KR102754969B1 - Development of Superhydrophobic and Superhydrophilic Anodic Oxidation of Titanium in Oxalic Acid Electrolyte - Google Patents
Development of Superhydrophobic and Superhydrophilic Anodic Oxidation of Titanium in Oxalic Acid Electrolyte Download PDFInfo
- Publication number
- KR102754969B1 KR102754969B1 KR1020230094770A KR20230094770A KR102754969B1 KR 102754969 B1 KR102754969 B1 KR 102754969B1 KR 1020230094770 A KR1020230094770 A KR 1020230094770A KR 20230094770 A KR20230094770 A KR 20230094770A KR 102754969 B1 KR102754969 B1 KR 102754969B1
- Authority
- KR
- South Korea
- Prior art keywords
- oxide film
- titanium
- ultra
- forming
- titanium surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 104
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 78
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 239000003792 electrolyte Substances 0.000 title claims abstract description 47
- 235000006408 oxalic acid Nutrition 0.000 title claims abstract description 22
- 230000003075 superhydrophobic effect Effects 0.000 title claims abstract description 17
- 230000003647 oxidation Effects 0.000 title claims description 27
- 238000007254 oxidation reaction Methods 0.000 title claims description 27
- 238000011161 development Methods 0.000 title abstract description 3
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000007743 anodising Methods 0.000 claims abstract description 23
- 238000011282 treatment Methods 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims description 31
- 238000000576 coating method Methods 0.000 claims description 25
- 230000002209 hydrophobic effect Effects 0.000 claims description 20
- 238000005498 polishing Methods 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 15
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 8
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 6
- VIFIHLXNOOCGLJ-UHFFFAOYSA-N trichloro(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)silane Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CC[Si](Cl)(Cl)Cl VIFIHLXNOOCGLJ-UHFFFAOYSA-N 0.000 claims description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 4
- -1 Polydimethylsiloxane Polymers 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 4
- 101710162828 Flavin-dependent thymidylate synthase Proteins 0.000 claims description 3
- 101710135409 Probable flavin-dependent thymidylate synthase Proteins 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000008199 coating composition Substances 0.000 claims description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000010407 anodic oxide Substances 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002086 nanomaterial Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000005871 repellent Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012567 medical material Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 229910017855 NH 4 F Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000002094 self assembled monolayer Substances 0.000 description 2
- 239000013545 self-assembled monolayer Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011825 aerospace material Substances 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/34—Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1656—Antifouling paints; Underwater paints characterised by the film-forming substance
- C09D5/1662—Synthetic film-forming substance
- C09D5/1675—Polyorganosiloxane-containing compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F3/00—Brightening metals by chemical means
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
- C25D21/14—Controlled addition of electrolyte components
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Automation & Control Theory (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
본 발명은 옥살산 전해질에서의 초소수성 및 초친수성 양극산화 타이타늄 개발에 관한 것으로, 본 발명에 따른 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막 및 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법은, 전해질의 종류 및 양극산화처리 조건을 최적화하여, 각각 접촉각 5° 이하의 우수한 친수성 및 175° 이상의 우수한 소수성을 구현할 수 있는 효과가 있다.The present invention relates to the development of superhydrophobic and superhydrophilic anodized titanium in an oxalic acid electrolyte. The method for forming an ultra-superhydrophilic oxide film and an ultra-superhydrophobic oxide film on the surface of titanium according to the present invention has the effect of realizing excellent hydrophilicity with a contact angle of 5° or less and excellent hydrophobicity with a contact angle of 175° or more, respectively, by optimizing the type of electrolyte and the anodizing treatment conditions.
Description
본 발명은 옥살산 전해질에서의 초소수성 및 초친수성 양극산화 타이타늄 개발에 관한 것이다.The present invention relates to the development of superhydrophobic and superhydrophilic anodic titanium oxide in an oxalic acid electrolyte.
타이타늄(Titanium)은 1950년대부터 공업적으로 사용되기 시작했으며 고강도, 내열성, 내식성 등 우수한 물리적 성질을 가진 항공 우주 산업용 소재로 적용되어 빠른 발전이 이루어졌다. 타이타늄의 비중은 4.54 g/cm3로 철(Fe)보다 가벼우면서도 금속 중에서 비강도가 가장 우수해 항공기, 선박, 자동차 부품, 방탄재로 사용될 뿐만 아니라 생체학적 안전성 및 친화성으로 인해 의료기기나 체내 임플란트로의 수요가 증가하고 있다.Titanium has been used industrially since the 1950s, and has been rapidly developed as an aerospace material with excellent physical properties such as high strength, heat resistance, and corrosion resistance. Titanium has a specific gravity of 4.54 g/cm3, making it lighter than iron (Fe) but having the highest specific strength among metals. It is used not only for aircraft, ship, automobile parts, and bulletproof materials, but also for medical devices and implants due to its biosafety and compatibility.
타이타늄 합금에 비해 비용이 저렴한 순수 타이타늄(CP Titanium)은 질소(N), 탄소(C), 수소(H), 산소(O), 철(Fe) 등의 불순물 함량 차이에 따라 grade 1, 2, 3, 4로 나뉘며, 인장 강도나 연신율 등 기계적 특성에 차이가 있다. 그중 Ti-grade 4는 비교적 낮은 성형성을 가지지만, 강도가 가장 높고 내구성이 우수해 주로 열교환기나 수술용 하드웨어 등 산업용, 의료용 소재로 사용된다.Pure titanium (CP Titanium), which is less expensive than titanium alloys, is divided into grades 1, 2, 3, and 4 according to the difference in the content of impurities such as nitrogen (N), carbon (C), hydrogen (H), oxygen (O), and iron (Fe), and there are differences in mechanical properties such as tensile strength and elongation. Among them, Ti-grade 4 has relatively low formability, but it has the highest strength and excellent durability, so it is mainly used as an industrial and medical material such as heat exchangers and surgical hardware.
산업 및 의료 소재로 사용되는 타이타늄의 최대 장점인 우수한 내식성 및 내구성은 표면에 자연적으로 형성된 산화물인 강한 부동태 피막이 존재하기 때문이며, 이는 타이타늄 표면이 손상되더라도 빠른 복구가 가능하므로 부식으로부터 강한 저항성을 보인다. 하지만 타이타늄은 철의 함량이 많은 용액이나 철과 맞닿은 곳 또는 해수 환경에서는 틈새 부식이나 공식을 피할 수 없으며, 부식에 취약한 특성을 보인다. 최근에는 타이타늄의 산화 피막 개질을 통해 생체 적합성을 향상시켜 골 고정판 및 외과용 생체재료로서 적용하기 위한 연구가 진행되고 있으며, 그중 높은 결합력 및 부착성을 위해 인체의 뼈와 유사한 특성을 가지는 다공성 산화 피막을 형성하는 방법이 주목받고 있다. 따라서 해수와 같은 부식 환경에서 내식성을 개선하거나 의료용 소재로의 적합성을 향상하기 위해서는 타이타늄 산화 피막을 개조하는 것이 필요하다.The greatest advantages of titanium used as an industrial and medical material, its excellent corrosion resistance and durability, are due to the existence of a strong passive film, which is a naturally formed oxide film on the surface, which allows rapid recovery even if the titanium surface is damaged, and thus shows strong resistance to corrosion. However, titanium cannot avoid crevice corrosion or pitting in solutions with a high iron content, in places where it comes into contact with iron, or in a seawater environment, and it shows a characteristic of being vulnerable to corrosion. Recently, research has been conducted to improve biocompatibility by modifying the oxide film of titanium and to apply it as a bone fixation plate and surgical biomaterial, and among them, a method of forming a porous oxide film with properties similar to human bone for high bonding strength and adhesion is attracting attention. Therefore, in order to improve corrosion resistance in a corrosive environment such as seawater or to enhance suitability as a medical material, it is necessary to modify the titanium oxide film.
