[go: up one dir, main page]

KR102754968B1 - Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures - Google Patents

Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures Download PDF

Info

Publication number
KR102754968B1
KR102754968B1 KR1020220075321A KR20220075321A KR102754968B1 KR 102754968 B1 KR102754968 B1 KR 102754968B1 KR 1020220075321 A KR1020220075321 A KR 1020220075321A KR 20220075321 A KR20220075321 A KR 20220075321A KR 102754968 B1 KR102754968 B1 KR 102754968B1
Authority
KR
South Korea
Prior art keywords
repellent
minutes
manufacturing
chemical formula
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020220075321A
Other languages
Korean (ko)
Other versions
KR20230174420A (en
Inventor
정찬영
Original Assignee
동의대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동의대학교 산학협력단 filed Critical 동의대학교 산학협력단
Priority to KR1020220075321A priority Critical patent/KR102754968B1/en
Publication of KR20230174420A publication Critical patent/KR20230174420A/en
Application granted granted Critical
Publication of KR102754968B1 publication Critical patent/KR102754968B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

본 발명은 나노구조물을 이용한 초발수(초발유) 알루미늄 3천계열 합금 표면개발에 관한 것으로, 본 발명에 따른 3000계열 알루미늄 합금 표면에 발유성 및 발수성 피막의 제조방법은, 화학식 1로 표시되는 가교형 PDMS 유도체 및 유기용매를 특정 배합비로 사용함에 따라 발수성 및 발유성을 부여할 수 있고, 제조비용이 저렴하며, 코팅막 두께를 수 내지 수십 nm로 조절할 수 있어 미세구조 산화막의 코팅에도 적용할 수 있으므로, 발수성 및 발유성을 요구하는 유증기 회수 장치/설비, 파이프, 후드, 후드의 부품, 노즐, 관로 등에 유용할 수 있다.The present invention relates to the development of a superhydrophobic (superoil-repellent) aluminum 3000 series alloy surface using nanostructures. The method for producing an oil-repellent and water-repellent film on the surface of a 3000 series aluminum alloy according to the present invention can impart water-repellent and oil-repellent properties by using a cross-linked PDMS derivative represented by the chemical formula 1 and an organic solvent at a specific mixing ratio, has a low manufacturing cost, and can control the thickness of the coating film to several to several tens of nm, so that it can be applied to coating of a microstructured oxide film. Therefore, it can be useful for vapor recovery devices/equipment, pipes, hoods, hood parts, nozzles, ducts, etc. that require water-repellent and oil-repellent properties.

Description

나노구조물을 이용한 초발수(초발유) 알루미늄 3천계열 합금 표면개발 {Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures}{Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures}

본 발명은 나노구조물을 이용한 초발수(초발유) 알루미늄 3천계열 합금 표면개발에 관한 것이다.The present invention relates to the development of a superhydrophobic (superoleophobic) aluminum 3000 series alloy surface using nanostructures.

일반적으로 발수성과 발유성이란 각각 물과 기름에 젖기 어려운 성질을 뜻하는 것으로, 초발수성/초발유성이란 해당 분야에서 고체의 표면에 접촉한 물의 접촉각이 150°이상, 오일에 대한 접촉각이 150°이상인 경우로 일반적으로 정의된다.In general, hydrophobicity and oleophobicity refer to the properties of being difficult to get wet with water and oil, respectively, and superhydrophobicity/superoleophobicity are generally defined in the relevant fields as a case where the contact angle for water on the surface of a solid is 150° or higher, and the contact angle for oil is 150° or higher.

최근에 물에 대한 접촉각이 150°이상인 초발수성 표면은 기본적인 연구 및 실제적인 응용 모두에서의 중요성 때문에 상당한 관심을 끌어왔다. 초발수성(superhydrophobicity)과 초발유성(superoleophobicity)은 물체의 표면이 각각 물과 오일에 극히 젖기 어려운 물리적 특성을 말한다. 예를 들어, 식물의 잎, 곤충의 날개 또는 새의 날개는 외부의 어떠한 오염물질이 특별한 제거 작업 없이 제거되거나 처음부터 오염이 되지 않게 하는 특성을 지니고 있다. 이것은 식물의 잎, 곤충의 날개, 새의 날개 등이 초발수성을 지니고 있기 때문이다.Recently, superhydrophobic surfaces with a water contact angle of more than 150° have attracted considerable attention because of their importance in both fundamental research and practical applications. Superhydrophobicity and superoleophobicity refer to the physical properties of surfaces of objects that make them extremely difficult to wet with water and oil, respectively. For example, plant leaves, insect wings, and bird wings have the property that any external contaminants can be removed without any special removal process or that they do not become contaminated in the first place. This is because plant leaves, insect wings, and bird wings have superhydrophobicity.

젖음성(wettability)은 고체 재료의 주요 표면 특성이고, 이것은 화학적 조성 및 기하학적 마이크로/나노 구조 둘 다에 의해 주로 지배된다. 젖음성 표면은 기름-물 분리, 반사 방지, 생체 유착 방지, 점착 방지, 오염 방지, 자기 세정 및 유체 난류 억제와 같은 다양한 분야에서 잠재적 응용성으로 인하여 많은 주의를 끌어왔다.Wettability is a key surface property of solid materials, which is largely governed by both chemical composition and geometric micro/nanostructure. Wettable surfaces have attracted much attention due to their potential applications in various fields such as oil-water separation, antireflection, anti-bioadhesion, anti-sticking, anti-fouling, self-cleaning, and fluid turbulence suppression.

한편, 초발수성 알루미늄 제조에 대한 몇몇 보고가 있어 왔으나 금속 기재상의 초발수성/초발유성은 비교적 많은 주목을 받지 못하였다.Meanwhile, although there have been several reports on the production of superhydrophobic aluminum, superhydrophobicity/superoleophobicity on metal substrates has received relatively little attention.

최근의 환경오염에 따른 대기 오염이 심각해지고, 황사나 미세먼지의 발생이 증가하면서, 창문을 열어 환기시키는 것보다 환풍 장치를 가동하여 실내의 공기를 정화시키는 경우가 많다. 또한, 가정, 작업장, 산업 현장, 식당, 사무실, 화장실이나 욕실 등과 같이 주거 시설, 업무용 시설, 상업용 시설 등에서 발생하는 생활 먼지, 음식 냄새, 담배 냄새, 작업시 발생하는 각종 유해 냄새, 일산화탄소와 같은 유해 공기 및 미세먼지, 유증기 등을 제거하기 위해서 상시적으로 환풍 장치를 가동하기도 한다.Recently, as air pollution has become more serious due to environmental pollution, and the occurrence of yellow dust and fine dust has increased, it is common to operate a ventilation system to purify indoor air rather than opening windows to ventilate. In addition, ventilation systems are constantly operated to remove household dust, food odors, cigarette odors, various harmful odors generated during work, harmful air such as carbon monoxide, fine dust, and oil vapor generated in residential facilities, business facilities, and commercial facilities such as homes, workplaces, industrial sites, restaurants, offices, and restrooms or bathrooms.

이러한 환풍 장치는, 일반적으로 특정 장소에 시스템화되어 설치되어, 실내 오염 정도에 따라 자동 가동되는 환풍 시스템과 같은 복잡한 설비에 의해 구현되거나, 외부와 인접한 벽에 설치되어 내외부의 공기를 단순히 순환시키는 창문형 환풍기에 의해 구현되고 있다.These ventilation devices are usually implemented by complex facilities such as ventilation systems that are systematized and installed in specific locations and automatically operate depending on the level of indoor pollution, or by window-type ventilation fans that are installed on walls adjacent to the exterior and simply circulate the air inside and outside.

그러나 이러한 환풍기는 일정시간 사용시에는 필연적으로 환풍기의 내외부에 먼지가 쌓이게 되는 문제점이 발생하고 있어, 비위생적이며, 먼지를 제거하기 위하여 환풍기를 분리하여 세척하는 번거로운 작업을 수행해야 하는 문제점이 있다.However, these ventilators inevitably accumulate dust inside and outside the ventilator when used for a certain period of time, which is unsanitary and requires the troublesome task of disassembling and cleaning the ventilator to remove the dust.

특히, 식당이나 유증기가 발생하는 곳에 설치되는 환풍기에는 유분이나 미세먼지를 1차적으로 흡착하여 줄 어떠한 여과장치도 없어, 장기간 사용시에는 유분과 미세먼지가 결합되어 아래로 흐르는 경우가 발생하는 등, 위생에 심각한 우려를 줄 수가 있을 뿐만 아니라, 화재의 위험에도 노출이 될 여지가 있다.In particular, ventilation fans installed in restaurants or other places where oily vapor is generated do not have any filtering devices to primarily absorb oil or fine dust, so when used for a long period of time, oil and fine dust may combine and flow downward, which not only poses serious concerns for hygiene but also poses the risk of fire.

