 대비 질량당 수소 생산 효율이 개선되어 고효율을 나타낼 수 있다.In addition, the hydrogen production efficiency per mass is improved compared to existing thermal decomposition catalysts, resulting in high efficiency.
또한 기존에 보고된 촉매 제조 비용 대비 비교적 저렴한 비용으로 제조가 가능하여 가격 경쟁력이 우수할 수 있다.In addition, it can be manufactured at a relatively low cost compared to the previously reported catalyst manufacturing cost, so price competitiveness can be excellent.
또한 부가적으로 얻은 탄소소재의 활용으로 경제적 효과를 기대할 수 있다.Additionally, economic effects can be expected through the use of additionally obtained carbon materials.
이하, 실시예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail through examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.However, the following examples only illustrate the present invention, and the content of the present invention is not limited by the following examples.
또한, 이하에서 설명하는 본 발명의 실시예는 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경하여 구현할 수 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.In addition, the embodiments of the present invention described below can be implemented with various substitutions, modifications, and changes without departing from the technical spirit of the present invention, and these implementations are within the scope of the technical field to which the present invention belongs from the description of the embodiments described above. Any expert can easily implement it.
[실험예 1] 촉매의 몰 비와 반응 온도에 따른 메탄 분해율 평가[Experimental Example 1] Evaluation of methane decomposition rate according to catalyst molar ratio and reaction temperature
본 발명의 고효율 촉매의 Mo/Mg의 몰 비와 반응 온도에 따른 메탄 분해 효율을 확인하기 위하여, 촉매의 몰 비(Mo/Mg)와 반응온도를 달리하여 메탄 가스 전환율을 측정하였다. 몰 비(Mo/Mg)를 1에서 10까지 1의 간격으로 달리하여 촉매를 제조하였고, 반응온도를 800, 850, 900, 950℃로 달리하여 반응시켰다.In order to confirm the methane decomposition efficiency according to the Mo/Mg molar ratio and reaction temperature of the high-efficiency catalyst of the present invention, methane gas conversion rate was measured by varying the catalyst molar ratio (Mo/Mg) and reaction temperature. Catalysts were prepared by varying the molar ratio (Mo/Mg) from 1 to 10 at intervals of 1, and the reaction was performed at different reaction temperatures of 800, 850, 900, and 950°C.
그 결과는 도 3과 같다.The results are as shown in Figure 3.
도 3은 고효율 촉매의 몰 비(Mo/Mg)와 반응 온도에 따른 메탄 가스 전환율 측정 결과 그래프이다.Figure 3 is a graph of methane gas conversion rate measurement results according to the molar ratio (Mo/Mg) of the high-efficiency catalyst and reaction temperature.
도 3을 보면 알 수 있듯이, 촉매의 Mo/Mg의 몰 비가 달라짐에 따라 반응 온도에서 각각 다른 메탄 가스 전환율이 나타나는 것을 확인할 수 있었다.As can be seen in Figure 3, it was confirmed that different methane gas conversion rates appeared at the reaction temperature as the molar ratio of Mo/Mg of the catalyst changed.
또한 촉매의 Mo/Mg의 몰 비가 5이고, 반응 온도가 900℃인 경우와 Mo/Mg의 몰 비가 8이고, 반응 온도가 950℃인 경우에서 메탄 가스 전환율이 특히 우수하게 나타나는 것을 확인할 수 있었다.In addition, it was confirmed that the methane gas conversion rate was particularly excellent when the Mo/Mg molar ratio of the catalyst was 5 and the reaction temperature was 900°C and when the Mo/Mg molar ratio was 8 and the reaction temperature was 950°C.
[실험예 2] 촉매의 메탄 분해에 따라 얻어진 탄소소재 평가[Experimental Example 2] Evaluation of carbon materials obtained by catalytic methane decomposition
본 발명의 고효율 촉매의 메탄 분해 시 형성되는 탄소소재를 확인하기 위하여, 하기와 같이 실험하였다.In order to confirm the carbon material formed during methane decomposition by the high-efficiency catalyst of the present invention, an experiment was conducted as follows.
Mo/Mg의 몰 비가 5가 되도록 고효율 촉매를 제조하고, 제조된 촉매로 900℃에서 메탄 분해를 수행하여 수소를 생산하였다. 이때 고정층 수평형 반응기를 활용하였다. 여기서 생성된 탄소소재를 획득하여 SEM으로 관찰하고, 강도를 측정하였다.A highly efficient catalyst was prepared so that the Mo/Mg molar ratio was 5, and methane decomposition was performed at 900°C with the prepared catalyst to produce hydrogen. At this time, a fixed bed horizontal reactor was used. The carbon material produced here was obtained, observed with an SEM, and its strength was measured.
그 결과는 도 4 및 도 5와 같다.The results are as shown in Figures 4 and 5.
도 4는 고효율 촉매의 메탄 분해를 통해 얻어진 탄소소재를 분석한 SEM 사진이고, 도 5는 고효율 촉매의 메탄 분해를 통해 얻어진 탄소소재의 강도를 측정한 결과 그래프이다. 한편, 도 5의 결과 그래프에서 1, 2, 3은 동일한 고효율 촉매에서 다른 포인트를 분석한 결과이다.Figure 4 is an SEM photograph analyzing the carbon material obtained through methane decomposition using a high-efficiency catalyst, and Figure 5 is a graph showing the results of measuring the strength of the carbon material obtained through methane decomposition using a high-efficiency catalyst. Meanwhile, in the result graph of FIG. 5, 1, 2, and 3 are the results of analyzing different points in the same high-efficiency catalyst.
도 4와 도 5를 보면 알 수 있듯이, 고효율 촉매의 메탄 분해를 통해 얻어진 탄소소재는 CNT와 같은 물질임을 확인할 수 있었다.As can be seen in Figures 4 and 5, it was confirmed that the carbon material obtained through methane decomposition using a high-efficiency catalyst was the same material as CNT.
이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계에서 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Above, specific parts of the content of the present invention have been described in detail, and for those skilled in the art, it is clear that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.
Claims (8)
고온의 물에 질화 몰리브덴(Molybdenum nitride, MoN) 및 기포제(Foaming agent)를 용해시켜 혼합물을 제조하는 혼합단계(S100);
상기 혼합물에 질산 마그네슘(Magnesium nitrate, MgN)을 첨가하고 교반하여 1차 교반물을 제조하는 1차 교반단계(S200);
상기 1차 교반물에 전구체 용액을 첨가하고 교반하여 2차 교반물을 제조하는 2차 교반단계(S300);
상기 2차 교반물을 연소시켜 반응생성물을 획득하는 반응단계(S400); 및
상기 반응생성물을 분쇄하는 분쇄단계(S500);를 포함하는 고효율 촉매 제조 방법으로서,
상기 혼합단계(S100)에서, 상기 기포제는 시트르산(citricacid)이고,
상기 1차 교반단계(S200)에서, 상기 질산 마그네슘(Magnesium nitrate, MgN)의 첨가는 교반물을 제조함에 따라, 몰리브덴(Mo)과 마그네슘(Mg)의 몰 비(Mo/Mg)가 1 내지 10이 되도록 하며,
상기 2차 교반단계(S300)에서, 상기 전구체 용액은 FeN(iron nitrate)을 포함하는 용액으로서, 몰리브덴(Mo)과 철(Fe)의 몰 비(Mo/Fe)가 1 내지 10이 되도록 첨가되는 것을 특징으로 하는,고효율 촉매의 제조방법.
In the method of producing a highly efficient catalyst for hydrogen production through direct decomposition of methane,
A mixing step (S100) of preparing a mixture by dissolving molybdenum nitride (MoN) and a foaming agent in high temperature water;
A primary stirring step (S200) of adding magnesium nitrate (MgN) to the mixture and stirring to prepare a primary stirred product;
A secondary stirring step (S300) of adding a precursor solution to the first stirring and stirring to prepare a secondary stirrer;
A reaction step (S400) of obtaining a reaction product by burning the secondary stirred material; and
A high-efficiency catalyst production method comprising a pulverizing step (S500) of pulverizing the reaction product,
In the mixing step (S100), the foaming agent is citric acid,
In the first stirring step (S200), the addition of magnesium nitrate (MgN) produces a stirred product, so that the molar ratio (Mo/Mg) of molybdenum (Mo) and magnesium (Mg) is 1 to 10. Let this happen,
In the second stirring step (S300), the precursor solution is a solution containing iron nitrate (FeN), which is added so that the molar ratio (Mo/Fe) of molybdenum (Mo) and iron (Fe) is 1 to 10. A method for producing a high-efficiency catalyst, characterized in that.
상기 혼합단계는,
상기 물 40 내지 60중량부에 질화 몰리브덴(MoN) 2 내지 6중량부 및 기포제 12 내지 30중량부를 첨가하여 용해시키는 것을 특징으로 하는 고효율 촉매 제조 방법.
According to paragraph 1,
The mixing step is,
A method for producing a highly efficient catalyst, characterized in that 2 to 6 parts by weight of molybdenum nitride (MoN) and 12 to 30 parts by weight of a foaming agent are added and dissolved in 40 to 60 parts by weight of water.
상기 1차 교반단계는,
상기 혼합물에 질산 마그네슘(MgN) 40 내지 60중량부를 첨가하는 것을 특징으로 하는 고효율 촉매 제조 방법.
According to paragraph 2,
The first stirring step is,
A method for producing a highly efficient catalyst, characterized in that 40 to 60 parts by weight of magnesium nitrate (MgN) is added to the mixture.
상기 전구체 용액은,
물 20 내지 30중량부에 전구체 0.5 내지 4중량부를 용해시켜 제조된 것을 특징으로 하는 고효율 촉매 제조 방법.
According to paragraph 1,
The precursor solution is,
A method for producing a highly efficient catalyst, characterized in that it is prepared by dissolving 0.5 to 4 parts by weight of the precursor in 20 to 30 parts by weight of water.
상기 반응단계는,
상기 2차 교반물을 400 내지 800℃로 연소 반응시키는 것을 특징으로 하는 고효율 촉매 제조 방법.
According to paragraph 1,
The reaction step is,
A method for producing a highly efficient catalyst, characterized in that the secondary stirred product is subjected to a combustion reaction at 400 to 800 ° C.
A highly efficient catalyst manufactured through the production method of any one of claims 1, 2, 3, 5, and 6.
메탄을 분해할 시, 700 내지 1000℃에서 반응하는 것을 특징으로 하는 고효율 촉매.
In clause 7,
A highly efficient catalyst characterized in that it reacts at 700 to 1000°C when decomposing methane.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020210178054A KR102673713B1 (en) | 2021-12-13 | 2021-12-13 | High-efficiency catalyst for hydrogen production through direct decomposition of methane and its preparation method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020210178054A KR102673713B1 (en) | 2021-12-13 | 2021-12-13 | High-efficiency catalyst for hydrogen production through direct decomposition of methane and its preparation method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20230089434A KR20230089434A (en) | 2023-06-20 |
| KR102673713B1 true KR102673713B1 (en) | 2024-06-07 |
Family
ID=86995094
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020210178054A Active KR102673713B1 (en) | 2021-12-13 | 2021-12-13 | High-efficiency catalyst for hydrogen production through direct decomposition of methane and its preparation method |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR102673713B1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101533863B1 (en) | 2007-10-31 | 2015-07-03 | 셰브런 유.에스.에이.인크. | Hydroconversion Processes Employing Multi-Metallic Catalysts and Method for Making Thereof |
| JP6794811B2 (en) | 2016-12-09 | 2020-12-02 | 日本製鉄株式会社 | Steam reforming catalyst, methane reforming catalyst, catalyst production method and hydrogen production method |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7128769B2 (en) | 2002-06-27 | 2006-10-31 | Idatech, Llc | Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same |
-
2021
- 2021-12-13 KR KR1020210178054A patent/KR102673713B1/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101533863B1 (en) | 2007-10-31 | 2015-07-03 | 셰브런 유.에스.에이.인크. | Hydroconversion Processes Employing Multi-Metallic Catalysts and Method for Making Thereof |
| JP6794811B2 (en) | 2016-12-09 | 2020-12-02 | 日本製鉄株式会社 | Steam reforming catalyst, methane reforming catalyst, catalyst production method and hydrogen production method |
Non-Patent Citations (2)
| Title |
|---|
| Fe-Mo-MgO촉매에서 금속입자 크기에 관한 소성온도의 영향, Theories and Applications of Chem. Eng., 2007, Vol. 13, No. 2 |
| The effect of the combustible agents on the synthesis of Fe-Mo/MgO catalysts for the production of carbon nanotubes, phys. stat. sol. (b) 244, No. 11, 3901-3906 (2007) |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20230089434A (en) | 2023-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| He et al. | Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane | |
| Liang et al. | Enhanced stability of iron-nickel oxygen carriers in biomass chemical looping gasification by core-shell structure | |
| Lai et al. | Coordination polymer-derived cobalt nanoparticle-embedded carbon nanocomposite as a magnetic multi-functional catalyst for energy generation and biomass conversion | |
| Chen et al. | The construction of hierarchical hollow Double-Shelled Co3O4 for the enhanced thermal decomposition of Ammonium perchlorate | |
| Zhang et al. | Oxygen vacancies and morphology engineered Co3O4 anchored Ru nanoparticles as efficient catalysts for ammonia borane hydrolysis | |
| Zhang et al. | Effect of rGO–Fe 2 O 3 nanocomposites fabricated in different solvents on the thermal decomposition properties of ammonium perchlorate | |
| Xu et al. | Dehydrogenation of hydrous hydrazine over carbon nanosphere-supported PtNi nanoparticles for on-demand H2 release | |
| Pan et al. | Tracking the pyrolysis process of a 3-MeOsalophen-ligand based Co2 complex for promoted oxygen evolution reaction | |
| CN113403638A (en) | Electrocatalytic oxygen evolution catalyst and preparation method thereof | |
| CN103934003A (en) | Nano silver catalyst for catalyzing hydrolysis of amino borane and preparation method thereof | |
| Abraham et al. | MOF derived cobalt-phospho-boride for rapid hydrogen generation via NaBH4 hydrolysis | |
| JP2019098328A (en) | Catalyst for hydrogen production and method for producing the same, and method for hydrogen production | |
| CN109126844A (en) | A kind of molybdenum carbide nanometer sheet and its preparation method and application | |
| Li et al. | Rattle-structured CuO/Co3O4@ C microspheres, a potent bifunctional catalyst for hydrogen production from ammonia borane hydrolysis and methanolysis | |
| Wang et al. | Zn Promotes chemical looping ammonia synthesis mediated by LiH− Li2NH couple | |
| Li et al. | Exceptional activity of hollow porphyrin frameworks-confined Ni nanoparticles for hydrogen production from NaBH4 methanolysis | |
| Zhang et al. | The effect of rGO-Fe2O3 nanocomposites with spherical, hollow and fusiform microstructures on the thermal decomposition of TKX-50 | |
| Feng et al. | Microflower-like Fe-Co-MOF with enhanced catalytic performance for decomposition of ammonium perchlorate and combustion of ammonium perchlorate-based composite propellants | |
| Pourdelan et al. | Thermocatalytic decomposition of methane over NiO–MgO catalysts synthesized by the mechanochemical method | |
| KR102673713B1 (en) | High-efficiency catalyst for hydrogen production through direct decomposition of methane and its preparation method | |
| Iqbal et al. | Tailored Flower-Like Ni-Fe-MOF-Derived oxide Composites: Highly active and durable electrocatalysts for overall water splitting | |
| CN106378150B (en) | Graphene-loaded palladium-nickel/cerium oxide nanocomposite, preparation method and ammonia borane catalytic decomposition method | |
| Tang et al. | Structural design and evolution of one-dimensional Cu hydrogen-bonded organic framework for catalyzing the rapid decomposition of ammonium perchlorate | |
| Nair et al. | Copper Oxide/HKUST‐1 Composite Catalyst as Thermal Decomposition Modifier on Ammonium Perchlorate | |
| Fan et al. | Recent progress in single atomic catalysts for electrochemical N2 fixation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20211213 |
|
| PA0201 | Request for examination | ||
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230816 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240528 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240604 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20240604 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration |