KR102739933B1 - Fiber type strain sensor with metal nanobelt/nanocarbon material hybrid materials, and fabrication method - Google Patents
Fiber type strain sensor with metal nanobelt/nanocarbon material hybrid materials, and fabrication method Download PDFInfo
- Publication number
- KR102739933B1 KR102739933B1 KR1020170022431A KR20170022431A KR102739933B1 KR 102739933 B1 KR102739933 B1 KR 102739933B1 KR 1020170022431 A KR1020170022431 A KR 1020170022431A KR 20170022431 A KR20170022431 A KR 20170022431A KR 102739933 B1 KR102739933 B1 KR 102739933B1
- Authority
- KR
- South Korea
- Prior art keywords
- carbon nanomaterial
- diisocyanate
- fiber
- metal
- strain sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 94
- 239000002184 metal Substances 0.000 title claims abstract description 94
- 239000002127 nanobelt Substances 0.000 title claims abstract description 82
- 239000000835 fiber Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 title description 7
- 229910021392 nanocarbon Inorganic materials 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 110
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 101
- 239000002086 nanomaterial Substances 0.000 claims abstract description 97
- 239000002131 composite material Substances 0.000 claims abstract description 46
- 239000002243 precursor Substances 0.000 claims abstract description 31
- 150000003839 salts Chemical class 0.000 claims abstract description 26
- 239000006185 dispersion Substances 0.000 claims abstract description 23
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 20
- 239000002904 solvent Substances 0.000 claims abstract description 16
- 229920000642 polymer Polymers 0.000 claims abstract description 15
- 239000012948 isocyanate Substances 0.000 claims abstract description 14
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 9
- 150000001721 carbon Chemical class 0.000 claims abstract description 7
- 125000000524 functional group Chemical group 0.000 claims abstract description 4
- -1 isocyanate compound Chemical class 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 17
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 239000004332 silver Substances 0.000 claims description 14
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 12
- 239000002041 carbon nanotube Substances 0.000 claims description 11
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 9
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 9
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 claims description 6
- ICLCCFKUSALICQ-UHFFFAOYSA-N 1-isocyanato-4-(4-isocyanato-3-methylphenyl)-2-methylbenzene Chemical compound C1=C(N=C=O)C(C)=CC(C=2C=C(C)C(N=C=O)=CC=2)=C1 ICLCCFKUSALICQ-UHFFFAOYSA-N 0.000 claims description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 6
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000009987 spinning Methods 0.000 claims description 5
- KWXIPEYKZKIAKR-UHFFFAOYSA-N 2-amino-4-hydroxy-6-methylpyrimidine Chemical compound CC1=CC(O)=NC(N)=N1 KWXIPEYKZKIAKR-UHFFFAOYSA-N 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 claims description 3
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 claims description 3
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 claims description 3
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 claims description 3
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 claims description 3
- LFSYUSUFCBOHGU-UHFFFAOYSA-N 1-isocyanato-2-[(4-isocyanatophenyl)methyl]benzene Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=CC=C1N=C=O LFSYUSUFCBOHGU-UHFFFAOYSA-N 0.000 claims description 3
- APWRLAZEMYLHKZ-UHFFFAOYSA-N 2-amino-5,6-dimethyl-1h-pyrimidin-4-one Chemical compound CC=1NC(N)=NC(=O)C=1C APWRLAZEMYLHKZ-UHFFFAOYSA-N 0.000 claims description 3
- UWFILTZSAFDNPS-UHFFFAOYSA-N 2-amino-6-bromo-2,3-dihydro-1,6-naphthyridin-4-one Chemical compound NC1CC(C=2C(C=CN(C=2)Br)=N1)=O UWFILTZSAFDNPS-UHFFFAOYSA-N 0.000 claims description 3
- QDSSWFSXBZSFQO-UHFFFAOYSA-N 2-amino-6-ethyl-1h-pyrimidin-4-one Chemical compound CCC1=CC(=O)N=C(N)N1 QDSSWFSXBZSFQO-UHFFFAOYSA-N 0.000 claims description 3
- JEXWSTFWNVLWCG-UHFFFAOYSA-N 2-amino-6-methyl-1h-pyrido[2,3-d]pyrimidin-4-one Chemical compound N1C(N)=NC(=O)C2=CC(C)=CN=C21 JEXWSTFWNVLWCG-UHFFFAOYSA-N 0.000 claims description 3
- GFKQZAUAITYOST-UHFFFAOYSA-N 5,7-diisocyanatonaphthalene-1,4-dione Chemical compound N(=C=O)C1=C2C(C=CC(C2=CC(=C1)N=C=O)=O)=O GFKQZAUAITYOST-UHFFFAOYSA-N 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 3
- ZNXHWPFMNPRKQA-UHFFFAOYSA-N N=C=O.N=C=O.N=C=O.C(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound N=C=O.N=C=O.N=C=O.C(C1=CC=CC=C1)C1=CC=CC=C1 ZNXHWPFMNPRKQA-UHFFFAOYSA-N 0.000 claims description 3
- QORUGOXNWQUALA-UHFFFAOYSA-N N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 Chemical compound N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 QORUGOXNWQUALA-UHFFFAOYSA-N 0.000 claims description 3
- 229920000538 Poly[(phenyl isocyanate)-co-formaldehyde] Polymers 0.000 claims description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000908 ammonium hydroxide Substances 0.000 claims description 3
- 229960005070 ascorbic acid Drugs 0.000 claims description 3
- 235000010323 ascorbic acid Nutrition 0.000 claims description 3
- 239000011668 ascorbic acid Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 125000004494 ethyl ester group Chemical group 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- WPRDEDGZJLTOFJ-UHFFFAOYSA-N oxadiazin-4-imine Chemical compound N=C1C=CON=N1 WPRDEDGZJLTOFJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- 239000012279 sodium borohydride Substances 0.000 claims description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 3
- 239000013638 trimer Substances 0.000 claims description 3
- GNQKHBSIBXSFFD-UHFFFAOYSA-N 1,3-diisocyanatocyclohexane Chemical compound O=C=NC1CCCC(N=C=O)C1 GNQKHBSIBXSFFD-UHFFFAOYSA-N 0.000 claims description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 8
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 abstract description 4
- 150000002513 isocyanates Chemical class 0.000 abstract description 4
- 230000002194 synthesizing effect Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 101710134784 Agnoprotein Proteins 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NOWPEMKUZKNSGG-UHFFFAOYSA-N azane;platinum(2+) Chemical compound N.N.N.N.[Pt+2] NOWPEMKUZKNSGG-UHFFFAOYSA-N 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 229920005839 ecoflex® Polymers 0.000 description 2
- 210000004177 elastic tissue Anatomy 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000011833 salt mixture Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 2
- XUMIQAOMRDRPMD-UHFFFAOYSA-N (6-oxo-1h-pyrimidin-2-yl)urea Chemical group NC(=O)NC1=NC(=O)C=CN1 XUMIQAOMRDRPMD-UHFFFAOYSA-N 0.000 description 1
- VZDIRINETBAVAV-UHFFFAOYSA-N 2,4-diisocyanato-1-methylcyclohexane Chemical compound CC1CCC(N=C=O)CC1N=C=O VZDIRINETBAVAV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- KHCPSOMSJYAQSY-UHFFFAOYSA-L azane;dichloroplatinum Chemical compound N.N.N.N.Cl[Pt]Cl KHCPSOMSJYAQSY-UHFFFAOYSA-L 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- CZKMPDNXOGQMFW-UHFFFAOYSA-N chloro(triethyl)germane Chemical compound CC[Ge](Cl)(CC)CC CZKMPDNXOGQMFW-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- YDHABVNRCBNRNZ-UHFFFAOYSA-M silver perchlorate Chemical compound [Ag+].[O-]Cl(=O)(=O)=O YDHABVNRCBNRNZ-UHFFFAOYSA-M 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- 229910001494 silver tetrafluoroborate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/09—Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
본 발명은, 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 및 그 제조방법에 있어서, 전도성 탄소나노소재에 관능기를 도입하기 위해 탄소나노소재의 표면을 개질시키는 단계와; 표면 개질된 상기 탄소나노소재에 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 반응시킴에 의해 금속 이온과 반응성이 있는 탄소나노소재 분산액을 형성하는 단계와; 상기 탄소나노소재 분산액에 금속염 전구체 및 용매를 첨가하고, 환원제의 첨가 속도를 조절하면서 첨가하여 상기 탄소나노소재 표면에 금속나노벨트를 형성하는 단계와; 탄소나노소재-금속나노벨트로 이루어진 복합체를 폴리머와 혼합하여 전도성 섬유를 제조하는 단계와; 상기 전도성 섬유를 이용하여 섬유형 스트레인 센서를 구현하는 단계를 포함하는 것을 기술적 요지로 한다. 이에 의해 면접촉이 이루어지는 금속나노벨트를 합성하여 전도성 섬유의 전도성을 증가시키며, 탄소나노소재의 표면에 금속나노벨트가 합성되기 때문에 탄소나노소재와 금속나노벨트 간에 접촉성이 우수하며, 골고루 분산된 상태의 분산성이 우수한 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서를 얻을 수 있다. 또한, 면접촉이 이루어지는 금속나노벨트를 인장변형 일으킬 경우 섬유방향으로 정렬된 금속나노벨트간 거리가 벌어져 저항이 급격하게 증가하는 원리에 의해 스트레인 센서에 적용 가능한 효과를 얻을 수 있다.The present invention relates to a fiber-type strain sensor including a composite of a metal nanobelt and a carbon nanomaterial, and a method for manufacturing the same, the technical gist of which comprises: a step of modifying the surface of a carbon nanomaterial to introduce a functional group into the conductive carbon nanomaterial; a step of reacting the surface-modified carbon nanomaterial by mixing an isocyanate-based compound and a pyrimidine-based compound to form a carbon nanomaterial dispersion reactive with metal ions; a step of adding a metal salt precursor and a solvent to the carbon nanomaterial dispersion, and adding a reducing agent while controlling the addition speed thereof, to form a metal nanobelt on the surface of the carbon nanomaterial; a step of mixing a composite composed of a carbon nanomaterial-metal nanobelt with a polymer to manufacture a conductive fiber; and a step of implementing a fiber-type strain sensor using the conductive fiber. By this, the conductivity of the conductive fiber is increased by synthesizing the metal nanobelt with which surface contact is made, and since the metal nanobelt is synthesized on the surface of the carbon nanomaterial, the contact between the carbon nanomaterial and the metal nanobelt is excellent, and a fiber-type strain sensor including a composite of the metal nanobelt and carbon nanomaterial with excellent dispersion in an evenly dispersed state can be obtained. In addition, when the metal nanobelt with which surface contact is made is tensilely deformed, the distance between the metal nanobelts aligned in the fiber direction increases, so that an effect applicable to a strain sensor can be obtained by the principle that the resistance rapidly increases.
Description
본 발명은 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 및 그 제조방법에 관한 것으로, 더욱 상세하게는 면접촉이 이루어지는 금속나노벨트를 합성하여 전도성 섬유의 전도성을 증가시키며, 탄소나노소재의 표면에 금속나노벨트가 합성되기 때문에 탄소나노소재와 금속나노벨트 간에 접촉성이 우수하며, 골고루 분산된 상태의 분산성이 우수한 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 및 그 제조방법에 관한 것이다.The present invention relates to a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite, and a method for manufacturing the same, and more specifically, to a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite having excellent dispersibility in an evenly dispersed state, and a method for manufacturing the same, in which the conductivity of a conductive fiber is increased by synthesizing a metal nanobelt that makes surface contact, and since the metal nanobelt is synthesized on the surface of the carbon nanomaterial, the contact between the carbon nanomaterial and the metal nanobelt is excellent, and the metal nanobelt and carbon nanomaterial composite have excellent dispersibility.
최근 기계, 도구, 구조물 등의 안전 사고가 많이 발생함에 따라 안전에 대한 관심이 한층 더 높아지고 있다. 기계, 도구, 구조물 등의 경우 고온, 저온 등에서의 악조건에 사용되는 기회가 많기 때문에 변형이 되지 않도록 견고해야 하며, 경제성이나 성능면에서는 경량화가 요구되어 지고 있다. 이러한 서로 모순되는 조건을 만족시키기 위해서는 기계, 도구, 구조물 등의 보다 고도의 설계 기술이 요구되어 지고 있다. 이에 기계, 도구, 구조물 등의 물리량을 측정하는 검출장치를 통해 수치의 변화를 측정하여 안전 사고를 방지하는 방법을 적용할 수 있는데, 사용되는 검출장치로 스트레인 센서를 사용할 수 있다.Recently, as safety accidents involving machines, tools, and structures have been occurring frequently, interest in safety has increased. In the case of machines, tools, and structures, since they are often used in harsh conditions such as high and low temperatures, they must be sturdy enough to not deform, and lightweight is required for economic efficiency and performance. In order to satisfy these contradictory conditions, more advanced design technology for machines, tools, and structures is required. Accordingly, a method can be applied to prevent safety accidents by measuring changes in numerical values through a detection device that measures the physical quantities of machines, tools, and structures. A strain sensor can be used as the detection device.
스트레인 센서(strain sensor)는 기계적인 미세한 변화(strain)를 전기신호로 변환하여 검출하는 센서(sensor)이다. 이러한 스트레인 센서를 기계, 도구 또는 구조물에 부착해두면 그 표면에서 생기는 미세한 수치의 변화 즉 스트레인을 측정하는 것이 가능하고, 수치의 변화로부터 강도나 안정성을 확인하는 데 중요한 응력을 알 수 있다. 이에 스트레인 센서는 자동차, 항공기, 교량, 댐 등의 거대한 구조물에 이르기까지 널리 이용되고 있으며, 스트레인 센서를 통해 힘, 압력, 가속도, 변위, 토크 등의 물리량을 전기적 신호로 바꾸기 위한 센서의 소자로도 이용되고 있을 뿐만 아니라 실험, 연구, 계측 제어용으로도 널리 이용되고 있다.A strain sensor is a sensor that converts a minute mechanical change (strain) into an electrical signal and detects it. When such a strain sensor is attached to a machine, tool, or structure, it is possible to measure the minute numerical change, or strain, that occurs on the surface, and from the numerical change, the stress, which is important for confirming strength or stability, can be determined. Accordingly, strain sensors are widely used in large structures such as automobiles, aircraft, bridges, and dams, and are not only used as sensor elements to convert physical quantities such as force, pressure, acceleration, displacement, and torque into electrical signals, but are also widely used for experiments, research, and measurement control.
종래기술에 따른 스트레인 센서는 '대한민국특허청 등록특허 제10-1500840호 변형 센서 제조 방법, 변형 센서 및 변형 센서를 이용한 움직임 감지 장치'와 같이 PDMS, 고무, 폴리우레탄, 신축성 섬유, 에코플렉스 등의 소재를 통해 제조된다. 스트레인 센서는 저항소자의 저항치 변화에 따라 피측정물의 표면 변형을 측정하는 것으로, 일반적으로 저항치는 외부로부터의 힘에 의해 스트레인 센서가 늘어나면 증가하고 스트레인 센서가 압축되면 감소하는 성질을 가지고 있다. Strain sensors according to the prior art are manufactured using materials such as PDMS, rubber, polyurethane, elastic fiber, and ecoflex, as in 'Korean Patent Office Registration Patent No. 10-1500840, Manufacturing Method of Strain Sensor, Strain Sensor, and Motion Detection Device Using Strain Sensor'. A strain sensor measures surface deformation of a subject to be measured according to changes in the resistance value of a resistance element, and in general, the resistance value has a property of increasing when the strain sensor is stretched by an external force and decreasing when the strain sensor is compressed.
하지만 종래기술에 따른 소재를 스트레인 센서에 적용할 경우 도 1에 도시된 바와 같이 인장변형(tensile strain)이 10% 정도 이루어지더라도 전도성 감소 수치가 적은 것으로 보아 저항의 변화가 많이 이루어지지 않는 것을 확인할 수 있다. 즉 종래기술에 따른 소재를 스트레인 센서에 적용할 경우 인장변형이 크더라도 저항의 변화가 크지 않아 미세한 변형을 감지할 수 있는 영역에는 종래의 스트레인 센서를 적용할 수 없다는 문제점이 있다.However, when a material according to the conventional technology is applied to a strain sensor, it can be confirmed that there is not much change in resistance as the conductivity decrease value is small even when a tensile strain of about 10% occurs as shown in Fig. 1. In other words, when a material according to the conventional technology is applied to a strain sensor, there is a problem in that the conventional strain sensor cannot be applied to an area where it can detect a minute strain because the change in resistance is not large even when the tensile strain is large.
따라서 본 발명의 목적은, 면접촉이 이루어지는 금속나노벨트를 합성하여 전도성 섬유의 전도성을 증가시키며, 탄소나노소재의 표면에 금속나노벨트가 합성되기 때문에 탄소나노소재와 금속나노벨트 간에 접촉성이 우수하며, 골고루 분산된 상태의 분산성이 우수한 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 및 그 제조방법을 제공하는 것이다.Accordingly, the purpose of the present invention is to provide a fiber-type strain sensor including a composite of a carbon nanomaterial and a metal nanobelt having excellent dispersion in an evenly dispersed state, and a method for manufacturing the same, which increases the conductivity of a conductive fiber by synthesizing a metal nanobelt with which surface contact is made, and has excellent contact between the carbon nanomaterial and the metal nanobelt because the metal nanobelt is synthesized on the surface of the carbon nanomaterial.
또한, 면접촉이 이루어지는 금속나노벨트를 인장변형 일으킬 경우 섬유방향으로 정렬된 금속나노벨트간 거리가 벌어져 저항이 급격하게 증가하는 원리에 의해 스트레인 센서에 적용 가능한 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 및 그 제조방법을 제공하는 것이다.In addition, the present invention provides a fiber-type strain sensor including a composite of a metal nanobelt and a carbon nanomaterial that can be applied to a strain sensor and a method for manufacturing the same, based on the principle that when a metal nanobelt that makes surface contact is subjected to tensile deformation, the distance between the metal nanobelts aligned in the fiber direction increases, rapidly increasing resistance.
상기한 목적은, 전도성 탄소나노소재에 관능기를 도입하기 위해 탄소나노소재의 표면을 개질시키는 단계와; 표면 개질된 상기 탄소나노소재에 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 반응시킴에 의해 금속 이온과 반응성이 있는 탄소나노소재 분산액을 형성하는 단계와; 상기 탄소나노소재 분산액에 금속염 전구체 및 용매를 첨가하고, 환원제의 첨가 속도를 조절하면서 첨가하여 상기 탄소나노소재 표면에 금속나노벨트를 형성하는 단계와; 탄소나노소재-금속나노벨트로 이루어진 복합체를 폴리머와 혼합하여 전도성 섬유를 제조하는 단계와; 상기 전도성 섬유를 이용하여 섬유형 스트레인 센서를 구현하는 단계를 포함하는 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법에 의해서 달성된다.The above object is achieved by a method for manufacturing a fiber-type strain sensor including a composite of a metal nanobelt and a carbon nanomaterial, characterized by including a step of modifying the surface of a carbon nanomaterial to introduce a functional group into the conductive carbon nanomaterial; a step of forming a carbon nanomaterial dispersion reactive with metal ions by mixing and reacting an isocyanate-based compound and a pyrimidine-based compound with the surface-modified carbon nanomaterial; a step of adding a metal salt precursor and a solvent to the carbon nanomaterial dispersion, and adding the mixture while controlling the addition speed of a reducing agent to form a metal nanobelt on the surface of the carbon nanomaterial; a step of manufacturing a conductive fiber by mixing a composite composed of the carbon nanomaterial-metal nanobelt with a polymer; and a step of implementing a fiber-type strain sensor using the conductive fiber.
여기서, 상기 금속나노벨트를 형성하는 단계에서 상기 환원제의 첨가 속도는 반응용액 100ml 기준에서 0.1 내지 5ml/min인 것이 바람직하다.Here, in the step of forming the metal nanobelt, the addition speed of the reducing agent is preferably 0.1 to 5 ml/min based on 100 ml of the reaction solution.
상기 전도성 섬유를 제조하는 단계는, 상기 복합체를 상기 폴리머와 혼합한 후 페이스트 믹서를 이용해 분산시켜 전도성 섬유용 페이스트를 제조하고, 상기 전도성 섬유용 페이스트를 용액방사 공정을 통해 전도성 섬유를 제조하며, 상기 전도성 섬유용 페이스트 전체 상기 폴리머와 상기 복합체 100중량부 중 상기 복합체는 1 내지 50중량부 포함된 것이 바람직하다.The step of manufacturing the conductive fiber comprises: mixing the complex with the polymer and then dispersing it using a paste mixer to manufacture a paste for conductive fiber; and manufacturing the conductive fiber using the conductive fiber paste through a solution spinning process; and it is preferable that the complex is contained in an amount of 1 to 50 parts by weight among 100 parts by weight of the polymer and the complex in the conductive fiber paste.
상기 탄소나노소재는, 탄소나노튜브(carbon nanotube, CNT), 탄소섬유(carbon fiber), 그래핀(graphene), 카본블랙(carbon black) 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 이소시아네이트계 화합물은, 에틸렌 디이소시아네이트, 1,4-테트라메틸렌 디이소시아네이트, 1,6-헥사메틸렌 디이소시아네이트(HDI), 1,12-도데칸 디이소시아네이트, 시클로부탄-1,3-디이소시아네이트, 시클로헥산-1,3-디이소시아네이트, 시클로헥산-1,4-디이소시아네이트, 1-이소시아네이토-3,3,5-트리메틸-5-이소시아네이토메 틸-시클로헥산, 2,4- 헥사히드로톨루엔 디이소시아네이트, 2,6-헥사히드로톨루엔 디이소시아네이트, 헥사히드 로-1,3- 페닐렌 디이소시아네이트, 헥사히드로-1,4-페닐렌 디이소시아네이트, 퍼히드로-2,4'- 디페닐메탄 디이소시아네이트, 퍼히드로-4,4'-디페닐메탄 디이소시아네이트, 1,3- 페닐렌 디이소시아네이트, 1,4-페닐렌 디이소시아네이트, 1,4-두롤디이소시아네이트(DDI), 4,4'-스틸벤 디이소시아네이트, 3,3'-디메틸-4,4'-비페닐렌 디이소시아네이트(TODI), 톨루엔 2,4-디이소시아네이트, 톨루엔 2,6-디이소시아네이트(TDI), 디페닐메탄-2,4'- 디이소시아네이트(MDI), 2,2'-디페닐메탄 디이소시아네이트(MDI), 디페닐메탄-4,4'-디이소시아네이트(MDI) 및 나프틸렌-1,5-이소시아네이트(NDI), 2,2-메틸렌디페닐디이소시아네이트, 5,7-디이소시아나토나프탈렌-1,4-디온, 이소포론 디이소시아네이트, m-크실렌디이소시아네이트, 3,3-디메톡시-4,4-바이페닐렌 디이소시아네이트, 3,3-디메톡시벤지딘-4,4-디이소시아네이트, 톨루엔 2,4-디이소시아네이트 말단기 지니는 폴리(프로필렌 글리콜), 톨루엔 2,4-디이소시아네이트 말단기 지니는 폴리(에틸렌 글리콜), 트리페닐메탄 트리이소시아네이트, 디페닐메탄 트리이소시아네이트, 부탄-1,2,2-트리이소시아네이트, 트리메틸올프로판토일렌 디디소시아네이트 트리머, 2,4,4-디페닐 에테르 트리이소시아네이트, 다수의 헥사메틸렌디이소시아네이트를 지니는 이소시아누레이트, 다수의 헥사메틸렌디이소시아네이트를 지니는 이미노옥사디아진, 폴리메틸렌폴리페닐 이소시아네이트 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.The above carbon nanomaterial is selected from the group consisting of carbon nanotubes (CNT), carbon fibers, graphene, carbon black, and mixtures thereof, and the isocyanate compound is selected from the group consisting of ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane, 2,4-hexahydrotoluene diisocyanate, 2,6-hexahydrotoluene diisocyanate, hexahydrotoluene diisocyanate, Ro-1,3-Phenylene diisocyanate, Hexahydro-1,4-Phenylene diisocyanate, Perhydro-2,4'-Diphenylmethane diisocyanate, Perhydro-4,4'-Diphenylmethane diisocyanate, 1,3-Phenylene diisocyanate, 1,4-Phenylene diisocyanate, 1,4-Durol diisocyanate (DDI), 4,4'-Stilbene diisocyanate, 3,3'-Dimethyl-4,4'-Biphenylene diisocyanate (TODI), Toluene 2,4-Diisocyanate, Toluene 2,6-Diisocyanate (TDI), Diphenylmethane-2,4'-Diisocyanate (MDI), 2,2'-Diphenylmethane diisocyanate (MDI), Diphenylmethane-4,4'-Diisocyanate (MDI) and naphthylene-1,5-isocyanate (NDI), 2,2-methylenediphenyl diisocyanate, 5,7-diisocyanatonaphthalene-1,4-dione, isophorone diisocyanate, m-xylene diisocyanate, 3,3-dimethoxy-4,4-biphenylene diisocyanate, 3,3-dimethoxybenzidine-4,4-diisocyanate, poly(propylene glycol) having a toluene 2,4-diisocyanate terminal group, poly(ethylene glycol) having a toluene 2,4-diisocyanate terminal group, triphenylmethane triisocyanate, diphenylmethane triisocyanate, butane-1,2,2-triisocyanate, trimethylolpropantoylene didisocyanate trimer, 2,4,4-diphenyl ether triisocyanate, and many It is preferably selected from the group consisting of isocyanurates having hexamethylene diisocyanate, iminooxadiazines having multiple hexamethylene diisocyanates, polymethylenepolyphenyl isocyanates, and mixtures thereof.
또한, 상기 피리미딘계 화합물은, 2-아미노-6-메틸-1H-피리도[2,3-d]피리미딘-4-온, 2-아미노-6-브로모피리도[2,3-d]피리딘-4(3H)-온, 2-아미노-4-히드록시-5-피리미딘카로보닉산 에틸 에스테르, 2-아미노-6-에틸-4-히드록시피리미딘, 2-아미노-4-히드록시-6-메틸 피리미딘, 2-아미노-5,6-디메틸-4-이드록시피리미딘 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 금속염 전구체는, 금(Au)염 전구체, 은(Ag)염 전구체, 백금(Pt)염 전구체, 구리(Cu)염 전구체, 알루미늄(Al)염 전구체, 팔라듐(Pd)염 전구체, 니켈(Ni)염 전구체 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.In addition, the pyrimidine compound is selected from the group consisting of 2-amino-6-methyl-1H-pyrido[2,3-d]pyrimidin-4-one, 2-amino-6-bromopyrido[2,3-d]pyridin-4(3H)-one, 2-amino-4-hydroxy-5-pyrimidinecarbonic acid ethyl ester, 2-amino-6-ethyl-4-hydroxypyrimidine, 2-amino-4-hydroxy-6-methyl pyrimidine, 2-amino-5,6-dimethyl-4-hydroxypyrimidine, and mixtures thereof, and the metal salt precursor is selected from the group consisting of a gold (Au) salt precursor, a silver (Ag) salt precursor, a platinum (Pt) salt precursor, a copper (Cu) salt precursor, an aluminum (Al) salt precursor, a palladium (Pd) salt precursor, and a nickel (Ni) salt. It is preferred to be selected from the group consisting of precursors and mixtures thereof.
상기 환원제는, 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화 암모늄(NH4OH), 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 히드리오딘 (HI), 아스코빅산, 환원성 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.The reducing agent is preferably selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydriodine (HI), ascorbic acid, a reducing organic solvent, and mixtures thereof.
상기한 목적은 또한, 표면이 개질된 탄소나노소재에 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 반응시킴에 의해 금속 이온과 반응성이 있는 탄소나노소재 분산액이 형성되며, 상기 탄소나노소재 분산액에 금속염 전구체 및 용매를 첨가하고, 환원제의 첨가 속도를 조절하여 상기 탄소나노소재 표면에 금속나노벨트를 형성하며, 탄소나노소재-금속나노벨트로 이루어진 복합체를 폴리머와 혼합하여 형성되는 전도성 섬유를 포함하는 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서에 의해서도 달성된다.The above object is also achieved by a fiber-type strain sensor including a metal nanobelt and carbon nanomaterial composite, characterized in that the composite includes a conductive fiber formed by mixing an isocyanate-based compound and a pyrimidine-based compound with a surface-modified carbon nanomaterial and reacting them to form a carbon nanomaterial dispersion reactive with metal ions, adding a metal salt precursor and a solvent to the carbon nanomaterial dispersion, and controlling the addition rate of a reducing agent to form a metal nanobelt on the surface of the carbon nanomaterial, and mixing the composite formed of the carbon nanomaterial-metal nanobelt with a polymer.
여기서, 상기 금속나노벨트는 면접촉(area contact)이 가능하도록 리본 형상으로 이루어지며, 상기 전도성 섬유는 인장변형에 따른 저항 변화가 300% 이상인 것이 바람직하다.Here, the metal nanobelt is formed in a ribbon shape to enable area contact, and it is preferable that the conductive fiber has a resistance change of 300% or more according to tensile strain.
상술한 본 발명의 구성에 따르면, 면접촉이 이루어지는 금속나노벨트를 합성하여 전도성 섬유의 전도성을 증가시키며, 탄소나노소재의 표면에 금속나노벨트가 합성되기 때문에 탄소나노소재와 금속나노벨트 간에 접촉성이 우수하며, 골고루 분산된 상태의 분산성이 우수한 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서를 얻을 수 있다.According to the configuration of the present invention described above, the conductivity of the conductive fiber is increased by synthesizing the metal nanobelt with which surface contact is made, and since the metal nanobelt is synthesized on the surface of the carbon nanomaterial, the contact between the carbon nanomaterial and the metal nanobelt is excellent, and a fiber-type strain sensor including a composite of the metal nanobelt and the carbon nanomaterial with excellent dispersion in an evenly dispersed state can be obtained.
또한, 면접촉이 이루어지는 금속나노벨트를 인장변형 일으킬 경우 섬유방향으로 정렬된 금속나노벨트간 거리가 벌어져 저항이 급격하게 증가하는 원리에 의해 스트레인 센서에 적용 가능한 효과를 얻을 수 있다.In addition, an effect applicable to a strain sensor can be obtained by the principle that when a metal nanobelt that is in contact with the surface is subjected to tensile deformation, the distance between the metal nanobelts aligned in the fiber direction increases, causing a rapid increase in resistance.
도 1은 종래기술에 따른 스트레인 센서용 섬유의 인장변형에 따른 저항을 나타낸 그래프이고,
도 2는 본 발명의 실시예에 따른 섬유형 스트레인 센서에 포함된 전도성 섬유의 사시도이고,
도 3은 본 발명의 실시예에 따른 섬유형 스트레인 센서 제조방법의 순서도이고,
도 4는 탄소나노튜브-은나노벨트 복합체의 SEM 사진이고,
도 5는 전도성 섬유의 SEM 사진이고,
도 6 및 도 7은 스트레인 센서의 인장변화에 따른 저항을 나타낸 그래프이다.Figure 1 is a graph showing the resistance according to tensile deformation of a fiber for a strain sensor according to the prior art.
FIG. 2 is a perspective view of a conductive fiber included in a fiber-type strain sensor according to an embodiment of the present invention;
Figure 3 is a flow chart of a method for manufacturing a fiber-type strain sensor according to an embodiment of the present invention.
Figure 4 is a SEM image of a carbon nanotube-silver nanobelt composite.
Figure 5 is an SEM image of the conductive fiber.
Figures 6 and 7 are graphs showing the resistance according to the tensile change of the strain sensor.
이하 본 발명의 실시예에 따른 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 및 그 제조방법을 도면을 통해 상세히 설명한다. 여기서 금속나노벨트는 면접촉(area contact)이 가능하도록 리본 형상으로 이루어진 것을 의미한다. 섬유형 스트레인 센서는 전도성 섬유를 포함하는 구성으로 이루어지는데, 전도성 섬유는 표면이 개질된 탄소나노소재에 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 반응시킴에 의해 금속 이온과 반응성이 있는 탄소나노소재 분산액이 형성되며, 상기 탄소나노소재 분산액에 금속염 전구체 및 용매를 첨가하고, 환원제의 첨가 속도를 조절하여 상기 탄소나노소재 표면에 금속나노벨트를 형성하며, 탄소나노소재-금속나노벨트로 이루어진 복합체를 폴리머와 혼합하여 형성되는 것이 바람직하다. 도 2에 도시된 바와 같이 본 발명의 섬유형 스트레인 센서를 제조하기 위해 다음과 같은 제조과정을 거치게 된다.Hereinafter, a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite according to an embodiment of the present invention and a manufacturing method thereof will be described in detail with reference to the drawings. Herein, the metal nanobelt means a ribbon-shaped structure that enables area contact. The fiber-type strain sensor is composed of a configuration including a conductive fiber, and the conductive fiber is formed by reacting an isocyanate-based compound and a pyrimidine-based compound with a surface-modified carbon nanomaterial to form a carbon nanomaterial dispersion that is reactive with metal ions, adding a metal salt precursor and a solvent to the carbon nanomaterial dispersion, controlling the addition speed of a reducing agent to form a metal nanobelt on the surface of the carbon nanomaterial, and mixing the composite formed of the carbon nanomaterial-metal nanobelt with a polymer. As illustrated in FIG. 2, the following manufacturing process is performed to manufacture the fiber-type strain sensor of the present invention.
도 3에 도시된 바와 같이 먼저, 탄소나노소재를 표면 개질시킨다(S1).As shown in Fig. 3, first, the carbon nanomaterial is surface modified (S1).
탄소나노소재에 금속전구체와 반응하는 관능기(functional group)를 도입하기 위해 탄소나노소재를 표면개질한다. 탄소나노소재를 표면개질시키는 단계는 탄소나노소재의 종류에 따라서 상이한 방법을 사용한다. 여기서 탄소나노소재는 그래핀(graphene), 탄소나노튜브(carbon nanotube, CNT), 탄소섬유(carbon fiber), 카본블랙(carbon black) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이다.Carbon nanomaterials are surface-modified to introduce functional groups that react with metal precursors into the carbon nanomaterials. The step of surface-modifying the carbon nanomaterials uses different methods depending on the type of carbon nanomaterial. Here, the carbon nanomaterials are selected from the group consisting of graphene, carbon nanotubes (CNTs), carbon fibers, carbon black, and mixtures thereof.
금속 이온과 반응성이 있는 탄소나노소재 분산액을 형성한다(S2).A carbon nanomaterial dispersion that is reactive with metal ions is formed (S2).
표면개질된 탄소나노소재에 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 반응시킴에 의해 금속 이온과 반응성이 있는 탄소나노소재 분산액을 형성한다. 여기서 탄소나노소재 분산액을 형성하는 방법으로는 탄소나노소재를 용매에 분산시킨 후 이소시아네이트계 화합물과 혼합하고, 가열 및 교반하여 탄소나노소재에 이소시아네이트기를 도입한다. 여기에 피리미딘계 화합물을 추가한 후 가열 및 교반하여 접합반응을 진행하는 방식으로 금속 이온과 반응성이 있는 탄소나노소재 분산액을 형성한다.A carbon nanomaterial dispersion reactive with metal ions is formed by mixing and reacting an isocyanate compound and a pyrimidine compound with a surface-modified carbon nanomaterial. Here, the method for forming the carbon nanomaterial dispersion is as follows: the carbon nanomaterial is dispersed in a solvent, then mixed with an isocyanate compound, and heated and stirred to introduce an isocyanate group into the carbon nanomaterial. A pyrimidine compound is added thereto, and then heated and stirred to perform a bonding reaction, thereby forming a carbon nanomaterial dispersion reactive with metal ions.
여기서 이소시아네이트계 화합물은, 에틸렌 디이소시아네이트, 1,4-테트라메틸렌 디이소시아네이트, 1,6-헥사메틸렌 디이소시아네이트(HDI), 1,12-도데칸 디이소시아네이트, 시클로부탄-1,3-디이소시아네이트, 시클로헥산-1,3-디이소시아네이트, 시클로헥산-1,4-디이소시아네이트, 1-이소시아네이토-3,3,5-트리메틸-5-이소시아네이토메 틸-시클로헥산, 2,4- 헥사히드로톨루엔 디이소시아네이트, 2,6-헥사히드로톨루엔 디이소시아네이트, 헥사히드 로-1,3- 페닐렌 디이소시아네이트, 헥사히드로-1,4-페닐렌 디이소시아네이트, 퍼히드로-2,4'- 디페닐메탄 디이소시아네이트, 퍼히드로-4,4'-디페닐메탄 디이소시아네이트, 1,3- 페닐렌 디이소시아네이트, 1,4-페닐렌 디이소시아네이트, 1,4-두롤 디이소시아네이트(DDI), 4,4'-스틸벤 디이소시아네이트, 3,3'-디메틸-4,4'-비페닐렌 디이소시아네이트(TODI), 톨루엔 2,4-디이소시아네이트, 톨루엔 2,6-디이소시아네이트(TDI), 디페닐메탄-2,4'- 디이소시아네이트(MDI), 2,2'-디페닐메탄 디이소시아네이트(MDI), 디페닐메탄-4,4'-디이소시아네이트(MDI) 및 나프틸렌-1,5-이소시아네이트(NDI), 2,2-메틸렌디페닐디이소시아네이트, 5,7-디이소시아나토나프탈렌-1,4-디온, 이소포론 디이소시아네이트, m-크실렌디이소시아네이트, 3,3-디메톡시-4,4-바이페닐렌 디이소시아네이트, 3,3-디메톡시벤지딘-4,4-디이소시아네이트, 톨루엔 2,4-디이소시아네이트 말단기 지니는 폴리(프로필렌 글리콜), 톨루엔 2,4-디이소시아네이트 말단기 지니는 폴리(에틸렌 글리콜), 트리페닐메탄 트리이소시아네이트, 디페닐메탄 트리이소시아네이트, 부탄-1,2,2-트리이소시아네이트, 트리메틸올프로판토일렌 디디소시아네이트 트리머, 2,4,4-디페닐 에테르 트리이소시아네이트, 다수의 헥사메틸렌디이소시아네이트를 지니는 이소시아누레이트, 다수의 헥사메틸렌디이소시아네이트를 지니는 이미노옥사디아진, 폴리메틸렌폴리페닐 이소시아네이트 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.Here, the isocyanate compounds are ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane, 2,4-hexahydrotoluene diisocyanate, 2,6-hexahydrotoluene diisocyanate, hexahydro-1,3-phenylene diisocyanate, hexahydro-1,4-phenylene diisocyanate, perhydro-2,4'-diphenylmethane diisocyanate, Perhydro-4,4'-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1,4-durol diisocyanate (DDI), 4,4'-stilbene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate (TODI), toluene 2,4-diisocyanate, toluene 2,6-diisocyanate (TDI), diphenylmethane-2,4'-diisocyanate (MDI), 2,2'-diphenylmethane diisocyanate (MDI), diphenylmethane-4,4'-diisocyanate (MDI) and naphthylene-1,5-isocyanate (NDI), 2,2-methylenediphenyl diisocyanate, 5,7-diisocyanatonaphthalene-1,4-dione, isophorone diisocyanate, m-xylene diisocyanate, 3,3-dimethoxy-4,4-biphenylene diisocyanate, 3,3-dimethoxybenzidine-4,4-diisocyanate, poly(propylene glycol) having a toluene 2,4-diisocyanate terminal group, poly(ethylene glycol) having a toluene 2,4-diisocyanate terminal group, triphenylmethane triisocyanate, diphenylmethane triisocyanate, butane-1,2,2-triisocyanate, trimethylolpropantoylene didisocyanate trimer, 2,4,4-diphenyl ether triisocyanate, isocyanurate having multiple hexamethylene diisocyanates, multiple hexamethylene diisocyanates It is preferred that the genie is selected from the group consisting of iminooxadiazine, polymethylenepolyphenyl isocyanate and mixtures thereof.
또한 피리미딘계 화합물은, 2-아미노-6-메틸-1H-피리도[2,3-d]피리미딘-4-온, 2-아미노-6-브로모피리도[2,3-d]피리딘-4(3H)-온, 2-아미노-4-히드록시-5-피리미딘카로보닉산 에틸 에스테르, 2-아미노-6-에틸-4-히드록시피리미딘, 2-아미노-4-히드록시-6-메틸 피리미딘, 2-아미노-5,6-디메틸-4-이드록시피리미딘 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.In addition, the pyrimidine compound is preferably selected from the group consisting of 2-amino-6-methyl-1H-pyrido[2,3-d]pyrimidin-4-one, 2-amino-6-bromopyrido[2,3-d]pyridin-4(3H)-one, 2-amino-4-hydroxy-5-pyrimidinecarbonic acid ethyl ester, 2-amino-6-ethyl-4-hydroxypyrimidine, 2-amino-4-hydroxy-6-methyl pyrimidine, 2-amino-5,6-dimethyl-4-hydroxypyrimidine, and mixtures thereof.
분산액 100중량부에 대해 탄소나노소재는 0.001 내지 10중량부 포함되는 것이 바람직한데 탄소나노소재가 0.001중량부 미만일 경우 탄소나노소재의 함유량이 적어 균일한 직경의 나노금속 입자를 얻을 수 없으며, 10중량부를 초과할 경우 나노금속 입자가 형성되는 비율에 비해 탄소나노소재의 양이 많아 복합체를 다양한 용도에 적용하기 어렵다.It is preferable that the carbon nanomaterial be contained in an amount of 0.001 to 10 parts by weight per 100 parts by weight of the dispersion. However, if the carbon nanomaterial is contained in an amount of less than 0.001 parts by weight, the content of the carbon nanomaterial is too small to obtain nanometal particles of uniform diameter, and if it exceeds 10 parts by weight, the amount of the carbon nanomaterial is too large compared to the rate at which the nanometal particles are formed, making it difficult to apply the composite to various purposes.
탄소나노소재 분산액에서 금속나노벨트를 제조한다(S3).Metal nanobelts are manufactured from a carbon nanomaterial dispersion (S3).
탄소나노소재 분산액에 금속염 전구체, 환원제 및 용매를 첨가하여 금속나노벨트를 제조한다. 여기서 금속나노벨트는 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 알루미늄(Al), 팔라듐(Pd), 니켈(Ni) 등 전구체를 이용하여 제조될 수 있는 것이면 제한 없이 적용 가능하다.A metal nanobelt is manufactured by adding a metal salt precursor, a reducing agent, and a solvent to a carbon nanomaterial dispersion. Here, the metal nanobelt can be applied without limitation as long as it can be manufactured using a precursor such as gold (Au), silver (Ag), platinum (Pt), copper (Cu), aluminum (Al), palladium (Pd), nickel (Ni), etc.
이때 탄소나노소재 분산액에 금속염 전구체 및 용매를 첨가할 때에는 중요하지 않지만, 환원제를 첨가할 때에는 첨가 속도가 매우 중요하기 때문에 환원제의 첨가속도를 조절하면서 첨가한다. 환원제를 빠른 속도로 첨가할 경우 탄소나노소재와 금속염 전구체 간의 반응성이 증가하여 동그란 입자 형상의 금속을 얻게 된다.At this time, when adding the metal salt precursor and solvent to the carbon nanomaterial dispersion, it is not important, but when adding the reducing agent, the addition speed is very important, so the reducing agent is added while controlling the addition speed. When the reducing agent is added at a fast speed, the reactivity between the carbon nanomaterial and the metal salt precursor increases, resulting in a metal in the shape of a round particle.
즉 탄소나노소재 표면에 벨트 형상이 아닌 금속 입자가 형성된다. 따라서 금속 입자가 아닌 금속나노벨트를 얻기 위해 환원제의 속도를 조절하는 것이 중요하다. 환원제의 첨가 속도는 분당 0.1 내지 5ml로 첨가하는 것이 바람직하다. 첨가속도가 0.1ml/min 미만일 경우 제조 시간이 많이 소요되어 생산성이 떨어지며, 5ml/min을 초과할 경우 탄소나노소재와 금속염 전구체 간의 반응성이 증가하여 금속나노벨트 형상이 아닌 금속 입자를 얻게되는 문제점이 생긴다. 따라서 탄소나노소재의 표면에 금속나노벨트가 합성되기 위한 환원제의 첨가 속도는 0.1 내지 5ml/min이 가장 바람직하다.That is, metal particles, not belt shapes, are formed on the surface of the carbon nanomaterial. Therefore, it is important to control the speed of the reducing agent to obtain metal nanobelts, not metal particles. It is preferable that the addition speed of the reducing agent be 0.1 to 5 ml/min. If the addition speed is less than 0.1 ml/min, the manufacturing time is long and the productivity is low, and if it exceeds 5 ml/min, the reactivity between the carbon nanomaterial and the metal salt precursor increases, which causes a problem of obtaining metal particles, not metal nanobelt shapes. Therefore, the addition speed of the reducing agent to synthesize metal nanobelts on the surface of the carbon nanomaterial is most preferably 0.1 to 5 ml/min.
여기서 은 나노금속 입자를 제조하기 위한 은 전구체는, 실버나이트레이드(AgNO3), 실버퍼클로레이트(AgClO4), 실버테트라플루오로보레이트(AgBF4), 실버헥사플루오로포스페이트(AgPF6), 실버아세테이트(CH3COOAg), 실버트리플루오로메탄설포네이트(AgCF3SO3), 실버설페이트(Ag2SO4), 실버2,4-펜탄디오네이트(CH3COCH=COCH3Ag) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.Here, the silver precursor for producing the silver nanometal particles is preferably selected from the group consisting of silver nitrate (AgNO 3 ), silver perchlorate (AgClO 4 ), silver tetrafluoroborate (AgBF 4 ), silver hexafluorophosphate (AgPF 6 ), silver acetate (CH 3 COOAg), silver trifluoromethanesulfonate (AgCF 3 SO 3 ), silver sulfate (Ag 2 SO 4 ), silver 2,4-pentanedionate (CH 3 COCH=COCH 3 Ag) and mixtures thereof.
또한 백금 나노금속 입자를 제조하기 위한 백금 전구체는, 클로로테트라아민플래티넘(Pt(NH3)4Cl2), 디클로로테트라아민플래티넘하이드레이트(Pt(NH3)4Cl2·xH2O), 테트라아민플래티넘하이드록사이드하이드레이트(Pt(NH3)4(OH)2·xH2O), 테트라아민플래티넘(II)나이트레이트(Pt(NH3)4(NO3)2), 비스-에틸렌디아민플래티넘(II)클로라이드((H2NCH2CH2NH2)2PtCl2), 클로로플래티닉산([H3O]2[PtCl6](H2O)x 또는 H2PtCl6)및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.In addition, the platinum precursor for producing platinum nanometal particles is preferably selected from the group consisting of chlorotetraamineplatinum (Pt(NH 3 )4Cl 2 ), dichlorotetraamineplatinum hydrate (Pt(NH 3 ) 4 Cl 2 ·xH 2 O), tetraamineplatinum hydroxide hydrate (Pt(NH 3 ) 4 (OH) 2 ·xH 2 O), tetraamineplatinum(II) nitrate (Pt(NH 3 ) 4 (NO 3 ) 2 ), bis-ethylenediamineplatinum(II) chloride ((H 2 NCH 2 CH 2 NH 2 ) 2 PtCl 2 ), chloroplatinic acid ([H 3 O] 2 [PtCl 6 ](H 2 O)x or H 2 PtCl 6 ), and mixtures thereof.
환원제는, 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화 암모늄(NH4OH), 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 히드리오딘 (HI), 아스코빅산(Ascorbic acid), 환원성 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.The reducing agent is preferably selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydriodine (HI), ascorbic acid, a reducing organic solvent, and mixtures thereof.
그 후 반응에 관여한 환원제, 용매, 잔여 금속 전구체로부터 탄소나노소재가 포함된 금속나노벨트를 분리하여 순수하게 얻는다.Afterwards, the metal nanobelt containing carbon nanomaterial is separated from the reducing agent, solvent, and residual metal precursor involved in the reaction to obtain a pure product.
금속나노벨트와 탄소나노소재 복합체를 이용하여 전도성 섬유를 제조한다(S4).Conductive fibers are manufactured using a metal nanobelt and carbon nanomaterial composite (S4).
전도성 섬유를 제조하기 위해 전도성 섬유용 폴리머를 준비하고, 폴리머에 금속나노벨트-탄소나노소재 복합체를 혼합한 후 페이스트 믹서를 이용해 분산시켜 전도성 섬유용 페이스트를 제조한다. 이때 전도성 섬유용 페이스트 전체 폴리머와 복합체 100중량부 중 금속나노벨트-탄소나노소재 복합체는 1 내지 50중량부 포함되는 것이 바람직하다. 금속나노벨트-탄소나노소재 복합체가 1중량부 미만일 경우 섬유형 스트레인 센서 내에서 복합체들끼리 서로 제대로 접촉이 이루어지지 않아 전도성이 낮다는 단점이 있으며, 50중량부를 초과할 경우 폴리머에 비해 복합체의 양이 많아 전도성 섬유가 유연하지 못하고 부러진다는 문제점이 있다. 또한 50중량부를 초과할 경우 섬유 형태로 뽑아내기 어렵다는 단점도 있다. 이렇게 제조된 전도성 섬유용 페이스트를 용액방사 공정을 통해 전도성 섬유를 형성시킨다.In order to manufacture a conductive fiber, a polymer for conductive fiber is prepared, a metal nanobelt-carbon nanomaterial composite is mixed with the polymer, and then dispersed using a paste mixer to manufacture a paste for conductive fiber. At this time, it is preferable that the metal nanobelt-carbon nanomaterial composite is contained in an amount of 1 to 50 parts by weight among 100 parts by weight of the entire polymer and composite of the conductive fiber paste. If the metal nanobelt-carbon nanomaterial composite is less than 1 part by weight, the composites do not properly contact each other within the fiber-type strain sensor, resulting in low conductivity. If it exceeds 50 parts by weight, the amount of the composite is large compared to the polymer, resulting in a problem that the conductive fiber is not flexible and breaks. In addition, if it exceeds 50 parts by weight, there is also a disadvantage that it is difficult to pull it out in the form of a fiber. The conductive fiber paste manufactured in this way is used to form a conductive fiber through a solution spinning process.
경우에 따라서 전도성 섬유용 페이스트에 탄소나노소재인 그래핀(graphene), 탄소나노튜브(carbon nanotube, CNT), 탄소섬유(carbon fiber), 카본블랙(carbon black) 및 이의 혼합으로 이루어진 군 중 어느 하나를 별도로 추가하여 전도성 섬유를 제조할 수도 있다. 이와 같이 탄소나노소재를 전도성 섬유용 페이스트에 혼 한 후 페이스트를 용액방사하게 되면, 용액방사를 위한 응고욕에서 고체화 과정 중 페이스트 내에 존재하는 용매가 표면 측으로 이동하면서 고체화된다. 따라서 페이스트 중 금속나노벨트가 용매와 친화력이 있기 때문에 용매를 따라 표면으로 이동하고, 섬유의 중앙 영역에는 별도로 혼합된 탄소나노소재가 채워진다. 이에 의해 전도성이 매우 우수한 탄소나노소재-금속나노벨트 복합체가 섬유 표면에 집중되도록 유도되고, 이로 인해 전도성 섬유가 매우 우수한 전기 전도도를 나타내게 된다.In some cases, conductive fibers can be manufactured by separately adding one of the group consisting of graphene, carbon nanotubes (CNTs), carbon fibers, carbon black, and mixtures thereof, which are carbon nanomaterials, to the conductive fiber paste. When the carbon nanomaterials are mixed into the conductive fiber paste in this manner and the paste is solution-spun, the solvent present in the paste solidifies as it moves toward the surface during the solidification process in the coagulation bath for solution spinning. Accordingly, since the metal nanobelts in the paste have an affinity for the solvent, they move to the surface along with the solvent, and the central region of the fiber is filled with the separately mixed carbon nanomaterial. As a result, the carbon nanomaterial-metal nanobelt complex with excellent conductivity is induced to concentrate on the surface of the fiber, and as a result, the conductive fiber exhibits excellent electrical conductivity.
전도성 섬유를 이용하여 섬유형 스트레인 센서를 구현한다(S5).A fiber-type strain sensor is implemented using conductive fibers (S5).
S4 단계를 통해 얻어지는 전도성 섬유를 유연 전극으로 하여 유연 전극의 양 끝단에 금속 와이어를 금속 페이스트를 이용하여 고정시킨다. 예를 들어 구리 와이어를 은 페이스트를 이용하여 고정시킨 후, 폴리머로 금속 페이스트가 떨어져 나가지 않도록 몰딩 처리과정을 통해 스트레인 센서를 구현한다. 하지만 이러한 구성 및 구조는 스트레인 센서의 한 예일 뿐, 본 발명의 전도성 섬유를 포함하여 다양한 구성 및 구조로 스트레인 센서를 제한 없이 구현 가능하다.The conductive fiber obtained through step S4 is used as a flexible electrode, and metal wires are fixed to both ends of the flexible electrode using metal paste. For example, after fixing a copper wire using silver paste, a strain sensor is implemented through a molding process so that the metal paste does not fall off using a polymer. However, this configuration and structure are only one example of a strain sensor, and a strain sensor can be implemented without limitation in various configurations and structures including the conductive fiber of the present invention.
이하에서는 본 발명의 실시예를 좀 더 구체적으로 설명한다.Below, embodiments of the present invention are described in more detail.
<실시예 1><Example 1>
본 발명의 실시예 1로 먼저, 탄소나노소재로 사용되는 다중벽 탄소나노튜브 5g을 60% 질산 용액 100ml에 혼합하고, 100℃로 가열하면서 24시간 동안 교반한 후 상온으로 냉각시킨다. 그 후 400ml의 증류수를 첨가하여 희석시킨다. 희석된 용액을 여과종이를 이용하여 탄소나노튜브에 남아있는 질산 용액을 4회 이상 여과를 통하여 제거한 후 건조시키면 카르복실기(-COOH)가 도입된 다중벽 탄소나노튜브가 제조된다. 카르복실기가 도입된 탄소나노튜브를 디메틸포름아미드(dimethylformamide, DMF) 용매에 100mg/L로 분산시킨 후, 톨루엔디이소시아네이트(toluene diisocyanate)를 혼합하여 100℃에서 12시간 동안 교반하는 방식으로 반응시켜 이소시아네이트(isocyanate)기를 도입시킨다.In Example 1 of the present invention, first, 5 g of multi-walled carbon nanotubes used as carbon nanomaterials are mixed in 100 ml of a 60% nitric acid solution, heated to 100°C, stirred for 24 hours, and then cooled to room temperature. Thereafter, 400 ml of distilled water is added to dilute the solution. The diluted solution is filtered at least four times using filter paper to remove the nitric acid solution remaining in the carbon nanotubes, and then dried to produce multi-walled carbon nanotubes to which carboxyl groups (-COOH) have been introduced. The carbon nanotubes to which carboxyl groups have been introduced are dispersed at 100 mg/L in a dimethylformamide (DMF) solvent, and then toluene diisocyanate is mixed and stirred at 100°C for 12 hours to introduce isocyanate groups.
그 다음 이소시아네이트기가 도입된 탄소나노튜브에 2-아미노-4-히드록시-6-메틸피리미딘(amino-4-hydroxy-6-methyl-pyrimidine)을 혼합하여 100℃에서 20시간 동안 교반을 통해 접합 반응을 진행하는 방식으로 2-우레이도-4[1H]피리미디논(2-ureido-4[1H]pyrimidinone)기를 탄소나노튜브 표면과 말단에 도입한다. 이를 통해 제조된 관능기를 가진 탄소나노튜브를 디메틸포름아미드 용매에 0.1g/L로 분산시키고, 이에 실버나이트레이트(AgNO3)를 0.1mol/L로 첨가하여 은염 혼합액을 제조한다.Next, 2-ureido-4[1H]pyrimidinone groups are introduced to the surface and ends of carbon nanotubes by mixing 2-amino-4-hydroxy-6-methyl-pyrimidine with the carbon nanotubes to which an isocyanate group has been introduced and stirring at 100°C for 20 hours to carry out a bonding reaction. The carbon nanotubes with the functional groups thus manufactured are dispersed in a dimethylformamide solvent at 0.1 g/L, and silver nitrate (AgNO 3 ) is added at 0.1 mol/L to prepare a silver salt mixture.
제조된 은염 혼합액에 환원제로 하이드라진(hydrazine)을 상온에서 분당 0.2ml 속도로 첨가하여 환원속도를 천천히 이루어지도록 교반하여 나노벨트구조를 형성시켰다. 제조된 반응액에서 탄소나노튜브와 복합화된 은나노벨트는 원심분리 또는 필터링을 이용하여 용매를 제거시킴에 의해 도 4에 도시된 바와 같이 수득된다.Hydrazine as a reducing agent was added to the prepared silver salt mixture at a rate of 0.2 ml per minute at room temperature and stirred to slowly reduce the reaction rate, thereby forming a nanobelt structure. Silver nanobelts complexed with carbon nanotubes in the prepared reaction solution were obtained as shown in Fig. 4 by removing the solvent using centrifugation or filtering.
제조된 탄소나노튜브-은나노벨트 복합소재를 이용해 전도성 섬유를 제조하기 위해, 우선 폴리우레탄(polyurethane)을 디메틸포름아마이드(dimethylformamide)에 10중량%로 용해시켜 섬유용 기본 도프를 제조하고, 이에 탄소나노튜브-은나노벨트 복합소재를 섬유 전체부피 대비 10 내지 30부피%가 되도록 페이스트 믹서를 이용해 분산하여 고형분 15중량%의 전도성 섬유용 페이스트를 제조한다. 이어서 탄소나노튜브-은나노벨트/폴리우레탄 페이스트를 정량펌프를 이용하여 실린지 노즐을 통해 메탄올 응고욕 속으로 방사하여 고상화 시키고, 70℃에서 열건조시킴으로써 전도성 섬유를 수득한다. 이렇게 제조된 전도성 섬유는 도 5의 SEM 사진을 통해 확인할 수 있는데, 도 5a는 전도성 섬유의 저배율 이미지이고 도 5b는 전도성 섬유의 고배율 이미지로 도 5b를 통해 본 발명의 전도성 섬유에 은나노벨트가 존재하는 것을 확인할 수 있다.In order to manufacture a conductive fiber using the manufactured carbon nanotube-silver nanobelt composite material, first, 10 wt% of polyurethane is dissolved in dimethylformamide to manufacture a basic dope for fiber, and the carbon nanotube-silver nanobelt composite material is dispersed therein using a paste mixer to an amount of 10 to 30 wt% based on the total volume of the fiber to manufacture a conductive fiber paste having a solid content of 15 wt%. Next, the carbon nanotube-silver nanobelt/polyurethane paste is solidified by spinning it into a methanol coagulation bath through a syringe nozzle using a quantitative pump, and then dried by heat at 70°C to obtain a conductive fiber. The conductive fiber manufactured in this manner can be confirmed through the SEM image of Fig. 5. Fig. 5a is a low-magnification image of the conductive fiber, and Fig. 5b is a high-magnification image of the conductive fiber. Through Fig. 5b, it can be confirmed that a silver nanobelt exists in the conductive fiber of the present invention.
전도성 섬유의 전기전도도를 측정한 결과, 탄소나노튜브-은나노벨트 복합소재가 20중량% 함유될 경우부터 1000S/cm 이상의 우수한 전기전도도를 나타내는 것을 확인할 수 있었다. 제조된 스트레인 센서의 전도성 섬유를 도 6에 도시된 바와 같이 손가락에 연결하고, 손가락의 굽힘에 따른 저항변화를 측정한 결과 5% 이하의 전도성 섬유 인장변형에도 저항 변화가 300% 이상의 매우 우수한 민감도를 보였다. 이는 스트레인 센서의 주요인자인 게이지 상수(gage factor, GF) 값이 60정도로 매우 우수한 스트레인 센서 특성을 나타내었다. 또한 변형률이 증가함에 따라 저항변화율이 급격하여 증가하여 10000배 이상 변화한 후 복원될 경우에도 다시 저항이 원상태로 낮아지는 매우 우수한 복원력을 나타내었다. 도 7은 스트레인 센서의 전도성 섬유에 따른 저항 변화율을 확인한 그래프로, 인장변형이 커질수록 저항변화도 이에 민감하게 커지는 것을 확인할 수 있으며, 전도성 섬유를 원래로 되돌리면 저항도 다시 감소하는 것으로 보아 본 발명의 스트레인 센서에 포함된 전도성 섬유는 인장변형에 따라 저항 변화가 매우 민감한 것을 알 수 있다.As a result of measuring the electrical conductivity of the conductive fiber, it was confirmed that excellent electrical conductivity of 1000 S/cm or more was shown when the carbon nanotube-silver nanobelt composite material was contained at 20 wt%. As shown in Fig. 6, the conductive fiber of the manufactured strain sensor was connected to a finger, and the resistance change according to the bending of the finger was measured. As a result, the resistance change showed excellent sensitivity of 300% or more even at a tensile strain of 5% or less of the conductive fiber. This showed excellent strain sensor characteristics with a gauge constant (GF) value of approximately 60, which is a key factor of the strain sensor. In addition, as the strain increased, the resistance change rate increased rapidly, and even when it changed by more than 10,000 times and then was restored, the resistance lowered back to the original state, showing excellent resilience. Fig. 7 is a graph that confirms the resistance change rate according to the conductive fiber of the strain sensor. It can be confirmed that as the tensile strain increases, the resistance change also increases sensitively. When the conductive fiber is returned to its original state, the resistance decreases again. Therefore, it can be seen that the conductive fiber included in the strain sensor of the present invention is very sensitive to the resistance change according to the tensile strain.
종래와 같이 PDMS, 고무, 폴리우레탄, 신축성 섬유, 에코플렉스 등의 소재로 이루어진 스트레인 센서의 경우, 스트레인 센서를 인장변형(tensile strain) 일으키게 되면 소재의 입자들이 인장변형이 일어난 방향에 수직하는 방향으로 거리가 근접해지기 때문에 저항이 오히려 감소하였다. 하지만 본 발명의 스트레인 센서의 경우에는 인장변형시 섬유방향으로 정렬된 나노벨트간 거리가 벌어지는 원리에 의해 저항이 급격이 증가하며, 이러한 스트레인 센서를 기계, 도구, 구조물 등에 적용할 경우 뿐만 아니라 직물형 웨어러블 센서로 활용하거나 인체에 부착할 경우 미세한 변화를 쉽게 감지할 수 있게 된다.In the case of strain sensors made of materials such as PDMS, rubber, polyurethane, elastic fiber, and ecoflex, when the strain sensor is subjected to tensile strain, the resistance actually decreases because the particles of the material become closer in the direction perpendicular to the direction in which the tensile strain occurs. However, in the case of the strain sensor of the present invention, the resistance increases rapidly due to the principle that the distance between the nanobelts aligned in the fiber direction increases when tensile strain occurs. In addition, when such a strain sensor is applied to machines, tools, and structures, or when utilized as a fabric-type wearable sensor or attached to the human body, it can easily detect minute changes.
Claims (12)
전도성 탄소나노소재에 관능기를 도입하기 위해 탄소나노소재의 표면을 개질시키는 단계와;
표면 개질된 상기 탄소나노소재에 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 반응시킴에 의해 금속 이온과 반응성이 있는 탄소나노소재 분산액을 형성하는 단계와;
상기 탄소나노소재 분산액에 금속염 전구체 및 용매를 첨가하고, 환원제의 첨가 속도를 조절하면서 첨가하여 상기 탄소나노소재 표면에 금속나노벨트를 형성하는 단계와;
탄소나노소재-금속나노벨트로 이루어진 복합체를 폴리머와 혼합하여 전도성 섬유를 제조하는 단계와;
상기 전도성 섬유를 이용하여 섬유형 스트레인 센서를 구현하는 단계를 포함하되,
상기 금속나노벨트를 형성하는 단계에서 상기 환원제의 첨가 속도는 반응용액 100ml 기준에서 0.1 내지 5ml/min인 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법.
A method for manufacturing a fiber-type strain sensor comprising a metal nanobelt and a carbon nanomaterial composite,
A step of modifying the surface of a carbon nanomaterial to introduce a functional group into the conductive carbon nanomaterial;
A step of forming a carbon nanomaterial dispersion that is reactive with metal ions by mixing and reacting an isocyanate compound and a pyrimidine compound with the surface-modified carbon nanomaterial;
A step of adding a metal salt precursor and a solvent to the carbon nanomaterial dispersion, and adding a reducing agent while controlling the addition speed, thereby forming a metal nanobelt on the surface of the carbon nanomaterial;
A step of manufacturing a conductive fiber by mixing a composite composed of carbon nanomaterial and metal nanobelt with a polymer;
A step of implementing a fiber-type strain sensor using the above conductive fiber,
A method for manufacturing a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite, characterized in that in the step of forming the metal nanobelt, the addition speed of the reducing agent is 0.1 to 5 ml/min based on 100 ml of the reaction solution.
상기 전도성 섬유를 제조하는 단계는,
상기 복합체를 상기 폴리머와 혼합한 후 페이스트 믹서를 이용해 분산시켜 전도성 섬유용 페이스트를 제조하고, 상기 전도성 섬유용 페이스트를 용액방사 공정을 통해 전도성 섬유를 제조하는 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법.In paragraph 1,
The step of manufacturing the above conductive fiber is:
A method for manufacturing a fiber-type strain sensor including a metal nanobelt and carbon nanomaterial composite, characterized in that the above-mentioned composite is mixed with the above-mentioned polymer and dispersed using a paste mixer to manufacture a paste for conductive fibers, and the above-mentioned conductive fiber paste is used to manufacture a conductive fiber through a solution spinning process.
상기 전도성 섬유용 페이스트 전체 상기 폴리머와 상기 복합체 100중량부 중 상기 복합체는 1 내지 50중량부 포함된 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법.In the third paragraph,
A method for manufacturing a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite, characterized in that the composite is contained in an amount of 1 to 50 parts by weight out of 100 parts by weight of the entire polymer and the composite in the conductive fiber paste.
상기 탄소나노소재는,
탄소나노튜브(carbon nanotube, CNT), 탄소섬유(carbon fiber), 그래핀(graphene), 카본블랙(carbon black) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법.In paragraph 1,
The above carbon nanomaterials are,
A method for manufacturing a fiber-type strain sensor comprising a metal nanobelt and a carbon nanomaterial composite, characterized in that the metal nanobelt is selected from the group consisting of carbon nanotubes (CNTs), carbon fibers, graphene, carbon black, and mixtures thereof.
상기 이소시아네이트계 화합물은,
에틸렌 디이소시아네이트, 1,4-테트라메틸렌 디이소시아네이트, 1,6-헥사메틸렌 디이소시아네이트(HDI), 1,12-도데칸 디이소시아네이트, 시클로부탄-1,3-디이소시아네이트, 시클로헥산-1,3-디이소시아네이트, 시클로헥산-1,4-디이소시아네이트, 1-이소시아네이토-3,3,5-트리메틸-5-이소시아네이토메 틸-시클로헥산, 2,4- 헥사히드로톨루엔 디이소시아네이트, 2,6-헥사히드로톨루엔 디이소시아네이트, 헥사히드 로-1,3- 페닐렌 디이소시아네이트, 헥사히드로-1,4-페닐렌 디이소시아네이트, 퍼히드로-2,4'- 디페닐메탄 디이소시아네이트, 퍼히드로-4,4'-디페닐메탄 디이소시아네이트, 1,3- 페닐렌 디이소시아네이트, 1,4-페닐렌 디이소시아네이트, 1,4-두롤디이소시아네이트(DDI), 4,4'-스틸벤 디이소시아네이트, 3,3'-디메틸-4,4'-비페닐렌 디이소시아네이트(TODI), 톨루엔 2,4-디이소시아네이트, 톨루엔 2,6-디이소시아네이트(TDI), 디페닐메탄-2,4'- 디이소시아네이트(MDI), 2,2'-디페닐메탄 디이소시아네이트(MDI), 디페닐메탄-4,4'-디이소시아네이트(MDI) 및 나프틸렌-1,5-이소시아네이트(NDI), 2,2-메틸렌디페닐디이소시아네이트, 5,7-디이소시아나토나프탈렌-1,4-디온, 이소포론 디이소시아네이트, m-크실렌디이소시아네이트, 3,3-디메톡시-4,4-바이페닐렌 디이소시아네이트, 3,3-디메톡시벤지딘-4,4-디이소시아네이트, 톨루엔 2,4-디이소시아네이트 말단기 지니는 폴리(프로필렌 글리콜), 톨루엔 2,4-디이소시아네이트 말단기 지니는 폴리(에틸렌 글리콜), 트리페닐메탄 트리이소시아네이트, 디페닐메탄 트리이소시아네이트, 부탄-1,2,2-트리이소시아네이트, 트리메틸올프로판토일렌 디디소시아네이트 트리머, 2,4,4-디페닐 에테르 트리이소시아네이트, 다수의 헥사메틸렌디이소시아네이트를 지니는 이소시아누레이트, 다수의 헥사메틸렌디이소시아네이트를 지니는 이미노옥사디아진, 폴리메틸렌폴리페닐 이소시아네이트 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법.In paragraph 1,
The above isocyanate compound is,
Ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane, 2,4-hexahydrotoluene diisocyanate, 2,6-hexahydrotoluene diisocyanate, hexahydro-1,3-phenylene diisocyanate, hexahydro-1,4-phenylene diisocyanate, perhydro-2,4'-diphenylmethane diisocyanate, Perhydro-4,4'-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1,4-durol diisocyanate (DDI), 4,4'-stilbene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate (TODI), toluene 2,4-diisocyanate, toluene 2,6-diisocyanate (TDI), diphenylmethane-2,4'-diisocyanate (MDI), 2,2'-diphenylmethane diisocyanate (MDI), diphenylmethane-4,4'-diisocyanate (MDI) and naphthylene-1,5-isocyanate (NDI), 2,2-methylenediphenyl diisocyanate, 5,7-diisocyanatonaphthalene-1,4-dione, isophorone diisocyanate, m-xylene diisocyanate, 3,3-dimethoxy-4,4-biphenylene diisocyanate, 3,3-dimethoxybenzidine-4,4-diisocyanate, poly(propylene glycol) having a toluene 2,4-diisocyanate terminal group, poly(ethylene glycol) having a toluene 2,4-diisocyanate terminal group, triphenylmethane triisocyanate, diphenylmethane triisocyanate, butane-1,2,2-triisocyanate, trimethylolpropantoylene didisocyanate trimer, 2,4,4-diphenyl ether triisocyanate, isocyanurate having multiple hexamethylene diisocyanates, multiple hexamethylene diisocyanates A method for manufacturing a fiber-type strain sensor comprising a metal nanobelt and a carbon nanomaterial composite, characterized in that the metal nanobelt is selected from the group consisting of iminooxadiazine, polymethylenepolyphenyl isocyanate, and mixtures thereof.
상기 피리미딘계 화합물은,
2-아미노-6-메틸-1H-피리도[2,3-d]피리미딘-4-온, 2-아미노-6-브로모피리도[2,3-d]피리딘-4(3H)-온, 2-아미노-4-히드록시-5-피리미딘카로보닉산 에틸 에스테르, 2-아미노-6-에틸-4-히드록시피리미딘, 2-아미노-4-히드록시-6-메틸 피리미딘, 2-아미노-5,6-디메틸-4-이드록시피리미딘 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법.In paragraph 1,
The above pyrimidine compound is,
A method for manufacturing a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite, characterized in that the metal nanobelt is selected from the group consisting of 2-amino-6-methyl-1H-pyrido[2,3-d]pyrimidin-4-one, 2-amino-6-bromopyrido[2,3-d]pyridin-4(3H)-one, 2-amino-4-hydroxy-5-pyrimidinecarbonic acid ethyl ester, 2-amino-6-ethyl-4-hydroxypyrimidine, 2-amino-4-hydroxy-6-methyl pyrimidine, 2-amino-5,6-dimethyl-4-hydroxypyrimidine, and mixtures thereof.
상기 금속염 전구체는,
금(Au)염 전구체, 은(Ag)염 전구체, 백금(Pt)염 전구체, 구리(Cu)염 전구체, 알루미늄(Al)염 전구체, 팔라듐(Pd)염 전구체, 니켈(Ni)염 전구체 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법.In paragraph 1,
The above metal salt precursor is,
A method for manufacturing a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite, characterized in that the metal nanobelt is selected from the group consisting of a gold (Au) salt precursor, a silver (Ag) salt precursor, a platinum (Pt) salt precursor, a copper (Cu) salt precursor, an aluminum (Al) salt precursor, a palladium (Pd) salt precursor, a nickel (Ni) salt precursor, and mixtures thereof.
상기 환원제는,
수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화 암모늄(NH4OH), 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 히드리오딘 (HI), 아스코빅산, 환원성 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서 제조방법.In paragraph 1,
The above reducing agent is,
A method for manufacturing a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite, characterized in that the metal nanobelt is selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydriodine (HI), ascorbic acid, a reducing organic solvent, and mixtures thereof.
표면이 개질된 탄소나노소재에 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 반응시킴에 의해 금속이온과 반응성이 있는 탄소나노소재 분산액이 형성되며, 상기 탄소나노소재 분산액에 금속염 전구체 및 용매를 첨가하고, 환원제의 첨가 속도를 조절하여 상기 탄소나노소재 표면에 면접촉(area contact)이 가능하도록 리본 형상으로 이루어진 금속나노벨트를 형성하며, 탄소나노소재-금속나노벨트로 이루어진 복합체를 폴리머와 혼합하여 형성되는 전도성 섬유를 포함하는 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서.
In a fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite,
A fiber-type strain sensor including a metal nanobelt and a carbon nanomaterial composite, characterized in that the composite includes a conductive fiber formed by mixing an isocyanate compound and a pyrimidine compound with a surface-modified carbon nanomaterial and reacting the mixture to form a carbon nanomaterial dispersion reactive with metal ions, adding a metal salt precursor and a solvent to the carbon nanomaterial dispersion, and controlling the addition speed of a reducing agent to form a metal nanobelt in a ribbon shape so as to enable area contact with the surface of the carbon nanomaterial, and mixing the composite formed of the carbon nanomaterial-metal nanobelt with a polymer.
상기 전도성 섬유는 인장변형에 따른 저항 변화가 300% 이상인 것을 특징으로 하는 금속나노벨트와 탄소나노소재 복합체를 포함하는 섬유형 스트레인 센서.In Article 10,
A fiber-type strain sensor including a metal nanobelt and carbon nanomaterial composite, characterized in that the conductive fiber has a resistance change of 300% or more according to tensile strain.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020170022431A KR102739933B1 (en) | 2017-02-20 | 2017-02-20 | Fiber type strain sensor with metal nanobelt/nanocarbon material hybrid materials, and fabrication method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020170022431A KR102739933B1 (en) | 2017-02-20 | 2017-02-20 | Fiber type strain sensor with metal nanobelt/nanocarbon material hybrid materials, and fabrication method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20180096141A KR20180096141A (en) | 2018-08-29 |
| KR102739933B1 true KR102739933B1 (en) | 2024-12-05 |
Family
ID=63434997
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020170022431A Active KR102739933B1 (en) | 2017-02-20 | 2017-02-20 | Fiber type strain sensor with metal nanobelt/nanocarbon material hybrid materials, and fabrication method |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR102739933B1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102532424B1 (en) * | 2018-12-03 | 2023-05-12 | 한국전기연구원 | Carbon nano material-nano metal complex and method for fabricating the same |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101410854B1 (en) * | 2013-04-01 | 2014-06-23 | 한국전기연구원 | Nano carbon materials having multiple hydrogen bonding motifs and metal nanomaterial hybrid materials and their fabrication method |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101500840B1 (en) | 2013-06-24 | 2015-03-10 | 서울대학교산학협력단 | Manufacturing Method Of Strain Sensor, Strain Sensor and Motion Sensing Apparatus Using the Strain Sensor |
| KR102310352B1 (en) * | 2015-02-23 | 2021-10-08 | 한국전기연구원 | Production method of silver particles and carbon nano material composite using Couette-Taylor reactor |
| KR101881195B1 (en) * | 2015-04-01 | 2018-07-23 | 성균관대학교산학협력단 | Strain sensor using nanocomposite and method for manufacturing thereof |
-
2017
- 2017-02-20 KR KR1020170022431A patent/KR102739933B1/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101410854B1 (en) * | 2013-04-01 | 2014-06-23 | 한국전기연구원 | Nano carbon materials having multiple hydrogen bonding motifs and metal nanomaterial hybrid materials and their fabrication method |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20180096141A (en) | 2018-08-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11137242B2 (en) | Conductive fiber comprising metal nanobelt and carbon nanomaterial composite, method for producing conductive fiber, fibrous strain sensor, and method for producing fibrous strain sensor | |
| US10184059B2 (en) | Nanometal-nanocarbon hybrid material and method of manufacturing the same | |
| KR102310352B1 (en) | Production method of silver particles and carbon nano material composite using Couette-Taylor reactor | |
| EP2294253B1 (en) | Method of manufacturing composite conducting fibres, fibres obtained by the method, and use of such fibres | |
| DE102017200448B4 (en) | CONDUCTIVE POLYMER COMPOSITE, THREE-DIMENSIONAL PRINTING PROCESS AND FILAMENT | |
| WO2016052890A2 (en) | Method for preparing composite of nano-metal and carbon nanomaterial | |
| Kim et al. | Zigzag-shaped silver nanoplates: synthesis via ostwald ripening and their application in highly sensitive strain sensors | |
| US8703235B2 (en) | Preparation of metal nanowire decorated carbon allotropes | |
| CN106413949A (en) | Method for preparing carbon nanotubes and carbon nanotube dispersion composition | |
| KR102739933B1 (en) | Fiber type strain sensor with metal nanobelt/nanocarbon material hybrid materials, and fabrication method | |
| Fang et al. | Effect of oxidants on morphology of interfacial polymerized polyaniline nanofibers and their electrorheological response | |
| US20200265969A1 (en) | Oxidation-resistant hybrid structure comprising metal thin film layer coated on exterior of conductive polymer structure, and preparation method therefor | |
| CN104099683A (en) | Polymer/conductive filler/metal composite fiber and preparation method thereof | |
| WO2018021667A1 (en) | Conductive dispersion composition comprising metal particles and nanocarbon and method for preparing same | |
| Li et al. | Facile fabrication of a multifunctional aramid nanofiber-based composite paper | |
| Liu et al. | Synthesis of silicone blocked bio-polyurethane and its application in highly stretchable fiber-shaped strain sensor | |
| EP2546190B1 (en) | Belt-shaped metal nanostructure and method for preparing same | |
| KR102641155B1 (en) | Piezoresistive Composition for 3D Printing Comprising Metal-Nanocarbon Composite Particle, Piezoresistive Composite Using Same and Preparation Method Therefor | |
| CN107304249A (en) | Acetal resin powder for selective laser sintering and preparation method thereof | |
| KR101900472B1 (en) | Stretchable conductive fiber and method of manufacturing the same | |
| KR102532424B1 (en) | Carbon nano material-nano metal complex and method for fabricating the same | |
| EP2133385A2 (en) | Production of composites from polyoxadiazol polymers. | |
| Muankhajorn et al. | Fabrication of PDMS-Stabilized porous silver films derived from recovered silver sources as flexible conductive materials | |
| Banks et al. | Effects of infill on the additive manufacturing of piezoresistive pressure sensors | |
| DE10296747T5 (en) | Process for the preparation of a polyaniline salt |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20170220 |
|
| PG1501 | Laying open of application | ||
| PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20220107 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20170220 Comment text: Patent Application |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240313 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241119 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20241203 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20241203 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration |