[go: up one dir, main page]

KR102722248B1 - Manufacturing method of porous activated carbon for high performance hydrogen storage through surface treatment - Google Patents

Manufacturing method of porous activated carbon for high performance hydrogen storage through surface treatment Download PDF

Info

Publication number
KR102722248B1
KR102722248B1 KR1020220105912A KR20220105912A KR102722248B1 KR 102722248 B1 KR102722248 B1 KR 102722248B1 KR 1020220105912 A KR1020220105912 A KR 1020220105912A KR 20220105912 A KR20220105912 A KR 20220105912A KR 102722248 B1 KR102722248 B1 KR 102722248B1
Authority
KR
South Korea
Prior art keywords
activated carbon
hydrogen storage
surface treatment
peroxide
porous activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020220105912A
Other languages
Korean (ko)
Other versions
KR20240027987A (en
Inventor
박수진
김영훈
이슬이
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020220105912A priority Critical patent/KR102722248B1/en
Publication of KR20240027987A publication Critical patent/KR20240027987A/en
Application granted granted Critical
Publication of KR102722248B1 publication Critical patent/KR102722248B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 과산화물 표면처리를 통한 고성능 수소저장용 다공성 활성탄소의 제조방법에 관한 것으로, 습식 표면처리를 통한 표면특성이 향상된 흡착소재의 수소저장량 향상으로 수소 저장능력이 극대화된 다공성 활성탄소를 제조하는 방법에 관한 것이다.
본 발명에 따르면, 산성 및 염기성 용매와 과산화물 분위기에서 진행되는 활성탄소의 표면처리 최적화를 통해 종래 활성탄소 대비 우수한 수소저장 특성을 나타내는 다공성 활성탄소 소재를 제공함에 따라, 물리흡착 수소저장을 위한 소재로의 응용 및 관련 분야로서의 다양한 활용이 가능하여 고부가가치를 창출할 수 있는 효과가 있다.
The present invention relates to a method for manufacturing a porous activated carbon for high-performance hydrogen storage through surface treatment with a peroxide, and more particularly, to a method for manufacturing a porous activated carbon with maximized hydrogen storage capacity by improving the hydrogen storage capacity of an adsorption material with improved surface characteristics through wet surface treatment.
According to the present invention, by optimizing the surface treatment of activated carbon in an acidic and basic solvent and a peroxide atmosphere, a porous activated carbon material exhibiting superior hydrogen storage properties compared to conventional activated carbon is provided, thereby enabling various applications as a material for physical adsorption hydrogen storage and related fields, thereby creating high added value.

Description

표면처리를 통한 고성능 수소저장용 다공성 활성탄소의 제조방법{MANUFACTURING METHOD OF POROUS ACTIVATED CARBON FOR HIGH PERFORMANCE HYDROGEN STORAGE THROUGH SURFACE TREATMENT}MANUFACTURING METHOD OF POROUS ACTIVATED CARBON FOR HIGH PERFORMANCE HYDROGEN STORAGE THROUGH SURFACE TREATMENT

본 발명은 과산화물 표면처리를 통한 고성능 수소저장용 다공성 활성탄소의 제조방법에 관한 것으로, 습식 표면처리를 통한 표면특성이 향상된 흡착소재의 수소저장량 향상으로 수소 저장능력이 극대화된 다공성 활성탄소를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a porous activated carbon for high-performance hydrogen storage through surface treatment with a peroxide, and more particularly, to a method for manufacturing a porous activated carbon with maximized hydrogen storage capacity by improving the hydrogen storage capacity of an adsorption material with improved surface characteristics through wet surface treatment.

현재 인류는 화석연료 고갈뿐만 아니라 지구 온난화와 심각한 대기오염에 직면하였다. 특히 최근 들어 환경오염 문제가 부각됨에 따라 지속가능한 대체 에너지에 대한 관심이 증가하고 있다. 많은 연구들은 오염물질을 배출하지 않을 뿐만 아니라 단위 무게당 높은 에너지 용량을 지니는 수소에너지가 화석연료를 대체할 유망한 대체에너지로 평가한다.Currently, mankind is faced with not only the depletion of fossil fuels, but also global warming and serious air pollution. In particular, as environmental pollution issues have been highlighted recently, interest in sustainable alternative energy has increased. Many studies evaluate hydrogen energy, which not only does not emit pollutants but also has a high energy capacity per unit weight, as a promising alternative energy to replace fossil fuels.

수소저장 방법으로는 크게 고압 압축 저장법, 액화수소 저장법, 흡착법 등이 있다. 그 중 흡착법은 넓은 비표면적을 가진 다공성 소재를 사용하며 빠른 흡탈착, 높은 가역성을 특징으로 지니며 제올라이트, 금속 유기 구조체 (MOFs, metal-organic frameworks), 공유 유기 구조체 (COFs, covalent organic frameworks), 다공성 실리카, 활성탄소, 탄소나노튜브, 그래핀 유도체 등이 사용된다.There are three main methods for storing hydrogen: high-pressure compression storage, liquid hydrogen storage, and adsorption. Among them, the adsorption method uses porous materials with a large surface area and is characterized by rapid adsorption and desorption and high reversibility. Zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), porous silica, activated carbon, carbon nanotubes, and graphene derivatives are used.

이에 본 발명자는 산성 및 염기성 용매와 과산화물 분위기에서 진행되는활성탄소의 표면처리 최적화를 통해 종래 활성탄소 대비 우수한 수소저장 특성을 나타내는 다공성 활성탄소 소재를 제공함에 따라, 물리흡착 수소저장을 위한 소재 및 이의 제조 방법을 제공하고자 한다.Accordingly, the inventors of the present invention have provided a porous activated carbon material exhibiting superior hydrogen storage properties compared to conventional activated carbon through optimization of the surface treatment of activated carbon performed in an acidic and basic solvent and a peroxide atmosphere, thereby providing a material for physical adsorption hydrogen storage and a method for manufacturing the same.

본 발명의 목적은, 산성 및 염기성 용매와 과산화물 분위기에서 진행되는 활성탄소의 표면처리 최적화를 통해 종래 활성탄소 대비 우수한 수소저장 특성을 나타내는 다공성 활성탄소 소재를 제공함에 따라, 물리흡착 수소저장을 위한 소재 및 이의 제조방법을 제공하는 것이다.The purpose of the present invention is to provide a porous activated carbon material exhibiting superior hydrogen storage properties compared to conventional activated carbon by optimizing the surface treatment of activated carbon in an acidic and basic solvent and a peroxide atmosphere, thereby providing a material for physical adsorption hydrogen storage and a method for producing the same.

상기 목적을 달성하기 위하여, 본 발명은 산성 및 염기성 용매와 과산화물 분위기에서 진행되는 활성탄소의 표면처리 최적화를 통해 종래 활성탄소 대비 우수한 수소저장 특성을 나타내는 다공성 활성탄소 소재를 제조하는 방법으로, (1) 활성탄소 전구체를 산성 용액 및 염기성 용액 중 어느 하나의 용액과 혼합하는 단계; (2) 상기 (1) 단계에서 얻어진 혼합물과 과산화물을 혼합하여 표면처리하는 단계; 및 (3) 상기 (2) 단계에서 얻어진 시료를 세척 및 건조하는 단계;를 포함할 수 있다.In order to achieve the above object, the present invention provides a method for manufacturing a porous activated carbon material exhibiting superior hydrogen storage properties compared to conventional activated carbon through surface treatment optimization of activated carbon performed in an acidic and basic solvent and a peroxide atmosphere, the method including: (1) a step of mixing an activated carbon precursor with either an acidic solution or a basic solution; (2) a step of surface treatment by mixing the mixture obtained in step (1) with a peroxide; and (3) a step of washing and drying the sample obtained in step (2).

상기 (1) 단계에서 산성 용액은 0.1 내지 20 M 농도로, 염산, 황산 및 질산 중 어느 하나이고, 염기성 용액은 0.1 내지 20 M 농도로, 수산화나트륨 및 수산화칼륨 중 어느 하나인 것일 수 있다.In the step (1) above, the acidic solution may be any one of hydrochloric acid, sulfuric acid and nitric acid with a concentration of 0.1 to 20 M, and the basic solution may be any one of sodium hydroxide and potassium hydroxide with a concentration of 0.1 to 20 M.

상기 (1) 단계의 혼합은, 산성 용액 및 염기성 용액 중 어느 하나와 활성탄소 전구체를 1:1 내지 1000:1 질량비로 사용하여 혼합하는 것일 수 있다.The mixing in step (1) above may be done by mixing either an acidic solution or a basic solution with an activated carbon precursor at a mass ratio of 1:1 to 1000:1.

활성탄소 전구체로는, 탄화시킨 탄소 파우더, 박편 (flake) 등의 형태 또는 탄소나노튜브 (Carbon Nano Tubes CNTs), 탄소섬유, 풀러렌 (C60), 녹말, 코코넛피, 귤피, 오렌지피, 커피찌꺼기, 대나무줄기 등을 포함할 수 있다.Activated carbon precursors may include carbonized carbon powder, flakes, etc., or carbon nanotubes (CNTs), carbon fibers, fullerene (C60), starch, coconut skin, tangerine peel, orange peel, coffee grounds, bamboo stems, etc.

상기 (2) 단계에서 표면처리는, 1 내지 35 wt% 농도의 과산화물로서, 과산화수소(H2O2), 과산화벤조일((C6H5CO)2O2) 및 아세틸퍼옥사이드((CH3CO)2O2) 중 어느 하나를 선택하여, 상기 혼합물 100 중량부 대비 1 내지 100 부피비로 혼합 후, 1 내지 72시간 동안 반응시키는 것일 수 있다.In the step (2) above, the surface treatment may be performed by selecting one of hydrogen peroxide (H 2 O 2 ), benzoyl peroxide ((C 6 H 5 CO) 2 O 2 ), and acetyl peroxide ((CH 3 CO) 2 O 2 ) as a peroxide having a concentration of 1 to 35 wt%, mixing the mixture in a volume ratio of 1 to 100 parts by weight relative to 100 parts by weight of the mixture, and reacting the mixture for 1 to 72 hours.

상기 (3) 단계의 세척은 1 내지 48시간 동안 수행하고, 건조는 6 내지 48시간 동안 수행하는 것일 수 있다.The washing in step (3) above may be performed for 1 to 48 hours, and the drying may be performed for 6 to 48 hours.

상기와 같은 본 발명에 따르면, 산성 및 염기성 용매와 과산화물 분위기에서 진행되는 활성탄소의 표면처리 최적화를 통해 종래 활성탄소 대비 우수한 수소저장 특성을 나타내는 다공성 활성탄소 소재를 제공함에 따라, 물리흡착 수소저장을 위한 소재로의 응용 및 관련 분야로서의 다양한 활용이 가능하여 고부가가치를 창출할 수 있는 효과가 있다.According to the present invention as described above, by optimizing the surface treatment of activated carbon in an acidic and basic solvent and a peroxide atmosphere, a porous activated carbon material exhibiting superior hydrogen storage characteristics compared to conventional activated carbon is provided, thereby enabling various applications as a material for physical adsorption hydrogen storage and related fields, thereby creating high added value.

도 1은 본 발명에서 얻어진 과산화물 표면처리를 통한 고성능 수소저장용 다공성 활성탄소의 X-선 회절분석 (X-ray diffraction, XRD) 그래프이다.
도 2는 본 발명에서 얻어진 과산화물 표면처리를 통한 고성능 수소저장용 다공성 활성탄소의 수소흡착등온선 그래프이다.
Figure 1 is an X-ray diffraction (XRD) graph of high-performance porous activated carbon for hydrogen storage obtained through surface treatment with peroxide according to the present invention.
Figure 2 is a hydrogen adsorption isotherm graph of high-performance hydrogen storage porous activated carbon obtained through surface treatment with peroxide according to the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. It will be apparent to those skilled in the art that these examples are intended only to illustrate the present invention, and the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. Example 1 .

(1) 산성 용액과 활성탄소 전구체를 200:1 중량부로 혼합하기 위해, 20M 농도의 황산용액 200mL에 활성탄소 전구체 1g을 혼합하였다.(1) To mix the acid solution and the activated carbon precursor in a weight ratio of 200:1, 1 g of the activated carbon precursor was mixed in 200 mL of a 20 M sulfuric acid solution.

(2) 35wt% 농도의 과산화수소수 용액을 10mL씩 첨가할 때마다 혼합물을 20회 저으며 10mL 첨가한 이후 24시간 동안 반응시켰다.(2) The mixture was stirred 20 times and reacted for 24 hours after adding 10 mL of a 35 wt% hydrogen peroxide solution at a time.

(3) 증류수를 이용하여 1시간 동안 세척하고, 95℃에서 24시간 동안 건조시켰다.(3) Wash with distilled water for 1 hour and dry at 95°C for 24 hours.

실시예 2. Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, 과산화수소수 용액의 부피를 20mL로 하여 반응시켰다.The process was carried out in the same manner as in Example 1 above, but the volume of the hydrogen peroxide solution was changed to 20 mL for the reaction.

실시예 3. Example 3.

상기 실시예 1과 동일하게 과정을 실시하되, 산성 용액과 활성탄소 전구체를 100:1 질량비로 혼합하였다.The same process as in Example 1 was performed, but the acid solution and the activated carbon precursor were mixed at a mass ratio of 100:1.

실시예 4.Example 4.

상기 실시예 1과 동일하게 과정을 실시하되, 산성 용액과 활성탄소 전구체를 100:1 질량비로 혼합하고 과산화수소수 용액의 부피를 20mL로 하여 반응시켰다.The same process as in Example 1 was performed, but the acid solution and the activated carbon precursor were mixed at a mass ratio of 100:1 and the volume of the hydrogen peroxide solution was adjusted to 20 mL for reaction.

실시예 5.Example 5.

상기 실시예 1과 동일하게 과정을 실시하되, 산성 용액과 활성탄소 전구체를 10:1 질량비로 혼합하였다.The same process as in Example 1 was performed, but the acid solution and the activated carbon precursor were mixed at a mass ratio of 10:1.

실시예 6.Example 6.

상기 실시예 1과 동일하게 과정을 실시하되, 산성 용액과 활성탄소 전구체를 1:1 질량비로 혼합하였다.The same process as in Example 1 was performed, but the acid solution and activated carbon precursor were mixed in a mass ratio of 1:1.

실시예 7.Example 7.

상기 실시예 1과 동일하게 과정을 실시하되, 세척시간을 48시간으로 하였다.The same process as in Example 1 was performed, but the washing time was 48 hours.

실시예 8.Example 8.

상기 실시예 1과 동일하게 과정을 실시하되, 건조시간을 6시간으로 하였다.The same process as in Example 1 was performed, but the drying time was set to 6 hours.

실시예 9.Example 9.

상기 실시예 1과 동일하게 과정을 실시하되, 과산화수소수 용액의 부피를 30mL로 하여 반응시켰다.The process was carried out in the same manner as in Example 1 above, but the volume of the hydrogen peroxide solution was changed to 30 mL for the reaction.

실시예 10.Example 10.

상기 실시예 1과 동일하게 과정을 실시하되, 과산화수소수 농도를 1wt%로 하고, 과산화수소수 부피를 50mL로 하여 반응시켰다.The process was carried out in the same manner as in Example 1 above, but the concentration of hydrogen peroxide was set to 1 wt%, and the volume of hydrogen peroxide was set to 50 mL for the reaction.

실시예 11.Example 11.

상기 실시예 1과 동일하게 과정을 실시하되, 과산화수소수 농도를 1wt%로 하고, 과산화수소수 부피를 100mL로 하여 반응시켰다.The process was carried out in the same manner as in Example 1 above, but the concentration of hydrogen peroxide was set to 1 wt%, and the volume of hydrogen peroxide was set to 100 mL for the reaction.

실시예 12.Example 12.

상기 실시예 1과 동일하게 과정을 실시하되, 염기성 용액인 10M 수산화나트륨을 사용하여 반응시켰다.The process was carried out in the same manner as in Example 1 above, but the reaction was carried out using 10 M sodium hydroxide, which is a basic solution.

실시예 13.Example 13.

상기 실시예 1과 동일하게 과정을 실시하되, 염기성 용액인 5M 수산화나트륨을 사용하여 반응시켰다.The process was carried out in the same manner as in Example 1 above, but the reaction was carried out using 5 M sodium hydroxide, which is a basic solution.

실시예 14.Example 14.

상기 실시예 1과 동일하게 과정을 실시하되, 반응 시간을 1시간으로 하고, 건조시간을 48시간으로 하였다.The same process as in Example 1 was performed, but the reaction time was 1 hour and the drying time was 48 hours.

실시예 15.Example 15.

상기 실시예 1과 동일하게 과정을 실시하되, 황산용액의 농도를 5M로 반응시켰다.The process was carried out in the same manner as in Example 1 above, but the concentration of the sulfuric acid solution was adjusted to 5 M.

실시예 16.Example 16.

상기 실시예 1과 동일하게 과정을 실시하되, 황산용액의 농도를 1M로 하고 반응시간을 72시간으로 하였다.The same process as in Example 1 was carried out, but the concentration of the sulfuric acid solution was set to 1 M and the reaction time was set to 72 hours.

실시예 17.Example 17.

상기 실시예 1과 동일하게 과정을 실시하되, 황산용액의 농도를 0.1M로 하고, 황산용액과 활성탄소 전구체의 질량비를 1000:1로 혼합하였다.The same process as in Example 1 was performed, but the concentration of the sulfuric acid solution was set to 0.1 M, and the mass ratio of the sulfuric acid solution and the activated carbon precursor was mixed at 1000:1.

비교예 1. Comparative example 1.

상기 실시예 1과 동일하게 과정을 실시하되, 혼합단계 및 표면처리단계를 시행하지 않았다.The same process as in Example 1 was performed, but the mixing step and surface treatment step were not performed.

측정예 1. 과산화물 처리를 통한 고성능 수소저장용 다공성 활성탄소의 형태 및 구조 관찰Measurement Example 1. Observation of the morphology and structure of high-performance porous activated carbon for hydrogen storage through peroxide treatment

X-선 회절 분석(XRD, Bruker Corporation)를 통해 본 발명에서 제조한 다공성 활성탄소의 구조변화를 관찰하였다.The structural change of the porous activated carbon manufactured in the present invention was observed through X-ray diffraction analysis (XRD, Bruker Corporation).

측정예 2. 과산화물 처리를 통한 고성능 수소저장용 다공성 활성탄소의 수소 흡착등온선 측정Measurement Example 2. Measurement of hydrogen adsorption isotherm of high-performance porous activated carbon for hydrogen storage through peroxide treatment

본 발명에 따른 다공성 활성탄소의 수소 흡착등온선을 측정하여 관찰하였다. 스테인리스 스틸 챔버 내에서 다공성 활성탄소를 넣고 밀폐한 뒤 298K 온도를 유지하며 수소 기체를 최대 6MPa까지 주입하여 압력별 흡착성능을 측정하였다.The hydrogen adsorption isotherm of the porous activated carbon according to the present invention was measured and observed. The porous activated carbon was placed in a stainless steel chamber, sealed, and maintained at a temperature of 298 K. Then, hydrogen gas was injected up to 6 MPa to measure the adsorption performance according to pressure.

아래 표 1은 본 발명에 따른 과산화물 처리에 의한 고성능 수소저장용 활성탄소의 제조조건을 나타낸 것이고, 표 2는 본 발명에 따른 과산화물 처리에 의한 고성능 수소저장용 활성탄소의 수소저장량 (298K, 6MPa에서 흡착한 수소의 wt%)을 나타낸 것이다.Table 1 below shows the manufacturing conditions of high-performance hydrogen storage activated carbon by peroxide treatment according to the present invention, and Table 2 shows the hydrogen storage capacity (wt% of hydrogen adsorbed at 298 K, 6 MPa) of high-performance hydrogen storage activated carbon by peroxide treatment according to the present invention.

샘플명Sample name 시료 량(g)Sample volume (g) 과산화물 용액 농도 (wt%)Peroxide solution concentration (wt%) 과산화물
용액 부피
(mL)
peroxide
Solution volume
(mL)
산성 용액 농도(M)Acid solution concentration (M) 염기성
용액 농도(M)
Alkalinity
Solution concentration (M)
산성 및 염기성
용액과
시료 비
Acidic and alkaline
Solution and
Sample ratio
반응시간
(시간)
Reaction time
(hour)
세척시간 (시간)Washing time (hours) 건조시간
(시간)
Drying time
(hour)
실시예 1Example 1 11 3535 1010 2020 -- 200:1200:1 2424 11 2424 실시예 2Example 2 11 3535 2020 2020 -- 200:1200:1 2424 11 2424 실시예 3Example 3 11 3535 1010 2020 -- 100:1100:1 2424 11 2424 실시예 4Example 4 11 3535 2020 2020 -- 100:1100:1 2424 11 2424 실시예 5Example 5 11 3535 1010 2020 -- 10:110:1 2424 11 2424 실시예 6Example 6 11 3535 1010 2020 -- 1:11:1 2424 11 2424 실시예 7Example 7 11 3535 1010 2020 -- 200:1200:1 2424 4848 2424 실시예 8Example 8 11 3535 1010 2020 -- 200:1200:1 2424 11 66 실시예 9Example 9 11 3535 3030 2020 -- 200:1200:1 2424 11 2424 실시예 10Example 10 11 11 5050 2020 -- 200:1200:1 2424 11 2424 실시예 11Example 11 11 11 100100 2020 -- 200:1200:1 2424 11 2424 실시예 12Example 12 11 3535 1010 -- 1010 200:1200:1 2424 11 2424 실시예 13Example 13 11 3535 1010 -- 55 200:1200:1 2424 11 2424 실시예 14Example 14 11 3535 1010 2020 -- 200:1200:1 11 11 4848 실시예 15Example 15 11 3535 1010 55 -- 200:1200:1 2424 11 2424 실시예 16Example 16 11 3535 1010 11 -- 200:1200:1 7272 11 2424 실시예 17Example 17 11 3535 1010 0.10.1 -- 1000:11000:1 2424 11 2424 비교예 1Comparative Example 1 11 3535 -- -- -- -- -- 11 2424

수소저장량 (wt%)Hydrogen storage capacity (wt%) 실시예 1Example 1 0.20.2 실시예 2Example 2 1.31.3 실시예 3Example 3 0.10.1 실시예 4Example 4 0.50.5 실시예 5Example 5 <0.1<0.1 실시예 6Example 6 <0.1<0.1 실시예 7Example 7 0.20.2 실시예 8Example 8 1.11.1 실시예 9Example 9 2.82.8 실시예 10Example 10 <0.1<0.1 실시예 11Example 11 0.10.1 실시예 12Example 12 <0.1<0.1 실시예 13Example 13 <0.1<0.1 실시예 14Example 14 0.20.2 실시예 15Example 15 0.20.2 실시예 16Example 16 <0.1<0.1 실시예 17Example 17 <0.1<0.1 비교예 1Comparative Example 1 <0.1<0.1

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Above, specific parts of the present invention have been described in detail. It will be obvious to those skilled in the art that such specific description is only a preferred embodiment and that the scope of the present invention is not limited thereby. Accordingly, it will be said that the actual scope of the present invention is defined by the appended claims and their equivalents.

Claims (5)

(1) 활성탄소 전구체를 산성 용액과 혼합하는 단계;
(2) 상기 (1) 단계에서 얻어진 혼합물과 과산화물을 혼합하여 표면처리하는 단계; 및
(3) 상기 (2) 단계에서 얻어진 시료를 세척 및 건조하는 단계;를 포함하고,
상기 (1) 단계에서 산성 용액은 1 내지 20 M 농도로, 염산, 황산 및 질산 중 어느 하나이고,
상기 (1) 단계의 혼합은, 산성 용액과 활성탄소 전구체를 10:1 내지 1000:1 질량비로 사용하여 혼합한 것을 특징으로 하는 표면처리를 통한 고성능 수소저장용 다공성 활성탄소의 제조방법.
(1) A step of mixing an activated carbon precursor with an acidic solution;
(2) a step of surface treatment by mixing the mixture obtained in step (1) with peroxide; and
(3) a step of washing and drying the sample obtained in step (2);
In the above step (1), the acid solution is one of hydrochloric acid, sulfuric acid and nitric acid with a concentration of 1 to 20 M,
A method for producing high-performance porous activated carbon for hydrogen storage through surface treatment, characterized in that the mixing in step (1) above is performed by mixing an acid solution and an activated carbon precursor at a mass ratio of 10:1 to 1000:1.
삭제delete 삭제delete 제1항에 있어서,
상기 (2) 단계에서 표면처리는, 1 내지 35 wt% 농도의 과산화물로서, 과산화수소(H2O2), 과산화벤조일((C6H5CO)2O2) 및 아세틸퍼옥사이드((CH3CO)2O2) 중 어느 하나를 선택하여, 상기 혼합물 100 중량부 대비 1 내지 100 부피비로 혼합 후, 1 내지 72시간 동안 반응시키는 것을 특징으로 하는 표면처리를 통한 고성능 수소저장용 다공성 활성탄소의 제조방법.
In the first paragraph,
A method for producing high-performance porous activated carbon for hydrogen storage through surface treatment, characterized in that in the step (2), the surface treatment comprises selecting one of hydrogen peroxide (H 2 O 2 ), benzoyl peroxide ((C 6 H 5 CO) 2 O 2 ), and acetyl peroxide ((CH 3 CO) 2 O 2 ) as a peroxide having a concentration of 1 to 35 wt%, mixing it in a volume ratio of 1 to 100 parts by weight relative to 100 parts by weight of the mixture, and reacting it for 1 to 72 hours.
제1항에 있어서,
상기 (3) 단계의 세척은 1 내지 48시간 동안 수행하고, 건조는 6 내지 48시간 동안 수행하는 것을 특징으로 하는 표면처리를 통한 고성능 수소저장용 다공성 활성탄소의 제조방법.
In the first paragraph,
A method for manufacturing high-performance porous activated carbon for hydrogen storage through surface treatment, characterized in that the washing in step (3) above is performed for 1 to 48 hours, and the drying is performed for 6 to 48 hours.
KR1020220105912A 2022-08-24 2022-08-24 Manufacturing method of porous activated carbon for high performance hydrogen storage through surface treatment Active KR102722248B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220105912A KR102722248B1 (en) 2022-08-24 2022-08-24 Manufacturing method of porous activated carbon for high performance hydrogen storage through surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220105912A KR102722248B1 (en) 2022-08-24 2022-08-24 Manufacturing method of porous activated carbon for high performance hydrogen storage through surface treatment

Publications (2)

Publication Number Publication Date
KR20240027987A KR20240027987A (en) 2024-03-05
KR102722248B1 true KR102722248B1 (en) 2024-10-28

Family

ID=90298283

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220105912A Active KR102722248B1 (en) 2022-08-24 2022-08-24 Manufacturing method of porous activated carbon for high performance hydrogen storage through surface treatment

Country Status (1)

Country Link
KR (1) KR102722248B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338222A (en) * 2001-05-10 2002-11-27 Futamura Chemical Industries Co Ltd Method for preparing activated carbon having controlled quantity of surface oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100937517B1 (en) * 2008-01-29 2010-01-19 인하대학교 산학협력단 Porous carbon material, preparation method thereof and use thereof as hydrogen storage
KR101446276B1 (en) * 2012-10-31 2014-10-01 (주) 퓨리켐 Reforming method of activated carbon for electric double layer capacitor
TWI767416B (en) * 2020-11-19 2022-06-11 濾能股份有限公司 Activated carbon modification method, filter mesh structure and use thereof, filter material regeneration method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338222A (en) * 2001-05-10 2002-11-27 Futamura Chemical Industries Co Ltd Method for preparing activated carbon having controlled quantity of surface oxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Carbon Letters Vol. 27, 117-120 (2018)
Microporous and Mesoporous Materials Vol. 259. 2018

Also Published As

Publication number Publication date
KR20240027987A (en) 2024-03-05

Similar Documents

Publication Publication Date Title
Huang et al. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance
Ma et al. High iodine adsorption by lignin-based hierarchically porous flower-like carbon nanosheets
Zhu et al. Preparation of pineapple waste-derived porous carbons with enhanced CO2 capture performance by hydrothermal carbonation-alkali metal oxalates assisted thermal activation process
Babu et al. Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials
Lin et al. Ionothermal synthesis of microporous and mesoporous carbon aerogels from fructose as electrode materials for supercapacitors
Liu et al. Optimized synthesis of nitrogen-doped carbon with extremely high surface area for adsorption and supercapacitor
CN109775673B (en) Porous boron carbon nitride nanosheets and porous boron nitride nanosheets, preparation methods and applications as adsorbent materials
Huang et al. Sustainable porous carbons from garlic peel biowaste and KOH activation with an excellent CO2 adsorption performance
Zhou et al. Improved conductivity of a new Co (II)-MOF by assembled acetylene black for efficient hydrogen evolution reaction
JP2017532283A (en) Microporous carbon adsorbents from natural carbohydrates
Ning et al. Graphene-based semi-coke porous carbon with N-rich hierarchical sandwich-like structure for efficient separation of CO2/N2
CN110117009B (en) Preparation method of iron-nitrogen co-doped magnetic porous graphitized nano carbon aerogel
Iqbal et al. In situ synthesis of carbon nanotube doped metal–organic frameworks for CO 2 capture
CN104722325A (en) Three-dimensional macro-scale porous graphite phase carbon nitride photocatalyst and preparation and application of photocatalyst
CN113148980B (en) Pore-diameter-controllable Emi-level carbon molecular sieve material with polyhydroxy saccharide compound as raw material and preparation method thereof
Ma et al. Three-dimensional porous nitrogen-doped carbon aerogels derived from cellulose@ mof for efficient removal of dye in water
CN106311137B (en) A kind of hierarchical porous sugar-based carbon material and its preparation method and application
Liu et al. Lignin-derived nitrogen doped hierarchical porous carbon spheres for highly efficient dichloromethane adsorption
Anuar et al. Carbon nanoflake hybrid for biohydrogen CO2 capture: Breakthrough adsorption test
Sdanghi et al. Hydrogen adsorption on nanotextured carbon materials
Mou et al. An economical-friendly biomass-based porous carbon with chitosan modification for the favorable adsorption of CO2 and toluene
KR102722248B1 (en) Manufacturing method of porous activated carbon for high performance hydrogen storage through surface treatment
Sevilla et al. CO2 storage on nanoporous carbons
Shen et al. Recyclable ammonia uptake of CuCl2/graphite composite adsorbents with high adsorption capacity
KR102722254B1 (en) Manufacturing method of porous expanded graphite for high performance hydrogen storage through surface treatment

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20220824

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240514

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240724

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20241022

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20241023

End annual number: 3

Start annual number: 1

PG1601 Publication of registration