타이타늄의 물성이나 생체 적합성을 개선하기 위한 표면 처리로는 도금, 플라즈마 전해 산화법, 양극산화법 등이 있다. 그중 타이타늄 표면에 원하는 형상의 산화 피막을 제조하거나 내식성을 개선하기 위한 방법으로 가장 활발히 연구되고 있는 것은 양극산화법이며, 전기 화학적인 방법으로 타이타늄과 산소를 반응시켜 인위적인 산화 피막을 생성할 수 있다.Surface treatments to improve the physical properties or biocompatibility of titanium include plating, plasma electrolytic oxidation, and anodic oxidation. Among them, the most actively studied method for producing an oxide film of a desired shape on the titanium surface or improving corrosion resistance is anodic oxidation, which can produce an artificial oxide film by reacting titanium with oxygen using an electrochemical method.
양극산화 전해질의 종류 및 온도, 인가 전압, 처리 시간을 조절함에 따라 표면에 나노 단위의 기공과 나노 및 마이크로 단위의 두께를 형성할 수 있으며, 나노 튜브, 나노 시트, 나노 어레이 등 형성된 구조에 따라 절연 특성이나 액체의 젖음성을 다양하게 구현할 수 있다.By controlling the type and temperature of the anodic oxidation electrolyte, the applied voltage, and the processing time, nano-sized pores and nano- and micro-sized thicknesses can be formed on the surface, and various insulating properties or liquid wettability can be implemented depending on the formed structure, such as nanotubes, nanosheets, and nanoarrays.
젖음이란 액체가 고체 표면과 접촉을 유지하는 능력으로, 액체 및 고체가 만났을 때 생기는 분자 간의 상호작용으로 인하여 발생한다. 산화 피막이 형성되지 않은 균일하고 매끄러운 표면의 평형상태의 접촉각은 도 1a와 같으며, 이는 아래 수학식 1인 Young의 식으로 나타낼 수 있다.Wetting is the ability of a liquid to maintain contact with a solid surface, and is caused by molecular interactions that occur when a liquid and a solid meet. The contact angle at equilibrium on a uniform and smooth surface without an oxide film is as shown in Figure 1a, and can be expressed by Young's equation, which is the following mathematical equation 1.
[수학식 1][Mathematical Formula 1]
γlgcosθ = γsg - γsl γ lg cosθ = γ sg - γ sl
γsg는 고체-기체 사이의 계면 자유 에너지γ sg is the interfacial free energy between solid and gas.
γsl은 고체-액체 사이의 계면 자유 에너지γ sl is the interfacial free energy between solid and liquid.
γlg는 액체-기체 사이의 계면 자유 에너지γ lg is the interfacial free energy between liquid and gas.
θ는 접촉각이다.θ is the contact angle.
양극산화로 인하여 생겨난 홈 또는 기공에 액적이 채워질 경우 접촉각은 도 1b와 같은 형상이며, 수학식 2 및 Wenzel 모델로 설명할 수 있다. 나노 구조를 갖는 표면과 액적이 접촉하는 경우, Cosθ0는 Cosθwenzel 로 변환되며 여기서 γ는 거칠기를 나타내는 인자이다. Wenzel 모델은 고체 표면의 거칠기가 거칠어질수록 액적의 흡수가 원활해지기에 친수성 표면이 나타난다. 도 1c는 발수성 표면에서의 젖음성을 나타낸 이미지로, Cassie-Baxter 모델 및 수학식 3을 통하여 설명 가능하다. Cassie-Baxter 모델은 표면이 거칠어질수록 더 높은 접촉각이 나타나며, 이와 같은 상태에서 액적의 접촉각이 높다는 의미는 액적과 고체가 맞닿는 면적이 작다는 의미이다. 여기서 나노 구조와 액적이 접촉하는 경우, Cosθ0는 CosθCassie-Baxter로 변환되고 액적에 의해 젖은 표면을 f라 할 때, 접촉각 CosθCassie-Baxter는 Cos-1{(f-1)(r-f)}보다 크면 액적이 표면에 닿아도 젖지 않는 표면을 가질 수 있다. 이러한 모델을 통하여 친수성 및 발수성을 설명할 수 있으며, Cassie-Baxter 상태의 액적이 Wenzel 상태의 액적보다 고체 표면 위에서 유동적임을 알 수 있다.When a droplet fills a groove or pore created by anodic oxidation, the contact angle has a shape as in Fig. 1b, and can be explained by mathematical equation 2 and the Wenzel model. When a droplet comes into contact with a surface having a nanostructure, Cosθ 0 is converted to Cosθ wenzel , where γ is a factor representing the roughness. The Wenzel model states that as the roughness of the solid surface becomes rougher, the absorption of the droplet becomes smoother, so a hydrophilic surface appears. Fig. 1c is an image showing wettability on a water-repellent surface, and can be explained by the Cassie-Baxter model and mathematical equation 3. The Cassie-Baxter model states that as the surface becomes rougher, a higher contact angle appears, and in this state, a high contact angle of the droplet means that the area where the droplet and the solid come into contact is small. Here, when a nanostructure and a droplet come into contact, Cosθ 0 is converted to Cosθ Cassie-Baxter , and when the surface wetted by the droplet is f, the contact angle Cosθ Cassie-Baxter can have a surface that does not get wet even when the droplet touches the surface if it is larger than Cos -1 {(f-1)(rf)}. Through this model, hydrophilicity and water repellency can be explained, and it can be seen that a droplet in a Cassie-Baxter state flows more fluidly on a solid surface than a droplet in a Wenzel state.
[수학식 2][Mathematical formula 2]
[수학식 3][Mathematical Formula 3]
순수 타이타늄으로 분류하는 타이타늄 함량 99 중량% 이상의 Ti grade 1 내지 4가 있으며, C, Fe, H, N 및 O 원소가 1 중량% 이하로 포함된다. 타이타늄 합금은 타이타늄 함량이 대략 90 중량% 내외이고 나머지 원소들이 대략 10 중량% 포함된다. 일례로 Ti-6Al-4V grade 5 타이타늄 합금은 Al 약 6 중량%, V 약 4 중량%, Ti 약 90 중량%, Fe 및 O 원소가 미량 포함될 수 있다.There are Ti grades 1 to 4, which are classified as pure titanium with a titanium content of 99 wt% or more, and contain C, Fe, H, N, and O elements of 1 wt% or less. Titanium alloys contain approximately 90 wt% of titanium and approximately 10 wt% of the remaining elements. For example, Ti-6Al-4V grade 5 titanium alloy may contain approximately 6 wt% of Al, approximately 4 wt% of V, approximately 90 wt% of Ti, and trace amounts of Fe and O elements.
타이타늄 함량에 따라서 목적하는 양극산화처리의 조건은 달라질 수 있어, 처리대상 타이타늄 기판의 타이타늄 함량은 중요하다 할 수 있다.Since the conditions for the intended anodizing treatment may vary depending on the titanium content, the titanium content of the titanium substrate to be treated is important.
본 발명은 Ti-grade 4 소재에 양극산화를 실시하였으며, 전해질의 종류와 농도를 조절하여 변수로 두고 그 외 조건은 모두 동일하게 하여 산화 피막을 형성하였다. 전해질의 종류 및 농도에 따라 다르게 형성된 산화 피막의 형상과 화학적 조성을 확인하고, 저항 측정을 통해 절연 특성을 비교하였다. 또한, 표면 조도 및 코팅에 의한 젖음성 차이를 관찰하기 위해 코팅 전, 거칠기 및 접촉각을 관찰하고 코팅 후의 접촉각과 비교하였다.The present invention performed anodization on Ti-grade 4 material, and formed an oxide film by controlling the type and concentration of electrolyte as variables and keeping all other conditions the same. The shape and chemical composition of the oxide film formed differently depending on the type and concentration of electrolyte were confirmed, and the insulating properties were compared through resistance measurements. In addition, in order to observe the difference in wettability due to surface roughness and coating, the roughness and contact angle before coating were observed and compared with the contact angle after coating.
본 발명의 목적 1은 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법을 제공하는 것이다.Object 1 of the present invention is to provide a method for forming an ultra super hydrophilic oxide film on a titanium surface.
본 발명의 목적 2는 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법을 제공하는 것이다.Object 2 of the present invention is to provide a method for forming an ultra super hydrophobic oxide film on a titanium surface.
본 발명의 목적 3은 상기 방법으로 제조된 울트라초친수성(Ultra Super Hydrophilicity) 산화막이 형성된 타이타늄을 제공하는 것이다.Object 3 of the present invention is to provide titanium having an ultra super hydrophilic oxide film formed thereon by the above method.
본 발명의 목적 4는 상기 방법으로 제조된 울트라초소수성(Ultra Super Hydrophobicity) 산화막이 형성된 타이타늄을 제공하는 것이다.Object 4 of the present invention is to provide titanium having an ultra super hydrophobic oxide film formed by the above method.
상기 목적을 달성하기 위하여,To achieve the above purpose,
본 발명은 타이타늄(Ti) 기판을 세척 및 연마하는 단계(단계 1); 및The present invention comprises a step of washing and polishing a titanium (Ti) substrate (step 1); and
단계 1에서 처리된 타이타늄(Ti)을 35-45V에서 5-7시간 동안 양극산화처리하여, 타이타늄 표면에 친수성 산화막을 형성하는 단계(단계 2);를 포함하고,Step 2: a step of forming a hydrophilic oxide film on the surface of titanium (Ti) by anodizing the titanium (Ti) treated in step 1 at 35-45 V for 5-7 hours;
상기 단계 2의 양극산화처리에 사용하는 전해질은 0.2-0.4M 옥살산인 것을 특징으로 하는 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법을 제공한다.The present invention provides a method for forming an ultra-super hydrophilic oxide film on a titanium surface, characterized in that the electrolyte used in the anodic oxidation treatment of step 2 above is 0.2-0.4 M oxalic acid.
상기 타이타늄은 Ti 함량 99 중량% 이상을 갖는 Ti grade 1 내지 4 중 어느 하나의 타이타늄일 수 있다.The above titanium may be any one of Ti grades 1 to 4 having a Ti content of 99 wt% or more.
상기 단계 1의 연마는 전기화학적 연마 및 화학적 연마 중 1종 이상을 적용할 수 있으며, 당업계에 알려진 연마 방법이라면 아무런 제약없이 적용할 수 있다.The polishing in step 1 above can apply at least one of electrochemical polishing and chemical polishing, and any polishing method known in the art can be applied without any restrictions.
상기 단계 2의 양극산화처리 전해질(electrolyte)은 0.2-0.4M 옥살산, 바람직하게는 0.25-0.35M 옥살산, 더욱 바람직하게는 0.28-0.32M 옥살산, 특히 바람직하게는 0.29-0.31M 옥살산을 사용할 수 있다. 만약, 상기 옥살산이 아닌 에틸렌글리콜 기반의 전해질을 사용할 경우 울트라초친수성 및 울트라초소수성을 달성하지 못할 수 있다.The electrolyte for the anodizing treatment in the above step 2 may be 0.2-0.4 M oxalic acid, preferably 0.25-0.35 M oxalic acid, more preferably 0.28-0.32 M oxalic acid, and particularly preferably 0.29-0.31 M oxalic acid. If an electrolyte based on ethylene glycol rather than oxalic acid is used, ultra-superhydrophilicity and ultra-superhydrophobicity may not be achieved.
본 발명에 따른 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법으로 형성된 산화막은 접촉각 5° 이하의 친수성(Hydrophilicity)을 갖는 것을 특징으로 한다.The oxide film formed by the method of forming an ultra super hydrophilic oxide film on a titanium surface according to the present invention is characterized by having a hydrophilicity of a contact angle of 5° or less.
상기 단계 2는 연마처리된 타이타늄(Ti)을 35-45 V에서 5-7시간 동안 양극산화처리할 수 있고, 바람직하게는 38-42 V에서 5.5-6.5시간, 더욱 바람직하게는 39-41 V에서 5.9-6.1시간 실시할 수 있다. 만약, 상기 양극산화처리 조건을 벗어날 경우 울트라초친수성 및 울트라초소수성을 달성하지 못할 수 있다.The above step 2 can be performed by anodizing polished titanium (Ti) at 35-45 V for 5-7 hours, preferably at 38-42 V for 5.5-6.5 hours, and more preferably at 39-41 V for 5.9-6.1 hours. If the above anodizing conditions are exceeded, ultra-superhydrophilicity and ultra-superhydrophobicity may not be achieved.
또한, 본 발명은 상기 방법으로 제조된 울트라초친수성(Ultra Super Hydrophilicity) 산화막이 형성된 타이타늄을 제공한다.In addition, the present invention provides titanium having an ultra super hydrophilic oxide film formed by the above method.
나아가, 본 발명은 타이타늄(Ti) 기판을 세척 및 연마하는 단계(단계 1);Furthermore, the present invention comprises a step of washing and polishing a titanium (Ti) substrate (step 1);
단계 1에서 처리된 타이타늄(Ti)을 35-45V에서 5-7시간 동안 양극산화처리하여, 타이타늄 표면에 친수성 산화막을 형성하는 단계(단계 2); 및Step 2: Anodizing titanium (Ti) treated in step 1 at 35-45 V for 5-7 hours to form a hydrophilic oxide film on the titanium surface; and
단분자막(Monolayer) 코팅이 가능한 소수성 코팅제로 코팅하는 단계(단계 3);를 포함하고,A step (step 3) of coating with a hydrophobic coating agent capable of monolayer coating;
상기 단계 2의 양극산화처리에 사용하는 전해질은 0.2-0.4M 옥살산인 것을 특징으로 하는 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법을 제공한다.The present invention provides a method for forming an ultra-super hydrophobic oxide film on a titanium surface, characterized in that the electrolyte used in the anodic oxidation treatment of step 2 above is 0.2-0.4 M oxalic acid.
상기 타이타늄은 Ti 함량 99 중량% 이상을 갖는 Ti grade 1 내지 4 중 어느 하나의 타이타늄일 수 있다.The above titanium may be any one of Ti grades 1 to 4 having a Ti content of 99 wt% or more.
상기 단계 1의 연마는 전기화학적 연마 및 화학적 연마 중 1종 이상을 적용할 수 있으며, 당업계에 알려진 연마 방법이라면 아무런 제약없이 적용할 수 있다.The polishing in step 1 above can apply at least one of electrochemical polishing and chemical polishing, and any polishing method known in the art can be applied without any restrictions.
상기 단계 2의 양극산화처리 전해질(electrolyte)은 0.2-0.4M 옥살산, 바람직하게는 0.25-0.35M 옥살산, 더욱 바람직하게는 0.28-0.32M 옥살산, 특히 바람직하게는 0.29-0.31M 옥살산을 사용할 수 있다. 만약, 상기 옥살산이 아닌 에틸렌글리콜 기반의 전해질을 사용할 경우 울트라초친수성 및 울트라초소수성을 달성하지 못할 수 있다.The electrolyte for the anodizing treatment in the above step 2 may be 0.2-0.4 M oxalic acid, preferably 0.25-0.35 M oxalic acid, more preferably 0.28-0.32 M oxalic acid, and particularly preferably 0.29-0.31 M oxalic acid. If an electrolyte based on ethylene glycol rather than oxalic acid is used, ultra-superhydrophilicity and ultra-superhydrophobicity may not be achieved.
본 발명에 따른 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법으로 형성된 산화막은 접촉각 5° 이하의 친수성(Hydrophilicity)을 갖는 것을 특징으로 한다.The oxide film formed by the method of forming an ultra super hydrophilic oxide film on a titanium surface according to the present invention is characterized by having a hydrophilicity of a contact angle of 5° or less.
상기 단계 2는 연마처리된 타이타늄(Ti)을 35-45 V에서 5-7시간 동안 양극산화처리할 수 있고, 바람직하게는 38-42 V에서 5.5-6.5시간, 더욱 바람직하게는 39-41 V에서 5.9-6.1시간 실시할 수 있다. 만약, 상기 양극산화처리 조건을 벗어날 경우 울트라초친수성 및 울트라초소수성을 달성하지 못할 수 있다.The above step 2 can be performed by anodizing polished titanium (Ti) at 35-45 V for 5-7 hours, preferably at 38-42 V for 5.5-6.5 hours, and more preferably at 39-41 V for 5.9-6.1 hours. If the above anodizing conditions are exceeded, ultra-superhydrophilicity and ultra-superhydrophobicity may not be achieved.
상기 단계 3은 단분자막(Monolayer) 코팅이 가능한 소수성 코팅제로 코팅하는 단계이다. 상기 단분자막(Monolayer) 코팅이 가능한 소수성 코팅제는 FDTS(1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane)를 사용할 수 있고, 또한 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 및 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane) 및 옥탄(Octane) 중 1종의 유기용매를 포함하는 코팅 조성물(한국 공개공보 10-2022-0109277호)을 사용할 수도 있다. 바람직하게, 상기 코팅 조성물은 유기용매 10 중량부 기준, 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 0.05-0.17 중량부 포함할 수 있다.The above step 3 is a step of coating with a hydrophobic coating agent capable of monolayer coating. The hydrophobic coating agent capable of monolayer coating may be FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane), and may also be a coating composition (Korean Laid-Open Publication No. 10-2022-0109277) containing a cross-linked PDMS (Polydimethylsiloxane) derivative represented by the chemical formula 1 and one organic solvent selected from the group consisting of pentane, hexane, heptane, and octane. Preferably, the coating composition may contain 0.05 to 0.17 parts by weight of the cross-linked PDMS (Polydimethylsiloxane) derivative represented by the chemical formula 1 based on 10 parts by weight of the organic solvent.
[화학식 1][Chemical Formula 1]
(상기 화학식 1에서, x 및 y는 각각 1-30의 정수이다.)(In the above chemical formula 1, x and y are each an integer from 1 to 30.)
또한, 본 발명은 상기 방법으로 제조된 울트라초소수성(Ultra Super Hydrophobicity) 산화막이 형성된 타이타늄을 제공한다.In addition, the present invention provides titanium having an ultra super hydrophobic oxide film formed by the above method.
본 발명에 따른 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막 및 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법은, 전해질의 종류 및 양극산화처리 조건을 최적화하여, 각각 접촉각 5° 이하의 우수한 친수성 및 175° 이상의 우수한 소수성을 구현할 수 있는 효과가 있다.The method for forming an ultra-superhydrophilic oxide film and an ultra-superhydrophobic oxide film on a titanium surface according to the present invention has the effect of realizing excellent hydrophilicity of a contact angle of 5° or less and excellent hydrophobicity of 175° or more, respectively, by optimizing the type of electrolyte and the anodizing treatment conditions.
도 1a는 산화 피막이 형성되지 않은 균일하고 매끄러운 표면의 평형상태의 접촉각을 나타낸 이미지이고,
도 1b는 Wenzel 모델에 기반한 양극산화로 인하여 생겨난 홈 또는 기공에 액적이 채워질 경우 접촉각을 나타낸 이미지이며,
도 1c는 Cassie-Baxter 모델에 기반한 발수성 표면에서의 젖음성을 나타낸 이미지이다.
도 2는 실시예 1에서 양극산화 전해질에 따른 산화 피막의 형상을 이미지화 한 것이다.
도 3은 실시예 1에서 양극산화 전해질에 따른 산화 피막의 표면 및 단면을 FE-SEM으로 촬영한 이미지이다.
도 4는 실시예 1에서 양극산화 전해질에 따른 양극산화 공정 전, 후 원소 함량 변화를 에너지 분산 분광법(EDS)을 이용해 측정한 그래프이다.
도 5는 원자 힘 현미경을 통하여 전해질에 따른 양극산화 후 산화 피막의 거칠기를 나타낸 이미지이다.
도 6은 실시예 1(소수 코팅 X) 및 실시예 2(소수 코팅 O)에서 전해질 3종에 따른 양극산화 피막의 접촉각 사진이다.
도 7은 양극산화 피막에 소수성 코팅을 할 경우 나노구조물과 액적이 맞닿는 표면적에 의한 물방울의 형상을 이미지화 한 것이다.Figure 1a is an image showing the contact angle at equilibrium on a uniform and smooth surface on which no oxide film has been formed.
Figure 1b is an image showing the contact angle when a droplet fills a groove or pore created by anodic oxidation based on the Wenzel model.
Figure 1c is an image showing wettability on a hydrophobic surface based on the Cassie-Baxter model.
Figure 2 is an image of the shape of the oxide film according to the anodic oxidation electrolyte in Example 1.
Figure 3 is an image of the surface and cross-section of an oxide film according to the anodic oxidation electrolyte in Example 1, taken using FE-SEM.
Figure 4 is a graph showing the change in element content before and after the anodic oxidation process according to the anodic oxidation electrolyte in Example 1, measured using energy dispersive spectroscopy (EDS).
Figure 5 is an image showing the roughness of the oxide film after anodic oxidation according to the electrolyte using an atomic force microscope.
Figure 6 is a photograph of the contact angle of the anodic oxide film according to three types of electrolytes in Example 1 (hydrophobic coating X) and Example 2 (hydrophobic coating O).
Figure 7 is an image of the shape of a water droplet according to the surface area where the droplet comes into contact with the nanostructure when a hydrophobic coating is applied to an anodic oxide film.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only intended to illustrate the present invention, and the content of the present invention is not limited to the following examples.
<실시예 1> Ti grade 4 타이타늄의 양극산화처리를 통한 초친수성 양극산화 피막의 제조<Example 1> Manufacturing of superhydrophilic anodic oxide film through anodic oxidation treatment of Ti grade 4 titanium
단계 1: Ti grade 4 타이타늄 기판의 세척 및 전해연마Step 1: Cleaning and electropolishing of Ti grade 4 titanium substrate
타이타늄 기판의 작업 크기를 2.5×3×0.1 cm로 가공하여 실험을 진행하였다. 표면에 잔존하는 이물질 및 불순물 제거를 위해 아세톤 및 에탄올, 증류수에 침지하여 각 10분간 초음파 세척을 실시하였다. 시편 세척 후 표면의 자연산화 피막을 제거하기 위하여 과염소산(Perchloric acid, 70%)와 아세트산(Acetic acid)을 부피 비 1:5로 혼합하여 35 V 전압에서 10분간 전해연마를 진행하였다.The experiment was conducted by processing the titanium substrate to a working size of 2.5 × 3 × 0.1 cm. In order to remove foreign substances and impurities remaining on the surface, ultrasonic cleaning was performed for 10 minutes each by immersing in acetone, ethanol, and distilled water. After washing the specimen, electrolytic polishing was performed for 10 minutes at a voltage of 35 V using a mixture of perchloric acid (70%) and acetic acid in a volume ratio of 1:5 to remove the natural oxide film on the surface.
단계 2: 양극산화처리(Anodizing)Step 2: Anodizing
양극산화처리 하기에 앞서 산화 피막의 형상학적 차이를 달리하기 위해 양극산화 전해질의 종류에 변수를 두었다.Prior to anodizing, variables were placed on the type of anodizing electrolyte to vary the morphological differences of the oxide film.
전해질 A: 0.3M 옥살산(Oxalic acid)Electrolyte A: 0.3M oxalic acid
전해질 B: 에틸렌글리콜 기반, 1 M NH4F 및 0.1 M H2O 포함 전해질Electrolyte B: Ethylene glycol based, containing 1 M NH 4 F and 0.1 MH 2 O
전해질 C: 에틸렌글리콜 기반, 0.07 M NH4F 및 1 M H2O 포함 전해질Electrolyte C: Ethylene glycol based, containing 0.07 M NH 4 F and 1 MH 2 O
양극산화처리 조건은 0℃에서 40V의 전압을 인가하여 6시간 동안 양극산화 처리를 진행하여 초친수성 양극산화 피막을 형성하였다.The anodizing treatment conditions were to apply a voltage of 40 V at 0℃ for 6 hours to form a superhydrophilic anodizing film.
전해질 A 내지 C에 따라 제조된 시편을 각각 A, B, C 시편으로 명명하였다.The specimens manufactured according to electrolytes A to C were named specimens A, B, and C, respectively.
<실시예 2> Ti grade 4 타이타늄의 양극산화처리 및 소수성 코팅을 통한 초소수성 양극산화 피막의 제조<Example 2> Manufacturing of superhydrophobic anodic oxide film through anodizing treatment and hydrophobic coating of Ti grade 4 titanium
실시예 1의 단계 1 내지 단계 2를 동일하게 실시한 다음, 발수성 표면을 구현하기 위하여 표면에너지가 낮은 소수성 코팅제를 코팅하였다. 소수성 코팅 방법은 이하 단계 3에 기재하였다.Steps 1 and 2 of Example 1 were performed in the same manner, and then a hydrophobic coating agent with low surface energy was coated to implement a water-repellent surface. The hydrophobic coating method is described in Step 3 below.
단계 3: 소수성 코팅Step 3: Hydrophobic coating
코팅 전 플라즈마 장치를 사용하여 표면에 잔존하는 불순물 제거 후, 표면에너지가 낮은 물질인 FDTS(1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane)를 도포하고, 150 ℃의 Heating plate에서 10분간 건조하여, 자가조립 단분자막(SAM, Self-Assembled Monolater) 코팅을 실시하였다.After removing impurities remaining on the surface using a plasma device prior to coating, FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane), a substance with low surface energy, was applied and dried on a heating plate at 150°C for 10 minutes to perform self-assembled monolayer (SAM) coating.
<실험예 1> 전해질 종류에 따른 양극산화 피막 형상 확인<Experimental Example 1> Confirmation of the shape of the anodic oxidation film according to the electrolyte type
실시예 1에서 전해질 3종에 따른 양극산화 피막 형상을 확인하였다.In Example 1, the shape of the anodic oxide film according to three types of electrolytes was confirmed.
구체적으로, 양극산화 후 전계 방사형 주사전자현미경(FE-SEM, Field Emission Scanning Electron Microscope)으로 전해질 종류에 따라 형성된 양극산화 피막의 표면 형상학적 차이를 관찰하였으며, 산화 피막의 성분 및 함량을 확인하기 위하여 에너지 분산 분광법(EDS, Energy Dispersive Spectroscopy)을 사용하였다.Specifically, the surface morphological differences of the anodic oxide film formed depending on the type of electrolyte were observed using a field emission scanning electron microscope (FE-SEM) after anodic oxidation, and energy dispersive spectroscopy (EDS) was used to confirm the components and contents of the oxide film.
도 2는 실시예 1에서 양극산화 전해질에 따른 산화 피막의 형상을 이미지화 한 것이다.Figure 2 is an image of the shape of the oxide film according to the anodic oxidation electrolyte in Example 1.
도 3은 실시예 1에서 양극산화 전해질에 따른 산화 피막의 표면 및 단면을 FE-SEM으로 촬영한 이미지이다.Figure 3 is an image of the surface and cross-section of an oxide film according to the anodic oxidation electrolyte in Example 1, taken using FE-SEM.
도 2 및 3에 나타난 바와 같이, A 시편에서는 타이타늄 솔방울 나노 구조(TPS, Titanium-Pinecone nanostructure), B와 C 시편은 다공성 산화 피막이 형성되었으며 A, B, C 시편에 형성된 산화피막의 두께는 7.07±0.41 ㎛, 1.51±0.05 ㎛, 4.50±0.12 ㎛로 측정되었다. A 시편에서 가장 두께가 큰 산화 피막이 구현되었으며, C, B 시편 순서로 두께가 작아지는 것을 확인하였다. 이를 통해 동일한 전압 및 시간 조건에서도 전해질의 종류에 따라 산화 피막의 형상 및 두께가 다르게 형성된다는 것을 알 수 있다.As shown in Figs. 2 and 3, a titanium pinecone nanostructure (TPS) was formed in specimen A, and a porous oxide film was formed in specimens B and C. The thicknesses of the oxide films formed on specimens A, B, and C were measured to be 7.07±0.41 ㎛, 1.51±0.05 ㎛, and 4.50±0.12 ㎛, respectively. The thickest oxide film was formed in specimen A, and the thickness decreased in the order of specimens C and B. This shows that the shape and thickness of the oxide film are formed differently depending on the type of electrolyte even under the same voltage and time conditions.
도 4는 실시예 1에서 양극산화 전해질에 따른 양극산화 공정 전, 후 원소 함량 변화를 에너지 분산 분광법(EDS)을 이용해 측정한 그래프이다.Figure 4 is a graph showing the change in element content before and after the anodic oxidation process according to the anodic oxidation electrolyte in Example 1, measured using energy dispersive spectroscopy (EDS).
도 4에 나타난 바와 같이, 양극산화 후 산소(O)와 타이타늄(Ti)이 주성분으로 나타났으며, 그 이외에 탄소(C)와 플루오린(F)이 검출되었다. 여기서 탄소는 EDS 검출 장비인 스테이지 및 카본 테이프에 의해 검출된 것으로 판단되며, 플루오린은 양극산화 용액에 첨가된 NH4F의 영향을 받아 B, C 시편에서만 검출된 것으로 사료된다.As shown in Fig. 4, oxygen (O) and titanium (Ti) were found to be the main components after anodic oxidation, and carbon (C) and fluorine (F) were detected in addition. Here, carbon is believed to have been detected by the EDS detection equipment, the stage and carbon tape, and fluorine is thought to have been detected only in specimens B and C due to the influence of NH4F added to the anodic oxidation solution.
표 1은 EDS로 관찰된 성분을 정량 분석한 수치로, 타이타늄과 산소의 함량은 무처리 타이타늄 Ti-grade 4 시편에서 92.95 wt%, 4.11 wt%, A 시편에서 64.11 wt%, 33.25 wt%, B 전해질에서 56.63 wt%, 26.70 wt%, C 전해질에서 53.07 wt%, 30.72 wt%로, 양극산화 후 모든 시편의 타이타늄 함량은 감소하고 산소 함량은 증가한 것을 보아 타이타늄 일부가 산화 피막으로 변환된 것으로 판단된다.Table 1 shows the quantitative analysis results of the components observed by EDS. The contents of titanium and oxygen were 92.95 wt% and 4.11 wt% in the untreated titanium Ti-grade 4 specimen, 64.11 wt% and 33.25 wt% in the A specimen, 56.63 wt% and 26.70 wt% in the B electrolyte, and 53.07 wt% and 30.72 wt% in the C electrolyte. Considering that the titanium content of all specimens decreased and the oxygen content increased after anodization, it is judged that some of the titanium was converted to an oxide film.
<실험예 2> 전해질 종류에 따른 양극산화 피막의 절연 특성 평가<Experimental Example 2> Evaluation of insulation properties of anodic oxide film according to electrolyte type
실시예 1에서 전해질 3종에 따른 양극산화 피막의 절연 특성을 평가하였다.In Example 1, the insulating properties of the anodic oxide film according to three types of electrolytes were evaluated.
구체적으로, 디지털 멀티미터(DMM, Digital Multi Meter)를 이용하여 타이타늄 무처리 시편과 각 전해질에 따른 양극산화 시편의 절연 특성을 관찰하였다.Specifically, the insulation characteristics of untreated titanium specimens and anodized specimens according to each electrolyte were observed using a digital multimeter (DMM).
타이타늄 양극산화 피막 구조별 절연 저항 측정 결과를 표 2에 나타냈으며, C 시편의 저항 값이 5.269 × 104 KΩ으로 가장 크며, 시편 B, A 순서로 각각 1.035 × 104 KΩ, 1.35 KΩ으로 낮은 저항 값이 측정되었다. A 시편에서 가장 두꺼운 산화 피막이 형성되었지만, 불규칙하게 형성된 나노 구조 주변의 대부분은 타이타늄 모재가 쉽게 관찰되므로 가장 낮은 저항 값이 측정된 것으로 판단된다. 또한, 다공성 산화 피막이 형성된 B, C 시편을 비교하였을 때, C 시편이 B 시편보다 약 3배 두꺼운 산화 피막을 가지므로 모재를 보호하는 역할이 우수해 저항이 가장 크게 측정된 것으로 사료된다.The results of measuring the insulation resistance by the structure of the titanium anodic oxide film are shown in Table 2. The resistance value of specimen C was the highest at 5.269 × 10 4 KΩ, followed by specimens B and A, which had lower resistance values at 1.035 × 10 4 KΩ and 1.35 KΩ, respectively. Although the thickest oxide film was formed on specimen A, it is thought that the lowest resistance value was measured because the titanium base material was easily observed around most of the irregularly formed nanostructures. In addition, when comparing specimens B and C with porous oxide films formed, it is thought that the resistance was measured the highest because the C specimen had an oxide film that was about three times thicker than the B specimen, which played a superior role in protecting the base material.
<실험예 3> 전해질 종류에 따른 양극산화 피막의 거칠기 관찰<Experimental Example 3> Observation of the roughness of the anodic oxidation film according to the type of electrolyte
실시예 1에서 전해질 3종에 따른 양극산화 피막의 거칠기를 관찰하였다.In Example 1, the roughness of the anodic oxide film according to three types of electrolytes was observed.
구체적으로, 형성된 산화 피막의 거칠기를 관찰하기 위하여 원자 힘 현미경(AFM, Atomic Force Microscope)을 사용하였다.Specifically, an atomic force microscope (AFM) was used to observe the roughness of the formed oxide film.
도 5는 원자 힘 현미경을 통하여 전해질에 따른 양극산화 후 산화 피막의 거칠기를 나타낸 이미지이다.Figure 5 is an image showing the roughness of the oxide film after anodic oxidation according to the electrolyte using an atomic force microscope.
도 5의 기준 면부터 지정 면까지의 평균 면 거칠기 Ra 값을 표 3에 나타내었다.The average surface roughness R a values from the reference surface to the designated surface in Fig. 5 are shown in Table 3.
도 5 및 표 3에 나타난 바와 같이, B 시편의 거칠기가 39.39 nm로 가장 높은 값을 가지며, A 시편은 20.02 nm, C 시편은 15.86 nm로 측정되었다. 이는 도 3의 이미지를 통해 관찰할 수 있듯, A 시편은 구조물 간의 간격이 넓고, C 시편은 규칙적인 기공 구조를 가져 B 시편에 비해 거칠기가 낮은 것으로 판단된다. B 시편은 A, C 시편에 비해 산화 피막이 비교적 치밀하고 불균일한 기공 구조를 가져 높은 거칠기를 가진 것으로 사료된다.As shown in Fig. 5 and Table 3, the roughness of specimen B had the highest value of 39.39 nm, followed by specimen A and specimen C, which were measured at 20.02 nm and 15.86 nm, respectively. As can be observed in the image in Fig. 3, specimen A has a wide gap between structures, while specimen C has a regular pore structure, which suggests that the roughness is lower than that of specimen B. It is thought that specimen B has a relatively dense oxide film and an uneven pore structure compared to specimens A and C, resulting in high roughness.
<실험예 4> 친수 및 발수 특성 평가<Experimental Example 4> Evaluation of hydrophilic and water-repellent properties
실시예 1(소수 코팅 X) 및 실시예 2(소수 코팅 O)에서 전해질 3종에 따른 양극산화 피막의 친수 및 발수 특성을 평가하였다.In Example 1 (hydrophobic coating X) and Example 2 (hydrophobic coating O), the hydrophilic and hydrophobic properties of the anodic oxide film according to three types of electrolytes were evaluated.
구체적으로, 친수 및 발수 특성을 관찰하기 위하여 상온에서 3 μL의 증류수를 이용해 접촉각(Contact angle)을 각 5회씩 측정하여 평균을 구하였다. 발수 코팅한 Sample에 Captive method로 전진, 후진각을 각 5회씩 측정하여 접촉 이력각(Contact hysteresis angle)을 산출하였다.Specifically, in order to observe the hydrophilic and water-repellent properties, the contact angle was measured five times each using 3 μL of distilled water at room temperature and the average was calculated. The advancing and receding angles were measured five times each on the water-repellent coated sample using the captive method to calculate the contact hysteresis angle.
도 6은 실시예 1(소수 코팅 X) 및 실시예 2(소수 코팅 O)에서 전해질 3종에 따른 양극산화 피막의 접촉각 사진이다.Figure 6 is a photograph of the contact angle of the anodic oxide film according to three types of electrolytes in Example 1 (hydrophobic coating X) and Example 2 (hydrophobic coating O).
표 4에 접촉각 및 접촉이력각을 표기하였다.The contact angle and contact history angle are shown in Table 4.
도 6 및 표 4에 나타난 바와 같이, 코팅 전, A 시편은 액적이 빠르게 퍼져 접촉각이 측정되지 않았으며, B 시편은 8.67±2.08°, C 시편은 8.89±2.82°로 측정되어 A, B, C 시편 모두 초친수성이 관찰되었다. A 시편에서 형성된 솔방울 형상 구조물의 간격이 넓고 불균일하게 분포되어 액적이 모재까지 쉽게 스며든 것으로 판단되며, B 시편은 비교적 치밀한 산화 피막이 형성되어 접촉각은 A 시편보다 높지만, 표면에 형성된 거칠기 및 불규칙한 기공으로 인해 친수성이 관찰된 것으로 사료된다. C 시편은 B 시편에 비해 낮은 거칠기를 가지지만 표면의 규칙적인 기공 구조 내부로 액적이 흡수되어 B 시편과 유사한 친수 접촉각이 관찰되었다. 코팅 후 A, B, C 시편 순서로 발수 접촉각은 178.99±1.31°, 131.91±5.97°, 136.97±2.31°로 측정되었으며, 접촉이력각은 각각 2.34±1.25°, 14.68±3.45°, 7.39±2.11°로 측정되었다.As shown in Fig. 6 and Table 4, before coating, the contact angle of specimen A was not measured because the droplet spread quickly, while that of specimen B was measured to be 8.67±2.08° and that of specimen C was measured to be 8.89±2.82°, indicating that superhydrophilicity was observed for all specimens A, B, and C. It is believed that the gaps between the pine cone-shaped structures formed in specimen A were wide and unevenly distributed, allowing the droplets to easily penetrate into the base material. Although the contact angle of specimen B was higher than that of specimen A due to the formation of a relatively dense oxide film, it is thought that hydrophilicity was observed due to the roughness and irregular pores formed on the surface. Although specimen C had lower roughness than specimen B, the droplet was absorbed into the regular pore structure of the surface, so a hydrophilic contact angle similar to that of specimen B was observed. After coating, the water-repellent contact angles were measured as 178.99±1.31°, 131.91±5.97°, and 136.97±2.31° for specimens A, B, and C in that order, and the contact hysteresis angles were measured as 2.34±1.25°, 14.68±3.45°, and 7.39±2.11°, respectively.
도 7은 양극산화 피막에 소수성 코팅을 할 경우 나노구조물과 액적이 맞닿는 표면적에 의한 물방울의 형상을 이미지화 한 것이다.Figure 7 is an image of the shape of a water droplet according to the surface area where the droplet comes into contact with the nanostructure when a hydrophobic coating is applied to an anodic oxide film.
도 7에 나타난 바와 같이, 양극산화를 통해 구조물을 형성하고 표면에너지가 낮은 물질로 코팅하면, 구조물 사이에 갇힌 공기가 액적을 떠받드는 역할을 하여 발수성이 나타난다. 또한 도 7a에 형성된 구조물은 액적과 맞닿는 표면적이 도 7b보다 작아 더 높은 발수성이 나타나며, 이는 수학식 3과 같은 Cassie-Baxter model로 설명할 수 있다.As shown in Fig. 7, when a structure is formed through anodic oxidation and coated with a material having low surface energy, the air trapped between the structures acts to support the droplets, resulting in water repellency. In addition, the structure formed in Fig. 7a has a smaller surface area in contact with the droplets than that in Fig. 7b, resulting in higher water repellency, which can be explained by the Cassie-Baxter model as shown in mathematical expression 3.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described with reference to preferred embodiments thereof. Those skilled in the art will appreciate that the present invention may be implemented in modified forms without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is not set forth in the foregoing description, but in the claims, and all differences within the scope equivalent thereto should be construed as being included in the present invention.
Claims (17)
단계 1에서 처리된 타이타늄(Ti)을 35-45V에서 5-7시간 동안 양극산화처리하여, 타이타늄 표면에 친수성 산화막을 형성하는 단계(단계 2);를 포함하고,
상기 단계 2의 양극산화처리에 사용하는 전해질은 0.2-0.4M 옥살산인 것을 특징으로 하는 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법.
Step of cleaning and polishing a titanium (Ti) substrate (Step 1); and
Step 2: a step of forming a hydrophilic oxide film on the surface of titanium (Ti) by anodizing the titanium (Ti) treated in step 1 at 35-45 V for 5-7 hours;
A method for forming an ultra-super hydrophilic oxide film on a titanium surface, characterized in that the electrolyte used in the anodic oxidation treatment of step 2 above is 0.2-0.4 M oxalic acid.
상기 타이타늄은 Ti 함량 99 중량% 이상을 갖는 Ti grade 1 내지 4 중 어느 하나인 것을 특징으로 하는, 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법.
In the first paragraph,
A method for forming an ultra-super hydrophilic oxide film on a titanium surface, characterized in that the titanium is any one of Ti grades 1 to 4 having a Ti content of 99 wt% or more.
상기 단계 1의 연마는 전기화학적 연마 및 화학적 연마 중 1종 이상인 것을 특징으로 하는, 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법.
In the first paragraph,
A method for forming an ultra-super hydrophilic oxide film on a titanium surface, characterized in that the polishing of the above step 1 is at least one of electrochemical polishing and chemical polishing.
상기 단계 2의 양극산화처리 전해질(electrolyte)은 0.25-0.35M 옥살산인 것을 특징으로 하는, 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법.
In the first paragraph,
A method for forming an ultra-super hydrophilic oxide film on a titanium surface, characterized in that the anodizing electrolyte of step 2 above is 0.25-0.35 M oxalic acid.
상기 단계 2의 양극산화처리 전해질(electrolyte)은 0.28-0.32M 옥살산인 것을 특징으로 하는, 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법.
In paragraph 4,
A method for forming an ultra-super hydrophilic oxide film on a titanium surface, characterized in that the anodizing electrolyte of step 2 above is 0.28-0.32 M oxalic acid.
접촉각 5° 이하의 친수성(Hydrophilicity)을 갖는 것을 특징으로 하는, 타이타늄 표면에 울트라초친수성(Ultra Super Hydrophilicity) 산화막을 형성하는 방법.
In the first paragraph,
A method for forming an ultra super hydrophilic oxide film on a titanium surface, characterized in that it has a hydrophilicity of a contact angle of 5° or less.
Titanium having an ultra super hydrophilic oxide film formed by the method of claim 1.
단계 1에서 처리된 타이타늄(Ti)을 35-45V에서 5-7시간 동안 양극산화처리하여, 타이타늄 표면에 친수성 산화막을 형성하는 단계(단계 2); 및
단분자막(Monolayer) 코팅이 가능한 소수성 코팅제로 코팅하는 단계(단계 3);를 포함하고,
상기 단계 2의 양극산화처리에 사용하는 전해질은 0.2-0.4M 옥살산인 것을 특징으로 하는 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
Step of cleaning and polishing the titanium (Ti) substrate (Step 1);
Step 2: Anodizing titanium (Ti) treated in step 1 at 35-45 V for 5-7 hours to form a hydrophilic oxide film on the titanium surface; and
A step (step 3) of coating with a hydrophobic coating agent capable of monolayer coating;
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that the electrolyte used in the anodic oxidation treatment of step 2 above is 0.2-0.4 M oxalic acid.
상기 타이타늄은 Ti 함량 99 중량% 이상을 갖는 Ti grade 1 내지 4 중 어느 하나인 것을 특징으로 하는, 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
In Article 8,
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that the titanium is any one of Ti grades 1 to 4 having a Ti content of 99 wt% or more.
상기 단계 1의 연마는 전기화학적 연마 및 화학적 연마 중 1종 이상인 것을 특징으로 하는, 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
In Article 8,
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that the polishing of the above step 1 is at least one of electrochemical polishing and chemical polishing.
상기 단계 2의 양극산화처리 전해질(electrolyte)은 0.25-0.35M 옥살산인 것을 특징으로 하는, 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
In Article 8,
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that the anodizing electrolyte of step 2 above is 0.25-0.35 M oxalic acid.
상기 단계 2의 양극산화처리 전해질(electrolyte)은 0.28-0.32M 옥살산인 것을 특징으로 하는, 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
In Article 11,
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that the anodizing electrolyte of step 2 above is 0.28-0.32 M oxalic acid.
접촉각 175° 이상의 울트라초소수성(Ultra Super Hydrophobicity)을 갖는 것을 특징으로 하는, 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
In Article 8,
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that it has an ultra super hydrophobicity of a contact angle of 175° or more.
상기 단계 3의 소수성 코팅제는 FDTS(1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane)인 것을 특징으로 하는, 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
In Article 8,
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that the hydrophobic coating agent of step 3 above is FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane).
상기 단계 3의 소수성 코팅제는 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 및 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane) 및 옥탄(Octane) 중 1종의 유기용매를 포함하는 코팅 조성물인 것을 특징으로 하는, 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
[화학식 1]
(상기 화학식 1에서, x 및 y는 각각 1-30의 정수이다.)
In Article 8,
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that the hydrophobic coating agent of step 3 is a coating composition containing a cross-linked PDMS (Polydimethylsiloxane) derivative represented by chemical formula 1 and one organic solvent selected from pentane, hexane, heptane, and octane.
[Chemical Formula 1]
(In the above chemical formula 1, x and y are each an integer from 1 to 30.)
유기용매 10 중량부 기준, 상기 화학식 1로 표시되는 가교형 PDMS(Polydimethylsiloxane) 유도체 0.05-0.17 중량부 포함하는 것을 특징으로 하는, 타이타늄 표면에 울트라초소수성(Ultra Super Hydrophobicity) 산화막을 형성하는 방법.
In Article 15,
A method for forming an ultra super hydrophobic oxide film on a titanium surface, characterized in that it comprises 0.05 to 0.17 parts by weight of a cross-linked PDMS (polydimethylsiloxane) derivative represented by the chemical formula 1 based on 10 parts by weight of an organic solvent.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020230094770A KR102754969B1 (en) | 2023-07-20 | 2023-07-20 | Development of Superhydrophobic and Superhydrophilic Anodic Oxidation of Titanium in Oxalic Acid Electrolyte |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020230094770A KR102754969B1 (en) | 2023-07-20 | 2023-07-20 | Development of Superhydrophobic and Superhydrophilic Anodic Oxidation of Titanium in Oxalic Acid Electrolyte |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR102754969B1 true KR102754969B1 (en) | 2025-01-21 |
Family
ID=94389572
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020230094770A Active KR102754969B1 (en) | 2023-07-20 | 2023-07-20 | Development of Superhydrophobic and Superhydrophilic Anodic Oxidation of Titanium in Oxalic Acid Electrolyte |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR102754969B1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20030031664A (en) * | 2001-10-15 | 2003-04-23 | 한국과학기술연구원 | An electrochemical surface treating method for implants comprising metallic titanium or titanium alloys |
| KR101832059B1 (en) | 2016-06-24 | 2018-02-23 | 인하대학교 산학협력단 | Method for fabrication of TiO2 films with anti-finger property |
| KR20190131342A (en) * | 2018-05-16 | 2019-11-26 | 주식회사 영광와이케이엠씨 | Electrolytic solution for uniform anodic oxide film formation of titanium base material and manufacturing method of titanium base material using this same |
-
2023
- 2023-07-20 KR KR1020230094770A patent/KR102754969B1/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20030031664A (en) * | 2001-10-15 | 2003-04-23 | 한국과학기술연구원 | An electrochemical surface treating method for implants comprising metallic titanium or titanium alloys |
| KR101832059B1 (en) | 2016-06-24 | 2018-02-23 | 인하대학교 산학협력단 | Method for fabrication of TiO2 films with anti-finger property |
| KR20190131342A (en) * | 2018-05-16 | 2019-11-26 | 주식회사 영광와이케이엠씨 | Electrolytic solution for uniform anodic oxide film formation of titanium base material and manufacturing method of titanium base material using this same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TP et al. | Optimal condition for fabricating mechanically durable superhydrophobic titanium surface by rapid breakdown anodization: Self cleaning and bouncing characteristics | |
| Yin et al. | Preparation and properties of super-hydrophobic coating on magnesium alloy | |
| KR102624269B1 (en) | Manufacturing Method of Functional Stainless Steel 316L Materials for Road Structures and Building Structures | |
| CN1608174A (en) | The method of coating the object | |
| WO2006123736A1 (en) | Corrosion resistance treatment method for aluminum or aluminum alloy | |
| JP2009506202A (en) | Coated article | |
| Cho et al. | Water-repellent coating: formation of polymeric self-assembled monolayers onnanostructured surfaces | |
| Sun et al. | Construction of superhydrophobic GO/Ca coating on AZ31 magnesium alloy for enhanced anti-corrosion performance | |
| KR102754969B1 (en) | Development of Superhydrophobic and Superhydrophilic Anodic Oxidation of Titanium in Oxalic Acid Electrolyte | |
| Sotgiu et al. | Wettability of micro and nanostructured surface of titanium based electrodes: Influence of chemical and electrochemical etching | |
| Yen | Characterization of electrolytic ZrO2 coating on AISI 316L stainless steel | |
| KR20250014558A (en) | Implementation of optimal titanium oxides for improved insulation properties | |
| Khaskhoussi et al. | Effect of the Cassie Baxter-Wenzel behaviour transitions on the corrosion performances of AA6082 superhydrophobic surfaces | |
| CN113174281A (en) | Metal member | |
| KR102766055B1 (en) | Method of surface treatment of SUS316L appearance or parts of generator or transportation | |
| KR102754966B1 (en) | Functional surface treatment method of SUS 316L material for medical instruments or their parts | |
| KR102863137B1 (en) | Development of Functional Surface Treatment on SUS 316L for Kitchen Supplies | |
| KR102766050B1 (en) | Functional surface treated SUS316L gasket | |
| KR102863139B1 (en) | Functional surface treated cutting instruments or smart farm instruments of SUS 316L | |
| KR102863138B1 (en) | Development of Functional Surface Treatment for Sports and Leisure Products SUS 316L | |
| KR102465483B1 (en) | Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance | |
| KR102465479B1 (en) | Development of Water-repellent Stainless Steel (SUS 316L) Surface by Stepwise Anodizing Technique | |
| Salman et al. | Surface characteristics of zircadyne (Zr) alloys after anodization process for biomedical applications | |
| KR102766047B1 (en) | Functional surface treated SUS 316L manhole cover | |
| KR102766033B1 (en) | Method of Forming Corrosion Resistance and Superhydrophobic Oxide Film on the Surface of Stainless Steel 316L for Water and Sewage Materials |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20230720 |
|
| PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20230720 Comment text: Patent Application |
|
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240802 Patent event code: PE09021S01D |
|
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241010 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20250110 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20250110 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration |