KR102775684B1 - Polyethylene and its chlorinated polyethylene - Google Patents
Polyethylene and its chlorinated polyethylene Download PDFInfo
- Publication number
- KR102775684B1 KR102775684B1 KR1020200005492A KR20200005492A KR102775684B1 KR 102775684 B1 KR102775684 B1 KR 102775684B1 KR 1020200005492 A KR1020200005492 A KR 1020200005492A KR 20200005492 A KR20200005492 A KR 20200005492A KR 102775684 B1 KR102775684 B1 KR 102775684B1
- Authority
- KR
- South Korea
- Prior art keywords
- polyethylene
- chemical formula
- group
- alkyl
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 Polyethylene Polymers 0.000 title claims abstract description 133
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 94
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 93
- 239000004709 Chlorinated polyethylene Substances 0.000 title claims description 67
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 40
- 239000000460 chlorine Substances 0.000 claims abstract description 40
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000126 substance Substances 0.000 claims description 81
- 150000001875 compounds Chemical class 0.000 claims description 72
- 125000000217 alkyl group Chemical group 0.000 claims description 57
- 238000004519 manufacturing process Methods 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 41
- 229910052739 hydrogen Inorganic materials 0.000 claims description 36
- 239000001257 hydrogen Substances 0.000 claims description 36
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 29
- 125000003118 aryl group Chemical group 0.000 claims description 27
- 239000000155 melt Substances 0.000 claims description 25
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 20
- 239000005977 Ethylene Substances 0.000 claims description 20
- 229910052736 halogen Inorganic materials 0.000 claims description 19
- 150000002367 halogens Chemical class 0.000 claims description 19
- 125000003545 alkoxy group Chemical group 0.000 claims description 14
- 150000002431 hydrogen Chemical class 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 13
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 claims description 12
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 12
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 12
- 125000005103 alkyl silyl group Chemical group 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 8
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 7
- 125000000524 functional group Chemical group 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 125000001188 haloalkyl group Chemical group 0.000 claims description 5
- 230000000379 polymerizing effect Effects 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 125000005370 alkoxysilyl group Chemical group 0.000 claims description 4
- 125000003368 amide group Chemical group 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229920001519 homopolymer Polymers 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 4
- 125000005353 silylalkyl group Chemical group 0.000 claims description 3
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 claims description 2
- 238000005660 chlorination reaction Methods 0.000 abstract description 43
- 238000001035 drying Methods 0.000 abstract description 15
- 238000012545 processing Methods 0.000 abstract description 15
- 230000018044 dehydration Effects 0.000 abstract description 5
- 238000006297 dehydration reaction Methods 0.000 abstract description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 66
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 42
- 239000000243 solution Substances 0.000 description 35
- 125000004432 carbon atom Chemical group C* 0.000 description 28
- 239000003054 catalyst Substances 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 229920001903 high density polyethylene Polymers 0.000 description 12
- 239000004700 high-density polyethylene Substances 0.000 description 12
- 239000012968 metallocene catalyst Substances 0.000 description 12
- 238000001125 extrusion Methods 0.000 description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 10
- 229910052796 boron Inorganic materials 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 8
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 125000001309 chloro group Chemical group Cl* 0.000 description 7
- VXNZUUAINFGPBY-UHFFFAOYSA-N ethyl ethylene Natural products CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 7
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 235000011089 carbon dioxide Nutrition 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 229910052735 hafnium Inorganic materials 0.000 description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical class C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- 229910007926 ZrCl Inorganic materials 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 229960004424 carbon dioxide Drugs 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- WFZSIVNWLIYDJZ-UHFFFAOYSA-N dichloro-methyl-[6-[(2-methylpropan-2-yl)oxy]hexyl]silane Chemical compound CC(C)(C)OCCCCCC[Si](C)(Cl)Cl WFZSIVNWLIYDJZ-UHFFFAOYSA-N 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- IMFACGCPASFAPR-UHFFFAOYSA-O tributylazanium Chemical compound CCCC[NH+](CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-O 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 4
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 4
- CLILMZOQZSMNTE-UHFFFAOYSA-N 1-chloro-6-[(2-methylpropan-2-yl)oxy]hexane Chemical compound CC(C)(C)OCCCCCCCl CLILMZOQZSMNTE-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000013013 elastic material Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- ALLIZEAXNXSFGD-UHFFFAOYSA-N 1-methyl-2-phenylbenzene Chemical group CC1=CC=CC=C1C1=CC=CC=C1 ALLIZEAXNXSFGD-UHFFFAOYSA-N 0.000 description 2
- KPBQMFGOMZHQMN-UHFFFAOYSA-N 8-methyl-5-[[2-(trifluoromethyl)phenyl]methyl]-10H-indeno[1,2-b]indole Chemical compound CC1=CC=2C3=C(N(C=2C=C1)CC1=C(C=CC=C1)C(F)(F)F)C1=CC=CC=C1C3 KPBQMFGOMZHQMN-UHFFFAOYSA-N 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- XQQRXHNPVOOXDK-UHFFFAOYSA-M CC(C)(C)OCCCCCC[Mg]Cl Chemical compound CC(C)(C)OCCCCCC[Mg]Cl XQQRXHNPVOOXDK-UHFFFAOYSA-M 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- GGSUCNLOZRCGPQ-UHFFFAOYSA-O diethyl(phenyl)azanium Chemical compound CC[NH+](CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-O 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- SHGOGDWTZKFNSC-UHFFFAOYSA-N ethyl(dimethyl)alumane Chemical compound CC[Al](C)C SHGOGDWTZKFNSC-UHFFFAOYSA-N 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 229910021482 group 13 metal Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 2
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 2
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- WCFQIFDACWBNJT-UHFFFAOYSA-N $l^{1}-alumanyloxy(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]O[Al] WCFQIFDACWBNJT-UHFFFAOYSA-N 0.000 description 1
- 125000006583 (C1-C3) haloalkyl group Chemical group 0.000 description 1
- VNPQQEYMXYCAEZ-UHFFFAOYSA-N 1,2,3,4-tetramethylcyclopenta-1,3-diene Chemical compound CC1=C(C)C(C)=C(C)C1 VNPQQEYMXYCAEZ-UHFFFAOYSA-N 0.000 description 1
- XSBHWHZJHSUCOI-UHFFFAOYSA-N 1-[(2-methylpropan-2-yl)oxy]hexane Chemical compound CCCCCCOC(C)(C)C XSBHWHZJHSUCOI-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- YVSMQHYREUQGRX-UHFFFAOYSA-N 2-ethyloxaluminane Chemical compound CC[Al]1CCCCO1 YVSMQHYREUQGRX-UHFFFAOYSA-N 0.000 description 1
- FJRHTVXCOZJQFP-UHFFFAOYSA-N 2-methyl-N-[methyl-[6-[(2-methylpropan-2-yl)oxy]hexyl]-(1,2,3,4-tetramethylcyclopenta-2,4-dien-1-yl)silyl]propan-2-amine Chemical compound C[Si](NC(C)(C)C)(C1(C(=C(C(=C1)C)C)C)C)CCCCCCOC(C)(C)C FJRHTVXCOZJQFP-UHFFFAOYSA-N 0.000 description 1
- JNTPTNNCGDAGEJ-UHFFFAOYSA-N 6-chlorohexan-1-ol Chemical compound OCCCCCCCl JNTPTNNCGDAGEJ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- PLGVIJOQDDMWAO-UHFFFAOYSA-N CCCCN(CCCC)CCCC.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F Chemical compound CCCCN(CCCC)CCCC.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F PLGVIJOQDDMWAO-UHFFFAOYSA-N 0.000 description 1
- JEVCOCKVSCRHMR-UHFFFAOYSA-N CCN(CC)C1=CC=CC=C1.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F Chemical compound CCN(CC)C1=CC=CC=C1.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F JEVCOCKVSCRHMR-UHFFFAOYSA-N 0.000 description 1
- HFEVWLDHPOCPTP-UHFFFAOYSA-N CCNCC.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F Chemical compound CCNCC.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F HFEVWLDHPOCPTP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 238000003747 Grignard reaction Methods 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- 241001441571 Hiodontidae Species 0.000 description 1
- 230000005483 Hooke's law Effects 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- SHPVKUQHCZKKRP-UHFFFAOYSA-N [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCCCN(CCCC)CCCC Chemical compound [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCCCN(CCCC)CCCC SHPVKUQHCZKKRP-UHFFFAOYSA-N 0.000 description 1
- XIBZTAIPROXEDH-UHFFFAOYSA-N [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCN(CC)C1=CC=CC=C1 Chemical compound [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCN(CC)C1=CC=CC=C1 XIBZTAIPROXEDH-UHFFFAOYSA-N 0.000 description 1
- RPXNIXOOFOQCKJ-UHFFFAOYSA-N [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCNCC Chemical compound [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCNCC RPXNIXOOFOQCKJ-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005024 alkenyl aryl group Chemical group 0.000 description 1
- 125000005234 alkyl aluminium group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 125000005025 alkynylaryl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000004653 anthracenylene group Chemical group 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004976 cyclobutylene group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004977 cycloheptylene group Chemical group 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004978 cyclooctylene group Chemical group 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004979 cyclopentylene group Chemical group 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004980 cyclopropylene group Chemical group 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- MYBJXSAXGLILJD-UHFFFAOYSA-N diethyl(methyl)alumane Chemical compound CC[Al](C)CC MYBJXSAXGLILJD-UHFFFAOYSA-N 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical class [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- ISEJRLXHKSHKPM-UHFFFAOYSA-N dimethyl(2-methylpropyl)alumane Chemical compound CC(C)C[Al](C)C ISEJRLXHKSHKPM-UHFFFAOYSA-N 0.000 description 1
- JGHYBJVUQGTEEB-UHFFFAOYSA-M dimethylalumanylium;chloride Chemical compound C[Al](C)Cl JGHYBJVUQGTEEB-UHFFFAOYSA-M 0.000 description 1
- MWNKMBHGMZHEMM-UHFFFAOYSA-N dimethylalumanylium;ethanolate Chemical compound CCO[Al](C)C MWNKMBHGMZHEMM-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 125000005567 fluorenylene group Chemical group 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000006229 isopropoxyethyl group Chemical group [H]C([H])([H])C([H])(OC([H])([H])C([H])([H])*)C([H])([H])[H] 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- BQBCXNQILNPAPX-UHFFFAOYSA-N methoxy(dimethyl)alumane Chemical compound [O-]C.C[Al+]C BQBCXNQILNPAPX-UHFFFAOYSA-N 0.000 description 1
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005560 phenanthrenylene group Chemical group 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910021481 rutherfordium Inorganic materials 0.000 description 1
- YGPLJIIQQIDVFJ-UHFFFAOYSA-N rutherfordium atom Chemical compound [Rf] YGPLJIIQQIDVFJ-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- NDUUEFPGQBSFPV-UHFFFAOYSA-N tri(butan-2-yl)alumane Chemical compound CCC(C)[Al](C(C)CC)C(C)CC NDUUEFPGQBSFPV-UHFFFAOYSA-N 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- CMHHITPYCHHOGT-UHFFFAOYSA-N tributylborane Chemical compound CCCCB(CCCC)CCCC CMHHITPYCHHOGT-UHFFFAOYSA-N 0.000 description 1
- PYLGJXLKFZZEBJ-UHFFFAOYSA-N tricyclopentylalumane Chemical compound C1CCCC1[Al](C1CCCC1)C1CCCC1 PYLGJXLKFZZEBJ-UHFFFAOYSA-N 0.000 description 1
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000004953 trihalomethyl group Chemical group 0.000 description 1
- ORYGRKHDLWYTKX-UHFFFAOYSA-N trihexylalumane Chemical compound CCCCCC[Al](CCCCCC)CCCCCC ORYGRKHDLWYTKX-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- PZJJKWKADRNWSW-UHFFFAOYSA-N trimethoxysilicon Chemical group CO[Si](OC)OC PZJJKWKADRNWSW-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- WXRGABKACDFXMG-UHFFFAOYSA-N trimethylborane Chemical compound CB(C)C WXRGABKACDFXMG-UHFFFAOYSA-N 0.000 description 1
- YWWDBCBWQNCYNR-UHFFFAOYSA-O trimethylphosphanium Chemical compound C[PH+](C)C YWWDBCBWQNCYNR-UHFFFAOYSA-O 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JOJQVUCWSDRWJE-UHFFFAOYSA-N tripentylalumane Chemical compound CCCCC[Al](CCCCC)CCCCC JOJQVUCWSDRWJE-UHFFFAOYSA-N 0.000 description 1
- JQPMDTQDAXRDGS-UHFFFAOYSA-N triphenylalumane Chemical compound C1=CC=CC=C1[Al](C=1C=CC=CC=1)C1=CC=CC=C1 JQPMDTQDAXRDGS-UHFFFAOYSA-N 0.000 description 1
- RIOQSEWOXXDEQQ-UHFFFAOYSA-O triphenylphosphanium Chemical compound C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-O 0.000 description 1
- CNWZYDSEVLFSMS-UHFFFAOYSA-N tripropylalumane Chemical compound CCC[Al](CCC)CCC CNWZYDSEVLFSMS-UHFFFAOYSA-N 0.000 description 1
- ZMPKTELQGVLZTD-UHFFFAOYSA-N tripropylborane Chemical compound CCCB(CCC)CCC ZMPKTELQGVLZTD-UHFFFAOYSA-N 0.000 description 1
- XDSSGQHOYWGIKC-UHFFFAOYSA-N tris(2-methylpropyl)borane Chemical compound CC(C)CB(CC(C)C)CC(C)C XDSSGQHOYWGIKC-UHFFFAOYSA-N 0.000 description 1
- WSITXTIRYQMZHM-UHFFFAOYSA-N tris(4-methylphenyl)alumane Chemical compound C1=CC(C)=CC=C1[Al](C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 WSITXTIRYQMZHM-UHFFFAOYSA-N 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65904—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
- C08F4/65922—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
- C08F4/65925—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
- C08F4/65922—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
- C08F4/65927—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/18—Introducing halogen atoms or halogen-containing groups
- C08F8/20—Halogenation
- C08F8/22—Halogenation by reaction with free halogens
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/12—Melt flow index or melt flow ratio
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/17—Viscosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/18—Bulk density
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
본 발명에 따른 폴리에틸렌은, 분자 구조내 높은 중고분자 영역을 구현하여, 이를 클로린과 반응시켜 염화 가공 시 탈산, 탈수 및 건조 공정을 용이하게 하고, 염화 온도 상향을 가능하게 함으로써 염화 생산성을 향상시킬 수 있다. The polyethylene according to the present invention implements a high-molecular-weight region in its molecular structure, thereby making it easy to perform deoxidation, dehydration and drying processes during chlorination processing by reacting it with chlorine, and enabling an increase in the chlorination temperature, thereby improving chlorination productivity.
Description
본 발명은 분자 구조내 높은 중고분자 영역을 구현하여, 염화 가공 시 탈산, 탈수 및 건조 공정을 용이하게 하고, 염화 온도 상향을 가능하게 함으로써 염화 생산성을 높일 수 있는 폴리에틸렌 및 이의 염소화 폴리에틸렌에 관한 것이다. The present invention relates to polyethylene and chlorinated polyethylene thereof which can increase chlorination productivity by implementing a high-molecular-weight region in the molecular structure, thereby facilitating deoxidation, dehydration and drying processes during chlorination processing and enabling an increase in chlorination temperature.
폴리에틸렌과 클로린을 반응시켜 제조되는 염소화 폴리에틸렌(CPE, Chlorinated Polyethylene)은, 폴리에틸렌에 비하여 물리적 및 기계적 특성이 보다 개선되는 것으로 알려져 있으며, 특히 가혹한 외부 환경에서도 견딜 수 있기 때문에, 각종 용기, 섬유, 파이프 등 패킹 재료와 전열 재료로 사용된다. Chlorinated polyethylene (CPE), which is manufactured by reacting polyethylene and chlorine, is known to have improved physical and mechanical properties compared to polyethylene, and is used as a packing material for various containers, fibers, pipes, and as a heat-conducting material because it can withstand harsh external environments.
염소화 폴리에틸렌은 일반적으로 폴리에틸렌을 현탁액 상태로 만든 다음 클로린과 반응시켜 제조하거나, 폴리에틸렌을 HCl 수용액에 넣고 클로린과 반응시켜 폴리에틸렌의 수소를 염소로 치환하여 제조한다. 이렇게 폴리에틸렌을 염소화(chlorination)하는 과정을 통해 CPE는 고무와 같은 성질을 띠게 된다. Chlorinated polyethylene is generally manufactured by making polyethylene into a suspension and then reacting it with chlorine, or by putting polyethylene in an HCl aqueous solution and reacting it with chlorine to replace the hydrogen in the polyethylene with chlorine. Through this process of chlorinating polyethylene, CPE acquires rubber-like properties.
염소화 폴리에틸렌의 특성을 충분히 발현하기 위해서는 폴리에틸렌에 균일하게 염소가 치환되어야 하는데, 이는 클로린과 반응하는 폴리에틸렌의 특성에 영향을 받는다. 특히, CPE(Chlorinated Polyethylene) 등의 염소화 폴리에틸렌은 무기물 첨가제 및 가교제와 컴파운딩을 통해 전선 및 케이블 등의 용도로 많이 사용되는데, 염소화 폴리에틸렌의 물성에 따라 컴파운드의 강도 등이 달라진다.In order to fully express the characteristics of chlorinated polyethylene, chlorine must be uniformly substituted in the polyethylene, which is affected by the characteristics of polyethylene that reacts with chlorine. In particular, chlorinated polyethylene such as CPE (Chlorinated Polyethylene) is widely used for purposes such as wires and cables through compounding with inorganic additives and crosslinking agents, and the strength of the compound varies depending on the properties of chlorinated polyethylene.
또한, 염소화 폴리에틸렌은 일반적으로 폴리에틸렌을 현탁액 상태에서 클로린과 반응시켜 제조하거나, 폴리에틸렌을 HCl 수용액에서 클로린과 반응시켜 제조할 수 있다. 구체적으로, CPE 생산시 염화, 탈산, 탈수, 건조의 과정을 거치게 되는데, 폴리에틸렌의 결정 구조가 안정적으로 유지되지 못할 경우 고온의 염화 반응을 거치면서 결정 구조가 무너지고 폴리에틸렌 입자의 공극(pore)이 막힐 수 있다. 탈산 이후 과정에서는 폴리에틸렌 입자 내 잔류 HCl을 제거하기 위해 물을 이용한 세척이 필요한데 공극(pore)이 막혀있을 경우 탈산 시간 지연에 따른 전체 생산 시간이 지연되어 염화 생산성이 저하된다. 특히, 염화 공정 내에서 승온에 따라 폴리에틸렌 사슬이 용융 되는 현상이 심해질 수록 입자들이 서로 녹아 붙어 한 덩어리가 되는 블록킹(blocking)이 발생하고, 스웰링(swelling)되면서 내부에 물이 갇혀 염화 후 건조시간이 오래 걸리게 된다. 이러한 현상에 의해 CPE 업체의 CPE의 생산성은 염화 단계에서 수세 및 건조 시간과 효율이 좋을수록 우수한 것으로 알려져 있다.In addition, chlorinated polyethylene can generally be manufactured by reacting polyethylene with chlorine in a suspension state, or by reacting polyethylene with chlorine in an HCl aqueous solution. Specifically, when producing CPE, it goes through the processes of chlorination, deoxidation, dehydration, and drying. If the crystal structure of polyethylene is not stably maintained, the crystal structure may collapse and the pores of the polyethylene particles may be blocked during the high-temperature chlorination reaction. In the process after deoxidation, washing with water is required to remove residual HCl in the polyethylene particles. If the pores are blocked, the overall production time is delayed due to the delay in the deoxidation time, which reduces the chlorination productivity. In particular, as the melting phenomenon of polyethylene chains becomes more severe due to the temperature increase in the chlorination process, the particles melt together and become a single mass, causing blocking, and as they swell, water is trapped inside, which takes a long time to dry after chlorination. Due to this phenomenon, it is known that the productivity of CPE of a CPE company is better when the washing and drying time in the chlorination stage is better.
이에 따라, 전선 및 케이블 등의 용도로 컴파운딩시 우수한 강도 및 압출시 가공성 향상을 위하여 염소화 폴리에틸렌의 최적화된 물성 확보가 필요하고, 이와 함께 염소화 공정에서 생산성 향상을 위하여 중고분자 영역이 많은 분자 구조를 가지는 폴리에틸렌을 제조할 수 있는 기술의 개발이 계속적으로 요구되고 있다. Accordingly, it is necessary to secure optimized physical properties of chlorinated polyethylene to improve strength and processability during extrusion when compounding for use in wires and cables, and in addition, there is a continuous demand for the development of technology that can manufacture polyethylene with a molecular structure with many intermediate molecular regions to improve productivity in the chlorination process.