공개특허공보 제10-2014-0101193호Publication of Patent Publication No. 10-2014-0101193

본 발명의 목적은 3000계열 알루미늄 합금에 발유성 및 발수성 피막의 제조방법을 제공하는 것이다.The purpose of the present invention is to provide a method for producing an oil-repellent and water-repellent film on a 3000 series aluminum alloy.

본 발명의 다른 목적은 상기 제조방법으로 제조되는 발유성 및 발수성 피막이 형성된 3000계열 알루미늄 합금을 제공하는 것이다.Another object of the present invention is to provide a 3000 series aluminum alloy having an oil-repellent and water-repellent film formed by the above-mentioned manufacturing method.

본 발명의 또 다른 목적은 3000계열 알루미늄 합금 표면에 필라-온-포어(Pillar-On-Pore) 형태의 양극산화 피막의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing an anodic oxide film in the form of pillar-on-pores on the surface of a 3000 series aluminum alloy.

본 발명의 다른 목적은 상기 제조방법으로 제조된 필라-온-포어(Pillar-On-Pore) 형태의 양극산화 피막이 형성된 3000계열 알루미늄 합금을 제공하는 것이다.Another object of the present invention is to provide a 3000 series aluminum alloy having a pillar-on-pore type anodic oxide film formed by the above-mentioned manufacturing method.

상기 목적을 달성하기 위하여,To achieve the above purpose,

본 발명은 3000계열 알루미늄(aluminum) 합금을 30-50V에서 5-15시간 동안 1차 양극산화 처리한 후, 에칭하여 1차 양극산화 피막을 제거하는 프리패터닝(pre-patterning) 단계(단계 1);The present invention comprises a pre-patterning step (step 1) of first anodizing a 3000 series aluminum alloy at 30-50 V for 5-15 hours, and then removing the first anodized film by etching;

35-45V에서 1-10분 동안 2차 양극산화 처리하는 단계(단계 2);Secondary anodizing step (step 2) at 35-45 V for 1-10 minutes;

0.05-1.0M 인산(H3PO4) 용액에 10-60분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 3);Step 3: pore widening treatment by immersing in a 0.05-1.0 M phosphoric acid (H 3 PO 4 ) solution for 10-60 minutes;

35-45V에서 1-10분 동안 3차 양극산화 처리하는 단계(단계 4); 및Step 4 of the third anodizing treatment at 35-45 V for 1-10 minutes; and

하기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 및 유기용매를 포함하는 코팅 조성물로 코팅하는 단계(단계 5);를 포함하는,A step (step 5) of coating with a coating composition comprising a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the following chemical formula 1 and an organic solvent;

3000계열 알루미늄 합금에 발유성 및 발수성 피막의 제조방법을 제공한다.A method for producing an oil-repellent and water-repellent film on a 3000 series aluminum alloy is provided.

[화학식 1][Chemical Formula 1]

(상기 화학식 1에서, x 및 y는 각각 1-30의 정수이다.)(In the above chemical formula 1, x and y are each an integer from 1 to 30.)

본 발명에 따른 제조방법에 있어서, 상기 단계 1은 프리패터닝 공정으로서 3000계열 알루미늄 합금을 양극산화 처리한 후, 에칭하여 양극산화 피막을 제거함에 따라, 3000계열 알루미늄(aluminum) 합금 표면에 미세구조 패턴이 남게되는 공정이다. 프리패터닝 공정에 의해 형성된 금속 기재 표면의 미세구조 패턴을 따라 후공정 양극산화 처리로 형성되는 양극산화 피막이 균일하게 형성될 수 있다.In the manufacturing method according to the present invention, step 1 is a pre-patterning process in which a 3000 series aluminum alloy is anodized and then etched to remove the anodized film, thereby leaving a microstructure pattern on the surface of the 3000 series aluminum alloy. An anodized film formed by a post-process anodizing process can be uniformly formed along the microstructure pattern of the metal substrate surface formed by the pre-patterning process.

본 발명에 따른 제조방법에 있어서, 상기 단계 2 내지 4는 양극산화처리 및 기공확장처리를 통해 3000계열 알루미늄 합금 표면에 필라-온-포어(Pillar-On-Pore, POP) 구조의 양극산화 피막을 형성하기 위한 제조단계이다. 여기서, 양극산화 피막은 친수성을 나타내는데, 본 발명에 따른 POP 구조의 양극산화 피막은 초친수성을 나타낸다. 여기에, 단계 5에 따른 코팅 조성물은 발유성 및 발수성을 부여하기 위한 것으로, POP 구조의 미세나노 표면에 단분자층 두께 수준으로 얇게 코팅함에 따라 양극산화 피막의 미세나노 표면 구조가 유지되어 발유성 및 발수성 효과를 극대화하는 것을 기술적 특징으로 한다.In the manufacturing method according to the present invention, steps 2 to 4 are manufacturing steps for forming an anodized film having a pillar-on-pore (POP) structure on the surface of a 3000 series aluminum alloy through anodizing treatment and pore expansion treatment. Here, the anodized film exhibits hydrophilicity, and the anodized film having a POP structure according to the present invention exhibits superhydrophilicity. Here, the coating composition according to step 5 is for imparting oil-repellent and water-repellent properties, and is technically characterized in that the micro-nano surface structure of the anodized film is maintained by thinly coating the micro-nano surface of the POP structure at the level of a monomolecular layer thickness, thereby maximizing the oil-repellent and water-repellent effects.

상기 3000계열 알루미늄 합금은 Al 3003, Al 3004, Al 3005, Al 3015, Al 3103, Al 3104, Al 3105 등을 사용할 수 있다.The above 3000 series aluminum alloys can include Al 3003, Al 3004, Al 3005, Al 3015, Al 3103, Al 3104, Al 3105, etc.

양극산화 피막은 친수성(hydrophilicity)을 나타내는데, 본 발명의 일실시예에서 단계 1 내지 4에 따른 기공 구조 위에 기둥(pillars)이 형성된 필라-온-포어(Pillar-On-Pore) 형태 미세구조의 양극산화 피막은 접촉각 10° 이하의 초친수성(super-hydrophilicity)을 나타낼 수 있다.The anodic oxide film exhibits hydrophilicity, and in one embodiment of the present invention, the anodic oxide film having a pillar-on-pore type microstructure in which pillars are formed on the pore structure according to steps 1 to 4 can exhibit superhydrophilicity with a contact angle of 10° or less.

바람직하게,Preferably,

프리패터닝 처리된 3000계열 알루미늄(aluminum) 합금을 38-42V에서 3-7분 동안 2차 양극산화 처리하는 단계(단계 2);Step 2: Secondary anodizing of a pre-patterned 3000 series aluminum alloy at 38-42 V for 3-7 minutes;

0.05-0.15M 인산(H3PO4) 용액에 30-45분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 3); 및Step 3: immersing in a 0.05-0.15 M phosphoric acid (H 3 PO 4 ) solution for 30-45 minutes to perform pore widening treatment; and

38-42V에서 3-7분 동안 3차 양극산화 처리하는 단계(단계 4);를 포함할 수 있다.It may include a step (step 4) of third anodizing treatment for 3-7 minutes at 38-42 V;

더욱 바람직하게,More preferably,

39-41V에서 3-5분 동안 2차 양극산화 처리하는 단계(단계 2);Secondary anodizing step (step 2) for 3-5 minutes at 39-41 V;

0.06-0.14M 인산(H3PO4) 용액에 33-42분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 3); 및Step 3: immersing in a 0.06-0.14 M phosphoric acid (H 3 PO 4 ) solution for 33-42 minutes to perform pore widening treatment; and

39-41V에서 3-5분 동안 3차 양극산화 처리하는 단계(단계 4);를 포함할 수 있다.It may include a step (step 4) of third anodizing treatment at 39-41 V for 3-5 minutes.

특히 바람직하게,Especially preferably,

39.5-40.5V에서 3.8-4.2분 동안 2차 양극산화 처리하는 단계(단계 2);Secondary anodizing step (step 2) at 39.5-40.5 V for 3.8-4.2 minutes;

0.095-0.105M 인산(H3PO4) 용액에 34-41분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 3); 및Step 3: immersing in a 0.095-0.105 M phosphoric acid (H 3 PO 4 ) solution for 34-41 minutes to perform pore widening treatment; and

39.5-40.5V에서 3.8-4.2분 동안 3차 양극산화 처리하는 단계(단계 4);를 포함할 수 있다.It may include a step (step 4) of third anodizing treatment at 39.5-40.5 V for 3.8-4.2 minutes.

만약, 상술한 단계 2 내지 단계 4의 처리 조건을 벗어날 경우에는, 균일한 양극산화 피막이 형성되지 않거나, 초친수성을 달성할 수 없는 문제점이 발생할 수 있다.If the processing conditions of steps 2 to 4 described above are exceeded, problems such as a uniform anodic oxide film not being formed or superhydrophilicity not being achieved may occur.

양극산화 처리 공정은 -5 내지 30℃의 전해액이 담긴 산화처리 반응조에 양극산화 하고자 하는 3000계열 알루미늄 합금을 작동전극으로 하여 양극을 걸어 준 다음, 백금(Pt) 또는 카본(carbon) 전극을 상대전극으로 하여 음극을 걸어 주어서 산화시켜 이루어지는 것일 수 있다. 상기 작동전극 및 상대전극의 거리는 1-15 cm일 수 있고, 바람직하게는 3-12 cm, 더욱 바람직하게는 4-10 cm, 더욱 더 바람직하게는 4.5-8 cm, 특히 바람직하게는 4.75-5.25 cm일 수 있다.The anodizing process may be performed by placing a 3000 series aluminum alloy to be anodized as a working electrode and an anode in an oxidation treatment reaction tank containing an electrolyte at -5 to 30°C, and then placing a platinum (Pt) or carbon electrode as a counter electrode and a cathode to oxidize the alloy. The distance between the working electrode and the counter electrode may be 1-15 cm, preferably 3-12 cm, more preferably 4-10 cm, still more preferably 4.5-8 cm, and particularly preferably 4.75-5.25 cm.

상기 1차 양극산화 및 2차 양극산화 처리의 전해액으로는 각각 황산(sulfuric acid, H2SO4), 인산(phosphoric acid, H3PO4), 옥살산(oxalic acid, C2H2O4), 크롬산(chromic acid), 불산(hydrofluoric acid), 인산수소칼륨(dipotassium phosphate, K2HPO4) 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다.The electrolyte for the first and second anodic oxidation treatments may be sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), oxalic acid (C 2 H2O 4 ), chromic acid, hydrofluoric acid, dipotassium phosphate (K 2 HPO 4 ), etc., either singly or in a mixture of two or more.

바람직하게, 상기 전해액은 -5 내지 25℃의 0.1-0.5M 옥살산을 사용할 수 있고, 더욱 바람직하게는 15 내지 25℃의 0.27-0.33M 옥살산을 사용할 수 있으며, 특히 바람직하게는 19 내지 21℃의 0.285-0.315M 옥살산을 사용할 수 있다.Preferably, the electrolyte may use 0.1-0.5 M oxalic acid at -5 to 25°C, more preferably 0.27-0.33 M oxalic acid at 15 to 25°C, and particularly preferably 0.285-0.315 M oxalic acid at 19 to 21°C.

상기 단계 5에서 사용하는 코팅 조성물에서 유기용매는 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane) 등을 단독 또는 2종 이상 혼합하여 사용할 수 있고, 본 발명에서는 일례로서 헥산(Hexane)을 사용하였다.In the coating composition used in the above step 5, the organic solvent may be pentane, hexane, heptane, octane, etc., used alone or in a mixture of two or more, and in the present invention, hexane was used as an example.

바람직하게,Preferably,

상기 단계 5에서 사용하는 코팅 조성물은,The coating composition used in the above step 5 is

유기용매 10 중량부 기준,Based on 10 parts by weight of organic solvent,

상기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 0.01-10 중량부 포함할 수 있다.It may contain 0.01-10 parts by weight of a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the chemical formula 1 above.

더욱 바람직하게,More preferably,

상기 단계 5에서 사용하는 코팅 조성물은,The coating composition used in the above step 5 is

유기용매 10 중량부 기준,Based on 10 parts by weight of organic solvent,

상기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 0.04-5 중량부 포함할 수 있다.It may contain 0.04-5 parts by weight of a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the chemical formula 1 above.

더욱 더 바람직하게,Even more preferably,

상기 단계 5에서 사용하는 코팅 조성물은,The coating composition used in the above step 5 is

유기용매 10 중량부 기준,Based on 10 parts by weight of organic solvent,

상기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 0.04-2 중량부 포함할 수 있다.It may contain 0.04-2 parts by weight of a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the chemical formula 1 above.

특히 바람직하게,Especially preferably,

상기 단계 5에서 사용하는 코팅 조성물은,The coating composition used in the above step 5 is

유기용매 10 중량부 기준,Based on 10 parts by weight of organic solvent,

상기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 0.04-1 중량부 포함할 수 있다.It may contain 0.04-1 part by weight of a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the chemical formula 1 above.

가장 바람직하게,Most preferably,

상기 단계 5에서 사용하는 코팅 조성물은,The coating composition used in step 5 above is

유기용매 10 중량부 기준,Based on 10 parts by weight of organic solvent,

상기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 0.05-0.17 중량부 포함할 수 있다.It may contain 0.05-0.17 parts by weight of a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the chemical formula 1 above.

만약, 상기 화학식 1로 표시되는 가교형 PDMS 유도체의 함량이 상기 범위를 벗어날 경우 발유성 및 발수성이 저하되거나, 코팅의 균일성이 미흡한 문제가 있을 수 있다.If the content of the cross-linked PDMS derivative represented by the chemical formula 1 is outside the above range, there may be a problem of reduced oil repellency and water repellency, or insufficient uniformity of the coating.

본 발명에 따른 코팅 조성물은 하기 화학식 2로 표시되는 PDMS(Polydimethylsiloxane) 유도체를 포함하지 않는 것을 특징으로 한다.The coating composition according to the present invention is characterized in that it does not contain a PDMS (Polydimethylsiloxane) derivative represented by the following chemical formula 2.

[화학식 2][Chemical formula 2]

(상기 화학식 2에서, m은 1-100의 정수이고, 바람직하게는 1-80의 정수, 더욱 바람직하게는 1-60의 정수이다.)(In the above chemical formula 2, m is an integer from 1 to 100, preferably an integer from 1 to 80, and more preferably an integer from 1 to 60.)

상기 코팅 조성물은 드롭코팅, 딥코팅, 스핀코팅 등의 방법으로 사용될 수 있으나, 이에 제한하지 않는다.The above coating composition can be used by methods such as drop coating, dip coating, and spin coating, but is not limited thereto.

또한, 본 발명은 상기 제조방법으로 제조되는 발유성 및 발수성 피막이 형성된 3000계열 알루미늄 합금을 제공한다.In addition, the present invention provides a 3000 series aluminum alloy having an oil-repellent and water-repellent film formed by the above-mentioned manufacturing method.

나아가, 본 발명은 3000계열 알루미늄(aluminum) 합금을 30-50V에서 5-15시간 동안 1차 양극산화 처리한 후, 에칭하여 1차 양극산화 피막을 제거하는 프리패터닝(pre-patterning) 단계(단계 1);Furthermore, the present invention comprises a pre-patterning step (step 1) of first anodizing a 3000 series aluminum alloy at 30-50 V for 5-15 hours, and then removing the first anodized film by etching;

35-45V에서 1-10분 동안 2차 양극산화 처리하는 단계(단계 2);Secondary anodizing step (step 2) at 35-45 V for 1-10 minutes;

0.05-1.0M 인산(H3PO4) 용액에 10-60분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 3); 및Step 3: immersing in a 0.05-1.0 M phosphoric acid (H 3 PO 4 ) solution for 10-60 minutes to perform pore widening treatment; and

35-45V에서 1-10분 동안 3차 양극산화 처리하는 단계(단계 4);를 포함하는,Step 4 (third anodizing process) for 1-10 minutes at 35-45 V; including;

3000계열 알루미늄 합금 표면에 필라-온-포어(Pillar-On-Pore) 형태의 양극산화 피막의 제조방법을 제공한다.A method for manufacturing a pillar-on-pore type anodic oxide film on the surface of a 3000 series aluminum alloy is provided.

상기 필라-온-포어(Pillar-On-Pore) 형태의 양극산화 피막은 기공 구조 위에 기둥(pillars)이 형성된 형태인 것을 특징으로 하고, 상기 양극산화 피막은 초친수성인 것을 특징으로 한다.The above pillar-on-pore type anodized film is characterized by having pillars formed on a pore structure, and the above anodized film is characterized by being superhydrophilic.

또한, 본 발명은 상기 제조방법으로 제조된 필라-온-포어(Pillar-On-Pore) 형태의 양극산화 피막이 형성된 3000계열 알루미늄 합금을 제공한다.In addition, the present invention provides a 3000 series aluminum alloy having a pillar-on-pore type anodic oxide film formed by the above manufacturing method.

본 발명에 따른 3000계열 알루미늄 합금에 초친수성 양극산화 피막의 제조방법은 균일한 양극산화 피막을 제조할 수 있고, 화학식 1로 표시되는 가교형 PDMS 유도체 및 유기용매를 특정 배합비로 사용한 코팅 조성물에 따라 양극산화 피막에 초발수성 및 초발유성을 부여할 수 있으며, 코팅 조성물은 제조비용이 저렴하며 코팅막 두께를 수 내지 수십 nm로 조절할 수 있어 미세구조 산화막의 코팅에도 적용할 수 있다.The method for producing a superhydrophilic anodized film on a 3000 series aluminum alloy according to the present invention can produce a uniform anodized film, and can impart superhydrophobicity and superoleophobicity to the anodized film according to a coating composition using a cross-linked PDMS derivative represented by chemical formula 1 and an organic solvent at a specific mixing ratio, and the coating composition has a low manufacturing cost and can control the coating film thickness to several to several tens of nm, so that it can also be applied to coating of a microstructured oxide film.

도 1은 실시예 1-1 내지 실시예 1-2에서 3차 양극산화(단계 4)까지 모두 처리한 시편의 Top view, Cross view 및 Tilted view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 1 is an image of the top view, cross view, and tilted view of a specimen that was processed through all of Examples 1-1 to 1-2 up to the third anodic oxidation (step 4), taken using a field emission scanning electron microscope (FE-SEM).

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only intended to illustrate the present invention, and the content of the present invention is not limited to the following examples.

<제조예> 알루미늄 3003 합금의 양극산화처리를 통한 필라-온-포어(Pillar-On-Pore, POP) 구조의 양극산화 피막의 제조<Manufacturing Example> Manufacturing of Pillar-On-Pore (POP) Structured Anodized Film through Anodizing of Aluminum 3003 Alloy

알루미늄 3003 합금의 표면에 POP 구조의 양극산화 피막이 형성되는 양극산화 처리조건을 알아내기 위하여 다음과 같이 실시하였다.In order to determine the anodizing treatment conditions for forming a POP structured anodizing film on the surface of aluminum 3003 alloy, the following procedure was performed.

알루미늄 합금 양극산화 피막을 제조하기 위해, 알루미늄 3003 합금을 이용하여 프리패터닝(pre-patterning), 기공 확장(pore widening; PW) 및 전압 변조(voltage modulation)를 수행하였다. To manufacture an aluminum alloy anodized film, pre-patterning, pore widening (PW), and voltage modulation were performed using aluminum 3003 alloy.

상기 알루미늄 3003 합금(Al 3003, 크기 20×30mm, 제조사: Alcoa INC, USA)의 성분 정보는 하기와 같다.The composition information of the above aluminum 3003 alloy (Al 3003, size 20×30mm, manufacturer: Alcoa INC, USA) is as follows.

준비단계: 전해연마(Electrochemical polishing) 공정Preparation stage: Electrochemical polishing process

상기 알루미늄 3003 합금 표면에 있는 불순물을 제거하기 위해, 20℃의 아세톤에서 10분, 그리고 에탄올에서 10분 동안 초음파 처리하여 세척하였다.To remove impurities on the surface of the above aluminum 3003 alloy, it was washed by ultrasonic treatment in acetone at 20°C for 10 minutes and in ethanol for 10 minutes.

다음으로, 표면 조도를 얻기 위하여 상기 초음파 세척된 알루미늄 3003 합금을 에탄올 및 과염소산 혼합 용액(Junsei, HClO4:C2H5OH= 4:1 (v/v))에 넣어 상온(20℃)에서 20V의 전압을 인가하여 1분 동안 전해연마(Electrochemical polishing)하였다. 전해연마가 완료된 알루미늄 합금 표면은 반사가 잘 이루어져 표면이 평탄해짐을 확인하였다.Next, to obtain surface roughness, the ultrasonically cleaned aluminum 3003 alloy was placed in a mixed solution of ethanol and perchloric acid (Junsei, HClO 4 :C 2 H 5 OH = 4:1 (v/v)) and electrochemically polished for 1 minute at room temperature (20°C) with a voltage of 20 V. The aluminum alloy surface after electrochemical polishing was confirmed to have a good reflection and a flat surface.

단계 1: 1차 양극산화 및 화학적 에칭을 통한 프리패터닝 공정Step 1: Pre-patterning process through primary anodization and chemical etching

상기 전해연마된 알루미늄 3003 합금(두께 1mm, 크기 20×30mm)을 작동 전극으로 하고, 음극으로는 백금(Pt)전극을 사용하여, 상기 두 개의 전극은 5cm 간격으로 극간 거리를 일정하게 유지하여 1차 양극산화를 실시하였다. 상기 1차 양극산화는 0.3M 옥살산을 전해액으로 사용하였고, 이중 비이커를 이용하여 전해액 온도를 0℃로 일정하게 유지하면서 실시하였다. 국부적인 온도 상승으로 인한 안정된 산화물 성장의 방해를 억제하기 위하여 일정 속도로 교반하였으며, 정전압 방식을 사용하여 40V의 전압을 인가하여 6시간 동안 1차 양극산화 공정을 수행하여 알루미나 층을 성장시켰다.The above-mentioned electropolished aluminum 3003 alloy (1 mm thick, 20×30 mm in size) was used as a working electrode and a platinum (Pt) electrode as a cathode, and the two electrodes were kept at a constant distance of 5 cm to perform the first anodic oxidation. The first anodic oxidation was performed using 0.3 M oxalic acid as an electrolyte and keeping the electrolyte temperature at a constant 0℃ using a double beaker. In order to suppress the disturbance of stable oxide growth due to local temperature increase, stirring was performed at a constant speed, and a voltage of 40 V was applied using a constant voltage method to perform the first anodic oxidation process for 6 hours to grow an alumina layer.

상기 1차 양극산화 처리를 통해 성장된 알루미나 층은 65℃에서 크롬산(1.8wt%) 및 인산(6wt%)을 혼합한 용액에 10시간 동안 침지시켜 에칭(etching)함으로써, 성장된 알루미나 층을 제거하는 프리패터닝(pre-patterning) 공정을 실시하였다.The alumina layer grown through the first anodic oxidation treatment was subjected to a pre-patterning process to remove the grown alumina layer by etching it by immersing it in a solution containing a mixture of chromic acid (1.8 wt%) and phosphoric acid (6 wt%) at 65°C for 10 hours.

단계 2: 2차 양극산화Step 2: Secondary anodization

상기 프리패터닝 처리된 알루미늄 3003 합금(두께 1mm, 크기 20×30mm)을 작동 전극으로 하고, 음극으로는 백금(Pt)전극을 사용하여, 상기 두 개의 전극은 5cm 간격으로 극간 거리를 일정하게 유지하여 2차 양극산화를 실시하였다. 상기 2차 양극산화는 0.3M 옥살산을 전해액으로 사용하였고, 이중 비이커를 이용하여 전해액 온도를 20℃로 일정하게 유지하면서 실시하였다. 국부적인 온도 상승으로 인한 안정된 산화물 성장의 방해를 억제하기 위하여 일정 속도로 교반하였으며, 정전압 방식을 사용하여 40V의 전압을 1-10분 인가하여 2차 양극산화 공정을 수행하여 알루미나 층을 성장시켰다.The above pre-patterned aluminum 3003 alloy (1 mm thick, 20×30 mm in size) was used as a working electrode and a platinum (Pt) electrode as a cathode, and the two electrodes were kept at a constant distance of 5 cm to perform secondary anodization. The secondary anodization was performed using 0.3 M oxalic acid as an electrolyte and keeping the electrolyte temperature at a constant 20°C using a double beaker. In order to suppress the disturbance of stable oxide growth due to local temperature increase, stirring was performed at a constant speed, and the secondary anodization process was performed by applying a voltage of 40 V for 1-10 minutes using a constant voltage method to grow an alumina layer.

단계 3: 기공확장(pore widening; PW)Step 3: Pore widening (PW)

2차 양극산화를 통해 성장된 알루미나 층은 3차 양극산화를 실시하기 전에 30℃의 0.1M 인산 용액에 10~60분 동안 침지시키는 기공확장(pore widening; PW) 공정을 수행하였다.The alumina layer grown through secondary anodic oxidation was subjected to a pore widening (PW) process by immersing it in a 0.1 M phosphoric acid solution at 30°C for 10 to 60 minutes before performing the tertiary anodic oxidation.

단계 4: 3차 양극산화Step 4: 3rd anodization

상기 2차 양극산화와 동일하게 실시하되, 전압 인가 시간을 4분으로 고정하여 3차 양극산화 공정을 수행하여 알루미나 층을 더 성장시켰다.The third anodizing process was performed in the same manner as the above second anodizing, but the voltage application time was fixed to 4 minutes, to further grow the alumina layer.

상기 2차 양극산화(단계 2), 기공 확장(단계 3) 및 3차 양극산화(단계 4) 공정을 하기 표 1과 같은 조건으로 실시하여, 알루미늄 3003 합금 표면에 미세구조의 양극산화 피막을 제조하였다.The above secondary anodizing (step 2), pore expansion (step 3), and tertiary anodizing (step 4) processes were performed under the conditions shown in Table 1 below to produce a microstructured anodizing film on the surface of an aluminum 3003 alloy.

2차 양극산화
(단계 2)
Secondary anodic oxidation
(Step 2)
기공 확장
(단계 3)
Pore expansion
(Step 3)
3차 양극산화
(단계 4)
3rd anodization
(Step 4)
전압(V)Voltage (V) 시간(min)Time (min) 시간(min)Time (min) 전압(V)Voltage (V) 시간(min)Time (min) 실시예 1-1Example 1-1 4040 44 3535 4040 44 실시예 1-2Example 1-2 4040

<실험예 1> 양극산화 피막의 미세구조 분석<Experimental Example 1> Microstructural Analysis of the Anodized Film

상기 표 1의 실시예 1-1 내지 실시예 1-2에서 3차 양극산화(단계 4)까지 모두 처리한 시편으로 이들의 표면(Top viwe), 횡단면(Cross view) 및 경사면(Tilted view)을 전계방출 주사전자현미경(FE-SEM) 시스템(AURIGA® small dual-bean FIB-SEM, Zeiss)을 사용하여 관찰하였다.The surfaces (top view), cross-sections, and tilted views of the specimens treated with the third anodic oxidation (step 4) in Examples 1-1 to 1-2 of Table 1 above were observed using a field emission scanning electron microscope (FE-SEM) system (AURIGA® small dual-bean FIB-SEM, Zeiss).

도 1은 실시예 1-1 내지 실시예 1-2에서 3차 양극산화(단계 4)까지 모두 처리한 시편의 Top view, Cross view 및 Tilted view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 1 is an image of the top view, cross view, and tilted view of a specimen that was processed through all of Examples 1-1 to 1-2 up to the third anodic oxidation (step 4), taken using a field emission scanning electron microscope (FE-SEM).

도 1에 나타난 바와 같이, 기공확장 35 min 처리한 시편의 횡단면(cross-view) 이미지에서 매끈하게 나타나는 하단 부분은 알루미늄 3003 합금이고, 아래 포어 형태의 기둥층 두께는 3차 양극산화에 따른 피막으로 다공성 기둥 형상을 나타내고, 그 상단부는 2차 양극산화 및 기공확장 처리에 따른 피막으로 필라 형상을 나타낸다. 기공확장 35-40 min(특히 40min) 처리한 시편에서 POP 미세구조가 잘 나타나는 것으로 보인다.As shown in Fig. 1, the smooth lower part in the cross-view image of the specimen treated with pore expansion for 35 min is aluminum 3003 alloy, the thickness of the pore-shaped columnar layer below shows a porous columnar shape as a film due to the third anodic oxidation, and the upper part shows a pillar shape as a film due to the second anodic oxidation and pore expansion treatment. It seems that the POP microstructure is well shown in the specimen treated with pore expansion for 35-40 min (especially 40 min).

본 실험예 1의 결과로부터, 2차 양극산화 조건으로 인가전압 40V에서 4min, 기공확장 35-40 min, 3차 양극산화 조건으로 인가전압 40V에서 4min 실시하는 것이 바람직한 것으로 판단된다.From the results of Experimental Example 1, it is determined that it is desirable to perform the second anodizing condition at an applied voltage of 40 V for 4 minutes, pore expansion for 35-40 minutes, and the third anodizing condition at an applied voltage of 40 V for 4 minutes.

<실험예 2> 초발수 및 초발유 기능성 부여를 위한 코팅 조성물의 평가<Experimental Example 2> Evaluation of coating composition for imparting superhydrophobic and superoil-repellent functions

상기 실시예 1-1 내지 1-2의 시편에 초발수 및 초발유 기능성 부여를 위해 사용할 코팅 조성물을 평가하였다.The coating compositions to be used to impart superhydrophobic and superoil-repellent functions to the specimens of Examples 1-1 and 1-2 above were evaluated.

구체적으로, 알루미늄 3003 합금을 실시예에서 기재한 전해연마 공정까지만 실시한 것을 금속 기재로 준비하였다. 즉, 양극산화 처리는 실시하지 않았다.Specifically, the metal substrate was prepared by subjecting aluminum 3003 alloy to only the electrolytic polishing process described in the examples. In other words, no anodic oxidation treatment was performed.

전해연마 처리된 알루미늄 3003 합금에 코팅제로서 화학식 1로 표시되는 가교형 PDMS 유도체인 SYLGARD 184 Silicon Elastomer Curing Agent(제조사: Dow chemical company), 화학식 2로 표시되는 PDMS 유도체인 SYLGARD 184 Silicon Elastomer Base(제조사: Dow chemical company) 및/또는 헥산(Hexane)을 기재 면적 2.5cm×3cm 당 60μL 드롭한 다음, 스핀 코팅법으로 코팅하였다. 스핀 코팅 조건은 1000rpm에서 30초간 실시하였다. 또한, 다른 코팅 방법으로 드롭 코팅을 실시하였다. 드롭 코팅의 경우 적정량의 코팅제를 드롭한 다음, 기재를 좌우로 수 회 기울여 코팅하였다.SYLGARD 184 Silicon Elastomer Curing Agent, a cross-linked PDMS derivative represented by the chemical formula 1 (manufactured by Dow Chemical Company), SYLGARD 184 Silicon Elastomer Base, a PDMS derivative represented by the chemical formula 2 (manufactured by Dow Chemical Company), and/or hexane were dropped at 60 μL per 2.5 cm × 3 cm of the substrate area as a coating agent, and then coated by spin coating. The spin coating condition was 1000 rpm for 30 seconds. In addition, drop coating was performed as another coating method. In the case of drop coating, an appropriate amount of the coating agent was dropped, and the substrate was tilted from side to side several times for coating.

제조예 2-1 내지 2-4는 코팅제로 헥산, 주제(화학식 2) 및 경화제(화학식 1)를 혼합하여 사용하였고,Manufacturing examples 2-1 to 2-4 used a mixture of hexane, a main agent (chemical formula 2), and a curing agent (chemical formula 1) as a coating agent.

제조예 2-5 내지 2-10은 코팅제로 헥산 및 경화제(화학식 1)를 혼합하여 사용하였다.Manufacturing examples 2-5 to 2-10 used a mixture of hexane and a curing agent (chemical formula 1) as a coating agent.

다음으로, 코팅이 완료된 기재를 300℃의 오븐에서 30분 동안 열처리하여 경화를 완료하였다.Next, the coated substrate was heat treated in an oven at 300°C for 30 minutes to complete curing.

참고로, 하기 제조예 2-1 내지 2-10의 코팅 조성물은 이 건 발명자의 선출원(출원번호 10-2021-0085454호)에서 사용한 조성물이다.For reference, the coating compositions of Manufacturing Examples 2-1 to 2-10 below are compositions used in the inventor's prior application (Application No. 10-2021-0085454).

제조예Manufacturing example 코팅제 조성물(중량비)Coating composition (weight ratio) 코팅
방법
coating
method
코팅액
사용량
(μL/7.5cm2)
Coating liquid
amount used
(μL/7.5cm 2 )
헥산Hexane 코팅제
(SYLGARD 184)
Coating agent
(SYLGARD 184)
Base
(주제)
Base
(subject)
Curing agent
(경화제)
Curing agent
(hardener)
2-12-1 1010 11 0.10.1 dropdrop 6565 2-22-2 1010 11 0.10.1 spinspin 6565 2-32-3 1010 22 0.20.2 dropdrop 6565 2-42-4 1010 22 0.20.2 spinspin 6565 2-52-5 1010 00 11 dropdrop 6565 2-62-6 1010 00 11 spinspin 6565 2-72-7 1010 00 11 spinspin 6565 2-82-8 1010 00 11 dropdrop 8585 2-92-9 1010 00 0.50.5 dropdrop 8585 2-102-10 1010 00 0.10.1 dropdrop 8585

[화학식 1: Curing agent][Chemical Formula 1: Curing agent]

상기 화학식 1에서, x 및 y는 각각 1-30의 정수이다.In the above chemical formula 1, x and y are each an integer from 1 to 30.

[화학식 2: Base][Chemical Formula 2: Base]

상기 화학식 2에서, m은 1-100의 정수이다.In the above chemical formula 2, m is an integer from 1 to 100.

상기 제조예 2-1 내지 2-10의 시편에 대하여, 물(정제수) 및 오일(식용유)을 각각 드롭하여 접촉각 및 접촉이력각을 평가하였고, 그 결과를 하기 표 3에 나타내었다.For the specimens of the above manufacturing examples 2-1 to 2-10, water (purified water) and oil (edible oil) were dropped respectively to evaluate the contact angle and contact history angle, and the results are shown in Table 3 below.

여기서, '접촉이력각(contact angle hysteresis)'은 기울기를 미세하게 조절 가능한 장치의 스테이지 위에 샘플을 올려 놓고, 샘플에 물 또는 오일을 드롭한 다음 스테이지에 기울기를 서서히 부가하며, 물 또는 오일이 흘러내리기 시작하는 기울기 각도를 측정한 것이다. 즉, 접촉이력각이 낮을수록 발수성/발유성이 우수하다 할 수 있다. 예를 들어, 접촉이력각이 1°인 경우 샘플을 1°만 기울여도 물 또는 오일이 흘러내리고, 접촉이력각이 90°인 경우 샘플을 90°로 세워도 물 또는 오일이 흘러내리지 않는다.Here, the 'contact angle hysteresis' is measured by placing a sample on a stage of a device whose inclination can be finely adjusted, dropping water or oil on the sample, slowly adding an inclination to the stage, and then measuring the inclination angle at which the water or oil begins to flow out. In other words, the lower the contact hysteresis angle, the better the water/oil repellency. For example, if the contact hysteresis angle is 1°, water or oil flows out even if the sample is tilted by just 1°, and if the contact hysteresis angle is 90°, water or oil does not flow out even if the sample is tilted at 90°.

하기 표 3은 알루미늄 3003 합금 기재의 양극산화 미처리 샘플로서 표면에 미세구조 산화막이 형성되지 않은 기재에 제조예 2-1 내지 2-10에 따른 코팅액을 코팅한 후 발수성 및 발유성을 평가한 결과이다.Table 3 below shows the results of evaluating water and oil repellency after coating a coating solution according to Manufacturing Examples 2-1 to 2-10 on a non-anodized sample of an aluminum 3003 alloy substrate on which a microstructured oxide film has not been formed on the surface.

양극산화 미처리 기재 Non -anodized substrate water 오일Oil 접촉각(0초)Contact angle (0 sec) 접촉이력각Contact history angle 접촉각(60초)Contact angle (60 seconds) 접촉이력각Contact history angle 제조예 2-1Manufacturing Example 2-1 107.59±1.31°107.59±1.31° 29.11±0.44°29.11±0.44° 60.56±0.43°60.56±0.43° 25.74±0.41°25.74±0.41° 제조예 2-2Manufacturing Example 2-2 104.57±0.35°104.57±0.35° 25.65±0.58°25.65±0.58° 61.05±0.67°61.05±0.67° 26.95±0.64°26.95±0.64° 제조예 2-3Manufacturing Example 2-3 99.57±0.22°99.57±0.22° 27.43±0.75°27.43±0.75° 57.05±1.05°57.05±1.05° 27.56±0.37°27.56±0.37° 제조예 2-4Manufacturing Example 2-4 100.28±1.24°100.28±1.24° 27.91±0.94°27.91±0.94° 54.87±1.44°54.87±1.44° 27.79±0.09°27.79±0.09° 제조예 2-5Manufacturing Example 2-5 102.66±0.80°102.66±0.80° 22.20±0.58°22.20±0.58° 60.79±1.38°60.79±1.38° 22.12±0.37°22.12±0.37° 제조예 2-6Manufacturing Example 2-6 100.87±3.00°100.87±3.00° 28.32±0.85°28.32±0.85° 58.44±6.00°58.44±6.00° 28.52±2.90°28.52±2.90° 제조예 2-7Manufacturing Example 2-7 103.96±2.83°103.96±2.83° 24.19±0.24°24.19±0.24° 59.62±1.43°59.62±1.43° 24.86±1.40°24.86±1.40° 제조예 2-8Manufacturing Example 2-8 114.13±2.53°114.13±2.53° 20.07±0.41°20.07±0.41° 58.84±3.10°58.84±3.10° 20.60±0.20°20.60±0.20° 제조예 2-9Manufacturing Example 2-9 113.22±1.47°113.22±1.47° 19.94±2.20°19.94±2.20° 54.55±8.12°54.55±8.12° 13.75±1.02°13.75±1.02° 제조예 2-10Manufacturing Example 2-10 114.63±0.18°114.63±0.18° 13.66±0.42°13.66±0.42° 55.01±2.48°55.01±2.48° 10.65±0.92°10.65±0.92° 코팅 미처리Uncoated 77.72±4.64°77.72±4.64° 41.26±4.31°41.26±4.31° 31.67±6.02°31.67±6.02° 33.57±0.68°33.57±0.68°

표 3에 나타난 바와 같이, 제조예 2-10의 접촉이력각이 가장 낮게 나타나, 발수성/발유성이 우수함을 확인할 수 있었다. 본 결과에 근거하여, 후술할 실험예 3에서는 제조예 2-10에 따른 코팅조성물을 사용하였다.As shown in Table 3, the contact history angle of Manufacturing Example 2-10 was the lowest, confirming that it had excellent water-repellent/oil-repellent properties. Based on these results, the coating composition according to Manufacturing Example 2-10 was used in Experimental Example 3 described below.

<실험예 3> 실시예 1-1 내지 1-2의 시편에 제조예 2-10의 코팅 조성물을 코팅한 시편의 발수성 및 발유성 평가<Experimental Example 3> Evaluation of water-repellent and oil-repellent properties of specimens coated with the coating composition of Manufacturing Example 2-10 on specimens of Examples 1-1 to 1-2

실시예 1-1 내지 1-2에서 얻은 미세구조 양극산화 피막이 형성된 알루미늄 3003 합금을 기재로 하여, 제조예 2-10의 코팅 조성물을 코팅하였다. 코팅의 상세 과정은 상기 실험예 2와 동일하게 실시하였다.The aluminum 3003 alloy having the microstructured anodic oxide film formed in Examples 1-1 to 1-2 was coated with the coating composition of Manufacturing Example 2-10. The detailed coating process was performed in the same manner as in Experimental Example 2.

코팅이 완료된 시편(실시예 2-1 내지 실시예 2-2)에 대하여, 물(정제수) 및 오일(식용유)을 각각 드롭하여 접촉각 및 접촉이력각을 평가하였고, 그 결과를 하기 표 4에 나타내었다.For the specimens on which the coating was completed (Examples 2-1 to 2-2), water (purified water) and oil (edible oil) were dropped respectively to evaluate the contact angle and contact history angle, and the results are shown in Table 4 below.

여기서, 금속 기재를 양극산화 처리하여 표면에 POP 형태의 미세구조를 형성하면 초친수성 산화막이 형성되는데, 이는 산화막에 포함된 산소원자와 미세구조에 기인하는 효과로, 상기 미세구조 산화막에 단분자막 수준의 얇은 두께로 소수성 코팅을 하여 미세구조를 유지하면, 초소수성이 구현될 수 있다.Here, when a metal substrate is anodized to form a POP-shaped microstructure on the surface, a superhydrophilic oxide film is formed. This is an effect caused by the oxygen atoms and microstructure contained in the oxide film. If a hydrophobic coating is applied to the microstructured oxide film with a thin thickness at the level of a monomolecular film to maintain the microstructure, superhydrophobicity can be implemented.

물(°)Water(°) 오일(°)Oil(°) 접촉각(0초)Contact angle (0 sec) 접촉 이력각Contact history angle 접촉각(0초)Contact angle (0 sec) 접촉 이력각Contact history angle 실시예 2-1Example 2-1 165.88±18.61165.88±18.61 9.78±0.479.78±0.47 73.46±1.1173.46±1.11 15.27±1.9215.27±1.92 실시예 2-2Example 2-2 173.79±12.71173.79±12.71 3.19±0.643.19±0.64 75.23±1.0475.23±1.04 13.31±1.0413.31±1.04

상기 표 4에 나타난 바와 같이, 실시예 2-1 및 실시예 2-2의 접촉 이력각이 초발수 및 초발유 특성을 나타내는 것을 확인하였고, 특히 실시예 2-2가 우수한 효과를 나타냄을 확인하였다.As shown in Table 4 above, it was confirmed that the contact history angles of Examples 2-1 and 2-2 exhibited superhydrophobic and superoleophobic properties, and in particular, it was confirmed that Example 2-2 exhibited excellent effects.

<실험예 4> 미세구조 산화막이 형성된 기재에 코팅하기에 적합한 화학식 1의 가교형 PDMS 유도체 및 헥산의 최적 배합비 도출<Experimental Example 4> Derivation of the optimal mixing ratio of cross-linked PDMS derivative of chemical formula 1 and hexane suitable for coating on a substrate having a microstructured oxide film formed

상기 실험예 2 및 3의 결과를 통해, 제조예 2-10의 코팅 조성물 샘플이 코팅성이 우수하면서, 발수성 및 발유성도 현저히 우수하며, 미세구조를 유지하기에 충분히 얇은 코팅막 두께를 형성함을 확인할 수 있었다.Through the results of the above Experimental Examples 2 and 3, it was confirmed that the coating composition sample of Manufacturing Example 2-10 had excellent coating properties, and also had remarkably excellent water-repellent and oil-repellent properties, and formed a coating film thickness thin enough to maintain the microstructure.

이에, 본 실험예 4에서는 미세구조 산화막이 형성된 기재에 코팅하기에 적합한 화학식 1의 가교형 PDMS 유도체 및 헥산의 최적 배합비를 도출하고자 실험예 3과 동일하게 접촉이력각 실험을 실시하였고, 그 결과를 표 5에 나타내었다.Accordingly, in Experimental Example 4, a contact history angle experiment was conducted in the same manner as in Experimental Example 3 to derive the optimal mixing ratio of a cross-linked PDMS derivative of chemical formula 1 and hexane suitable for coating a substrate having a microstructured oxide film formed thereon, and the results are shown in Table 5.

하기 표 5에서 코팅제의 경화제 및 헥산은 중량비로 측정하여 표기하였고, 기재는 실시예 1-2에서 얻은 POP 형태의 미세구조 산화막이 형성된 알루미늄 3003 합금을 사용하였으며, 제조예 2-10과 동일하게 플라즈마 처리를 하지 않고, 드롭 코팅하여 샘플을 준비하였다.In Table 5 below, the curing agent and hexane of the coating agent are measured and indicated by weight ratio, and the substrate used was aluminum 3003 alloy having a microstructured oxide film in the form of POP obtained in Example 1-2, and a sample was prepared by drop coating without plasma treatment in the same manner as in Manufacturing Example 2-10.

실시예Example 코팅제 혼합 중량비Coating agent mixing weight ratio 접촉이력각(°)Contact history angle (°) 헥산Hexane 경화제
(화학식 1)
Hardener
(chemical formula 1)
water 오일Oil
3-13-1 1010 0.010.01 17.92 ± 0.1217.92 ± 0.12 19.3 ± 0.4519.3 ± 0.45 3-23-2 1010 0.030.03 17.71 ± 0.7917.71 ± 0.79 18.4 ± 0.4118.4 ± 0.41 3-33-3 1010 0.050.05 3.27 ± 0.463.27 ± 0.46 13.44 ± 0.3613.44 ± 0.36 3-43-4 1010 0.070.07 3.25 ± 0.753.25 ± 0.75 13.38 ± 0.5413.38 ± 0.54 3-53-5 1010 0.10.1 3.19 ± 0.643.19 ± 0.64 13.31 ± 1.0413.31 ± 1.04 3-63-6 1010 0.130.13 3.36 ± 0.573.36 ± 0.57 13.44 ± 0.2813.44 ± 0.28 3-73-7 1010 0.150.15 3.41 ± 0.173.41 ± 0.17 14.31 ± 0.4114.31 ± 0.41 3-83-8 1010 0.170.17 3.55 ± 0.543.55 ± 0.54 14.62 ± 0.5214.62 ± 0.52 3-93-9 1010 0.200.20 15.77 ± 0.4115.77 ± 0.41 20.7 ± 0.8620.7 ± 0.86

상기 표 5에 나타난 바와 같이, 실시예 3-3 내지 3-8에서 미세구조를 유지하기에 충분히 얇은 코팅막 두께를 형성하고, 기재 전체에 균일하게 코팅막이 형성되어 발수성 및 발유성이 현저히 우수하게 나타남을 확인할 수 있었다. 한편, 실시예 3-1 내지 3-2의 경우 경화제 함량이 너무 낮아 기재 일부에 코팅막이 형성되지 않은 것으로 예상되고, 실시예 3-9의 경우 경화제 함량이 너무 높아, 미세구조를 유지하기에는 너무 두꺼운 코팅막이 형성되는 것으로 예상된다.As shown in Table 5 above, in Examples 3-3 to 3-8, it was confirmed that a coating film thickness sufficiently thin to maintain the microstructure was formed, and a coating film was uniformly formed over the entire substrate, so that water-repellent and oil-repellent properties were remarkably excellent. On the other hand, in the case of Examples 3-1 to 3-2, it is expected that the curing agent content was too low and thus the coating film was not formed on some parts of the substrate, and in the case of Example 3-9, it is expected that the curing agent content was too high and thus a coating film that was too thick to maintain the microstructure was formed.

<실험예 5> 실시예 1-1 내지 1-2의 접촉각 평가<Experimental Example 5> Contact angle evaluation of Examples 1-1 to 1-2

코팅을 실시하지 않은 실시예 1-1 내지 1-2의 시편에 대하여 물(정제수) 및 오일(식용유)에 대한 접촉각을 측정하였고, 그 결과를 하기 표 6에 나타내었다.The contact angles for water (purified water) and oil (edible oil) were measured for the specimens of Examples 1-1 and 1-2 that were not coated, and the results are shown in Table 6 below.

접촉각 (°)Contact angle (°) 기공확장 시간 (min)Pore expansion time (min) water 오일Oil 실시예 1-1Example 1-1 3535 8.9 ± 3.458.9 ± 3.45 NoneNone 실시예 1-2Example 1-2 4040 NoneNone NoneNone

* None : 접촉각이 0에 가까워 측정이 불가능함을 의미함.* None: This means that the contact angle is close to 0 and measurement is not possible.

상기 표 2에 나타난 바와 같이, 실시예 1-1 및 실시예 1-2 모두 물 및 오일에 대한 접촉각이 10° 이하로 나타나 초친수성을 나타내는 것을 확인하였다.As shown in Table 2 above, both Examples 1-1 and 1-2 were confirmed to exhibit superhydrophilicity, with contact angles for water and oil being 10° or less.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특히 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described with reference to preferred embodiments thereof. Those skilled in the art will appreciate that the present invention may be implemented in modified forms without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a limiting perspective. The scope of the present invention is not set forth in the foregoing description, but rather in the claims, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (18)

3000계열 알루미늄(aluminum) 합금을 30-50V에서 5-15시간 동안 1차 양극산화 처리한 후, 에칭하여 1차 양극산화 피막을 제거하는 프리패터닝(pre-patterning) 단계(단계 1);
39-41V에서 3-5분 동안 2차 양극산화 처리하는 단계(단계 2);
0.06-0.14M 인산(H3PO4) 용액에 33-42분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 3);
39-41V에서 3-5분 동안 3차 양극산화 처리하는 단계(단계 4); 및
하기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 및 유기용매를 포함하는 코팅 조성물로 코팅하는 단계(단계 5);를 포함하고,
상기 단계 5에서 사용하는 코팅 조성물에는 하기 화학식 2로 표시되는 PDMS(Polydimethylsiloxane) 유도체를 포함하지 않는 것을 특징으로 하고,
상기 단계 5에서 사용하는 코팅 조성물은 유기용매 10 중량부 기준 상기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 0.05-0.17 중량부 포함하는 것을 특징으로 하는,
3000계열 알루미늄 합금에 발유성 및 발수성 피막의 제조방법.
[화학식 1]

(상기 화학식 1에서, x 및 y는 각각 1-30의 정수이다.)

[화학식 2]

(상기 화학식 2에서, m은 1-100의 정수이다.)
A pre-patterning step (step 1) of first anodizing a 3000 series aluminum alloy at 30-50 V for 5-15 hours, and then etching to remove the first anodized film;
Secondary anodizing step (step 2) for 3-5 minutes at 39-41 V;
Step 3: pore widening treatment by immersing in a 0.06-0.14 M phosphoric acid (H 3 PO 4 ) solution for 33-42 minutes;
Step 4 of the third anodizing treatment at 39-41 V for 3-5 minutes; and
A step (step 5) of coating with a coating composition comprising a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the following chemical formula 1 and an organic solvent;
The coating composition used in the above step 5 is characterized in that it does not contain a PDMS (Polydimethylsiloxane) derivative represented by the following chemical formula 2,
The coating composition used in the above step 5 is characterized by containing 0.05-0.17 parts by weight of a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the chemical formula 1 based on 10 parts by weight of an organic solvent.
Method for producing an oil-repellent and water-repellent film on a 3000 series aluminum alloy.
[Chemical Formula 1]

(In the above chemical formula 1, x and y are each an integer from 1 to 30.)

[Chemical formula 2]

(In the above chemical formula 2, m is an integer from 1 to 100.)
제1항에 있어서,
상기 3000계열 알루미늄 합금은 Al 3003, Al 3004, Al 3005, Al 3015, Al 3103, Al 3104, 및 Al 3105으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
In the first paragraph,
A manufacturing method characterized in that the above 3000 series aluminum alloy is at least one selected from the group consisting of Al 3003, Al 3004, Al 3005, Al 3015, Al 3103, Al 3104, and Al 3105.
제1항에 있어서,
상기 단계 1 내지 단계 4를 통해 3000계열 알루미늄 합금 표면에 형성되는 양극산화 피막은 기공 구조 위에 기둥(pillars)이 형성된 필라-온-포어(Pillar-On-Pore) 형태인 것을 특징으로 하는 제조방법.
In the first paragraph,
A manufacturing method characterized in that the anodic oxide film formed on the surface of a 3000 series aluminum alloy through the above steps 1 to 4 has a pillar-on-pore form in which pillars are formed on a pore structure.
삭제delete 삭제delete 제1항에 있어서,
39.5-40.5V에서 3.8-4.2분 동안 2차 양극산화 처리하는 단계(단계 2);
0.095-0.105M 인산(H3PO4) 용액에 34-41분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 3); 및
39.5-40.5V에서 3.8-4.2분 동안 3차 양극산화 처리하는 단계(단계 4);를 포함하는 것을 특징으로 하는 제조방법.
In the first paragraph,
Secondary anodizing step (step 2) at 39.5-40.5 V for 3.8-4.2 minutes;
Step 3: immersing in a 0.095-0.105 M phosphoric acid (H 3 PO 4 ) solution for 34-41 minutes to perform pore widening treatment; and
A manufacturing method characterized by including a step (step 4) of performing a third anodizing treatment at 39.5-40.5 V for 3.8-4.2 minutes.
제1항에 있어서,
상기 단계 5의 유기용매는 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane) 및 옥탄(Octane) 중 1종인 것을 특징으로 하는 제조방법.
In the first paragraph,
A manufacturing method characterized in that the organic solvent of step 5 is one of pentane, hexane, heptane, and octane.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항의 제조방법으로 제조되는 발유성 및 발수성 피막이 형성된 3000계열 알루미늄 합금.
A 3000 series aluminum alloy having an oil-repellent and water-repellent film formed by the manufacturing method of Article 1.
3000계열 알루미늄(aluminum) 합금을 30-50V에서 5-15시간 동안 1차 양극산화 처리한 후, 에칭하여 1차 양극산화 피막을 제거하는 프리패터닝(pre-patterning) 단계(단계 1);
39-41V에서 4분 동안 2차 양극산화 처리하는 단계(단계 2);
0.06-0.14M 인산(H3PO4) 용액에 33-42분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 3); 및
39-41V에서 4분 동안 3차 양극산화 처리하는 단계(단계 4);를 포함하는,
3000계열 알루미늄 합금 표면에 필라-온-포어(Pillar-On-Pore) 형태의 초친수성 양극산화 피막의 제조방법.
A pre-patterning step (step 1) of first anodizing a 3000 series aluminum alloy at 30-50 V for 5-15 hours, and then etching to remove the first anodized film;
Step 2: Secondary anodizing treatment at 39-41 V for 4 minutes;
Step 3: immersing in a 0.06-0.14 M phosphoric acid (H 3 PO 4 ) solution for 33-42 minutes to perform pore widening treatment; and
Including a step of third anodizing treatment for 4 minutes at 39-41 V (step 4);
A method for manufacturing a superhydrophilic anodic oxide film in the form of pillar-on-pores on the surface of a 3000 series aluminum alloy.
제15항에 있어서,
상기 필라-온-포어(Pillar-On-Pore) 형태의 양극산화 피막은 기공 구조 위에 기둥(pillars)이 형성된 형태인 것을 특징으로 하는 제조방법.
In Article 15,
A manufacturing method characterized in that the above pillar-on-pore type anodized film has pillars formed on a pore structure.
삭제delete 제15항의 제조방법으로 제조된 필라-온-포어(Pillar-On-Pore) 형태의 양극산화 피막이 형성된 3000계열 알루미늄 합금.A 3000 series aluminum alloy having a pillar-on-pore type anodic oxide film formed by the manufacturing method of Article 15.
KR1020220075321A 2022-06-21 2022-06-21 Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures Active KR102754968B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220075321A KR102754968B1 (en) 2022-06-21 2022-06-21 Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220075321A KR102754968B1 (en) 2022-06-21 2022-06-21 Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures

Publications (2)

Publication Number Publication Date
KR20230174420A KR20230174420A (en) 2023-12-28
KR102754968B1 true KR102754968B1 (en) 2025-01-14

Family

ID=89385092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220075321A Active KR102754968B1 (en) 2022-06-21 2022-06-21 Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures

Country Status (1)

Country Link
KR (1) KR102754968B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514841A (en) * 2009-12-21 2013-05-02 イノベイティブ サーフェイス テクノロジーズ, インコーポレイテッド Coating agents and coated articles
KR102187089B1 (en) * 2019-01-31 2020-12-04 한밭대학교 산학협력단 Hydrophobic absorber and method for manufacturing
KR102204255B1 (en) * 2019-08-12 2021-01-18 동의대학교 산학협력단 Manufacturing method of superhydrophobic 6000 aluminum alloy for engines and automobile wheels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569460B1 (en) 2013-02-08 2015-11-16 국민대학교 산학협력단 superamphiphobic structure and method of manufacturing the same
KR20180134562A (en) * 2017-06-09 2018-12-19 조정수 Method of surface treatment of insulated material and Surface treated insulated material by the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514841A (en) * 2009-12-21 2013-05-02 イノベイティブ サーフェイス テクノロジーズ, インコーポレイテッド Coating agents and coated articles
KR102187089B1 (en) * 2019-01-31 2020-12-04 한밭대학교 산학협력단 Hydrophobic absorber and method for manufacturing
KR102204255B1 (en) * 2019-08-12 2021-01-18 동의대학교 산학협력단 Manufacturing method of superhydrophobic 6000 aluminum alloy for engines and automobile wheels

Also Published As

Publication number Publication date
KR20230174420A (en) 2023-12-28

Similar Documents

Publication Publication Date Title
Kim et al. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching
Khorsand et al. Corrosion behaviour of super-hydrophobic electrodeposited nickel–cobalt alloy film
Mohamed et al. Corrosion behavior of superhydrophobic surfaces: A review
KR102624269B1 (en) Manufacturing Method of Functional Stainless Steel 316L Materials for Road Structures and Building Structures
KR102030476B1 (en) Membrane diffusers with antifouling function
JP2000096800A (en) Antifouling building material and manufacture thereof
Movahedi et al. Synthesis of flower-like micro/nano ZnO superhydrophobic surfaces: Additive effect optimization via designed experiments
KR101149162B1 (en) nano cilia manufacturing method and nano cilia thereby
KR102754968B1 (en) Development of Super Water-repellent (Super Oil-repellent) Aluminum 3000 Series Alloy Surface using Nanostructures
KR102580023B1 (en) A method for simultaneously implementing super water-repellent and super oil-repellent of aluminum 1000 alloys surfaces without the pre-patterning stage in the anodizing process
KR102580022B1 (en) A method for simultaneously implementing super water-repellent and super oil-repellent of aluminum 3000 alloys surfaces without the pre-patterning stage in the anodizing process
KR102580024B1 (en) A method for simultaneously implementing super water-repellent and super oil-repellent of aluminum 6000 alloys surfaces without the pre-patterning stage in the anodizing process
KR102580025B1 (en) A method for simultaneously implementing super water-repellent and super oil-repellent of aluminum 5000 alloys surfaces without the pre-patterning stage in the anodizing process
KR102524358B1 (en) Development of Extremely Super-oleophobic (Super-hydrophobic) Aluminum 5000 Series Alloys
KR102681590B1 (en) Crosslinking type PDMS composition mixing process technology for improving water-repellent and oil-repellent properties
US20240124742A1 (en) Crosslinking type pdms composition mixing process technology for improving water-repellent and oil-repellent properties
KR102754967B1 (en) Development of Surface Treatment of Functional Aluminum 6000 Series Alloys for Medical Appliances and Devices
KR102496885B1 (en) Manufacturing method of functional super water-repellent stainless steel (SUS 304) to improve corrosion resistance of home appliances or hood outer plate and their components
KR102176123B1 (en) Method of functional surface treatment of housing for a consumer electronics device
KR102766047B1 (en) Functional surface treated SUS 316L manhole cover
KR102766033B1 (en) Method of Forming Corrosion Resistance and Superhydrophobic Oxide Film on the Surface of Stainless Steel 316L for Water and Sewage Materials
Rodrigues Development of Hybrid Surface Treatments for Controlling Wettability and Improving Tribological Performance
KR102766055B1 (en) Method of surface treatment of SUS316L appearance or parts of generator or transportation
KR102863137B1 (en) Development of Functional Surface Treatment on SUS 316L for Kitchen Supplies
KR102766050B1 (en) Functional surface treated SUS316L gasket

Legal Events

Date Code Title Description
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

T11-X000 Administrative time limit extension requested

St.27 status event code: U-3-3-T10-T11-oth-X000

T11-X000 Administrative time limit extension requested

St.27 status event code: U-3-3-T10-T11-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E601 Decision to refuse application
PE0601 Decision on rejection of patent

St.27 status event code: N-2-6-B10-B15-exm-PE0601

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

PX0901 Re-examination

St.27 status event code: A-2-3-E10-E12-rex-PX0901

PX0701 Decision of registration after re-examination

St.27 status event code: A-3-4-F10-F13-rex-PX0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601