본 발명은 분자 구조내 높은 중고분자 영역을 구현하여, 우수한 강도 및 압출시 가공성을 향상시킨 염소화 폴리에틸렌을 제조할 수 있는, 폴리에틸렌 및 이의 염소화 폴리에틸렌을 제공하고자 한다. The present invention aims to provide polyethylene and its chlorinated polyethylene, which can manufacture chlorinated polyethylene having excellent strength and improved processability during extrusion by implementing a high-molecular-weight region in the molecular structure.
또한, 본 발명은 상기 폴리에틸렌을 제조하는 방법을 제공하고자 한다. In addition, the present invention seeks to provide a method for producing the polyethylene.
발명의 일 구현예에 따르면, 용융 지수 MI5(190 ℃, 5 kg 하중에서 측정)가 0.7 g/10min 내지 1.0 g/10min이고, 밀도(Density)가 0.953 g/cm3 이상이고, 주파수(ω, frequency, ω) 0.05 rad/s에서 측정한 복소 점도(η*(ω0.05), complex viscosity)가 43000 Paㆍs 이상이고, 주파수(ω, frequency, ω) 500 rad/s에서 측정한 복소 점도(η*(ω500), complex viscosity)가 550 Paㆍs 내지 850 Paㆍs인 폴리에틸렌이 제공된다. According to one embodiment of the invention, there is provided polyethylene having a melt index MI 5 (measured at 190° C., 5 kg load) of 0.7 g/10 min to 1.0 g/10 min, a density of 0.953 g/cm 3 or more, a complex viscosity (η*(ω0.05), complex viscosity) measured at a frequency (ω, frequency, ω) of 0.05 rad/s of 43000 Paㆍs or more, and a complex viscosity (η*(ω500), complex viscosity) measured at a frequency (ω, frequency, ω) of 500 rad/s of 550 Paㆍs to 850 Paㆍs.
또한, 본 발명은 상기 폴리에틸렌을 제조하는 방법을 제공한다. Additionally, the present invention provides a method for producing the polyethylene.
또한, 본 발명은 상기 폴리에틸렌과 클로린을 반응시켜 제조되는 염소화 폴리에틸렌을 제공한다. In addition, the present invention provides chlorinated polyethylene manufactured by reacting the polyethylene and chlorine.
본 발명에 따른 폴리에틸렌은, 분자 구조내 높은 중고분자 영역을 구현하여, 이를 클로린과 반응시켜 염소화 생산성 및 열안정성이 우수한 염소화 폴리에틸렌을 제조할 수 있다.The polyethylene according to the present invention implements a high molecular weight region in its molecular structure, and by reacting it with chlorine, chlorinated polyethylene with excellent chlorination productivity and thermal stability can be manufactured.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. In the present invention, the terms first, second, etc. are used to describe various components, and the terms are used only for the purpose of distinguishing one component from another.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In addition, the terminology used herein is only used to describe exemplary embodiments, and is not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly indicates otherwise. It should be understood that the terms "comprises," "includes," or "has" in this specification are intended to specify the presence of implemented features, numbers, steps, components, or combinations thereof, but do not exclude in advance the possibility of the presence or addition of one or more other features, numbers, steps, components, or combinations thereof.
또한, 본 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, the terms “about,” “substantially,” and the like used throughout this specification are used in a meaning that is at or close to the numerical value when manufacturing and material tolerances inherent in the meanings mentioned are presented, and are used to prevent unscrupulous infringers from unfairly utilizing the disclosure in which exact or absolute values are mentioned to aid the understanding of the present invention.
또한, 본 명세서에서 "중량부 (part by weight)"란 어떤 물질의 중량을 기준으로 나머지 물질의 중량을 비로 나타낸 상대적인 개념을 의미한다. 예를 들어, A 물질의 중량이 50 g이고, B 물질의 중량이 20 g이고, C 물질의 중량이 30 g으로 포함된 혼합물에서, A 물질 100 중량부 기준 B 물질 및 C 물질의 양은 각각 40 중량부 및 60 중량부인 것이다.In addition, in this specification, "part by weight" means a relative concept that expresses the weight of a substance as a ratio based on the weight of the other substance. For example, in a mixture containing 50 g of substance A, 20 g of substance B, and 30 g of substance C, the amounts of substance B and substance C are 40 parts by weight and 60 parts by weight, respectively, based on 100 parts by weight of substance A.
또한, "중량% (% by weight)" 란 전체의 중량 중 어떤 물질의 중량의 중량을 백분율로 나타낸 절대적인 개념을 의미한다. 상기 예로 든 혼합물에서, 혼합물 전체 중량 100 % 중 A 물질, B 물질, 및 C 물질의 함량은 각각 50 중량%, 20 중량%, 30 중량%인 것이다. 이 때, 각 성분 함량의 총합은 100 중량%를 초과하지 않는다. In addition, "% by weight" means an absolute concept that expresses the weight of a certain substance as a percentage of the total weight. In the mixture in the example above, the contents of substance A, substance B, and substance C are 50 wt%, 20 wt%, and 30 wt%, respectively, out of 100% of the total weight of the mixture. At this time, the total sum of the contents of each component does not exceed 100 wt%.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention may have various modifications and may take various forms, and thus specific embodiments are illustrated and described in detail below. However, this is not intended to limit the present invention to specific disclosed forms, but should be understood to include all modifications, equivalents, or substitutes included in the spirit and technical scope of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
발명의 일 구현예에 따르면, 중고분자 영역이 높은 분자 구조를 구현하여, 우수한 강도와 함께 압출시 가공성을 향상시킨 염소화 폴리에틸렌을 제조할 수 있는 폴리에틸렌이 제공된다. According to one embodiment of the invention, there is provided polyethylene capable of producing chlorinated polyethylene having improved processability during extrusion along with excellent strength by implementing a molecular structure having a high molecular weight region.
상기 폴리에틸렌은, 용융 지수 MI5(190 ℃, 5 kg 하중에서 측정)가 0.7 g/10min 내지 1.0 g/10min이고, 밀도(Density)가 0.953 g/cm3 이상이고, 주파수(ω, frequency, ω) 0.05 rad/s에서 측정한 복소 점도(η*(ω0.05), complex viscosity)가 43000 Paㆍs 이상이고, 주파수(ω, frequency, ω) 500 rad/s에서 측정한 복소 점도(η*(ω500), complex viscosity)가 550 Paㆍs 내지 850 Paㆍs인 것을 특징으로 한다. The above polyethylene is characterized in that it has a melt index MI 5 (measured at 190° C., 5 kg load) of 0.7 g/10 min to 1.0 g/10 min, a density of 0.953 g/cm 3 or more, a complex viscosity (η*(ω0.05), complex viscosity) measured at a frequency (ω, frequency, ω) of 0.05 rad/s of 43000 Paㆍs or more, and a complex viscosity (η*(ω500), complex viscosity) measured at a frequency (ω, frequency, ω) of 500 rad/s of 550 Paㆍs to 850 Paㆍs.
일반적으로 염소화 폴리에틸렌은, 폴리에틸렌과 클로린을 반응시켜 제조되는 것으로, 폴리에틸렌의 수소 일부가 염소로 치환된 것을 의미한다. 폴리에틸렌의 수소가 염소로 치환되면, 수소와 염소의 원자 체적이 다르기 때문에 폴리에틸렌의 특성이 변하게 되는데, 예를 들어, 염소화 생산성 및 열안정성이 보다 증가하게 된다. 특히, 염소화 폴리에틸렌 입자의 전체 크기가 작고 균일할수록 염소가 폴리에틸렌 입자의 중심까지 침투하기 쉽기 때문에 입자 내 염소 치환도가 균일하여 우수한 물성을 나타낼 수 있으며, 이를 위하여 본 발명에 따른 폴리에틸렌은 분자 구조내 중고분자 영역이 높아 우수한 강도와 함께 압출시 가공성을 향상시킨 염소화 폴리에틸렌을 제공할 수 있다. In general, chlorinated polyethylene is manufactured by reacting polyethylene with chlorine, and means that some of the hydrogens of the polyethylene are replaced with chlorine. When the hydrogen of the polyethylene is replaced with chlorine, the atomic volumes of hydrogen and chlorine are different, so that the properties of the polyethylene change, for example, the chlorination productivity and thermal stability increase. In particular, the smaller and more uniform the overall size of the chlorinated polyethylene particles, the easier it is for chlorine to penetrate to the center of the polyethylene particles, so that the degree of chlorine substitution within the particles is uniform, so that excellent physical properties can be exhibited. To this end, the polyethylene according to the present invention has a high medium-molecular weight region in its molecular structure, so that chlorinated polyethylene having excellent strength and improved processability during extrusion can be provided.
본 발명의 폴리에틸렌은 분자 구조내 중고분자 영역이 높아, 용융 지수 MI5(190 ℃, 5 kg 하중에서 측정)와 밀도를 최적화함과 동시에, 저주파 영역에서 복소 점도는 최대화하고, 고주파 영역에서 복소 점도는 최적 범위를 유지하는 것이 특징이다. 이로써, 폴리에틸렌의 중고분자 함량이 증가하며 염소화 생산성 및 열안정성, 기계적 물성이 모두 우수한 염소화 폴리에틸렌을 제조할 수 있다. The polyethylene of the present invention is characterized by having a high medium-molecular weight region in its molecular structure, thereby optimizing the melt index MI 5 (measured at 190°C, 5 kg load) and density, while maximizing the complex viscosity in the low-frequency region and maintaining the complex viscosity in the high-frequency region within an optimal range. As a result, the medium-molecular weight content of the polyethylene is increased, and chlorinated polyethylene having excellent chlorination productivity, thermal stability, and mechanical properties can be manufactured.
본 발명에 따른 폴리에틸렌은, 별도의 공중합체를 포함하지 않는 에틸렌 호모 중합체일 수 있다. The polyethylene according to the present invention may be an ethylene homopolymer that does not include a separate copolymer.
상기 폴리에틸렌은, 상술한 바와 같이 ASTM D 1238의 방법으로 온도 190 ℃ 및 하중 5 kg의 조건 하에서 측정된 용융 지수 MI5가 약 0.7 g/10min 내지 1.0 g/10min이어야 하고, 혹은 약 0.75 g/10min 내지 1.0 g/10min, 또는 약 0.79 g/10min 내지 0.99 g/10min일 수 있다. 상기 용융 지수 MI5은 낮을수록 점도가 높아져 염소화 폴리에틸렌 제조시 무늬 점도 등의 물성이 최적 범위를 벗어나게 되고, 그럴 경우 전선 및 케이블 등으로 제품 가공시 압출 공정에서 가공 부하가 많이 걸리며, 무기물 분산이 잘 안되는 문제가 발생할 수 있다. 이에, 상기 용융 지수 MI5은 제품 가공시 압출 가공 부하를 줄이고 우수한 외관 물성 확보 측면에서 약 0.7 g/10min 이상이 되어야 한다. 또한, 상기 용융 지수 MI5은 너무 높을 경우에 저분자 함량이 많아져 염화 공정 시 저분자가 고온에서 녹아 덩어리가 형성되는 등 입자의 형태 변화가 많아져 열안정성이 떨어지게 된다. 이에, 상기 용융 지수 MI5은 우수한 열안정성을 구현하는 측면에서 약 1.0 g/10min 이하가 되어야 한다. The above polyethylene should have a melt index MI 5 of about 0.7 g/10 min to 1.0 g/10 min as measured under the conditions of a temperature of 190 ℃ and a load of 5 kg by the method of ASTM D 1238 as described above, or can be about 0.75 g/10 min to 1.0 g/10 min, or about 0.79 g/10 min to 0.99 g/10 min. The lower the melt index MI 5 , the higher the viscosity, and when manufacturing chlorinated polyethylene, the properties such as pattern viscosity deviate from the optimal range. In this case, when processing products such as wires and cables, a lot of processing load is applied in the extrusion process, and a problem of poor inorganic dispersion may occur. Therefore, the melt index MI 5 should be about 0.7 g/10 min or more in order to reduce the extrusion processing load during product processing and to secure excellent appearance properties. In addition, if the melting index MI 5 is too high, the low molecular content increases, and during the chlorination process, the low molecular weight particles melt at high temperatures and form lumps, which causes changes in particle shape and reduces thermal stability. Accordingly, the melting index MI 5 should be about 1.0 g/10 min or less in order to realize excellent thermal stability.
또한, 상기 폴리에틸렌은, 밀도가 약 0.953 g/cm3 이상이어야 한다. 하고, 구체적으로, 상기 폴리에틸렌의 밀도는 약 0.953 g/cm3 이상 또는 약 0.953 g/cm3 내지 약 0.960 g/cm3, 혹은 약 0.954 g/cm3 이상 또는 약 0.954 g/cm3 내지 약 0.9568 g/cm3일 수 있다. 이는 폴리에틸렌의 결정 구조의 함량이 높고 치밀하다는 것을 의미하며, 이는 염소화 공정 중 결정 구조의 변화가 일어나기 어려운 특징을 갖는다. 특히, 상기 폴리에틸렌의 밀도가 약 0.953 g/cm3 미만인 경우, 입자의 결정성을 떨어뜨려 열안정성을 떨어지게 만들며 염화 공정시 입자의 형태 변화가 많아져 덩어리가 형성되는 등 염화 생산성이 떨어질 수 있다. In addition, the polyethylene must have a density of about 0.953 g/cm 3 or more. Specifically, the density of the polyethylene may be about 0.953 g/cm 3 or more, or about 0.953 g/cm 3 to about 0.960 g/cm 3 , or about 0.954 g/cm 3 or more, or about 0.954 g/cm 3 to about 0.9568 g/cm 3 . This means that the content of the crystal structure of the polyethylene is high and dense, which has the characteristic that the crystal structure is unlikely to change during the chlorination process. In particular, when the density of the polyethylene is less than about 0.953 g/cm 3 , the crystallinity of the particles decreases, which reduces the thermal stability, and the shape of the particles changes significantly during the chlorination process, which may cause lumps to form, thereby lowering the chlorination productivity.
특히, 상기 폴리에틸렌은, 후술되는 바와 같이 특정의 메탈로센 촉매와 수소 투입량을 최적화하여 제조함으로써, 상기 용융지수 및 밀도와 함께 특정의 주파수에 따른 복소 점도를 최적화하여, 분자 구조내 중고분자 영역이 많게 하여 염화 가공 시 탈산, 탈수 및 건조 공정을 용이하게 하고, 염화 온도 상향을 가능하게 함으로써 염화 생산성을 높일 수 있으며, 이로써 최종 제품인 CPE 컴파운드(Compound)의 강도를 향상시킬 수 있다. In particular, the polyethylene is manufactured by optimizing a specific metallocene catalyst and hydrogen input as described below, thereby optimizing the complex viscosity according to a specific frequency together with the melting index and density, thereby increasing the number of medium and high molecular regions in the molecular structure, thereby facilitating the deoxidation, dehydration and drying processes during chlorination processing, and enabling an increase in the chlorination temperature, thereby increasing chlorination productivity, thereby improving the strength of the final product, the CPE compound.
상기 폴리에틸렌은, 주파수(ω, frequency, ω) 0.05 rad/s에서 측정한 복소 점도(η*(ω0.05), complex viscosity)가 약 43000 Paㆍs 이상 또는 약 43000 Paㆍs 내지 약 110000 Paㆍs으로 높게 나타난다. 구체적으로, 상기 주파수(ω, frequency, ω) 0.05 rad/s에서 측정한 복소 점도(η*(ω0.05), complex viscosity)는 약 43000 Paㆍs 이상 또는 약 43000 Paㆍs 내지 약 65000 Paㆍs, 혹은 약 45000 Paㆍs 이상 또는 약 45000 Paㆍs 내지 약 60000 Paㆍs일 수 있다. 또한, 주파수(ω, frequency, ω) 500 rad/s에서 측정한 복소 점도(η*(ω500), complex viscosity)가 550 Paㆍs 내지 850 Paㆍs으로 최적 범위를 나타낸다. 구체적으로, 주파수(ω, frequency, ω) 500 rad/s에서 측정한 복소 점도(η*(ω500), complex viscosity)는 약 580 Paㆍs 내지 약 800 Paㆍs, 혹은 약 600 Paㆍs 내지 약 750 Paㆍs일 수 있다. 여기서, 상기 주파수(ω, frequency, ω) 0.05 rad/s에서 측정한 복소 점도(η*(ω0.05), complex viscosity)은 폴리에틸렌의 염화 생산성을 향상시키는 측면에서 약 43000 Paㆍs 이상이어야 한다. 또한, 상기 주파수(ω, frequency, ω) 500 rad/s에서 측정한 복소 점도(η*(ω500), complex viscosity)는 폴리에틸렌이 염소화 공정 후 컴파운드 제품 가공을 위한 압출시 가공 부하가 적절히 유지되도록 하는 측면에서 상술한 바와 같은 범위가 유지되어야 한다. The above polyethylene exhibits a high complex viscosity (η*(ω0.05), complex viscosity) of about 43,000 Paㆍs or more, or about 43,000 Paㆍs to about 110,000 Paㆍs when measured at a frequency (ω, frequency, ω) of 0.05 rad/s. Specifically, the complex viscosity (η*(ω0.05), complex viscosity) measured at the frequency (ω, frequency, ω) of 0.05 rad/s may be about 43,000 Paㆍs or more, or about 43,000 Paㆍs to about 65,000 Paㆍs, or about 45,000 Paㆍs or more, or about 45,000 Paㆍs to about 60,000 Paㆍs. In addition, the complex viscosity (η*(ω500), complex viscosity) measured at a frequency (ω, frequency, ω) of 500 rad/s shows an optimal range of 550 Paㆍs to 850 Paㆍs. Specifically, the complex viscosity (η*(ω500), complex viscosity) measured at a frequency (ω, frequency, ω) of 500 rad/s can be about 580 Paㆍs to about 800 Paㆍs, or about 600 Paㆍs to about 750 Paㆍs. Here, the complex viscosity (η*(ω0.05), complex viscosity) measured at a frequency (ω, frequency, ω) of 0.05 rad/s should be about 43000 Paㆍs or more in order to improve the chlorination productivity of polyethylene. In addition, the complex viscosity (η*(ω500), complex viscosity) measured at the frequency (ω, frequency, ω) of 500 rad/s should be maintained within the range described above in order to ensure that the processing load is appropriately maintained during extrusion for compound product processing after the chlorination process of polyethylene.
일반적으로, 완전한 탄성의 물질은 탄성 전단 응력(elastic shear stress)에 비례하여 변형이 발생하며, 이를 후크의 법칙이라고 한다. 또한, 순수한 점섬의 액체의 경우 점성 전단 응력(viscous shear stress)에 비례하여 변형이 발생하며, 이를 뉴튼 법칙이라고 한다. 완전한 탄성의 물질은 탄성 에너지가 축적되어 탄성 전단 응력이 제거되면 변형이 다시 회복될 수 있고, 완전한 점성의 물질은 에너지가 변형으로 모두 소멸되기 때문에, 점성 전단 응력이 제거되더라도 변형이 회복되지 않는다. 또한, 물질 자체의 점성이 변하지 않는다.In general, a perfectly elastic material deforms in proportion to the elastic shear stress, which is called Hooke's law. In addition, in the case of a purely viscous liquid, deformation occurs in proportion to the viscous shear stress, which is called Newton's law. A perfectly elastic material can recover its deformation when the elastic shear stress is removed because elastic energy is accumulated, but a perfectly viscous material does not recover its deformation even when the viscous shear stress is removed because all energy is dissipated through deformation. In addition, the viscosity of the material itself does not change.
그러나, 고분자는 용융 상태에서 완전한 탄성의 물질과 점성의 액체의 중간 정도의 성질을 가지는데, 이를 점탄성(viscoelasticity)이라고 한다. 즉, 고분자는 용융 상태에서 전단 응력을 받으면 변형이 전단 응력에 비례하지 않으며, 또한 전단 응력에 따라 점성이 변하는 특성이 있으며, 이를 비뉴튼 유체라고도 한다. 이러한 특성은, 고분자가 거대한 분자 크기와 복잡한 분자간 구조를 가져 전단 응력에 따른 변형의 복잡성에 기인한다. However, polymers have properties that are intermediate between perfectly elastic materials and viscous liquids in the molten state, which is called viscoelasticity. That is, when polymers are subjected to shear stress in the molten state, their deformation is not proportional to the shear stress, and their viscosity also changes depending on the shear stress, which is also called a non-Newtonian fluid. These properties are due to the complexity of deformation according to shear stress, as polymers have large molecular sizes and complex intermolecular structures.
특히, 고분자를 이용하여 성형품을 제조할 경우에, 비뉴튼 유체가 가지는 특성 중에서도 전단 유동화 현상(shear thinning)이 중요하게 고려된다. 전단 유동화 현상이란, 전단 속도(shear rate)가 증가함에 따라 고분자의 점성이 감소하는 현상을 의미하는데, 이러한 전단 유동화 특성에 따라 고분자의 성형 방법이 결정된다. 특히, 본 발명과 같이 대구경 파이프나 복합관과 같이 큰 성형품이나 높은 속도의 고분자 압출이 필요한 성형품 제조시, 상당한 압력이 용융 고분자에 가해져야 하므로 전단 유동화 특성을 나타내지 않는다면 이러한 성형품의 제조가 어려운바, 전단 유동화 특성이 중요하게 고려된다. In particular, when manufacturing a molded product using a polymer, shear thinning is an important characteristic of a non-Newtonian fluid. The shear thinning phenomenon refers to a phenomenon in which the viscosity of a polymer decreases as the shear rate increases, and the molding method of the polymer is determined according to this shear thinning characteristic. In particular, when manufacturing a large molded product such as a large-diameter pipe or a composite pipe as in the present invention or a molded product that requires high-speed polymer extrusion, since considerable pressure must be applied to the molten polymer, if the molded product does not exhibit shear thinning characteristics, it is difficult to manufacture such a molded product. Therefore, shear thinning characteristics are important to consider.
이에 본 발명에서는 주파수(frequency, ω[rad/s])에 따른 복소 점도(complex viscosity, η*[Pa.s])를 통하여 전단 유동화 특성을 측정한다. 특히, 주파수(ω, frequency, ω) 0.05 rad/s 및 500 rad/s에서 복소 점도를 최적화하여 염화 생산성이 우수하고 컴파운드의 물성이 우수한 특성을 구현할 수 있다. 이와 함께, 주파수(ω, frequency, ω) 500 rad/s에서 복소 점도를 통해 염소화 폴리에틸렌의 무늬점도(MV) 등의 물성 범위를 예측할 수 있다.Accordingly, in the present invention, shear fluidization characteristics are measured through complex viscosity (η*[Pa.s]) according to frequency (frequency, ω[rad/s]). In particular, by optimizing the complex viscosity at frequencies (ω, frequency, ω) of 0.05 rad/s and 500 rad/s, excellent chlorination productivity and excellent compound properties can be realized. In addition, the property range such as pattern viscosity (MV) of chlorinated polyethylene can be predicted through the complex viscosity at a frequency (ω, frequency, ω) of 500 rad/s.
특히, 본 발명에 따라 용융지수와 밀도, 및 특정의 주파수에 따른 복소 점도에 의해서 최적화된 분자구조로 만들어진 폴리에틸렌은, 고온으로 승온시키는 염화 가공 시 고온에 의한 입자 변화를 최소화할 수 있어, 열안정성을 향상시키며 뭉치고 덩어리지는 현상 방지할 수 있고, 입자 변화가 최소화되면서 염소의 분포도 고르게 치환되어 이로써 컴파운드의 인장강도를 향상시킬 수 있다. In particular, polyethylene made with a molecular structure optimized by melting index, density, and complex viscosity according to a specific frequency according to the present invention can minimize particle changes due to high temperatures during chlorination processing at high temperatures, thereby improving thermal stability and preventing clumping and lumping, and while particle changes are minimized, chlorine distribution is evenly substituted, thereby improving the tensile strength of the compound.
한편, 본 발명의 폴리에틸렌은, 전술한 바와 같이 용융 지수 MI5를 최적화함과 동시에, 용융 흐름 지수(MFRR21.6/5, ASTM D 1238의 방법으로 190 ℃, 21.6 kg 하중에서 측정한 용융 지수를 190 ℃, 5 kg 하중에서 측정한 용융 지수로 나눈 값)를 최적화하는 것이 바람직하다. 이 때, 상기 폴리에틸렌의 용융 흐름 지수(MFRR21.6/5, ASTM D 1238의 방법으로 190 ℃, 21.6 kg 하중에서 측정한 용융 지수를 190 ℃, 5 kg 하중에서 측정한 용융 지수로 나눈 값)는 약 16 내지 약 25일 수 있다. 구체적으로, 상기 용융 흐름 지수는 약 17 내지 약 23 또는 약 18 내지 약 22일 수 있다. 상기 용융 흐름 지수는 압출 시 가공성 측면에서 약 16 이상일 수 있고, CPE의 MV(Mooney viscosity)를 증가시켜 우수한 기계적 물성을 확보하는 측면에서 약 25 이하일 수 있다. Meanwhile, it is preferable that the polyethylene of the present invention optimizes the melt index MI 5 as described above, and also optimizes the melt flow rate (MFRR 21.6/5 , a value obtained by dividing the melt index measured at 190° C. and 21.6 kg load by the method of ASTM D 1238 by the melt index measured at 190° C. and 5 kg load). At this time, the melt flow rate (MFRR 21.6/5 , a value obtained by dividing the melt index measured at 190° C. and 21.6 kg load by the method of ASTM D 1238 by the melt index measured at 190° C. and 5 kg load) of the polyethylene may be about 16 to about 25. Specifically, the melt flow rate may be about 17 to about 23 or about 18 to about 22. The above melt flow index may be about 16 or more in terms of processability during extrusion, and may be about 25 or less in terms of securing excellent mechanical properties by increasing the MV (Mooney viscosity) of CPE.
상기 폴리에틸렌은, 중량 평균 분자량이 약 150000 g/mol 내지 약 200000 g/mol 이며, 혹은 약 153000 g/mol 내지 약 190000 g/mol, 혹은 약 155000 g/mol 내지 약 185000 g/mol일 수 있다. 이는 폴리에틸렌의 분자량이 높고 고분자량 성분의 함량이 높다는 것을 의미하며, 이는 후술할 연결 분자의 함량을 증가시키는 효과를 유발한다. The above polyethylene may have a weight average molecular weight of about 150,000 g/mol to about 200,000 g/mol, or about 153,000 g/mol to about 190,000 g/mol, or about 155,000 g/mol to about 185,000 g/mol. This means that the molecular weight of the polyethylene is high and the content of a high molecular weight component is high, which causes an effect of increasing the content of a linking molecule to be described later.
또한, 상기 폴리에틸렌의 분자량 분포는 약 5.5 내지 약 10, 혹은 약 6 내지 약 9, 혹은 약 6.5 내지 약 8일 수 있다. 이는 폴리에틸렌의 분자량 분포가 좁다는 것을 의미한다. 분자량 분포가 넓으면 폴리에틸렌 간의 분자량 차이가 크기 때문에, 염소화 반응 후 폴리에틸렌 간의 염소 함유량이 달라질 수 있어 염소의 균일한 분포가 어렵다. 또한, 저분자량 성분이 용융되면 유동성이 높기 때문에 폴리에틸렌 입자의 기공을 막아 염소화 생산성을 저하시킬 수 있다. 그러나, 본 발명에서는 상기와 같은 분자량 분포를 가지기 때문에, 염소화 반응 후 폴리에틸렌 간의 분자량 차이가 크지 않아 염소가 균일하게 치환될 수 있다. In addition, the molecular weight distribution of the polyethylene may be about 5.5 to about 10, or about 6 to about 9, or about 6.5 to about 8. This means that the molecular weight distribution of the polyethylene is narrow. If the molecular weight distribution is wide, the difference in molecular weight between the polyethylenes is large, so that the chlorine content between the polyethylenes may be different after the chlorination reaction, making it difficult to uniformly distribute chlorine. In addition, when the low molecular weight component is melted, it has high fluidity, so that it may block the pores of the polyethylene particles and reduce the chlorination productivity. However, in the present invention, since it has the molecular weight distribution as described above, the difference in molecular weight between the polyethylenes after the chlorination reaction is not large, so that chlorine can be uniformly substituted.
일 예로, 상기 분자량 분포(MWD, polydispersity index)는 겔 투과 크로마토그래피(GPC, gel permeation chromatography, Water사 제조)를 이용하여 폴리에틸렌의 중량평균 분자량(Mw)과 수평균 분자량(Mn)을 측정하고, 중량평균 분자량을 수평균 분자량으로 나누어 산측할 수 있다. For example, the molecular weight distribution (MWD, polydispersity index) can be calculated by measuring the weight average molecular weight (Mw) and number average molecular weight (Mn) of polyethylene using gel permeation chromatography (GPC, gel permeation chromatography, manufactured by Water), and dividing the weight average molecular weight by the number average molecular weight.
구체적으로, 겔투과 크로마토그래피(GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laboratories PLgel MIX-B 300 mm 길이 칼럼을 사용할 수 있다. 이때 측정 온도는 섭씨 온도(Celsius temperature) 160 ℃이며, 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene)을 용매로서 사용할 수 있으며, 유속은 1 mL/min로 적용할 수 있다. 상기 폴리에틸렌 시료는 각각 GPC 분석 기기 (PL-GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠(1,2,4-Trichlorobenzene)에서 160 ℃, 10시간 동안 녹여 전처리하고, 10 mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급할 수 있다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도할 수 있다. 폴리스티렌 표준 시편의 중량평균 분자량은 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g/mol의 9종을 사용할 수 있다.Specifically, a Waters PL-GPC220 instrument can be used as a gel permeation chromatography (GPC) instrument, and a Polymer Laboratories PLgel MIX-B 300 mm long column can be used. At this time, the measurement temperature is 160 °C (Celsius temperature), 1,2,4-trichlorobenzene can be used as a solvent, and a flow rate of 1 mL/min can be applied. Each of the above polyethylene samples can be pretreated by melting in 1,2,4-trichlorobenzene containing 0.0125% BHT at 160 °C for 10 hours using a GPC analysis instrument (PL-GP220), preparing a concentration of 10 mg/10 mL, and then supplying it in an amount of 200 μL. The values of Mw and Mn can be derived using a calibration curve formed using a polystyrene standard specimen. The weight average molecular weight of polystyrene standard specimens can be used in nine types: 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, and 10000000 g/mol.
한편, 발명의 다른 일 구현예에 따르면, 상술한 바와 같은 폴리에틸렌을 제조하는 방법이 제공된다. Meanwhile, according to another embodiment of the invention, a method for producing polyethylene as described above is provided.
본 발명에 따른 폴리에틸렌의 제조 방법은, 하기 화학식 1로 표시되는 제1 메탈로센 화합물 1종 이상; 및 하기 화학식 2로 표시되는 화합물 중에서 선택되는 제2 메탈로센 화합물 1종 이상의 존재 하에, 수소 기체를 50 내지 125 ppm으로 투입하며, 에틸렌을 중합하는 단계를 포함할 수 있다. A method for producing polyethylene according to the present invention may include a step of polymerizing ethylene by introducing hydrogen gas at 50 to 125 ppm in the presence of at least one first metallocene compound represented by the following chemical formula 1; and at least one second metallocene compound selected from compounds represented by the following chemical formula 2.
[화학식 1][Chemical formula 1]
상기 화학식 1에서,In the above chemical formula 1,
R1 내지 R8 중 어느 하나 이상은 -(CH2)n-OR이고, 여기서, R은 C1-6의 직쇄 또는 분지쇄 알킬이고, n은 2 내지 6의 정수이고, At least one of R 1 to R 8 is -(CH 2 ) n -OR, wherein R is a straight or branched chain alkyl of C 1-6 , n is an integer from 2 to 6,
R1 내지 R8 중 나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C6-20 아릴, C7-40 알킬아릴, C7-40 아릴알킬로 이루어진 군에서 선택된 작용기이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 C1-10의 하이드로카빌기로 치환 또는 비치환된 C6-20의 지방족 또는 방향족 고리를 형성할 수 있고,The remainder of R 1 to R 8 are the same or different and each independently a functional group selected from the group consisting of hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 6-20 aryl, C 7-40 alkylaryl, C 7-40 arylalkyl, or two or more adjacent groups may be connected to each other to form a C 6-20 aliphatic or aromatic ring substituted or unsubstituted with a C 1-10 hydrocarbyl group,
Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알콕시알킬, C6-20 아릴, C7-40 알킬아릴, C7-40 아릴알킬이고;Q 1 and Q 2 are the same or different, and are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-40 alkylaryl, C 7-40 arylalkyl;
A1은 탄소(C), 실리콘(Si), 또는 게르마늄(Ge)이고;A 1 is carbon (C), silicon (Si), or germanium (Ge);
M1은 4족 전이금속이며;M 1 is a group 4 transition metal;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C6-20 아릴, 니트로기, 아미도기, C1-20 알킬실릴, C1-20 알콕시, 또는 C1-20 설포네이트기이고;X 1 and X 2 are the same or different, and each independently represents halogen, C 1-20 alkyl, C 2-20 alkenyl, C 6-20 aryl, nitro group, amido group, C 1-20 alkylsilyl, C 1-20 alkoxy, or C 1-20 sulfonate group;
m은 0 또는 1의 정수이고,m is an integer of 0 or 1,
[화학식 2][Chemical formula 2]
상기 화학식 2에서,In the above chemical formula 2,
Q3 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알콕시알킬, C6-20 아릴, C7-40 알킬아릴, C7-40 아릴알킬이고;Q 3 and Q 4 are the same or different, and are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-40 alkylaryl, C 7-40 arylalkyl;
A2는 탄소(C), 실리콘(Si), 또는 게르마늄(Ge)이고;A 2 is carbon (C), silicon (Si), or germanium (Ge);
M2는 4족 전이금속이며;M 2 is a group 4 transition metal;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C6-20 아릴, 니트로기, 아미도기, C1-20 알킬실릴, C1-20 알콕시, 또는 C1-20 설포네이트기이고;X 3 and X 4 are the same or different, and each independently represents halogen, C 1-20 alkyl, C 2-20 alkenyl, C 6-20 aryl, nitro group, amido group, C 1-20 alkylsilyl, C 1-20 alkoxy, or C 1-20 sulfonate group;
C1 및 C2는 중 하나는 하기 화학식 3a 또는 화학식 3b로 표시되고, C1 및 C2는 중 나머지 하나는 하기 화학식 3c, 화학식 3d, 또는 화학식 3e로 표시되며;C 1 and C 2 is represented by one of the following chemical formulas 3a or 3b, and C 1 and C 2 is represented by the following chemical formula 3c, chemical formula 3d, or chemical formula 3e;
[화학식 3a][Chemical formula 3a]
[화학식 3b][Chemical formula 3b]
[화학식 3c][Chemical formula 3c]
[화학식 3d][chemical formula 3d]
[화학식 3e][Chemical formula 3e]
상기 화학식 3a, 3b, 3c, 3d 및 3e에서, R9 내지 R39 및 R17' 내지 R21'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬, C1-20 할로알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 알콕시, C6-20 아릴, C7-40 알킬아릴, C7-40 아릴알킬이며, 단, R17 내지 R21 및 R17' 내지 R21' 중 하나 이상은 C1-20 할로알킬이고, In the above chemical formulas 3a, 3b, 3c, 3d and 3e, R 9 to R 39 and R 17' to R 21' are the same as or different from each other and are each independently hydrogen, halogen, C 1-20 alkyl, C 1-20 haloalkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1-20 alkoxy, C 6-20 aryl, C 7-40 alkylaryl, C 7-40 arylalkyl, provided that at least one of R 17 to R 21 and R 17' to R 21' is C 1-20 haloalkyl,
R22 내지 R39 중 서로 인접하는 2개 이상이 서로 연결되어 C1-10 의 하이드로카빌기로 치환 또는 비치환된 C6-20의 지방족 또는 방향족 고리를 형성할 수 있으며; At least two adjacent ones of R 22 to R 39 may be connected to each other to form a C 6-20 aliphatic or aromatic ring which is unsubstituted or substituted with a C 1-10 hydrocarbyl group;
*는 A2 및 M2와 결합하는 부위를 나타낸 것이다. * Indicates the site of binding to A 2 and M 2 .
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다. Unless otherwise specified in this specification, the following terms may be defined as follows:
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br), 또는 요오드(I)일 수 있다.A halogen can be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 아르알키닐기, 알킬아릴기, 알케닐아릴기 및 알키닐아릴기 등을 포함할 수 있다. 그리고, 탄소수 1 내지 30의 하이드로카빌기는 탄소수 1 내지 20 또는 탄소수 1 내지 10의 하이드로카빌기일 수 있다. 일예로, 하이드로카빌기는 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, 탄소수 1 내지 30의 하이드로카빌기는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, n-헥실기, n-헵틸기, 사이클로헥실기 등의 직쇄, 분지쇄 또는 고리형 알킬기; 또는 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 또는 플루오레닐 등의 아릴기일 수 있다. 또한, 메틸페닐, 에틸페닐, 메틸비페닐, 메틸나프틸 등의 알킬아릴일 수 있으며, 페닐메틸, 페닐에틸, 비페닐메틸, 나프틸메틸 등의 아릴알킬일 수도 있다. 또한, 알릴, 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등의 알케닐일 수 있다.A hydrocarbyl group is a monovalent functional group in which a hydrogen atom is removed from a hydrocarbon, and may include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, an aralkenyl group, an aralkynyl group, an alkylaryl group, an alkenylaryl group, and an alkynylaryl group. In addition, the hydrocarbyl group having 1 to 30 carbon atoms may be a hydrocarbyl group having 1 to 20 carbon atoms or 1 to 10 carbon atoms. For example, the hydrocarbyl group may be a straight-chain, branched-chain, or cyclic alkyl. More specifically, the hydrocarbyl group having 1 to 30 carbon atoms may be a straight-chain, branched-chain or cyclic alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, a cyclohexyl group, or an aryl group such as phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, or fluorenyl. In addition, it may be an alkylaryl such as methylphenyl, ethylphenyl, methylbiphenyl, or methylnaphthyl, and may also be an arylalkyl such as phenylmethyl, phenylethyl, biphenylmethyl, or naphthylmethyl. In addition, it may be an alkenyl such as allyl, allyl, ethenyl, propenyl, butenyl, or pentenyl.
또한, 탄소수 1 내지 20(C1-20)의 알킬은 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 구체적으로, 탄소수 1 내지 20의 알킬은 탄소수 1 내지 20의 직쇄 알킬; 탄소수 1 내지 15의 직쇄 알킬; 탄소수 1 내지 5의 직쇄 알킬; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬일 수 있다. 일예로, 상기 탄소수 1 내지 20(C1-20)의 알킬은 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Additionally, the alkyl having 1 to 20 carbon atoms (C 1-20 ) may be a straight-chain, branched-chain or cyclic alkyl. Specifically, the alkyl having 1 to 20 carbon atoms may be a straight-chain alkyl having 1 to 20 carbon atoms; a straight-chain alkyl having 1 to 15 carbon atoms; a straight-chain alkyl having 1 to 5 carbon atoms; a branched-chain or cyclic alkyl having 3 to 20 carbon atoms; a branched-chain or cyclic alkyl having 3 to 15 carbon atoms; or a branched-chain or cyclic alkyl having 3 to 10 carbon atoms. For example, the alkyl having 1 to 20 carbon atoms (C 1-20 ) may include, but is not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
탄소수 2 내지 20(C2-20)의 알케닐로는 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Alkenyl having 2 to 20 carbon atoms ( C2-20 ) includes straight-chain or branched-chain alkenyl, and specifically includes, but is not limited to, allyl, allyl, ethenyl, propenyl, butenyl, pentenyl, etc.
탄소수 1 내지 20(C1-20)의 알콕시로는 메톡시기, 에톡시, 이소프로폭시, n-부톡시, tert-부톡시, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Examples of alkoxy groups having 1 to 20 carbon atoms (C 1-20 ) include, but are not limited to, methoxy, ethoxy, isopropoxy, n-butoxy, tert-butoxy, and cyclohexyloxy.
탄소수 2 내지 20(C2-20)의 알콕시알킬기는 상술한 알킬의 1개 이상의 수소가 알콕시로 치환된 작용기이며, 구체적으로 메톡시메틸, 메톡시에틸, 에톡시메틸, iso-프로폭시메틸, iso-프로폭시에틸, iso-프로폭시프로필, iso-프로폭시헥실, tert-부톡시메틸, tert-부톡시에틸, tert-부톡시프로필, tert-부톡시헥실 등의 알콕시알킬을 들 수 있으나, 이에만 한정되는 것은 아니다.An alkoxyalkyl group having 2 to 20 carbon atoms (C 2-20 ) is a functional group in which at least one hydrogen of the above-mentioned alkyl is replaced with alkoxy, and specifically, examples thereof include alkoxyalkyl such as methoxymethyl, methoxyethyl, ethoxymethyl, iso-propoxymethyl, iso-propoxyethyl, iso-propoxypropyl, iso-propoxyhexyl, tert-butoxymethyl, tert-butoxyethyl, tert-butoxypropyl, and tert-butoxyhexyl, but are not limited thereto.
탄소수 6 내지 40(C6-40)의 아릴옥시로는 페녹시, 비페녹실, 나프톡시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Aryloxy having 6 to 40 carbon atoms (C 6-40 ) includes, but is not limited to, phenoxy, biphenoxy, and naphthoxy.
탄소수 7 내지 40(C7-40)의 아릴옥시알킬기는 상술한 알킬의 1개 이상의 수소가 아릴옥시로 치환된 작용기이며, 구체적으로 페녹시메틸, 페녹시에틸, 페녹시헥실 등을 들 수 있으나, 이에만 한정되는 것은 아니다.An aryloxyalkyl group having 7 to 40 carbon atoms (C 7-40 ) is a functional group in which at least one hydrogen of the above-mentioned alkyl is replaced with aryloxy, and specific examples thereof include, but are not limited to, phenoxymethyl, phenoxyethyl, and phenoxyhexyl.
탄소수 1 내지 20(C1-20)의 알킬실릴 또는 탄소수 1 내지 20(C1-20)의 알콕시실릴기는 -SiH3의 1 내지 3개의 수소가 1 내지 3개의 상술한 바와 같은 알킬 또는 알콕시로 치환된 작용기이며, 구체적으로 메틸실릴, 디메틸실릴, 트라이메틸실릴, 디메틸에틸실릴, 디에틸메틸실릴기 또는 디메틸프로필실릴 등의 알킬실릴; 메톡시실릴, 디메톡시실릴, 트라이메톡시실릴 또는 디메톡시에톡시실릴 등의 알콕시실릴; 메톡시디메틸실릴, 디에톡시메틸실릴 또는 디메톡시프로필실릴 등의 알콕시알킬실릴을 들 수 있으나, 이에만 한정되는 것은 아니다.Alkylsilyl having 1 to 20 carbon atoms (C 1-20 ) or alkoxysilyl group having 1 to 20 carbon atoms (C 1-20 ) is a functional group in which 1 to 3 hydrogens of -SiH 3 are replaced with 1 to 3 of the above-described alkyl or alkoxy groups, and specifically, examples thereof include, but are not limited to, alkylsilyl such as methylsilyl, dimethylsilyl, trimethylsilyl, dimethylethylsilyl, diethylmethylsilyl, or dimethylpropylsilyl; alkoxysilyl such as methoxysilyl, dimethoxysilyl, trimethoxysilyl, or dimethoxyethoxysilyl; and alkoxyalkylsilyl such as methoxydimethylsilyl, diethoxymethylsilyl, or dimethoxypropylsilyl.
탄소수 1 내지 20(C1-20)의 실릴알킬은 상술한 바와 같은 알킬의 1 이상의 수소가 실릴로 치환된 작용기이며, 구체적으로 -CH2-SiH3, 메틸실릴메틸 또는 디메틸에톡시실릴프로필 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Silylalkyl having 1 to 20 carbon atoms (C 1-20 ) is a functional group in which one or more hydrogens of the above-described alkyl are replaced with silyl, and specifically, examples thereof include, but are not limited to, -CH 2 -SiH 3 , methylsilylmethyl, or dimethylethoxysilylpropyl.
또한, 탄소수 1 내지 20(C1-20)의 알킬렌으로는 2가 치환기라는 것을 제외하고는 상술한 알킬과 동일한 것으로, 구체적으로 메틸렌, 에틸렌, 프로필렌, 부틸렌, 펜틸렌, 헥실렌, 헵틸렌, 옥틸렌, 시클로프로필렌, 시클로부틸렌, 시클로펜틸렌, 시클로헥실렌, 시클로헵틸렌, 시클로옥틸렌 등을 들 수 있으나, 이에만 한정되는 것은 아니다.In addition, alkylene having 1 to 20 carbon atoms (C 1-20 ) is the same as the alkyl described above except that it is a divalent substituent, and specifically includes methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, cyclooctylene, etc., but is not limited thereto.
탄소수 6 내지 20(C6-20)의 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소일 수 있다. 일예로, 상기 탄소수 6 내지 20(C6-20)의 아릴은 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The aryl having 6 to 20 carbon atoms (C 6-20 ) can be a monocyclic, bicyclic or tricyclic aromatic hydrocarbon. For example, the aryl having 6 to 20 carbon atoms (C 6-20 ) can include, but is not limited to, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, and the like.
탄소수 7 내지 20(C7-20)의 알킬아릴은 방향족 고리의 수소 중 하나 이상의 수소가 상술한 알킬에 의하여 치환된 치환기를 의미할 수 있다. 일예로, 상기 탄소수 7 내지 20(C7-20)의 알킬아릴은 메틸페닐, 에틸페닐, 메틸비페닐, 메틸나프틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다The alkylaryl having 7 to 20 carbon atoms (C 7-20 ) may refer to a substituent in which at least one of the hydrogens of the aromatic ring is substituted by the above-described alkyl. As an example, the alkylaryl having 7 to 20 carbon atoms (C 7-20 ) may include, but is not limited to, methylphenyl, ethylphenyl, methylbiphenyl, methylnaphthyl, etc.
상기 탄소수 7 내지 20(C7-20)의 아릴알킬은 상술한 알킬의 1 이상의 수소가 상술한 아릴에 의하여 치환된 치환기를 의미할 수 있다. 일예로, 상기 탄소수 7 내지 20(C7-20)의 아릴알킬은 페닐메틸, 페닐에틸, 비페닐메틸, 나프틸메틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The above C 7-20 arylalkyl may refer to a substituent in which one or more hydrogens of the above-described alkyl are substituted by the above-described aryl. As examples, the C 7-20 arylalkyl may include, but is not limited to, phenylmethyl, phenylethyl, biphenylmethyl, naphthylmethyl, and the like.
또한, 탄소수 6 내지 20(C6-20)의 아릴렌은 2가 치환기라는 것을 제외하고는 상술한 아릴과 동일한 것으로, 구체적으로 페닐렌, 비페닐렌, 나프틸렌, 안트라세닐렌, 페난트레닐렌, 플루오레닐렌 등을 들 수 있으나, 이에만 한정되는 것은 아니다.In addition, arylene having 6 to 20 carbon atoms (C 6-20 ) is the same as the above-mentioned aryl except that it is a divalent substituent, and specifically includes phenylene, biphenylene, naphthylene, anthracenylene, phenanthrenylene, fluorenylene, etc., but is not limited thereto.
그리고, 4족 전이 금속은, 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 또는 러더포듐(Rf)일 수 있으며, 구체적으로 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf) 일 수 있으며, 보다 구체적으로 지르코늄(Zr), 또는 하프늄(Hf)일 수 있으며, 이에만 한정되는 것은 아니다. And, the group 4 transition metal may be titanium (Ti), zirconium (Zr), hafnium (Hf), or rutherfordium (Rf), specifically titanium (Ti), zirconium (Zr), or hafnium (Hf), more specifically zirconium (Zr) or hafnium (Hf), but is not limited thereto.
또한, 13족 원소는, 붕소(B), 알루미늄(Al), 갈륨(Ga), 인듐(In), 또는 탈륨(Tl)일 수 있으며, 구체적으로 붕소(B), 또는 알루미늄(Al)일 수 있으며, 이에만 한정되는 것은 아니다. Additionally, the group 13 element may be boron (B), aluminum (Al), gallium (Ga), indium (In), or thallium (Tl), specifically, but not limited to, boron (B) or aluminum (Al).
한편, 상기 제1 메탈로센 화합물은 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시되는 것일 수 있다. Meanwhile, the first metallocene compound may be represented by any one of the following chemical formulas 1-1 to 1-4.
[화학식 1-1][Chemical Formula 1-1]
[화학식 1-2][Chemical Formula 1-2]
[화학식 1-3][Chemical Formula 1-3]
[화학식 1-4][Chemical Formula 1-4]
상기 화학식 1-1 내지 1-4에서, Q1, Q2, A1, M1, X1, X2, 및 R1 내지 R8은 상기 화학식 1에서 정의한 바와 같고, R' 및 R''는 서로 동일하거나 상이하고 각각 독립적으로, C1-10의 하이드로카빌기이다. In the above chemical formulas 1-1 to 1-4, Q 1 , Q 2 , A 1 , M 1 , X 1 , X 2 , and R 1 to R 8 are as defined in the above chemical formula 1, and R' and R'' are the same as or different from each other and are each independently a C 1-10 hydrocarbyl group.
구체적으로, 상기 Q1 및 Q2는 각각 C1-3 알킬일 수 있으며, 바람직하게는 메틸일 수 있다. Specifically, each of Q 1 and Q 2 may be C 1-3 alkyl, preferably methyl.
구체적으로, 상기 X1 및 X2는 각각 할로겐일 수 있고, 바람직하게는 클로로일 수 있다. Specifically, X 1 and X 2 may each be halogen, and preferably chloro.
구체적으로, 상기 A1은 실리콘(Si)일 수 있다. Specifically, the above A 1 may be silicon (Si).
구체적으로, 상기 M1은 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다. Specifically, the above M 1 may be zirconium (Zr) or hafnium (Hf).
구체적으로, 상기 R1 내지 R8는 각각 수소, 또는 C1-20 알킬, 또는 C1-10 알킬, 또는 C1-6 알킬, 또는 C1-6 알콕시가 치환된 C2-6 알킬, 또는 C1-4 알콕시가 치환된 C4-6 알킬일 수 있다. 혹은, 상기 R32 내지 R39 중 서로 인접하는 2개 이상이 서로 연결되어 C1-3로 치환된 C6-20의 지방족 또는 방향족 고리를 형성하는 것일 수 있다. Specifically, each of R 1 to R 8 may be hydrogen, or C 1-20 alkyl, or C 1-10 alkyl, or C 1-6 alkyl, or C 2-6 alkyl substituted with C 1-6 alkoxy, or C 4-6 alkyl substituted with C 1-4 alkoxy. Alternatively, two or more adjacent ones of R 32 to R 39 may be connected to each other to form an aliphatic or aromatic ring of C 6-20 substituted with C 1-3 .
바람직하게는, 상기 R3 및 R6은 각각 C1-6 알킬, 또는 C1-6 알콕시가 치환된 C2-6 알킬이거나, 또는 각각 C4-6 알킬, 또는 C1-4 알콕시가 치환된 C4-6 알킬일 수 있다. 일예로, 상기 R3 및 R6은 n-부틸, n-펜틸, n-헥실, tert-부톡시 부틸, 또는 tert-부톡시 헥실일 수 있다. Preferably, each of R 3 and R 6 may be C 1-6 alkyl, or C 2-6 alkyl substituted with C 1-6 alkoxy, or C 4-6 alkyl, or C 4-6 alkyl substituted with C 1-4 alkoxy, respectively. For example, R 3 and R 6 may be n-butyl, n-pentyl, n-hexyl, tert-butoxy butyl, or tert-butoxy hexyl.
그리고, R1, R2, R4, R5, R7, 및 R8는 수소일 수 있다.And, R 1 , R 2 , R 4 , R 5 , R 7 , and R 8 can be hydrogen.
상기 화학식 1로 표시되는 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.The compound represented by the above chemical formula 1 may be, for example, a compound represented by one of the structural formulas below, but is not limited thereto.
상기 구조식들로 표시되는 제1 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.The first metallocene compound represented by the above structural formulas can be synthesized by applying known reactions, and more detailed synthetic methods can be found in the Examples.
본 발명에 따른 폴리에틸렌의 제조 방법은, 상술한 바와 같은 화학식 1, 또는 화학식 1-1, 1-2, 1-3, 1-4로 표시되는 제1 메탈로센 화합물 1종 이상을, 후술되는 제2 메탈로센 화합물 1종 이상과 함께 사용함으로써, 폴리에틸렌의 용융지수 및 밀도를 최적화함과 동시에 저주파 영역에서 복소 점도는 최대화하고, 고주파 영역에서 복소 점도는 최적 범위를 유지하여 후술되는 CPE 공정에서 높은 생산성과 압출시 우수한 가공성을 확보할 수 있다.The method for producing polyethylene according to the present invention uses at least one first metallocene compound represented by the chemical formula 1, or chemical formulas 1-1, 1-2, 1-3, and 1-4 as described above, together with at least one second metallocene compound described below, thereby optimizing the melting index and density of polyethylene, while maximizing the complex viscosity in a low-frequency range and maintaining the complex viscosity in an optimal range in a high-frequency range, thereby ensuring high productivity and excellent processability during extrusion in the CPE process described below.
특히, 본 발명에서 상기 화학식 2로 표시되는 제2 메탈로센 화합물은, 폴리에틸렌 분자 구조 내 중고분자 영역이 많게 하여 분자 엉킴을 증가시켜 열에 대한 안정성을 향상시키는 특징이 있다. In particular, the second metallocene compound represented by the chemical formula 2 in the present invention has the characteristic of increasing molecular entanglement by increasing the number of intermediate molecular regions within the polyethylene molecular structure, thereby improving thermal stability.
한편, 상기 제2 메탈로센 화합물은 하기 화학식 2-1로 표시되는 것일 수 있다. Meanwhile, the second metallocene compound may be represented by the following chemical formula 2-1.
[화학식 2-1][Chemical Formula 2-1]
상기 화학식 2-1에서, Q3, Q4, A2, M2, X3, X4, R11, 및 R17 내지 R29는 상기 화학식 2 에서 정의한 바와 같다. In the above chemical formula 2-1, Q 3 , Q 4 , A 2 , M 2 , X 3 , X 4 , R 11 , and R 17 to R 29 are as defined in the above chemical formula 2.
구체적으로, 상기 Q3 및 Q4는 각각 C1-3 알킬, 또는 C2-12 알콕시알킬일 수 있으며, 바람직하게는 메틸 또는 tert-부톡시헥실일 수 있다.Specifically, the above Q 3 and Q 4 may each be C 1-3 alkyl, or C 2-12 alkoxyalkyl, preferably methyl or tert-butoxyhexyl.
구체적으로, 상기 X3 및 X4는 각각 할로겐일 수 있고, 구체적으로는 클로로일 수 있다. Specifically, X 3 and X 4 may each be halogen, and specifically, chloro.
구체적으로, 상기 A2는 실리콘(Si)일 수 있다, Specifically, the above A 2 may be silicon (Si).
구체적으로, 상기 M2는 지르코늄(Zr) 또는 하프늄(Hf)일 수 있으며, 바람직하게는 지르코늄(Zr)일 수 있다. Specifically, the above M 2 may be zirconium (Zr) or hafnium (Hf), and preferably zirconium (Zr).
구체적으로, 상기 R17 내지 R21 및 R17' 내지 R21'는 각각 수소, 또는 C1-6 할로알킬일 수 있으며, 혹은 각각 수소, 또는 C1-3 할로알킬일 수 있다. 일예로, R17 내지 R20 또는 R17' 내지 R20'는 수소이고, R21 또는 R21'는 트리할로메틸, 바람직하게는 트리플루오르메틸이다. Specifically, R 17 to R 21 and R 17' to R 21' may each be hydrogen or C 1-6 haloalkyl, or may each be hydrogen or C 1-3 haloalkyl. For example, R 17 to R 20 or R 17' to R 20' are hydrogen, and R 21 or R 21' is trihalomethyl, preferably trifluoromethyl.
구체적으로, 상기 R11 및 R11'는 각각 C1-6의 직쇄 또는 분지쇄 알킬일 수 있으며, 혹은 C1-3의 직쇄 또는 분지쇄 알킬일 수 있으며, 바람직하게는 메틸일 수 있다.Specifically, R 11 and R 11' may each be a straight-chain or branched-chain alkyl of C 1-6 , or a straight-chain or branched-chain alkyl of C 1-3 , and preferably may be methyl.
구체적으로, 상기 R22 내지 R29은 각각 수소, 또는 C1-20 알킬, 또는 C1-10 알킬, 또는 C1-6 알킬, 또는 C1-3 알킬일 수 있다. 혹은, 상기 R22 내지 R29 중 서로 인접하는 2개 이상이 서로 연결되어 C1-3로 치환된 C6-20의 지방족 또는 방향족 고리를 형성하는 것일 수 있다. Specifically, each of R 22 to R 29 may be hydrogen, or C 1-20 alkyl, or C 1-10 alkyl, or C 1-6 alkyl, or C 1-3 alkyl. Alternatively, two or more adjacent ones of R 22 to R 29 may be connected to each other to form an aliphatic or aromatic ring of C 6-20 substituted with C 1-3 .
구체적으로, 상기 R30 내지 R35은 각각 수소, 또는 C1-20 알킬, 또는 C1-10 알킬, 또는 C1-6 알킬, 또는 C1-3 알킬일 수 있다.Specifically, each of R 30 to R 35 may be hydrogen, or C 1-20 alkyl, or C 1-10 alkyl, or C 1-6 alkyl, or C 1-3 alkyl.
구체적으로, 상기 R26 내지 R29은 각각 수소, 또는 C1-20 알킬, 또는 C1-10 알킬, 또는 C1-6 알킬, 또는 C1-3 알킬일 수 있다.Specifically, each of R 26 to R 29 can be hydrogen, or C 1-20 alkyl, or C 1-10 alkyl, or C 1-6 alkyl, or C 1-3 alkyl.
상기 화학식 2로 표시되는 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.The compound represented by the above chemical formula 2 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
상기 구조식으로 표시되는 제2 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.The second metallocene compound represented by the above structural formula can be synthesized by applying known reactions, and more detailed synthetic methods can be referred to the examples.
상기 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체적으로 기재하였다.The method for producing the above metallocene compound is specifically described in the examples described below.
본 발명에서 사용되는 메탈로센 촉매는 조촉매 화합물과 함께 담체에 담지한 것일 수 있다.The metallocene catalyst used in the present invention may be supported on a carrier together with a cocatalyst compound.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.In the supported metallocene catalyst according to the present invention, the cocatalyst supported together on the carrier to activate the metallocene compound is an organometallic compound containing a Group 13 metal, and is not particularly limited as long as it can be used when polymerizing olefin under a general metallocene catalyst.
상기 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 에틸렌을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. The above cocatalyst is not particularly limited as long as it is an organometallic compound containing a Group 13 metal and can be used when polymerizing ethylene under a general metallocene catalyst.
구체적으로, 상기 조촉매는 하기 화학식 4 내지 6으로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상일 수 있다:Specifically, the cocatalyst may be at least one selected from the group consisting of compounds represented by the following chemical formulas 4 to 6:
[화학식 4][Chemical Formula 4]
-[Al(R40)-O]c--[Al(R 40 )-O] c -
상기 화학식 4에서, In the above chemical formula 4,
R40은 각각 독립적으로 할로겐, C1-20 알킬 또는 C1-20 할로알킬이고, R 40 is each independently halogen, C 1-20 alkyl or C 1-20 haloalkyl,
c는 2 이상의 정수이며,c is an integer greater than or equal to 2,
[화학식 5][Chemical Formula 5]
D(R41)3 D(R 41 ) 3
상기 화학식 5에서,In the above chemical formula 5,
D는 알루미늄 또는 보론이고, D is aluminum or boron,
R41은 각각 독립적으로, 수소, 할로겐, C1-20 하이드로카빌 또는 할로겐으로 치환된 C1-20 하이드로카빌이고,R 41 is each independently hydrogen, halogen, C 1-20 hydrocarbyl or C 1-20 hydrocarbyl substituted with halogen,
[화학식 6][Chemical formula 6]
[L-H]+[Q(E)4]- 또는 [L]+[Q(E)4]- [LH] + [Q(E) 4 ] - or [L] + [Q(E) 4 ] -
상기 화학식 6에서,In the above chemical formula 6,
L은 중성 또는 양이온성 루이스 염기이고, L is a neutral or cationic Lewis base,
[L-H]+는 브론스테드 산이며, [LH] + is Bronsted acid,
Q는 Br3+ 또는 Al3+이고, Q is Br 3+ or Al 3+ ,
E는 각각 독립적으로 C6-20 아릴 또는 C1-20 알킬이고, 여기서 상기 C6-20 아릴 또는 C1-20 알킬은 비치환되거나 또는 할로겐, C1-20 알킬, C1-20 알콕시 및 페녹시로 구성되는 군으로부터 선택되는 하나 이상의 치환기로 치환된다.E is each independently C 6-20 aryl or C 1-20 alkyl, wherein said C 6-20 aryl or C 1-20 alkyl is unsubstituted or substituted with one or more substituents selected from the group consisting of halogen, C 1-20 alkyl, C 1-20 alkoxy and phenoxy.
상기 화학식 4로 표시되는 화합물은, 예를 들어 개질메틸알루미녹산(MMAO), 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등과 같은 알킬알루미녹산일 수 있다.The compound represented by the above chemical formula 4 may be an alkylaluminoxane, such as modified methylaluminoxane (MMAO), methylaluminoxane (MAO), ethylaluminoxane, isobutylaluminoxane, butylaluminoxane, etc.
상기 화학식 5로 표시되는 알킬 금속 화합물은, 예를 들어 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 디메틸이소부틸알루미늄, 디메틸에틸알루미늄, 디에틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리씨클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등일 수 있다.The alkyl metal compound represented by the above chemical formula 5 may be, for example, trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, dimethylisobutylaluminum, dimethylethylaluminum, diethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum, tricyclopentylaluminum, tripentylaluminum, triisopentylaluminum, trihexylaluminum, ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum, tri-p-tolylaluminum, dimethylaluminum methoxide, dimethylaluminum ethoxide, trimethylboron, triethylboron, triisobutylboron, tripropylboron, tributylboron, and the like.
상기 화학식 6으로 표시되는 화합물은, 예를 들어 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리니움테트라페닐 보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄,트리부틸암모니움테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타플루오로페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리페닐카보니움테트라페닐보론, 트리페닐카보니움테트라페닐알루미늄, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라펜타플루오로페닐보론 등일 수 있다.The compound represented by the above chemical formula 6 is, for example, triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium tetra(p-tolyl)boron, tripropylammonium tetra(p-tolyl)boron, triethylammonium tetra(o,p-dimethylphenyl)boron, trimethylammonium tetra(o,p-dimethylphenyl)boron, tributylammonium tetra(p-trifluoromethylphenyl)boron, trimethylammonium tetra(p-trifluoromethylphenyl)boron, tributylammonium tetrapentafluorophenylboron, N,N-diethylanilinium tetraphenylboron, N,N-diethylanilinium tetrapentafluorophenylboron, diethylammonium tetrapentafluorophenylboron, triphenylphosphonium tetraphenylboron, Trimethylphosphonium tetraphenylboron, triethylammonium tetraphenylaluminum, tributylammonium tetraphenylaluminum, trimethylammonium tetraphenylaluminum, tripropylammonium tetraphenylaluminum, trimethylammonium tetra(p-tolyl)aluminum, tripropylammonium tetra(p-tolyl)aluminum, triethylammonium tetra(o,p-dimethylphenyl)aluminum, tributylammonium tetra(p-trifluoromethylphenyl)aluminum, trimethylammonium tetra(p-trifluoromethylphenyl)aluminum, tributylammonium tetrapentafluorophenylaluminum, N,N-diethylanilinium tetraphenylaluminum, N,N-diethylanilinium tetrapentafluorophenylaluminum, diethylammonium tetrapentafluorophenylaluminum, It may be triphenylphosphoniumtetraphenylaluminum, trimethylphosphoniumtetraphenylaluminum, triphenylcarboniumtetraphenylboron, triphenylcarboniumtetraphenylaluminum, triphenylcarboniumtetra(p-trifluoromethylphenyl)boron, triphenylcarboniumtetrapentafluorophenylboron, etc.
이러한 조촉매의 담지량은 담체 1 g을 기준으로 5 mmol 내지 20 mmol일 수 있다.The amount of such a cocatalyst supported can be 5 mmol to 20 mmol based on 1 g of the carrier.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.In the supported metallocene catalyst according to the present invention, a carrier containing a hydroxyl group on the surface can be used as the carrier, and preferably, a carrier having a highly reactive hydroxyl group and a siloxane group, which has been dried to remove moisture from the surface, can be used.
예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.For example, silica, silica-alumina, and silica-magnesia dried at high temperatures can be used, and these can typically contain oxide, carbonate, sulfate, and nitrate components such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2 .
상기 담체의 건조 온도는 약 200 ℃ 내지 800 ℃가 바람직하고, 약 300 ℃ 내지 약 600 ℃가 더욱 바람직하며, 약 300 ℃ 내지 약 400 ℃가 가장 바람직하다. 상기 담체의 건조 온도가 약 200 ℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 약 800 ℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.The drying temperature of the carrier is preferably about 200° C. to 800° C., more preferably about 300° C. to about 600° C., and most preferably about 300° C. to about 400° C. If the drying temperature of the carrier is less than about 200° C., the moisture content is too high, causing the moisture on the surface to react with the cocatalyst. If it exceeds about 800° C., the pores on the surface of the carrier merge, reducing the surface area. In addition, many hydroxyl groups on the surface disappear, leaving only siloxane groups, reducing the reaction sites with the cocatalyst, which is not preferable.
상기 담체 표면의 하이드록시기 양은 약 0.1 mmol/g 내지 약 10 mmol/g이 바람직하며, 약 0.5 mmol/g 내지 약 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.The amount of hydroxyl groups on the surface of the carrier is preferably from about 0.1 mmol/g to about 10 mmol/g, and more preferably from about 0.5 mmol/g to about 5 mmol/g. The amount of hydroxyl groups on the surface of the carrier can be controlled by the manufacturing method and conditions of the carrier or drying conditions, such as temperature, time, vacuum or spray drying.
상기 하이드록시기의 양이 약 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 약 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.If the amount of the above hydroxyl group is less than about 0.1 mmol/g, there are few reaction sites with the cocatalyst, and if it exceeds about 10 mmol/g, it is not preferable because there is a possibility that it is caused by moisture other than the hydroxyl group present on the surface of the carrier particle.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 메탈로센 촉매에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1000일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100일 수 있다. In the supported metallocene catalyst according to the present invention, the mass ratio of the total transition metal to the carrier included in the metallocene catalyst may be 1:10 to 1:1000. When the carrier and the metallocene compound are included at the above mass ratio, an optimal shape can be exhibited. In addition, the mass ratio of the cocatalyst compound to the carrier may be 1:1 to 1:100.
상기 에틸렌 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 진행할 수 있다.The above ethylene polymerization reaction can be carried out using a continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
특히, 본 발명에 따른 폴리에틸렌은, 상기 화학식 1로 표시되는 제1 메탈로센 화합물 1종 이상; 및 상기 화학식 2로 표시되는 화합물 중에서 선택되는 제2 메탈로센 화합물 1종 이상의 존재 하에, 에틸렌을 호모 중합하여 제조할 수 있다. In particular, the polyethylene according to the present invention can be produced by homopolymerizing ethylene in the presence of at least one first metallocene compound represented by the chemical formula 1; and at least one second metallocene compound selected from compounds represented by the chemical formula 2.
상기 제1 메탈로센 화합물 및 상기 제2 메탈로센 화합물의 중량비(제1 메탈로센 화합물: 제2 메탈로센 화합물)는 약 25:75 내지 약 65:35, 또는 약 30:70 내지 약 62:38, 또는 약 35:65 내지 약 60:40일 수 있다. 상기 촉매 전구체의 중량비는, 염소화 생산성 및 열안정성이 우수한 염소화 폴리에틸렌을 제조할 수 있도록, 중고분자의 함량을 증가시키고 저분자량을 최소화하는 측면에서 상술한 바와 같은 중량비가 될 수 있다. 특히, 상기 제1 메탈로센 화합물 및 상기 제2 메탈로센 화합물의 중량비를 상술한 범위로 적용시, 중합 공정에서 수소 투입량이 에틸렌 대비 약 125 ppm으로 적용할 수 있어, 왁스(Wax) 함량이 10% 이하로 낮게 유지할 수 있다. 상기 왁스 함량은 중합 생성물을 원심 분리 장치를 이용하여 분리한 후, 남은 헥산(Hexane) 용매를 100 mL 샘플링하여 2 시간 세틀링(settling)하여 왁스(wax)가 차지하는 부피 비로 측정할 수 있다.The weight ratio of the first metallocene compound and the second metallocene compound (first metallocene compound: second metallocene compound) may be about 25:75 to about 65:35, or about 30:70 to about 62:38, or about 35:65 to about 60:40. The weight ratio of the catalyst precursor may be the weight ratio as described above in terms of increasing the content of medium and high molecular weight and minimizing the low molecular weight so as to manufacture chlorinated polyethylene having excellent chlorination productivity and thermal stability. In particular, when the weight ratio of the first metallocene compound and the second metallocene compound is applied in the above-described range, the hydrogen input amount in the polymerization process can be applied as about 125 ppm with respect to ethylene, so that the wax content can be maintained at a low level of 10% or less. The above wax content can be measured by separating the polymerization product using a centrifuge, sampling 100 mL of the remaining hexane solvent, and allowing it to settle for 2 hours, and then measuring the volume ratio occupied by the wax.
그리고, 상기 중합 온도는 약 25 ℃ 내지 약 500 ℃, 바람직하게는 약 25 ℃ 내지 약 200 ℃, 좀더 바람직하게는 약 50 ℃ 내지 약 150 ℃일 수 있다. 또한, 중합 압력은 약 1 kgf/cm2 내지 약 100 kgf/cm2, 바람직하게는 약 1 kgf/cm2 내지 약 50 kgf/cm2, 좀더 바람직하게는 약 5 kgf/cm2 내지 약 30 kgf/cm2일 수 있다.And, the polymerization temperature may be from about 25° C. to about 500° C., preferably from about 25° C. to about 200° C., more preferably from about 50° C. to about 150° C. In addition, the polymerization pressure may be from about 1 kgf/cm 2 to about 100 kgf/cm 2 , preferably from about 1 kgf/cm 2 to about 50 kgf/cm 2 , more preferably from about 5 kgf/cm 2 to about 30 kgf/cm 2 .
또, 상기 중합 반응은 수소 기체의 투입 조건 하에서 수행된다.In addition, the polymerization reaction is performed under conditions of hydrogen gas injection.
이때, 상기 수소 기체는 메탈로센 촉매의 비활성 사이트를 활성화시키고 체인 이동 반응(chain transfer reaction)을 일으켜 분자량을 조절하는 역할을 한다. 본 발명의 메탈로센 화합물은 수소 반응성이 우수하며, 따라서, 중합 공정시 상기 수소 기체 사용량의 조절에 의해, 원하는 수준의 용융 지수와 밀도, 복소점도 범위를 갖는 폴리에틸렌이 효과적으로 얻어질 수 있다. At this time, the hydrogen gas activates the inactive site of the metallocene catalyst and causes a chain transfer reaction to control the molecular weight. The metallocene compound of the present invention has excellent hydrogen reactivity, and therefore, by controlling the amount of hydrogen gas used during the polymerization process, polyethylene having a melting index, density, and complex viscosity range at a desired level can be effectively obtained.
상기 수소 기체는 에틸렌의 총 중량에 대하여, 약 50 ppm 내지 약 125 ppm, 또는 약 70 ppm 내지 약 120 ppm, 또는 약 90 ppm 내지 약 115 ppm의 양으로 투입될 수 있다. 상기 범위 내로 수소 기체의 사용량을 조절하여, 충분한 촉매 활성을 나타내면서도 제조되는 폴리에틸렌의 용융 지수 및 밀도, 복소점도를 원하는 범위 내로 조절할 수 있으며, 이에 따라 용도에 따라 적절한 물성을 갖는 폴리에틸렌을 제조할 수 있다. 보다 구체적으로, 상술한 바와 같은 특정의 제1 및 제2 메탈로센 화합물을 사용하는 촉매계에서, 수소 투입량이 에틸렌 대비 약 50 ppm 미만으로 적게 투입되는 경우에는, 폴리에틸렌의 용융 지수 MI가 낮아지고 복소점도가 높아지며, 이에 따라 염소화 공정후 무늬 점도(MV)가 높아져, 후속 컴파운드 가공시 가공 부하기 많이 걸리고 표면이 매끄럽지 않은 현상이 나타날 수 있다. 반면에, 수소 투입량이 에틸렌 대비 약 120 ppm를 초과하여 과량으로 투입되는 경우에는, 저분자량이 많이 생성되어 폴리에틸렌의 복소점도가 저하되며, 염화 가공 시 입자 형태 변화가 많아져 생산성이 저하되고, 가교도가 떨어져 인장강도가 저하될 수 있다. The hydrogen gas may be introduced in an amount of about 50 ppm to about 125 ppm, or about 70 ppm to about 120 ppm, or about 90 ppm to about 115 ppm based on the total weight of ethylene. By controlling the amount of hydrogen gas used within the above range, it is possible to control the melt index, density, and complex viscosity of the polyethylene produced within a desired range while exhibiting sufficient catalytic activity, and thus polyethylene having appropriate properties depending on the intended use can be produced. More specifically, in the catalyst system using the specific first and second metallocene compounds as described above, when the amount of hydrogen introduced is less than about 50 ppm relative to ethylene, the melt index MI of the polyethylene decreases and the complex viscosity increases, and accordingly, the patterned viscosity (MV) increases after the chlorination process, which may cause a high processing load during subsequent compound processing and an unsmooth surface. On the other hand, if the amount of hydrogen input is excessive, exceeding about 120 ppm compared to ethylene, a large amount of low molecular weight is generated, which reduces the complex viscosity of polyethylene, and the particle shape changes a lot during chlorination, which reduces productivity, and the degree of cross-linking may decrease, which may reduce the tensile strength.
한편, 상기 중합 반응에서, 상기 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.Meanwhile, in the polymerization reaction, the metallocene catalyst can be dissolved or diluted and injected in an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, such as pentane, hexane, heptane, nonane, decane, and isomers thereof; an aromatic hydrocarbon solvent such as toluene and benzene; a hydrocarbon solvent substituted with a chlorine atom, such as dichloromethane and chlorobenzene. It is preferable to use the solvent used here after removing a small amount of water or air, which act as catalyst poisons, by treating it with a small amount of alkyl aluminum, and it is also possible to perform the reaction using a cocatalyst.
한편, 발명의 또 다른 일 구현예에 따르면, 상술한 바와 같은 폴리에틸렌을 이용한 염소화 폴리에틸렌(CPE)가 제공된다. Meanwhile, according to another embodiment of the invention, chlorinated polyethylene (CPE) using polyethylene as described above is provided.
본 발명에 따른 염소화 폴리에틸렌은, 상술한 담지 메탈로센 촉매의 존재 하에서 에틸렌을 중합한 다음, 이를 클로린과 반응시켜 제조할 수 있다. The chlorinated polyethylene according to the present invention can be produced by polymerizing ethylene in the presence of the supported metallocene catalyst described above and then reacting it with chlorine.
상기 클로린과의 반응은, 상기 제조한 폴리에틸렌을 물, 유화제 및 분산제로 분산시킨 후, 촉매와 클로린을 투입하여 반응시킬 수 있다. The above reaction with chlorine can be carried out by dispersing the manufactured polyethylene with water, an emulsifier, and a dispersant, and then adding a catalyst and chlorine.
상기 유화제로는 폴리에테르 또는 폴리알킬렌옥사이드를 사용할 수 있다. 상기 분산제로는 중합체 염 또는 유기산 중합체 염을 사용할 수 있으며, 상기 유기산으로는 메타크릴산 또는 아크릴산을 사용할 수 있다. As the above emulsifier, polyether or polyalkylene oxide can be used. As the above dispersant, a polymer salt or an organic acid polymer salt can be used, and as the above organic acid, methacrylic acid or acrylic acid can be used.
상기 촉매는 당업계에 사용되는 염소화 촉매를 사용할 수 있으며, 일례로 벤조일 퍼옥사이드를 사용할 수 있다. 상기 클로린은 단독으로도 사용할 수 있으나, 비활성 가스와 혼합하여 사용할 수 있다.The above catalyst may be a chlorination catalyst used in the art, and for example, benzoyl peroxide may be used. The above chlorine may be used alone, but may be used in combination with an inert gas.
상기 염소화 반응은 약 60 ℃ 내지 약 150 ℃, 또는 약 70 ℃ 내지 약 145 ℃, 또는 약 80 ℃ 내지 약 140 ℃에서 수행하는 것이 바람직하며, 반응시간은 약 10 분 내지 약 10 시간, 또는 약 1 시간 내지 약 9 시간, 또는 약 2 시간 내지 약 8 시간이 바람직하다. The above chlorination reaction is preferably carried out at about 60° C. to about 150° C., or about 70° C. to about 145° C., or about 80° C. to about 140° C., and the reaction time is preferably about 10 minutes to about 10 hours, or about 1 hour to about 9 hours, or about 2 hours to about 8 hours.
상기 반응으로 제조되는 염소화 폴리에틸렌은, 중화 공정, 세정 공정 및/또는 건조 공정을 추가로 적용할 수 있으며, 이에 따라 분말 상의 형태로 수득할 수 있다. The chlorinated polyethylene manufactured by the above reaction can be additionally subjected to a neutralization process, a washing process, and/or a drying process, and can thus be obtained in a powder form.
상기 염소화 폴리에틸렌은, 상기 폴리에틸렌이 분자 구조 내 중고분자 영역의 함량을 증가시키고 저분자 영역의 함량을 최소화하여 염화 가공시 열에 대한 안정성이 향상되며, 예컨대 슬러리(물 혹은 HCl 수용액) 상태로 약 60 ℃ 내지 약 150 ℃ 조건 하에서 클로린을 반응시켜 제조한 후에, 121 ℃ 조건 하에서 측정한 무늬 점도(MV, Mooney viscosity)가 약 60 이상부터 약 85 미만까지, 또는 약 62 이상부터 약 82 이하까지, 또는 약 65 이상부터 약 80 이하까지일 수 있다. 특히, 상기 염소화 폴리에틸렌의 무늬 점도가 약 60 미만일 경우에는, 이러한 염소화 폴리에틸렌의 컴파운드로 제조된 전선 및 케이블의 인장강도가 저하되는 문제가 나타날 수 있다. 또한, 상기 염소화 폴리에틸렌의 무늬 점도가 약 85를 초과하는 경우에는 후술되는 바와 같이 무기물 첨가제 및 가교제와 컴파운딩을 통해 전선 및 케이블 등의 용도의 CPE 컴파운드(Compound) 가공 시, 표면이 매끄럽지 못하고 거칠고, 광택이 떨어져 외관상 좋지 못한 문제가 나타날 수 있다. The above chlorinated polyethylene has improved heat stability during chlorination processing by increasing the content of the high-molecular-weight region and minimizing the content of the low-molecular-weight region in the molecular structure of the polyethylene, and, for example, when manufactured by reacting chlorine under conditions of about 60° C. to about 150° C. in a slurry (water or HCl aqueous solution) state, the Mooney viscosity (MV) measured under conditions of 121° C. may be from about 60 or more to less than about 85, or from about 62 or more to about 82 or less, or from about 65 or more to about 80 or less. In particular, when the Mooney viscosity of the chlorinated polyethylene is less than about 60, there may be a problem that the tensile strength of wires and cables manufactured with the compound of such chlorinated polyethylene is reduced. In addition, when the patterned viscosity of the above chlorinated polyethylene exceeds about 85, as described below, when processing a CPE compound for use in wires and cables by compounding with inorganic additives and crosslinking agents, the surface may be rough and lack luster, resulting in an unsmooth and poor appearance.
또한, 상기 염소화 폴리에틸렌은, ASTM D 412의 방법으로 측정한 인장강도(Tensile strength)가 약 12 MPa 이상 또는 약 12 MPa 내지 약 30 MPa, 혹은 약 12.5 MPa 이상 또는 약 12.3 MPa 내지 약 20 MPa, 혹은 약 12.5 MPa 이상 또는 약 12.5 MPa 내지 약 15 MPa일 수 있다. 상기 염소화 폴리에틸렌은, ASTM D 412의 방법으로 측정한 인장신도(Tensile elongation)가 약 500% 이상 또는 약 500% 내지 약 2000%, 혹은 약 700% 이상 또는 약 700% 내지 약 1500%, 혹은 약 900% 이상 또는 약 900% 내지 약 1200%일 수 있다. In addition, the chlorinated polyethylene may have a tensile strength of about 12 MPa or more, or about 12 MPa to about 30 MPa, or about 12.5 MPa or more, or about 12.3 MPa to about 20 MPa, or about 12.5 MPa or more, or about 12.5 MPa to about 15 MPa, as measured by the method of ASTM D 412. The chlorinated polyethylene may have a tensile elongation of about 500% or more, or about 500% to about 2000%, or about 700% or more, or about 700% to about 1500%, or about 900% or more, or about 900% to about 1200%, as measured by the method of ASTM D 412.
구체적으로, 상기 무늬 점도(MV, Mooney viscosity) 및 인장강도, 인장신도는, 폴리에틸렌 약 500 kg 내지 약 600 kg을 슬러리(물 혹은 HCl 수용액) 상태로 약 75 ℃ 내지 약 85 ℃에서부터 약 120 ℃ 내지 약 140 ℃의 최종 온도까지 약 15 ℃/hr 내지 약 18.5 ℃/hr 속도로 승온한 후에, 약 120 ℃ 내지 약 140 ℃의 최종 온도에서 약 2 시간 내지 약 5 시간 동안 기체상의 클로린으로 염소화 반응을 수행하여 얻어진 염소화 폴리에틸렌에 대해 측정한 값일 수 있다. 이 때, 상기 염소화 반응은 승온과 동시에 반응기 내 압력을 약 0.2 MPa 내지 약 0.4 MPa으로 유지하면서 기체상의 클로린을 주입하며, 상기 클로린의 총투입량은 약 650 kg 내지 약 750 kg이 되도록 하여 수행할 수 있다. Specifically, the Mooney viscosity (MV) and tensile strength and tensile elongation may be values measured for chlorinated polyethylene obtained by heating about 500 kg to about 600 kg of polyethylene in a slurry (water or HCl aqueous solution) state from about 75 °C to about 85 °C to a final temperature of about 120 °C to about 140 °C at a rate of about 15 °C/hr to about 18.5 °C/hr, and then performing a chlorination reaction with gaseous chlorine at the final temperature of about 120 °C to about 140 °C for about 2 hours to about 5 hours. At this time, the chlorination reaction may be performed by injecting gaseous chlorine while maintaining the pressure inside the reactor at about 0.2 MPa to about 0.4 MPa simultaneously with the temperature elevation, and the total amount of chlorine introduced may be about 650 kg to about 750 kg.
또한, 상기 염소화 폴리에틸렌의 무늬 점도(MV, Mooney viscosity) 및 인장강도(Tensile strength), 인장신도(Tensile elongation)를 측정하는 방법은 후술되는 시험예 2에 기재된 바와 같으며, 구체적인 측정 방법은 생략한다.In addition, the method for measuring the Mooney viscosity (MV), tensile strength, and tensile elongation of the chlorinated polyethylene is as described in Test Example 2 below, and the specific measurement method is omitted.
상기 염소화 폴리에틸렌은 일례로 염소 함량이 약 20 중량% 내지 약 50 중량%, 약 31 중량% 내지 약 45 중량%, 혹은 약 35 중량% 내지 약 40 중량%일 수 있다. 여기서, 상기 염소화 폴리에틸렌의 염소 함량은 연소 이온크로마토그래피(Combustion IC, Ion Chromatography) 분석법을 이용하여 측정할 수 있다. 일예로, 상기 연소 이온크로마토그래피 분석법은 IonPac AS18 (4 x 250 mm) 컬럼이 장착된 연소 IC (ICS-5000/AQF-2100H) 장치를 사용하여, 내부 장치 온도(Inlet temperature) 900 ℃, 외부 장치 온도(Outlet temperature) 1000 ℃의 연소 온도에서 용리액(Eluent)로서 KOH (30.5 mM)를 사용하여 1 mL/min의 유량 조건 하에서 측정할 수 있다. 이외에 상기 염소 함량을 측정하는 장치 조건 및 측정 조건은 후술되는 시험예 2에 기재된 바와 같으며, 구체적인 설명은 생략한다.The chlorinated polyethylene may have, for example, a chlorine content of about 20 wt% to about 50 wt%, about 31 wt% to about 45 wt%, or about 35 wt% to about 40 wt%. Here, the chlorine content of the chlorinated polyethylene can be measured using combustion ion chromatography (Combustion IC, Ion Chromatography) analysis. For example, the combustion ion chromatography analysis can be measured using a combustion IC (ICS-5000/AQF-2100H) device equipped with an IonPac AS18 (4 x 250 mm) column, at a combustion temperature of an internal device temperature (inlet temperature) of 900 ℃ and an external device temperature (outlet temperature) of 1000 ℃, using KOH (30.5 mM) as an eluent, under conditions of a flow rate of 1 mL/min. In addition, the conditions of the device and measurement conditions for measuring the above-mentioned chlorine content are as described in Test Example 2 described below, and a detailed description is omitted.
구체적으로, 본 발명에 따른 염소화 폴리에틸렌은, 염소 함량이 35 중량% 내지 40 중량%인 조건 하에서 상술한 바와 같은 무늬 점도(MV, Mooney viscosity)가 약 65 내지 약 80이며, 인장강도(Tensile strength)가 약 12.5 MPa 이상 또는 약 12.5 MPa 내지 약 15 MPa이며, 인장신도(Tensile elongation)가 약 900% 이상 또는 약 900% 내지 약 1200%일 수 있다. Specifically, the chlorinated polyethylene according to the present invention may have a Mooney viscosity (MV) of about 65 to about 80, a tensile strength of about 12.5 MPa or more, or about 12.5 MPa to about 15 MPa, and a tensile elongation of about 900% or more, or about 900% to about 1200%, under the condition that the chlorine content is 35 wt% to 40 wt%.
상기 염소화 폴리에틸렌은 일례로 랜덤 염소화 폴리에틸렌일 수 있다.The above chlorinated polyethylene may be, for example, random chlorinated polyethylene.
본 발명에 따라 제조된 염소화 폴리에틸렌은, 내화학성, 내후성, 난연성, 가공성 등이 우수하여 전선 및 케이블 등으로 많이 사용된다.Chlorinated polyethylene manufactured according to the present invention is widely used in wires and cables due to its excellent chemical resistance, weather resistance, flame retardancy, processability, etc.
또한, 본 발명에 따른 염소화 폴리에틸렌으로 성형품을 제조하는 방법은, 당업계의 통상적인 방법을 적용할 수 있다. 일례로, 상기 염소화 폴리에틸렌을 롤-밀 컴파운딩하고 이를 압출 가공하여 성형품을 제조할 수 있다. In addition, the method for manufacturing a molded article using chlorinated polyethylene according to the present invention can apply a conventional method in the art. For example, the chlorinated polyethylene can be roll-mill compounded and extruded to manufacture a molded article.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help understand the present invention. However, the following examples are provided only to help understand the present invention more easily, and the content of the present invention is not limited thereby.
[촉매 전구체의 제조][Preparation of catalyst precursor]
합성예 1: 제1 메탈로센 화합물 제조Synthesis Example 1: Preparation of the first metallocene compound
6-클로로헥사놀을 사용하여 문헌(Tetrahedron Lett. 2951(1988))에 기재된 방벙으로 t-butyl-O-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반응시켜 t-butyl-O-(CH2)6-C5H5를 얻었다(수율 60%, b.p. 80 ℃/0.1 mmHg).t-Butyl-O-(CH 2 ) 6 -Cl was prepared using 6-chlorohexanol according to the method described in the literature (Tetrahedron Lett. 2951(1988)), and this was reacted with NaCp to obtain t-butyl-O-(CH 2 ) 6 -C 5 H 5 (yield 60%, bp 80 ℃/0.1 mmHg).
또한, -78 ℃에서 t-butyl-O-(CH2)6-C5H5를 THF에 녹이고 n-BuLi을 천천히 가한 후, 실온으로 승온시킨 후, 8 시간 동안 반응시켰다. 상기 용액을 다시 -78 ℃에서 ZrCl4(THF)2 (170 g, 4.50 mmol)/THF(30 mL)의 서스펜젼 용액에 상기 합성된 리튬염 용액을 천천히 가하고 실온에서 6 시간 동안 더 반응시켰다. 모든 휘발성 물질을 진공 건조하여 제거하고, 얻어진 오일성 액체 물질에 헥산을 가하여 필터하였다. 필터 용액을 진공 건조한 후, 헥산을 가하여 저온(-20 ℃)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-O-(CH2)6-C5H4]2ZrCl2]을 얻었다(수율 92%).Also, t-butyl-O-(CH 2 ) 6 -C 5 H 5 was dissolved in THF at -78 ℃, n-BuLi was slowly added, the mixture was warmed to room temperature, and reacted for 8 hours. The above solution was again added slowly to a suspension solution of ZrCl 4 (THF) 2 (170 g, 4.50 mmol)/THF (30 mL) at -78 ℃, and the synthesized lithium salt solution was further reacted at room temperature for 6 hours. All volatile substances were removed by vacuum drying, and hexane was added to the obtained oily liquid substance and filtered. After the filter solution was vacuum dried, hexane was added to induce a precipitate at a low temperature (-20 ℃). The obtained precipitate was filtered at a low temperature to obtain [tBu-O-(CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 ] in the form of a white solid (yield 92%).
1H-NMR (300 MHz, CDCl3): 6.28 (t, J=2.6 Hz, 2H), 6.19 (t, J=2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H), 2.62 (t, J=8 Hz), 1.7 - 1.3 (m, 8H), 1.17 (s, 9H) 1 H-NMR (300 MHz, CDCl 3 ): 6.28 (t, J=2.6 Hz, 2H), 6.19 (t, J=2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H), 2.62 (t, J=8 Hz), 1.7 - 1.3 (m, 8H), 1.17 (s, 9H)
13C-NMR (CDCl3): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.31, 30.14, 29.18, 27.58, 26.00 13 C-NMR (CDCl 3 ): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.31, 30.14, 29.18, 27.58, 26.00
합성예 2: 제2 메탈로센 화합물 제조Synthesis Example 2: Preparation of a Second Metallocene Compound
2-1 리간드 화합물의 제조2-1 Preparation of ligand compounds
8-methyl-5-(2-(trifluoromethyl)benzyl)-5,10-dihydroindeno[1,2-b]indole 2.9 g(7.4 mmol)을 100 mL의 Hexane과 2 mL(16.8 mmol)의 MTBE (methyl tertialry butyl ether)에 녹여 2.5 M n-BuLi Hexane 용액 3.2 mL(8.1 mmol)을 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 다른 250 mL 슐랭크 플라스크(schlenk flask)에 (6-tert-butoxyhexyl)dichloro(methyl)silane 2 g(7.4 mmol)를 hexane 50 mL에 녹인 후, dryice/acetone bath에서 적가하여 8-methyl-5-(2-(trifluoromethyl)benzyl)-5,10-dihydroindeno[1,2-b]indole의 리튬화 슬러리(lithiated slurry)를 캐뉼라(cannula)를 통해 dropwise 적가하였다. 주입이 끝나 혼합물은 상온으로 천천히 올린 후 상온에서 밤새 교반하였다. 이와 동시에 fluorene 1.2 g(7.4 mmol) 또한 THF 100 mL에 녹여 2.5 M n-BuLi hexane solution 3.2 mL(8.1 mmol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 2.9 g (7.4 mmol) of 8-methyl-5-(2-(trifluoromethyl)benzyl)-5,10-dihydroindeno[1,2-b]indole was dissolved in 100 mL of hexane and 2 mL (16.8 mmol) of MTBE (methyl tertialry butyl ether). 3.2 mL (8.1 mmol) of 2.5 M n-BuLi hexane solution was added dropwise in a dryice/acetone bath, and the mixture was stirred at room temperature overnight. In another 250 mL schlenk flask, 2 g (7.4 mmol) of (6-tert-butoxyhexyl)dichloro(methyl)silane was dissolved in 50 mL of hexane, and the mixture was stirred at room temperature overnight. To this solution, 3.2 mL (8.1 mmol) of a 2.5 M n-BuLi hexane solution was added dropwise in a dryice/acetone bath via a cannula. After the injection, the mixture was slowly warmed to room temperature and stirred at room temperature overnight. At the same time, 1.2 g (7.4 mmol) of fluorene was also dissolved in 100 mL of THF, and 3.2 mL (8.1 mmol) of a 2.5 M n-BuLi hexane solution was added dropwise in a dryice/acetone bath, and the mixture was stirred at room temperature overnight.
8-methyl-5-(2-(trifluoromethyl)benzyl)-5,10-dihydroindeno[1,2-b]indole과 (6-(tert-butoxy)hexyl)dichloro(methyl)silane과의 반응 용액(Si 용액)을 NMR 샘플링하여 반응 완료를 확인하였다. The reaction solution (Si solution) of 8-methyl-5-(2-(trifluoromethyl)benzyl)-5,10-dihydroindeno[1,2-b]indole and (6-(tert-butoxy)hexyl)dichloro(methyl)silane was sampled by NMR to confirm the completion of the reaction.
1H NMR (500 MHz, CDCl3): 7.74-6.49 (11H, m), 5.87 (2H, s), 4.05 (1H, d), 3.32 (2H, m), 3.49 (3H, s), 1.50-1.25(8H, m), 1.15 (9H, s), 0.50 (2H, m), 0.17 (3H, d) 1H NMR (500 MHz, CDCl 3 ): 7.74-6.49 (11H, m), 5.87 (2H, s), 4.05 (1H, d), 3.32 (2H, m), 3.49 (3H, s), 1.50-1.25(8H, m), 1.15 (9H, s), 0.50 (2H, m), 0.17 (3H, d)
앞서 합성 확인한 후, 상기 Si 용액에 fluorene의 lithiated solution을 dryice/acetone bath에서 천천히 적가하여 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출(extraction)하여 유기층의 잔류수분을 MgSO4로 제거 후, 진공 감압 조건에서 용매를 제거하여 오일상의 리간드 화합물 5.5 g(7.4 mmol)을 얻었으며, 1H-NMR에서 확인할 수 있었다. After confirming the synthesis above, the lithiated solution of fluorene was slowly added dropwise to the Si solution in a dryice/acetone bath and stirred overnight at room temperature. After the reaction, extraction was performed with ether/water, and the residual moisture in the organic layer was removed with MgSO 4 , and the solvent was removed under vacuum and reduced pressure to obtain 5.5 g (7.4 mmol) of the ligand compound in an oil phase, which could be confirmed by 1H-NMR.
1H NMR (500 MHz, CDCl3): 7.89-6.53 (19H, m), 5.82 (2H, s), 4.26 (1H, d), 4.14-4.10 (1H, m), 3.19 (3H, s), 2.40 (3H, m), 1.35-1.21 (6H, m), 1.14 (9H, s), 0.97-0.9 (4H, m), -0.34 (3H, t). 1H NMR (500 MHz, CDCl 3 ): 7.89-6.53 (19H, m), 5.82 (2H, s), 4.26 (1H, d), 4.14-4.10 (1H, m), 3.19 (3H, s), 2.40 (3H, m), 1.35-1.21 (6H, m), 1.14 (9H, s), 0.97-0.9 (4H, m), -0.34 (3H, t).
2-2 메탈로센 화합물의 제조2-2 Preparation of metallocene compounds
상기 2-1에서 합성한 리간드 화합물 5.4 g (Mw 742.00, 7.4 mmol)을 톨루엔 80 mL, MTBE 3 mL(25.2 mmol)에 녹여 2.5 M n-BuLi hexane solution 7.1 mL(17.8 mmol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. ZrCl4(THF)2 3.0 g(8.0 mmol)를 톨루엔 80 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 80 mL 톨루엔 슬러리를 dry ice/acetone bath에서 리간드-Li 용액을 transfer하여 상온에서 밤새 교반하였다. 5.4 g (Mw 742.00, 7.4 mmol) of the ligand compound synthesized in the above 2-1 was dissolved in 80 mL of toluene and 3 mL (25.2 mmol) of MTBE. 7.1 mL (17.8 mmol) of 2.5 M n-BuLi hexane solution was added dropwise in a dry ice/acetone bath, and the mixture was stirred at room temperature overnight. 3.0 g (8.0 mmol) of ZrCl 4 (THF) 2 was prepared as a slurry by adding 80 mL of toluene. 80 mL of toluene slurry of ZrCl 4 (THF) 2 was transferred to the ligand-Li solution in a dry ice/acetone bath, and the mixture was stirred at room temperature overnight.
반응 혼합물을 필터하여 LiCl을 제거한 뒤, 여과액(filtrate)의 톨루엔을 진공 건조하여 제거한 후 헥산 100 mL을 넣고 1 시간 동안 sonication하였다. 이를 필터하여 여과된 고체(filtered solid)인 자주색의 메탈로센 화합물 3.5 g을 (yield 52 mol%) 얻었다. The reaction mixture was filtered to remove LiCl, and the toluene in the filtrate was removed by vacuum drying. 100 mL of hexane was added and sonicated for 1 hour. The mixture was filtered to obtain 3.5 g (yield 52 mol%) of a purple metallocene compound as a filtered solid.
1H NMR (500 MHz, CDCl3): 7.90-6.69 (9H, m), 5.67 (2H, s), 3.37 (2H, m), 2.56 (3H,s), 2.13-1.51 (11H, m), 1.17 (9H, s). 1 H NMR (500 MHz, CDCl 3 ): 7.90-6.69 (9H, m), 5.67 (2H, s), 3.37 (2H, m), 2.56 (3H,s), 2.13-1.51 (11H, m), 1.17 (9H, s).
합성예 3: 제2 메탈로센 화합물 제조Synthesis Example 3: Preparation of a Second Metallocene Compound
3-1 리간드 화합물의 제조3-1 Preparation of ligand compounds
상온에서 50 g의 Mg(s)를 10 L 반응기에 간한 후, THF 300 mL를 가하였다. I2 0.5 g을 가한 후, 반응기의 온도를 50 ℃로 유지하였다. 반응기 온도가 안정화된 후 250 g의 6-t-부톡시헥실클로라이드를 피딩 펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t-부톡시헥실클로라이드를 가함에 따라 반응기 온도가 4 내지 5 ℃ 상승하는 것을 관찰하였다. 계속하여 6-t-부톡시헥실클로라이드를 가하면서 12 시간 동안 교반하여 검은색의 반응 용액을 얻었다. 생성된 검은색의 용액을 2 mL 취한 뒤, 물을 가하여 유기층을 얻어 1H-NMR을 통하여 6-t-부톡시헥산임을 확인하였으며, 이로부터 그리냐드 반응인 잘 진행되었음을 확인하였다. 이로부터, 6-t-부톡시헥실 마그네슘 클로라이드(6-t-butoxyhexyl magnesium chloride)를 합성하였다. At room temperature, 50 g of Mg(s) was placed in a 10 L reactor, and 300 mL of THF was added. After adding 0.5 g of I 2 , the temperature of the reactor was maintained at 50 ℃. After the reactor temperature stabilized, 250 g of 6-t-butoxyhexyl chloride was added to the reactor at a rate of 5 mL/min using a feeding pump. It was observed that the reactor temperature increased by 4 to 5 ℃ as 6-t-butoxyhexyl chloride was added. While continuously adding 6-t-butoxyhexyl chloride, stirring was performed for 12 hours to obtain a black reaction solution. 2 mL of the generated black solution was taken, and water was added to obtain an organic layer, and it was confirmed to be 6-t-butoxyhexane through 1 H-NMR, and from this, it was confirmed that the Grignard reaction had proceeded well. From this, 6-t-butoxyhexyl magnesium chloride was synthesized.
MeSiCl3 500 g과 1 L의 THF를 반응기에 가한 후 반응기 온도를 -20 ℃까지 냉각하였다. 앞서 합성한 6-t-부톡시헥실 마그네슘 클로라이드 중 560 g을 피딩 펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 그리냐드 시약의 피딩이 끝난 후 반응기 온도를 천천히 상온으로 올리면서 12 시간 동안 교반하여, 흰색의 MgCl2 염이 생성되는 것을 확인하였다. 헥산 4 L를 가하여 랩도리(labdori)를 통하여 염을 제거하여 필터 dydddor을 얻었다. 얻은 필터 용액을 반응기에 가한 후 70 ℃에서 헥산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR을 통하여 메틸(6-t-부톡시헥실)디클로로실란 [methyl(6-t-butoxyhexyl)dichlorosilane]임을 확인하였다. After adding 500 g of MeSiCl 3 and 1 L of THF to the reactor, the reactor temperature was cooled to -20 ℃. 560 g of the previously synthesized 6-t-butoxyhexyl magnesium chloride was added to the reactor at a rate of 5 mL/min using a feeding pump. After the feeding of the Grignard reagent was completed, the reactor temperature was slowly raised to room temperature and stirred for 12 hours, and it was confirmed that a white MgCl 2 salt was produced. 4 L of hexane was added, and the salt was removed through a labdori to obtain a filter dydddor. The obtained filter solution was added to the reactor, and hexane was removed at 70 ℃ to obtain a pale yellow liquid. The obtained liquid was confirmed to be methyl(6-t-butoxyhexyl)dichlorosilane through 1 H-NMR.
1H-NMR (CDCl3): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H) 1 H-NMR (CDCl 3 ): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H)
테트라메틸시클로펜타디엔 1.2 mol(150 g)과 2.4 L의 THF를 반응기에 가한 후 반응기 온도를 -20 ℃로 냉각하였다. n-BuLi 480 mL를 피딩 펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n-BuLi을 가한 후 반응기 온도를 천천히 상온으로 올리면서 12 시간 교반하였다. 이어, 당량의 메틸(6-t-부톡시헥실)디클로로실란(326 g, 350 mL)을 빠르게 반응기에 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12 시간 동안 교반한 후 다시 반응기 온도를 0 ℃로 냉각시킨 후 2당량의 t-BuNH2를 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12 시간 동안 교반하였다. 이어 THF를 제거하고 4 L의 헥산을 가하여 랩도리를 통하여 염을 제거한 필터 용액을 얻었다. 필터 용액을 다시 반응기에 가한 후, 헥산을 70 ℃에서 제거하여 노란색의 용액을 얻었다. 이를 1H-NMR을 통하여, 메틸(6-t-부톡시헥실)(테트라메틸시클로펜타디에닐)t-부틸아미노실란[methyl(6-t-butoxyhexyl)(tetramethylcyclopentadienyl)t-butylaminosilane]임을 확인하였다. Tetramethylcyclopentadiene (1.2 mol, 150 g) and 2.4 L of THF were added to the reactor, and the reactor temperature was cooled to -20 ℃. n-BuLi (480 mL) was added to the reactor at a rate of 5 mL/min using a feeding pump. After adding n-BuLi, the reactor temperature was slowly increased to room temperature and stirred for 12 hours. Then, an equivalent amount of methyl(6-t-butoxyhexyl)dichlorosilane (326 g, 350 mL) was rapidly added to the reactor. The reactor temperature was slowly increased to room temperature and stirred for 12 hours. After cooling the reactor temperature to 0 ℃ again, 2 equivalents of t-BuNH 2 were added. The reactor temperature was slowly increased to room temperature and stirred for 12 hours. Then, THF was removed, 4 L of hexane was added, and a filter solution was obtained through a labdori to remove salts. After the filter solution was added back to the reactor, hexane was removed at 70°C to obtain a yellow solution. This was confirmed to be methyl(6-t-butoxyhexyl)(tetramethylcyclopentadienyl)t-butylaminosilane through 1 H-NMR.
3-2 메탈로센 화합물의 제조3-2 Preparation of metallocene compounds
n-BuLi과 리간드 디메틸(테트라메틸CpH)t-부틸아미노실란[dimethyl(tetramethylCpH)t-butylaminosilane]으로부터 THF 용액에서 합성한 -78 ℃의 리간드의 디리튬염에 TiCl3(THF)3 10 mmol을 빠르게 가하였다. 반응 용액을 천천히 -78 ℃에서 상온으로 올리면서 12 시간 동안 교반하였다. 이어, 상온에서 당량의 PbCl2(10 mmol)를 가한 후 12 시간 동안 교반하여, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반응 용액에서 THF를 제거한 후 헥산을 가하여 생성물을 필터하였다. 얻은 필터 용액에서 헥산을 제거한 후, 1H-NMR로 [tBu-O-(CH2)6](CH3)Si(C5(CH3)4)(tBu-N)TiCl2]임을 확인하였다. From n-BuLi and the ligand dimethyl(tetramethylCpH)t-butylaminosilane, 10 mmol of TiCl 3 (THF) 3 was rapidly added to the dilithium salt of the ligand at -78 °C in THF solution. The reaction solution was stirred for 12 h while slowly warming from -78 °C to room temperature. Then, an equivalent amount of PbCl 2 (10 mmol) was added at room temperature, and the mixture was stirred for 12 h to obtain a dark black solution tinged with blue. After removing THF from the resulting reaction solution, hexane was added, and the product was filtered. After removing hexane from the obtained filter solution, it was confirmed as [tBu-O-(CH 2 ) 6 ](CH 3 )Si(C 5 (CH 3 ) 4 )(tBu-N)TiCl 2 ].
1H-NMR (CDCl3): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 - 0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 (s, 3H) 1 H-NMR (CDCl 3 ): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 - 0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 (s, 3H)
[담지 촉매의 제조][Manufacture of supported catalyst]
제조예 1: 담지 촉매의 제조Manufacturing Example 1: Manufacturing of a supported catalyst
20 L 스테인레트스틸(sus) 고압 반응기에 톨루엔 용액 5.0 kg을 넣고 반응기 온도를 40 ℃로 유지하였다. 600 ℃의 온도에서 12 시간 동안 진공을 가해 탈수시킨 실리카(Grace Davison사 제조, SP948) 1 kg을 반응기에 투입하고 실리카를 충분히 분산시킨 후, 합성예 1의 메탈로센 화합물 128 g을 톨루엔에 녹여 투입하고 40 ℃에서 200 rpm으로 2 시간 동안 교반하여 반응시켰다. 이후 교반을 중지하고 30 분 동안 세틀링하고 반응 용액을 디캔테이션하였다. 5.0 kg of toluene solution was placed in a 20 L stainless steel (SUS) high-pressure reactor, and the reactor temperature was maintained at 40°C. 1 kg of silica (SP948, manufactured by Grace Davison) dehydrated by applying vacuum at a temperature of 600°C for 12 hours was placed in the reactor, and after sufficiently dispersing the silica, 128 g of the metallocene compound of Synthesis Example 1 dissolved in toluene was placed therein, and the mixture was stirred at 200 rpm for 2 hours at 40°C to carry out a reaction. Thereafter, stirring was stopped, the mixture was allowed to settle for 30 minutes, and the reaction solution was decanted.
반응기에 톨루엔 2.5 kg을 투입하고, 10 wt% 메틸알루미녹산(MAO)/톨루엔 용액 9.4 kg을 투입한 후, 40 ℃에서 200 rpm으로 12 시간 동안 교반하였다. 반응 후, 교반을 중지하고 30 분 동안 세틀링하고 반응 용액을 디캔테이션하였다. 톨루엔 3.0 kg을 투입하고 10 분 동안 교반한 다음, 교반을 중지하고 30 분 동안 세틀링하고 톨루엔 용액을 디캔테이션하였다. 2.5 kg of toluene was charged into the reactor, and 9.4 kg of a 10 wt% methylaluminoxane (MAO)/toluene solution was added, followed by stirring at 40°C and 200 rpm for 12 hours. After the reaction, stirring was stopped, settling for 30 minutes, and the reaction solution was decanted. 3.0 kg of toluene was added, stirred for 10 minutes, stirring was stopped, settling for 30 minutes, and the toluene solution was decanted.
반응기에 톨루엔 3.0 kg을 투입하고, 합성예 2의 메탈로센 화합물 142.3g을 톨루엔 용액 1L에 녹여 반응기에 투입하고, 40 ℃에서 200 rpm으로 2 시간 동안 교반하여 반응시켰다. 이 때, 상기 합성예 1의 메탈로센 화합물과 합성예 2의 메탈로센 화합물과의 비율은 중량 기준으로 47:53가 되었다. 반응기 온도를 상온으로 낮춘 후, 교반을 중지하고 30 분 동안 세틀링하고 반응 용액을 디캔테이션하였다. 3.0 kg of toluene was charged into the reactor, and 142.3 g of the metallocene compound of Synthesis Example 2 was dissolved in 1 L of toluene solution and charged into the reactor, followed by stirring at 40° C. and 200 rpm for 2 hours to cause a reaction. At this time, the ratio of the metallocene compound of Synthesis Example 1 and the metallocene compound of Synthesis Example 2 was 47:53 on a weight basis. After the reactor temperature was lowered to room temperature, stirring was stopped, settling was performed for 30 minutes, and the reaction solution was decanted.
반응기에 톨루엔 2.0 kg을 투입하고 10 분 동안 교반한 후, 교반을 중지하고 30 분 동안 세틀링하고 반응 용액을 디캔테이션하였다. 2.0 kg of toluene was added to the reactor and stirred for 10 minutes. Then, stirring was stopped, the solution was allowed to settle for 30 minutes, and the reaction solution was decanted.
반응기에 헥산 3.0 kg을 투입하고 헥산 슬러리를 필터 드라이로 이송하고 헥산 용액을 필터하였다. 40 ℃에서 4 시간 동안 감압 하에 건조하여 910 g-SiO2 혼성 담지 촉매를 제조하였다. 3.0 kg of hexane was added to the reactor, the hexane slurry was transferred to a filter dryer, and the hexane solution was filtered. It was dried under reduced pressure at 40°C for 4 hours to produce a 910 g-SiO 2 hybrid supported catalyst.
제조예 2: 담지 촉매의 제조Manufacturing Example 2: Manufacturing of a supported catalyst
상기 제조예 1과 동일한 방법으로 제조하되, 합성예 1의 메탈로센 화합물과 합성예 2의 메탈로센 화합물과의 비율을 중량 기준으로 60:40로 투입하여 혼성 담지 촉매를 제조하였다.A hybrid supported catalyst was manufactured using the same method as in Manufacturing Example 1, except that the metallocene compound of Synthesis Example 1 and the metallocene compound of Synthesis Example 2 were added in a weight ratio of 60:40.
제조예 3: 담지 촉매의 제조Manufacturing Example 3: Manufacturing of a supported catalyst
상기 제조예 1과 동일한 방법으로 제조하되, 합성예 1의 메탈로센 화합물과 합성예 2의 메탈로센 화합물과의 비율을 중량 기준으로 35:65로 투입하여 혼성 담지 촉매를 제조하였다.A hybrid supported catalyst was manufactured using the same method as in Manufacturing Example 1, except that the metallocene compound of Synthesis Example 1 and the metallocene compound of Synthesis Example 2 were added in a weight ratio of 35:65.
비교 제조예 1: 담지 촉매의 제조Comparative Manufacturing Example 1: Manufacturing of Supported Catalyst
상기 제조예 1과 동일한 방법으로 제조하되, 합성예 2의 메탈로센 화합물 대신에 합성예 3의 메탈로센 화합물을 사용하여 합성예 1의 메탈로센 화합물과 합성예 3의 메탈로센 화합물과의 비율을 중량 기준으로 30:70으로 달리하여 혼성 담지 촉매를 제조하였다. A hybrid supported catalyst was manufactured using the same method as Manufacturing Example 1, except that the metallocene compound of Synthesis Example 3 was used instead of the metallocene compound of Synthesis Example 2, and the ratio of the metallocene compound of Synthesis Example 1 to the metallocene compound of Synthesis Example 3 was changed to 30:70 by weight.
[폴리에틸렌의 제조][Manufacture of polyethylene]
실시예 1-1Example 1-1
상기 제조예 1에서 제조된 담지 촉매를 단일 슬러리 중합 공정에 투입하여, 별도의 공단량체 없이 호모중합체인 고밀도 폴리에틸렌을 제조하였다. The supported catalyst manufactured in the above Manufacturing Example 1 was introduced into a single slurry polymerization process to manufacture high-density polyethylene, which is a homopolymer, without a separate comonomer.
먼저, 100 m3 용량의 반응기에 헥산 25 ton/hr, 에틸렌 10 ton/hr, 수소 15 m3/hr, 트리에틸알루미늄(TEAL) 10 kg/hr의 유량으로 각각 주입되고, 또한 제조예 1에 따른 혼성 담지 메탈로센 촉매가 0.5 kg/hr으로 주입되었다. 여기서, 상기 수소 기체의 투입량은 에틸렌 함량 기준으로 106 ppm이었다. 이에, 상기 에틸렌은 반응기 온도 82 ℃, 압력은 7.0 kg/cm2 내지 7.5 kg/cm2에서 헥산 슬러리 상태로 연속 반응시킨 다음, 용매 제거 및 드라이 공정을 거쳐 분말 형태의 고밀도 폴리에틸렌을 제조하였다.First, hexane of 25 tons/hr, ethylene of 10 tons/hr, hydrogen of 15 m3 /hr, and triethylaluminum (TEAL) of 10 kg/hr were injected into a reactor having a capacity of 100 m3 , and also, the hybrid supported metallocene catalyst according to Manufacturing Example 1 was injected at 0.5 kg/hr. Here, the amount of hydrogen gas injected was 106 ppm based on the ethylene content. Accordingly, the ethylene was continuously reacted in the form of a hexane slurry at a reactor temperature of 82 ℃ and a pressure of 7.0 kg/ cm2 to 7.5 kg/ cm2 , and then, through a solvent removal and drying process, a high-density polyethylene in a powder form was manufactured.
실시예 1-2Example 1-2
상기 실시예 1-1과 동일한 방법으로 제조하되, 제조예 1에서 제조된 담지 촉매 대신에 제조예 2에서 제조된 담지 촉매를 사용하며, 수소의 투입량을 90 ppm으로 달리하여, 분말 형태의 고밀도 폴리에틸렌을 제조하였다.A high-density polyethylene in powder form was manufactured using the same method as in Example 1-1, except that the supported catalyst manufactured in Manufacturing Example 2 was used instead of the supported catalyst manufactured in Manufacturing Example 1, and the amount of hydrogen added was changed to 90 ppm.
실시예 1-3Example 1-3
상기 실시예 1-1과 동일한 방법으로 제조하되, 제조예 1에서 제조된 담지 촉매 대신에 제조예 3에서 제조된 담지 촉매를 사용하며, 수소의 투입량을 115 ppm으로 달리하여, 분말 형태의 고밀도 폴리에틸렌을 제조하였다.A high-density polyethylene in powder form was manufactured using the same method as in Example 1-1, except that the supported catalyst manufactured in Manufacturing Example 3 was used instead of the supported catalyst manufactured in Manufacturing Example 1, and the amount of hydrogen added was changed to 115 ppm.
비교예 1-1Comparative Example 1-1
지글러나타 촉매(Z/N-1, Zeigier-Natta catalyst)를 사용하여 제조하고, 용융지수(MI5, 190 ℃, 5 kg)가 1.3 g/10min인 고밀도 폴리에틸렌(HDPE) 시판 제품(제품명 CE2080, 제조사 LG Chem社)를 비교예 1-1로 준비하였다. A commercially available high-density polyethylene (HDPE) product (product name CE2080, manufacturer LG Chem) manufactured using a Zeiger-Natta catalyst (Z/N-1) and having a melting index (MI 5 , 190°C, 5 kg) of 1.3 g/10 min was prepared as Comparative Example 1-1.
비교예 1-2Comparative Example 1-2
지글러나타 촉매(Z/N-2, Zeigier-Natta catalyst)를 사용하여 제조하고, 용융지수(MI5, 190 ℃, 5 kg)가 0.95 g/10min인 고밀도 폴리에틸렌(HDPE) 시판 제품(제품명 CE6040K, 제조사 LG Chem社)를 비교예 1-1로 준비하였다. A commercially available high-density polyethylene (HDPE) product (product name CE6040K, manufacturer LG Chem) manufactured using a Zeiger-Natta catalyst (Z/N-2) and having a melting index (MI 5 , 190°C, 5 kg) of 0.95 g/10 min was prepared as Comparative Example 1-1.
비교예 1-3Comparative Example 1-3
상기 실시예 1-1과 동일한 방법으로 제조하되, 제조예1에서 제조된 담지 촉매 대신에 비교 제조예 1 에서 제조된 담지 촉매를 사용하며, 수소의 투입량을 30 ppm으로 달리하여, 분말 형태의 고밀도 폴리에틸렌을 제조하였다.A high-density polyethylene in powder form was manufactured using the same method as in Example 1-1, but using the supported catalyst manufactured in Comparative Manufacturing Example 1 instead of the supported catalyst manufactured in Manufacturing Example 1, and varying the amount of hydrogen input to 30 ppm.
비교예 1-4Comparative Example 1-4
상기 실시예 1-1과 동일한 방법으로 제조하되, 에틸렌과 함께 공단량체로 1-부텐을 사용하여, 상기 1-부텐을 시간당 45 kg/hr로 투입하고, 수소의 투입량을 98 ppm으로 달리하여, 에틸렌/1-부텐 공중합체를 제조하였다. An ethylene/1-butene copolymer was produced using the same method as in Example 1-1, except that 1-butene was used as a comonomer together with ethylene, the 1-butene was fed at a rate of 45 kg/hr, and the amount of hydrogen fed was varied to 98 ppm.
비교예 1-5 Comparative Example 1-5
상기 실시예 1-1과 동일한 방법으로 제조하되, 수소의 투입량을 140 ppm으로 달리하여, 분말 형태의 고밀도 폴리에틸렌을 제조하였다.High-density polyethylene in powder form was manufactured using the same method as in Example 1-1, but using a different amount of hydrogen at 140 ppm.
비교예 1-6 Comparative Example 1-6
상기 실시예 1-1과 동일한 방법으로 제조하되, 수소의 투입량을 25 ppm으로 달리하여, 분말 형태의 고밀도 폴리에틸렌을 제조하였다.High-density polyethylene in powder form was manufactured using the same method as in Example 1-1, but the amount of hydrogen added was changed to 25 ppm.
시험예 1Test Example 1
실시예 1-1 내지 1-3 및 비교예 1-1 내지 1-6에서 제조한 폴리에틸렌에 대해 하기와 같은 방법으로 물성을 측정하고, 그 결과를 하기 표 1에 나타내었다.The physical properties of the polyethylene manufactured in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-6 were measured by the following methods, and the results are shown in Table 1 below.
1) 용융지수 (MI, g/10분)1) Melting index (MI, g/10 min)
ASTM D 1238의 방법으로 온도 190 ℃에서 각각 하중 5 kg, 및 21.6 kg의 조건 하에서 용융지수(MI5, MI21.6)를 측정하였으며, 10분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.The melting indices (MI 5 , MI 21.6 ) were measured under the conditions of a temperature of 190 ℃ and a load of 5 kg and 21.6 kg, respectively, by the method of ASTM D 1238, and were expressed as the weight (g) of the polymer melted for 10 minutes.
2) 용융 흐름 지수 (MFRR, MI2) Melt flow rate (MFRR, MI) 21.6/521.6/5 ))
ASTM D 1238의 방법으로 190 ℃, 21.6kg 하중에서 측정한 용융 지수를, 190℃, 5 kg 하중에서 측정한 용융 지수로 나눈 값으로 용융 흐름 지수(MFRR, MI21.6/5)를 산측하였다. The melt flow rate (MFRR, MI 21.6/5 ) was calculated by dividing the melt index measured at 190°C and 21.6 kg load by the melt index measured at 190°C and 5 kg load using the ASTM D 1238 method.
3) 밀도 (g/cm3) Density (g/cm) 33 ))
ASTM D 1505 의 방법으로 폴리에틸렌의 밀도(g/cm3)를 측정하였다.The density (g/cm 3 ) of polyethylene was measured using the ASTM D 1505 method.
4) 주파수에 따른 복소 점도 측정4) Measurement of complex viscosity according to frequency
TA instruments의 ARES(Advanced Rheometric Expansion System, ARES G2)으로 주파수에 따른 복소 점도 측정: η*(ω0.05) 및 η*(ω500)을 측정하였다. 샘플은 190 ℃에서 직경 25.0 mm의 parallel plates를 이용하여 gap이 2.0 mm가 되도록 하였다. 측정은 dynamic strain frequency sweep 모드로 strain은 5%, 주파수(frequency)는 0.05 rad/s에서 500 rad/s까지, 각 decade에 10 point씩 총 41 point를 측정하였다. Complex viscosity as a function of frequency: η*(ω0.05) and η*(ω500) was measured using an Advanced Rheometric Expansion System (ARES G2) of TA instruments. The samples were prepared using parallel plates with a diameter of 25.0 mm and a gap of 2.0 mm at 190°C. The measurements were performed in dynamic strain frequency sweep mode, with a strain of 5% and a frequency from 0.05 to 500 rad/s, with 10 points per decade for a total of 41 points.
1Manufacturing example
1
2Manufacturing example
2
3Manufacturing example
3
제조예
1comparison
Manufacturing example
1
1Manufacturing example
1
1Manufacturing example
1
1Manufacturing example
1
투입량
(ppm)hydrogen
input
(ppm)
상기 표 1에서, 실시예 1-1 내지 1-3 및 비교예 1-1 내지 1-3, 1-5, 1-6은 에틸렌 호모 중합체 (호모 PE)를 제조한 것이며, 비교예 1-4는 에틸렌/1-부텐 공중합체를 제조한 것이다. In the above Table 1, Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3, 1-5, and 1-6 produced ethylene homopolymers (homo PE), and Comparative Example 1-4 produced an ethylene/1-butene copolymer.
또한, 상기 표 1에 나타난 바와 같이, 비교예와 대비하여 실시예들은 용융지수와 밀도가 최적화됨과 동시에 주파수(frequency) 0.05 rad/s및 500 rad/s에서 복소 점도가 모두 최적화 범위로 구현되는 것을 확인할 수 있었다.In addition, as shown in Table 1 above, it was confirmed that the melting index and density of the examples were optimized compared to the comparative examples, and the complex viscosity was implemented within the optimized range at frequencies of 0.05 rad/s and 500 rad/s.
시험예 2Test Example 2
실시예 1-1 내지 1-3 및 비교예 1-1 내지 1-5에서 제조한 폴리에틸렌을 사용하여, 하기 실시예 2-1 내지 2-3 및 비교예 2-1 내지 2-5의 염소화 폴리에틸렌을 제조하였다. Using the polyethylene manufactured in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-5, chlorinated polyethylene of Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-5 was manufactured.
[염소화 폴리에틸렌의 제조][Manufacture of chlorinated polyethylene]
반응기에 물 5000 L와 실시예 1-1에서 제조된 고밀도 폴리에틸렌 550 kg을 투입한 다음, 분산제로 소듐 폴리메타크릴레이트, 유화제로 옥시프로필렌 및 옥시에틸렌 코폴리에테르, 촉매로 벤조일 퍼옥사이드를 넣고, 80 ℃에서 132 ℃까지 17.3 ℃/hr 속도로 승온한 후에 최종 온도 132 ℃에서 3 시간 동안 기체상의 클로린으로 염소화하였다. 이때, 상기 염소화 반응은 승온과 동시에 반응기 내 압력을 0.3 MPa로 기체상의 클로린을 주입하였으며, 상기 클로린의 총투입량은 700 kg이었다. 상기 염소화된 반응물을 NaOH에 투입하여 4 시간 동안 중화하고, 이를 다시 흐르는 물로 4 시간 동안 세정한 다음, 마지막으로 120 ℃에서 건조시켜 분말 형태의 염소화 폴리에틸렌을 제조하였다. 5000 L of water and 550 kg of the high-density polyethylene manufactured in Example 1-1 were charged into the reactor, then sodium polymethacrylate was added as a dispersant, oxypropylene and oxyethylene copolyether as emulsifiers, and benzoyl peroxide as a catalyst, and the temperature was increased from 80 ℃ to 132 ℃ at a rate of 17.3 ℃/hr, and then chlorination was performed with gaseous chlorine at a final temperature of 132 ℃ for 3 hours. At this time, the chlorination reaction was performed by injecting gaseous chlorine at the same time as the temperature was increased so that the pressure inside the reactor was 0.3 MPa, and the total amount of chlorine introduced was 700 kg. The chlorinated reactant was neutralized in NaOH for 4 hours, washed with running water for 4 hours, and then finally dried at 120 ℃ to manufacture chlorinated polyethylene in a powder form.
또한, 실시예 1-2 내지 1-3 및 비교예 1-1 내지 1-5에서 제조된 폴리에틸렌도, 상기와 동일한 방법으로 각각 분말 형태의 염소화 폴리에틸렌을 제조하였다. In addition, the polyethylene manufactured in Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-5 were each manufactured as chlorinated polyethylene in powder form using the same method as above.
상술한 바와 같이, 실시예 1-1 내지 1-3 및 비교예 1-1 내지 1-5에서 제조한 폴리에틸렌 사용하여 제조한, 실시예 2-1 내지 2-3 및 비교예 2-1 내지 2-5의 염소화 폴리에틸렌에 대해 하기와 같은 방법으로 물성을 측정하고, 그 결과를 하기 표 2에 나타내었다.As described above, the physical properties of the chlorinated polyethylenes of Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-5, which were manufactured using the polyethylene manufactured in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-5, were measured by the following methods, and the results are shown in Table 2 below.
1) CPE의 무늬점도 (MV, Mooney viscosity)1) Mooney viscosity (MV) of CPE
무늬 점도계(Mooney viscometer) 내 Rotor를 CPE 샘플로 감싸고 Die를 닫는다. 121 ℃로 1 분(min) 동안 예열한 후, Rotor를 4 min 동안 회전시켜 MV(Mooney viscosity, 121 ℃, ML1+4)을 측정하였다.The rotor in the Mooney viscometer was wrapped with the CPE sample and the die was closed. After preheating to 121 °C for 1 minute (min), the rotor was rotated for 4 minutes to measure the MV (Mooney viscosity, 121 °C, ML1+4).
2) CPE의 건조 시간 (min)2) Drying time of CPE (min)
슬러리(물 혹은 HCl 수용액) 상태로 약 60 ℃ 내지 약 150 ℃ 조건 하에서 클로린을 반응시켜 CPE를 제조한 후에, 생성된 CPE를 NaOH에 투입하여 4 시간 동안 중화하고, 이를 다시 흐르는 물로 4 시간 동안 세정한 다음, 마지막으로 120 ℃에서 건조시켜 분말 형태의 염소화 폴리에틸렌 최종 제품을 제조하였다. CPE was manufactured by reacting chlorine in a slurry (water or HCl aqueous solution) state at a temperature of about 60°C to about 150°C, then the manufactured CPE was neutralized by adding it to NaOH for 4 hours, washed again with running water for 4 hours, and finally dried at 120°C to manufacture a final chlorinated polyethylene product in powder form.
여기서, 최종 제품의 수분 함량이 0.4 wt% 이하가 될 때까지 건조를 진행하고, 이 때 걸리는 시간을 분 단위로 측정하여 건조 시간(min)으로 나타내었다.Here, drying was performed until the moisture content of the final product became 0.4 wt% or less, and the time taken for this to occur was measured in minutes and expressed as the drying time (min).
상기 표 2에 나타난 바와 같이, 비교예와 대비하여 실시예들은 염화 가공 시 탈산, 탈수 및 건조 공정을 용이하게 하고, 염화 온도 상향을 가능하게 함으로써 CPE 생산성이 우세하면서, 염소화 이후 무늬 점도 또한 최적 범위로 확보할 수 있어, 컴파운딩 공정에서 압출시 가공성을 향상시킴과 동시에 우수한 인장 강도를 확보할 수 있음을 알 수 있다. As shown in Table 2 above, compared to the comparative examples, the examples facilitate the deoxidation, dehydration and drying processes during chlorination processing, enable an increase in the chlorination temperature, thereby enhancing CPE productivity and ensuring that the viscosity after chlorination is also within an optimal range, thereby improving processability during extrusion in the compounding process and ensuring excellent tensile strength.
Claims (12)
용융 지수 MI5(190 ℃, 5 kg 하중에서 측정)가 0.7 g/10min 내지 1.0 g/10min이고,
밀도(Density)가 0.953 g/cm3 이상이고,
주파수(ω, frequency, ω) 0.05 rad/s에서 측정한 복소 점도(η*(ω0.05), complex viscosity)가 43000 Paㆍs 이상이고,
주파수(ω, frequency, ω) 500 rad/s에서 측정한 복소 점도(η*(ω500), complex viscosity)가 550 Paㆍs 내지 850 Paㆍs이고,
분자량 분포(Mw/Mn)가 5.5 내지 10이고,
용융 흐름 지수(MFRR21.6/5, ASTM D 1238의 방법으로 190 ℃, 21.6 kg 하중에서 측정한 용융 지수를 190 ℃, 5 kg 하중에서 측정한 용융 지수로 나눈 값)은 16 내지 25인,
폴리에틸렌.
As an ethylene homopolymer,
The melting index MI 5 (measured at 190°C, 5 kg load) is 0.7 g/10 min to 1.0 g/10 min,
The density is 0.953 g/cm 3 or more,
The complex viscosity (η*(ω0.05), complex viscosity) measured at a frequency (ω, frequency, ω) of 0.05 rad/s is 43000 Paㆍs or more,
The complex viscosity (η*(ω500), complex viscosity) measured at a frequency (ω, frequency, ω) of 500 rad/s is 550 Paㆍs to 850 Paㆍs,
The molecular weight distribution (Mw/Mn) is 5.5 to 10,
The melt flow rate (MFRR 21.6/5 , the melt index measured at 190°C, 21.6 kg load divided by the melt index measured at 190°C, 5 kg load by the method of ASTM D 1238) is 16 to 25.
Polyethylene.
상기 폴리에틸렌은, 분자량 분포(Mw/Mn)가 6 내지 9인,
폴리에틸렌.
In the first paragraph,
The above polyethylene has a molecular weight distribution (Mw/Mn) of 6 to 9.
Polyethylene.
상기 폴리에틸렌은, 밀도(Density)가 0.953 g/cm3 내지 0.960 g/cm3인,
폴리에틸렌.
In the first paragraph,
The above polyethylene has a density of 0.953 g/cm 3 to 0.960 g/cm 3 .
Polyethylene.
상기 폴리에틸렌은, 주파수(ω, frequency, ω) 0.05 rad/s에서 측정한 복소 점도(η*(ω0.05), complex viscosity)가 43000 Paㆍs 내지 110000 Paㆍs인,
폴리에틸렌.
In the first paragraph,
The above polyethylene has a complex viscosity (η*(ω0.05), complex viscosity) of 43,000 Paㆍs to 110,000 Paㆍs measured at a frequency (ω, frequency, ω) of 0.05 rad/s.
Polyethylene.
상기 폴리에틸렌은, 용융 흐름 지수(MFRR21.6/5, ASTM D 1238의 방법으로 190 ℃, 21.6 kg 하중에서 측정한 용융 지수를 190 ℃, 5 kg 하중에서 측정한 용융 지수로 나눈 값)은 16 내지 19.8인,
폴리에틸렌.
In the first paragraph,
The above polyethylene has a melt flow rate (MFRR 21.6/5 , the melt index measured at 190°C and 21.6 kg load divided by the melt index measured at 190°C and 5 kg load by the method of ASTM D 1238) of 16 to 19.8.
Polyethylene.
상기 제1 메탈로센 화합물 및 상기 제2 메탈로센 화합물의 중량비는 25:75 내지 65:35인,
제1항 내지 제5항 중 어느 한 항에 따른 폴리에틸렌의 제조 방법:
[화학식 1]
상기 화학식 1에서,
R1 내지 R8 중 어느 하나 이상은 -(CH2)n-OR이고, 여기서, R은 C1-6의 직쇄 또는 분지쇄 알킬이고, n은 2 내지 6의 정수이고,
R1 내지 R8 중 나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C6-20 아릴, C7-40 알킬아릴, C7-40 아릴알킬로 이루어진 군에서 선택된 작용기이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 C1-10의 하이드로카빌기로 치환 또는 비치환된 C6-20의 지방족 또는 방향족 고리를 형성할 수 있고,
Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알콕시알킬, C6-20 아릴, C7-40 알킬아릴, C7-40 아릴알킬이고;
A1은 탄소(C), 실리콘(Si), 또는 게르마늄(Ge)이고;
M1은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C6-20 아릴, 니트로기, 아미도기, C1-20 알킬실릴, C1-20 알콕시, 또는 C1-20 설포네이트기이고;
m은 0 또는 1의 정수이고,
[화학식 2]
상기 화학식 2에서,
Q3 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알콕시알킬, C6-20 아릴, C7-40 알킬아릴, C7-40 아릴알킬이고;
A2는 탄소(C), 실리콘(Si), 또는 게르마늄(Ge)이고;
M2는 4족 전이금속이며;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C6-20 아릴, 니트로기, 아미도기, C1-20 알킬실릴, C1-20 알콕시, 또는 C1-20 설포네이트기이고;
C1 및 C2는 중 하나는 하기 화학식 3a 또는 화학식 3b로 표시되고, C1 및 C2는 중 나머지 하나는 하기 화학식 3c, 화학식 3d, 또는 화학식 3e로 표시되며;
[화학식 3a]
[화학식 3b]
[화학식 3c]
[화학식 3d]
[화학식 3e]
상기 화학식 3a, 3b, 3c, 3d 및 3e에서,
R9 내지 R39 및 R9' 내지 R21'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬, C1-20 할로알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 알콕시, C6-20 아릴, C7-40 알킬아릴, C7-40 아릴알킬이며, 단, R17 내지 R21 및 R17' 내지 R21' 중 하나 이상은 C1-20 할로알킬이고,
R22 내지 R39 중 서로 인접하는 2개 이상이 서로 연결되어 C1-10 의 하이드로카빌기로 치환 또는 비치환된 C6-20의 지방족 또는 방향족 고리를 형성할 수 있으며;
*는 A2 및 M2와 결합하는 부위를 나타낸 것이다.
A step of polymerizing ethylene by introducing hydrogen gas at 50 ppm to 125 ppm in the presence of at least one first metallocene compound represented by the following chemical formula 1; and at least one second metallocene compound selected from compounds represented by the following chemical formula 2,
The weight ratio of the first metallocene compound and the second metallocene compound is 25:75 to 65:35.
A method for producing polyethylene according to any one of claims 1 to 5:
[Chemical Formula 1]
In the above chemical formula 1,
At least one of R 1 to R 8 is -(CH 2 ) n -OR, wherein R is a straight or branched chain alkyl of C 1-6 , n is an integer from 2 to 6,
The remainder of R 1 to R 8 are the same or different and each independently a functional group selected from the group consisting of hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 6-20 aryl, C 7-40 alkylaryl, C 7-40 arylalkyl, or two or more adjacent groups may be connected to each other to form a C 6-20 aliphatic or aromatic ring substituted or unsubstituted with a C 1-10 hydrocarbyl group,
Q 1 and Q 2 are the same or different, and are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-40 alkylaryl, C 7-40 arylalkyl;
A 1 is carbon (C), silicon (Si), or germanium (Ge);
M 1 is a group 4 transition metal;
X 1 and X 2 are the same or different, and each independently represents halogen, C 1-20 alkyl, C 2-20 alkenyl, C 6-20 aryl, nitro group, amido group, C 1-20 alkylsilyl, C 1-20 alkoxy, or C 1-20 sulfonate group;
m is an integer of 0 or 1,
[Chemical formula 2]
In the above chemical formula 2,
Q 3 and Q 4 are the same or different, and are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-40 alkylaryl, C 7-40 arylalkyl;
A 2 is carbon (C), silicon (Si), or germanium (Ge);
M 2 is a group 4 transition metal;
X 3 and X 4 are the same or different, and each independently represents halogen, C 1-20 alkyl, C 2-20 alkenyl, C 6-20 aryl, nitro group, amido group, C 1-20 alkylsilyl, C 1-20 alkoxy, or C 1-20 sulfonate group;
C 1 and C 2 is represented by one of the following chemical formulas 3a or 3b, and C 1 and C 2 is represented by the following chemical formula 3c, chemical formula 3d, or chemical formula 3e;
[Chemical formula 3a]
[Chemical formula 3b]
[Chemical formula 3c]
[chemical formula 3d]
[Chemical formula 3e]
In the above chemical formulas 3a, 3b, 3c, 3d and 3e,
R 9 to R 39 and R 9' to R 21' are the same or different and are each independently hydrogen, halogen, C 1-20 alkyl, C 1-20 haloalkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl , C 1-20 alkoxy, C 6-20 aryl, C 7-40 alkylaryl, C 7-40 arylalkyl, provided that at least one of R 17 to R 21 and R 17' to R 21' is C 1-20 haloalkyl,
At least two adjacent ones of R 22 to R 39 may be connected to each other to form a C 6-20 aliphatic or aromatic ring which is unsubstituted or substituted with a C 1-10 hydrocarbyl group;
* Indicates the site of binding to A 2 and M 2 .
상기 제1 메탈로센 화합물은 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시되는 것인,
폴리에틸렌의 제조 방법:
[화학식 1-1]
[화학식 1-2]
[화학식 1-3]
[화학식 1-4]
상기 화학식 1-1 내지 1-4에서,
Q1, Q2, A1, M1, X1, X2, 및 R1 내지 R8은 제6항에서 정의한 바와 같고,
R' 및 R''는 서로 동일하거나 상이하고 각각 독립적으로, C1-10의 하이드로카빌기이다.
In Article 6,
The above first metallocene compound is represented by any one of the following chemical formulas 1-1 to 1-4:
Method for producing polyethylene:
[Chemical Formula 1-1]
[Chemical Formula 1-2]
[Chemical Formula 1-3]
[Chemical Formula 1-4]
In the above chemical formulas 1-1 to 1-4,
Q 1 , Q 2 , A 1 , M 1 , X 1 , X 2 , and R 1 to R 8 are as defined in Article 6,
R' and R'' are the same or different and each independently a C 1-10 hydrocarbyl group.
상기 제2 메탈로센 화합물은 하기 화학식 2-1로 표시되는 것인,
폴리에틸렌의 제조 방법:
[화학식 2-1]
상기 화학식 2-1에서,
Q3, Q4, A2, M2, X3, X4, R11, 및 R17 내지 R29는 제6항에서 정의한 바와 같다.
In Article 6,
The above second metallocene compound is represented by the following chemical formula 2-1:
Method for producing polyethylene:
[Chemical Formula 2-1]
In the above chemical formula 2-1,
Q 3 , Q 4 , A 2 , M 2 , X 3 , X 4 , R 11 , and R 17 to R 29 are as defined in paragraph 6.
R17 내지 R21 및 R17' 내지 R21'은 각각 수소, 또는 C1-6 할로알킬인,
폴리에틸렌의 제조 방법.
In Article 6,
R 17 to R 21 and R 17' to R 21' are each hydrogen or C 1-6 haloalkyl,
Method for producing polyethylene.
상기 제1 메탈로센 화합물 및 상기 제2 메탈로센 화합물의 중량비는 35:65 내지 60:40인,
폴리에틸렌의 제조 방법.
In Article 6,
The weight ratio of the first metallocene compound and the second metallocene compound is 35:65 to 60:40.
Method for producing polyethylene.
Chlorinated polyethylene, produced by reacting the polyethylene of any one of claims 1 to 5 with chlorine.
상기 염소화 폴리에틸렌은, 121 ℃ 조건 하에서 측정한 무늬 점도(MV, Mooney viscosity)가 60 내지 85이고,
ASTM D 412의 방법으로 측정한 인장강도(Tensile strength)가 12 MPa 내지 30 MPa인,
염소화 폴리에틸렌.
In Article 11,
The above chlorinated polyethylene has a Mooney viscosity (MV) of 60 to 85 measured under conditions of 121°C,
Tensile strength measured by the ASTM D 412 method is 12 MPa to 30 MPa.
Chlorinated polyethylene.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20190007628 | 2019-01-21 | ||
| KR1020190007628 | 2019-01-21 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20200090622A KR20200090622A (en) | 2020-07-29 |
| KR102775684B1 true KR102775684B1 (en) | 2025-03-05 |
Family
ID=71893373
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020200005492A Active KR102775684B1 (en) | 2019-01-21 | 2020-01-15 | Polyethylene and its chlorinated polyethylene |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR102775684B1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220177614A1 (en) * | 2019-10-07 | 2022-06-09 | Lg Chem, Ltd. | Polyethylene and Its Chlorinated Polyethylene |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101747401B1 (en) * | 2014-12-08 | 2017-06-14 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer having excellent processibility |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101597421B1 (en) * | 2013-04-19 | 2016-02-24 | 주식회사 엘지화학 | Wax content controlled polyethylene, its chlorinated polyethylene and product thereof |
| KR102002983B1 (en) * | 2016-02-24 | 2019-07-23 | 주식회사 엘지화학 | Supported hybrid metallocene catalyst, and method for preparing polyolefin using the same |
| KR102234944B1 (en) * | 2016-12-13 | 2021-03-31 | 주식회사 엘지화학 | Olefin copolymer |
-
2020
- 2020-01-15 KR KR1020200005492A patent/KR102775684B1/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101747401B1 (en) * | 2014-12-08 | 2017-06-14 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer having excellent processibility |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20200090622A (en) | 2020-07-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102427755B1 (en) | Polyethylene and its chlorinated polyethylene | |
| KR102431339B1 (en) | Polyethylene and its chlorinated polyethylene | |
| KR102427756B1 (en) | Polyethylene and its chlorinated polyethylene | |
| EP3778663B1 (en) | Polyethylene and chlorinated polyethylene thereof | |
| KR102648795B1 (en) | Polyethylene and its chlorinated polyethylene | |
| KR102775684B1 (en) | Polyethylene and its chlorinated polyethylene | |
| CN117050215A (en) | Polyethylene and chlorinated polyethylene thereof | |
| KR102589954B1 (en) | Polyethylene and its chlorinated polyethylene | |
| CN113631592B (en) | Polyethylene and chlorinated polyethylene thereof | |
| JP7366483B2 (en) | Polyethylene and its chlorinated polyethylene | |
| KR102654813B1 (en) | Polyethylene and its chlorinated polyethylene | |
| JP7372451B2 (en) | Polyethylene and its chlorinated polyethylene | |
| KR102775202B1 (en) | Polyethylene and its chlorinated polyethylene | |
| JP7278654B2 (en) | Polyethylene and its chlorinated polyethylene |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20200115 |
|
| PG1501 | Laying open of application | ||
| A201 | Request for examination | ||
| PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20220718 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20200115 Comment text: Patent Application |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240828 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20250217 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20250226 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20250226 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration |