[go: up one dir, main page]

KR19990083518A - Process for joining two solid bodies and the resultant structural element - Google Patents

Process for joining two solid bodies and the resultant structural element Download PDF

Info

Publication number
KR19990083518A
KR19990083518A KR1019990015001A KR19990015001A KR19990083518A KR 19990083518 A KR19990083518 A KR 19990083518A KR 1019990015001 A KR1019990015001 A KR 1019990015001A KR 19990015001 A KR19990015001 A KR 19990015001A KR 19990083518 A KR19990083518 A KR 19990083518A
Authority
KR
South Korea
Prior art keywords
formula
compound
solids
joining
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1019990015001A
Other languages
Korean (ko)
Inventor
바쯔-손크리슈토프
크라우터게르트루트
괴셀레울리히
Original Assignee
데구사-휠스 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 데구사-휠스 악티엔게젤샤프트 filed Critical 데구사-휠스 악티엔게젤샤프트
Publication of KR19990083518A publication Critical patent/KR19990083518A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/008Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

본 발명은 황 함유 오가노실란의 단분자 층(monomolecular layer)으로 먼저 피복된 사실상 평활한 표면에 의하여 두개의 고형체(solid body), 특히 규소의 두개의 고형체를 접합(joining)시키는 방법 및 이로부터 수득한, 마이크로전자공학 또는 마이크로기계학 분야에 사용할 수 있는 고형체에 관한 것이다.The present invention relates to a method of joining two solid bodies, in particular two solid bodies of silicon, by a substantially smooth surface first coated with a monomolecular layer of sulfur containing organosilane and Obtained therefrom, it relates to a solid that can be used in the field of microelectronics or micromechanics.

Description

두개의 고형체의 접합 방법 및 이로부터 수득된 구조 요소{Process for joining two solid bodies and the resultant structural element}Process for joining two solid bodies and the resultant structural element

본 발명은 황 함유 오가노실란의 단분자 층으로 먼저 피복된 사실상 평활한 표면을 통하여 두 고형체를 접합시키는 방법 및 이로부터 수득한 복합 고형체에 관한 것이다.The present invention relates to a process for joining two solids through a substantially smooth surface first coated with a monomolecular layer of sulfur containing organosilane and to a composite solid obtained therefrom.

충분히 평활하고 청정한 고형체 표면들을 접착력에 의하여 실온에서 서로 접합시킬 수 있다는 것은 공지되어 있다. 초기의 약한 상호작용은, 규소 고형체가 사용되는 경우 800 내지 1100℃의 온도에서 수행하는 열처리에 의하여 고형체가 더이상 서로 분리되지 않을 수 있을 정도로 강화된다. 문헌에서 "웨이퍼 결합", "직접 결합" 또는 "융해 결합"이라는 표제로 기술되어 있는 이러한 방법은 그 동안 마이크로전자공학 및 마이크로시스템 둘 다에서 중요한 위치를 차지하고 있었다.It is known that sufficiently smooth and clean solid surface surfaces can be bonded to one another at room temperature by adhesion. The initial weak interaction is enhanced so that the solids can no longer be separated from each other by heat treatments carried out at temperatures of 800 to 1100 ° C. when silicon solids are used. Such methods, described in the literature as "wafer bonding", "direct bonding" or "fusion bonding", have held important positions in both microelectronics and microsystems.

당해 기술분야에서 선행 개발에 대한 논평은 논문[참조: "History and Future of Semiconducter Wafer Bonding", U. Gosele, H. Stenzel, M. Reiche, T. Martini, H. Steinkirchner und Q. -Y. Tong in "Solid State Phenomena" 47 & 48, pp. 33 to 44 (1995)]에서 찾을 수 있다.Comments on prior developments in the art can be found in the paper "History and Future of Semiconducter Wafer Bonding", U. Gosele, H. Stenzel, M. Reiche, T. Martini, H. Steinkirchner und Q.-Y. Tong in "Solid State Phenomena" 47 & 48, pp. 33 to 44 (1995).

웨이퍼 결합은 규소 고형체를 접합시키는 것에 한정되지는 않는다. 다수의 다른 물질을 이러한 방법으로 서로 접합시킬 수 있다. 그러나, 다른 요인들중에서, 허용할 수 있는 결합 강도를 수득하기 위하여 필요한 고온으로부터 문제가 발생한다. 그 결과, 감온성 구조 뿐만 아니라 각각의 성분의 열팽창률이 상이한 물질 조합을 함유하는 구조 요소(structural element)는 현재는 충분히 강하게 결합될 수 없다.Wafer bonding is not limited to bonding silicon solids. Many different materials can be bonded together in this manner. However, among other factors, problems arise from the high temperatures necessary to obtain acceptable bond strengths. As a result, structural elements containing thermosensitive structures as well as combinations of materials with different thermal expansion coefficients of the respective components cannot currently be sufficiently strong bonded.

규소 웨이퍼의 웨이퍼 결합을 실온에서 수행할 수 있는 방법 또한 제안되었다. 그러나, 당해 방법은 표면에 흡착질이 없어야 할 필요가 있어, 초고진공에서만 달성될 수 있다. 이와 관련하여 필요한 청정성은 고온에서의 열처리에 의해 달성될 수 있지만, 이 공정 역시 감온성 구조에 부적합하다는 것을 의미하고, 또 다른 방법으로는 플라즈마 에칭 방법을 사용해야 한다. 당해 방법 역시 웨이퍼의 가열 공정을 수반한다. 실온에서 수행되는 방법으로 고응력이 수득될 수 있지만, 당해 방법으로 결합된 구조를 분리시키는 것은 더이상 가능하지 않다.A method has also been proposed in which wafer bonding of silicon wafers can be performed at room temperature. However, the process needs to be free of adsorbates on the surface and can only be achieved in ultra-high vacuum. The necessary cleanliness in this regard can be achieved by heat treatment at high temperatures, but this means that the process is also unsuitable for the thermosensitive structure, and another method is to use a plasma etching method. This method also involves heating the wafer. Although high stress can be obtained by the method carried out at room temperature, it is no longer possible to separate the bonded structure by this method.

이러한 유형의 방법은 예를 들면, 독일 특허 제44 09 931호에 기술되어 있다. 당해 명세서에는 선행 기술로서 무엇보다도, 규소 웨이퍼의 표면을 우선 고도로 연마하고, (고밀도의 하이드록사이드 그룹을 생성시키기 위하여) H2SO4과 H2O2용액의 혼합물로 처리하여 웨이퍼의 표면을 친수성이 되게 한 다음, 물이 이들 사이에 존재하는 동안 물을 실온에서 가깝게 또는 근접하게 접촉시키는, 규소 웨이퍼의 직접 결합 방법이 기술되어 있다. 이어서, 웨이퍼를 열처리하여 규소와의 반응에 의하여 웨이퍼 사이의 물을 제거하고, 규소-산소 공유 결합에 의하여 웨이퍼를 접합시킨다.This type of method is described for example in German Patent No. 44 09 931. In the present specification, as the prior art, first of all, the surface of the silicon wafer is first highly polished, and treated with a mixture of H 2 SO 4 and H 2 O 2 solution (to generate high density hydroxide groups) to prepare the surface of the wafer. A method for direct bonding of silicon wafers is described that makes it hydrophilic and then contacts water closely or closely at room temperature while water is present between them. The wafer is then heat treated to remove water between the wafers by reaction with silicon and the wafers are bonded by silicon-oxygen covalent bonds.

또한, 독일 특허 제44 09 931호에 따르는 발명의 몇가지 변형에서는, 물 분자를 접합시킬 웨이퍼의 표면에 적용하지만, 이러한 표면에 하이드록사이드 그룹을 형성하기 위함일 뿐이다. 이어서, 잔류 물 분자를 제거하며, 이는 사실상 웨이퍼가 서로 결합하기 전이다.Furthermore, in some variations of the invention according to German Patent No. 44 09 931, water molecules are applied to the surface of the wafer to be bonded, but only to form hydroxide groups on these surfaces. Subsequently, residual molecules are removed, which is actually before the wafers are bonded to each other.

따라서, 두 경우중 어느 것도 서로 결합되는 웨이퍼 사이에 중간층이 없으며, 단순히 하이드록사이드 그룹의 축합에 의하여 형성된 공유 결합이 존재할 뿐이다.Thus, in either case there is no intermediate layer between the wafers that are bonded to each other, only covalent bonds formed by the condensation of hydroxide groups.

미리 가열시킨 평활한 표면에 의한 두 고형체의 결합은 이전에 공개된 출원에는 기재되어 있지 않다.The combination of the two solids by the preheated smooth surface is not described in the previously published application.

표면 친수성 그 자체는 예를 들면 알킬트리알콕시실란을 사용한 반응에 의하여 소수성화된다.Surface hydrophilic itself is hydrophobized by reaction with, for example, alkyltrialkoxysilanes.

이어서 이러한 처리된 표면의 고정된 결합이 장쇄 알킬 라디칼의 물리적 얽힘(entanglement)의 결과로 발생한다. 공유 결합은 알킬 라디칼의 반응성 결핍으로 인하여 형성될 수 없다.This immobilized bonding of the treated surface then occurs as a result of the physical entanglement of the long chain alkyl radicals. Covalent bonds cannot be formed due to lack of reactivity of alkyl radicals.

또다른 공지된 방법에서 랭뮤어-블로젯(Langmuir-Blodgett) 기술이 표면을 도포하는데 사용되지만, 이는 복잡하고 경비가 많이 드는 공정이다.In another known method, Langmuir-Blodgett technology is used to apply the surface, but this is a complex and expensive process.

본 발명의 목적은 상대적으로 낮은 온도에서 고형체를 공유 결합에 의하여 서로 접합시키는 더욱 유리한 방법을 제공하는 것이다.It is an object of the present invention to provide a more advantageous method of joining solids to one another by covalent bonds at relatively low temperatures.

도 1은 비스(알콕시실릴프로필)디설판이 사용되는 경우인 본 발명의 결합의 예를 나타낸다.1 shows an example of the bond of the invention when bis (alkoxysilylpropyl) disulfane is used.

본 발명은 유기 규소 화합물(organosilicon compound)을 사용하여 두개의 고형체의 사실상 평활한 표면들을 서로 접합시키는 방법을 제공하며, 당해 방법은 화학식 1의 화합물의 단분자 층을 두개의 고형체의 표면에 도포하는 것을 특징으로 한다.The present invention provides a method of joining virtually smooth surfaces of two solids to each other using an organosilicon compound, wherein the method attaches a monomolecular layer of the compound of formula 1 to the surfaces of two solids. It is characterized by applying.

Sy[(CH2)xSi(OR)3]2 S y [(CH 2 ) x Si (OR) 3 ] 2

상기식에서,In the above formula,

R은 메틸, 에틸 또는 프로필, 특히 메틸 또는 에틸이고,R is methyl, ethyl or propyl, in particular methyl or ethyl,

x는 1, 2, 3 또는 4, 특히 3이며,x is 1, 2, 3 or 4, especially 3,

y는 2 내지 6, 특히 2이다.y is 2 to 6, especially 2;

화학식 1의 화합물의 분자, 예를 들면, 규소 표면의 하이드록사이드 그룹에 대한 공유 결합이 발생한다. 이어서 고형체 표면들을 서로 접촉시킨다.Covalent bonds occur to molecules of the compound of formula 1, for example, to the hydroxide group on the silicon surface. The solid surfaces are then contacted with each other.

첫째로 반 데르 바알스(Van der Waals) 상호작용이 반대방향으로 향한 웨이퍼에 고정된 유기 분자 사이에서 발생한다. 약 170℃의 후속적인 열처리 동안에 S-S 결합이 부대 전자를 갖는 매우 반응성인 화학종(유리 라디칼)의 형성으로 파괴된다.First, Van der Waals interactions occur between organic molecules immobilized on the wafer facing in opposite directions. During subsequent heat treatment of about 170 ° C., the S—S bonds are broken down by the formation of highly reactive species (free radicals) with secondary electrons.

이제 반대방향으로 향한 웨이퍼 표면에 결합된 두개의 유리 라디칼이 서로 반응하는 경우, 공유 결합이 계면에서 형성된다(도 1). 계면 에너지가 발생한다(20 내지 300 - 400mJ/㎡).Now when two free radicals bound to the oppositely facing wafer surface react with each other, covalent bonds are formed at the interface (FIG. 1). Interfacial energy is generated (20 to 300-400 mJ / m 2).

이러한 방법으로 기재 표면상의 단분자 층에 존재하는 화학식 1에 따르는 화합물에 의하여 이러한 표면을 공유적으로 접합시킬 수 있다. 공유 결합은 선행 기술에 기재되어 있는 반 데르 바알스 상호작용 또는 수소 브릿지 결합보다 안정성이 현저히 높다.In this way such a surface can be covalently bonded by a compound according to formula 1 present in a monolayer on the surface of the substrate. Covalent bonds are significantly more stable than van der Waals interactions or hydrogen bridge bonds described in the prior art.

본 발명에 따르는 방법은 특히 친수성 표면에 적합하다. 친수성 표면은 예를 들면, H2SO4와 H2O2용액의 혼합물로 처리함으로써 임의로 생성된다. 바람직한 양태에서 화학식 1에 따르는 화합물중 하나는 유기 용매중의 화합물의 희석 용액으로부터 기재(표면)에 도포시킨다. 당해 용액중의 화학식 1에 따르는 화합물의 농도는 >0 내지 ≤10-3mol/ℓ이다.The process according to the invention is particularly suitable for hydrophilic surfaces. Hydrophilic surfaces are optionally produced, for example, by treatment with a mixture of H 2 SO 4 and H 2 O 2 solutions. In a preferred embodiment one of the compounds according to formula 1 is applied to the substrate (surface) from a dilute solution of the compound in an organic solvent. The concentration of the compound according to formula 1 in the solution is> 0 to ≤10 -3 mol / l.

적합한 용매는 포화 환형, 측쇄 및 직쇄 및 방향족 탄화수소, 예를 들면, 톨루엔 및 헥산을 포함한다. 본 발명에 따라 처리되는 고체는 특히 규소, 이산화규소, 사파이어(Al2O3), 비소화갈륨(GaAs) 또는 금으로 이루어진 것을 포함한다고 이해된다. 이들 고체(기재)는 천연 산화물 층(Si, SiO2, Al2O3, GaAs)을 갖거나, 산화물 층, 예를 들면, Y-Ba-Cu-O로 피복된 다음, 친수성 Si 표면처럼 반응할 수 있다.Suitable solvents include saturated cyclic, branched and straight chain and aromatic hydrocarbons such as toluene and hexane. It is understood that the solids treated according to the invention include in particular those consisting of silicon, silicon dioxide, sapphire (Al 2 O 3 ), gallium arsenide (GaAs) or gold. These solids (substrates) have a native oxide layer (Si, SiO 2 , Al 2 O 3 , GaAs) or are coated with an oxide layer, for example Y-Ba-Cu-O, and then react like a hydrophilic Si surface can do.

당해 방법은 일반적으로 다음과 같이 수행한다.The method is generally carried out as follows.

적합한 기재를 불활성 기체 대기중에서 톨루엔중의 화학식 1의 약 10-3몰의 용액에 노출시킨다. 약 5시간 후 기재를 용액으로부터 이동시키고, 톨루엔, 아세톤 및 메탄올로 차례로 세척한 다음, 초음파 욕중의 메탄올에서 2분 동안 2회 처리한다.Suitable substrates are exposed to a solution of about 10 −3 moles of formula 1 in toluene in an inert gas atmosphere. After about 5 hours the substrate is removed from the solution, washed sequentially with toluene, acetone and methanol and then treated twice in methanol in an ultrasonic bath for 2 minutes.

이어서 용매 잔사를 동시에 원심분리(3000r.p.m., 5분)하면서 약하게 가열함으로써 웨이퍼로부터 제거한다. 이제 웨이퍼를 초순수 수로 완전히 헹구어 분진 입자를 제거하고, 건조상태로 재원심분리한 다음, 서로 접촉시킨다. 반 데르 바알스 힘이 반대방향으로 향한 웨이퍼 면에 부동화된 유기 분자 사이에서 자발적으로 발생한다. 그다음 웨이퍼 쌍을 가열판상에서 170℃에서 5분 동안 가열한 다음 실온으로 냉각시킨다. 이러한 처리 후 공유 결합이 웨이퍼 사이에서 형성된다.The solvent residue is then removed from the wafer by mild heating while simultaneously centrifuging (3000 r.p.m., 5 minutes). The wafer is now rinsed thoroughly with ultrapure water to remove dust particles, recentrifuged to dryness, and contacted with each other. Van der Waals forces occur spontaneously between immobilized organic molecules on the wafer side facing in opposite directions. The wafer pair is then heated on a heating plate at 170 ° C. for 5 minutes and then cooled to room temperature. After this treatment, covalent bonds are formed between the wafers.

유리한 양태에서 화학식 1에 따르는 화합물을 기체 상으로 전환시킨 다음 표면상의 단분자 층에 부착시킨다.In an advantageous embodiment the compound according to formula 1 is converted to the gas phase and then attached to the monomolecular layer on the surface.

기체 상으로부터의 도포공정은 예를 들면 데시케이터 속에서 수행할 수 있다. 이를 위하여 화학식 1의 화합물 뿐만 아니라 기재가 함유된 데시케이터를 수 mbar의 압력으로 배기시킨다. 이어서 진공 펌프로의 라인을 끊는다. 5시간 후 기재를 유기 설파이드의 단층으로 피복시키고 위에서 기술한 바와 같이, 접촉시킬 수 있다.The application process from the gas phase can be carried out, for example, in a desiccator. For this purpose, the desiccator containing the compound of formula 1 as well as the substrate is evacuated to a pressure of several mbar. Then the line to the vacuum pump is cut off. After 5 hours the substrate can be coated with a monolayer of organic sulfide and contacted as described above.

본 발명의 양태에서의 반응은 UV 광을 사용하여 개시시킬 수 있다.Reactions in embodiments of the invention can be initiated using UV light.

본 발명은 또한 당해 방법에 의해 생성된, 표면이 화학식 1에 따르는 화합물에 의해 표면상에 형성된 단분자 층을 통하여 서로 공유적으로 접합된 두개의 고형층을 포함하는 구조 요소를 제공한다.The invention also provides a structural element produced by the method comprising two solid layers whose surfaces are covalently bonded to each other via a monomolecular layer formed on the surface by a compound according to formula (1).

실시예Example

복합 고형체(Si)를 선행 기술에 따라 생성된 것(LB 필름)과 본 발명에 따르는 방법에 따라 생성된 것(디설판 Si 266)을 비교하여 다음과 같은 결과를 수득하였다:Comparing the composite solid (Si) produced according to the prior art (LB film) and that produced according to the method according to the invention (disulfane Si 266), the following results were obtained:

파라미터parameter LB-필름 (Adv. Mater. 1997)LB-Film (Adv. Mater. 1997) Si 266 (DEGUSSA)Si 266 (DEGUSSA) 계면에서의 MLML at the interface 44 22 계면에서의 두께Thickness at the interface 약 8nmAbout 8nm 약 1nmAbout 1nm RT에서의 결합 강도Bond strength at RT 100 내지 350mJ/㎡100 to 350 mJ / ㎡ 약 20mJ/㎡About 20mJ / ㎡ 열처리 후의 결합 강도Bond strength after heat treatment T가 60℃ 초과에서 분해T decomposes above 60 ℃ 300 내지 400mJ/㎡(170℃)300 to 400 mJ / m2 (170 ° C) WW 기재/필름WW substrate / film 반 데르 바알스Van der baals 공유 결합Covalent coupling WW ML/MLWW ML / ML 반 데르 바알스 + 얽힘Van der Baals + Tangled 공유 결합Covalent coupling 부착 방법Attachment method 랭뮤어-블로젯Langmuir-Blodget 용액으로부터 흡착Adsorption from solution ML:단층 RT: 실온 WW: 상호작용ML: monolayer RT: room temperature WW: interaction

결합 에너지는 반응 파라미터를 최적화시킴으로써 증가시킬 수 있다: Si 266 - 20℃: 50 - 80mJ/㎡; Si 266 - 160℃(3min): 400 - 500mJ/㎡ 또는 UV-Licht(365nm, 7min): 750mJ/㎡The binding energy can be increased by optimizing the reaction parameters: Si 266-20 ° C: 50-80 mJ / m 2; Si 266-160 ° C (3min): 400-500mJ / m2 or UV-Licht (365nm, 7min): 750mJ / m2

Si 69 - 20℃: 60 - 90mJ/㎡; Si 69 - 80℃(3min) 또는 20℃(10 내지 14일): 400mJ/㎡Si 69-20 ° C .: 60-90 mJ / m 2; Si 69-80 ° C. (3 min) or 20 ° C. (10-14 days): 400 mJ / m 2

Si 266의 단층으로 피복된 두 물질 사이의 반응은 UV 광(365nm, 7min)으로 조사하여 개시시킬 수 있다. UV 광으로 조사시키기 위하여, Si 디스크를 석영 웨이퍼로 대체시킨다.The reaction between two materials coated with a monolayer of Si 266 can be initiated by irradiation with UV light (365 nm, 7 min). In order to irradiate with UV light, the Si disk is replaced with a quartz wafer.

본 발명의 방법을 사용하면 상대적으로 낮은 온도에서 고형체를 공유 결합에 의하여 서로 접합시킬 수 있다.Using the method of the present invention, the solids can be bonded to each other by covalent bonds at relatively low temperatures.

Claims (8)

화학식 1의 화합물의 단분자 층을 두개의 고형체의 표면에 도포시킨 다음 고형체 표면을 접촉시킴을 특징으로 하여, 유기 규소 화합물을 사용하여 두개의 고형체의 사실상 평활한 표면을 접합하는 방법.A method of bonding a substantially smooth surface of two solids using an organosilicon compound, characterized by applying a monomolecular layer of the compound of formula 1 to the surfaces of two solids and then contacting the solids surface. 화학식 1Formula 1 Sy[(CH2)xSi(OR)3]2 S y [(CH 2 ) x Si (OR) 3 ] 2 상기식에서,In the above formula, R은 메틸, 에틸 또는 프로필이고,R is methyl, ethyl or propyl, x는 1, 2, 3 또는 4이며,x is 1, 2, 3 or 4, y는 2 내지 6이다.y is 2 to 6; 제1항에 있어서, 비스(알콕시실릴프로필)디설판이 화학식 1의 화합물로서 사용됨을 특징으로 하는 방법.A process according to claim 1, wherein bis (alkoxysilylpropyl) disulfane is used as the compound of formula (I). 제1항 또는 제2항에 있어서, 친수성 표면을 갖는 고체가 사용됨을 특징으로 하는 방법.The method according to claim 1 or 2, characterized in that a solid with a hydrophilic surface is used. 제1항 내지 제3항 중의 어느 한 항에 있어서, 화학식 1에 따르는 화합물이 >0 내지 10-3mol/ℓ의 농도를 갖는 용액의 형태로 사용됨을 특징으로 하는 방법.The process according to claim 1, wherein the compound according to formula 1 is used in the form of a solution having a concentration of> 0 to 10 −3 mol / l. 제1항 내지 제4항 중의 어느 한 항에 있어서, 10 내지 30℃의 온도에서 수행하고, 임의로 150 내지 200℃의 온도에서 열처리함을 특징으로 하는 방법.The process according to claim 1, wherein the process is carried out at a temperature of 10 to 30 ° C. and optionally at a temperature of 150 to 200 ° C. 6. 제1항에 있어서, 화학식 1에 따르는 화합물이 증기 상으로부터 도포됨을 특징으로 하는 방법.A process according to claim 1 wherein the compound according to formula 1 is applied from the vapor phase. 제1항에 있어서, UV 광을 사용하여 반응을 개시시킴을 특징으로 하는 방법.The method of claim 1 wherein the reaction is initiated using UV light. 표면이 화학식 1의 화합물에 의해 형성된 단분자 층에 의하여 서로 접합된 두개의 고형체를 포함하는, 특히 마이크로전자공학 또는 마이크로기계학용의 복합 구조 요소.A composite structural element, in particular for microelectronics or micromechanics, comprising two solids whose surfaces are bonded to one another by a monolayer of molecules formed by a compound of formula (1).
KR1019990015001A 1998-04-28 1999-04-27 Process for joining two solid bodies and the resultant structural element Withdrawn KR19990083518A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19818962.1 1998-04-28
DE19818962A DE19818962A1 (en) 1998-04-28 1998-04-28 Method for connecting two solid bodies and the component produced in this way

Publications (1)

Publication Number Publication Date
KR19990083518A true KR19990083518A (en) 1999-11-25

Family

ID=7866050

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990015001A Withdrawn KR19990083518A (en) 1998-04-28 1999-04-27 Process for joining two solid bodies and the resultant structural element

Country Status (9)

Country Link
US (1) US6190778B1 (en)
EP (1) EP0953619A3 (en)
JP (1) JPH11335631A (en)
KR (1) KR19990083518A (en)
DE (1) DE19818962A1 (en)
IL (1) IL129621A (en)
MY (1) MY133023A (en)
SG (1) SG73637A1 (en)
TW (1) TW531556B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335572B2 (en) 2000-02-16 2008-02-26 Ziptronix, Inc. Method for low temperature bonding and bonded structure

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984571B1 (en) 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6500694B1 (en) 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
JP2001262082A (en) * 2000-03-17 2001-09-26 Mazda Motor Corp Method for treating coating film
US6563133B1 (en) * 2000-08-09 2003-05-13 Ziptronix, Inc. Method of epitaxial-like wafer bonding at low temperature and bonded structure
DE10237280A1 (en) * 2002-08-14 2004-03-11 Micronas Holding Gmbh Process for connecting surfaces, semiconductors with bonded surfaces as well as bio-chip and bio-sensor
FR2846788B1 (en) * 2002-10-30 2005-06-17 PROCESS FOR PRODUCING DETACHABLE SUBSTRATES
US7109092B2 (en) 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
DE10339998B3 (en) * 2003-08-29 2005-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Forming releasable bond between semiconductor substrate and support comprises using a triethoxysilylalkylamine adhesive
EP1695148B1 (en) * 2003-11-24 2015-10-28 Carl Zeiss SMT GmbH Immersion objective
US7545481B2 (en) * 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
FR2879208B1 (en) * 2004-12-15 2007-02-09 Commissariat Energie Atomique METHOD OF BONDING TWO FREE SURFACES, RESPECTIVELY OF FIRST AND SECOND DIFFERENT SUBSTRATES
FR2887244A1 (en) * 2005-06-15 2006-12-22 Commissariat Energie Atomique COMPOUNDS FOR PLACING OBJECTS BY SELF-ASSEMBLY AND APPLICATIONS
CN100570361C (en) * 2005-06-22 2009-12-16 中国科学院长春应用化学研究所 Method for bonding two solid planes via surface-assembled reactive functional groups
JP2007161913A (en) * 2005-12-15 2007-06-28 Kagawa Univ Bonding method and biochemical chip and optical component using the same
JP2007161912A (en) * 2005-12-15 2007-06-28 Kagawa Univ Adhesion method and biochemical chip and optical component manufactured using it
JP5572802B2 (en) 2007-05-30 2014-08-20 国立大学法人 香川大学 Adhesion method and biochemical chip and optical component produced using the same
WO2008152744A1 (en) * 2007-06-15 2008-12-18 Kazufumi Ogawa Bonding method, and biochemical chip and optical part produced using the method
JP4352282B1 (en) * 2008-10-24 2009-10-28 住友ベークライト株式会社 Adhesive composition for semiconductor and semiconductor device manufactured using the same
US8921992B2 (en) 2013-03-14 2014-12-30 Raytheon Company Stacked wafer with coolant channels
JP6523942B2 (en) * 2014-12-19 2019-06-05 四国化成工業株式会社 Surface treatment liquid of inorganic material or resin material, surface treatment method and use thereof
WO2022094587A1 (en) 2020-10-29 2022-05-05 Invensas Bonding Technologies, Inc. Direct bonding methods and structures
US12406901B2 (en) 2021-09-02 2025-09-02 Raytheon Company Wafer-scale direct bonded array core block for an active electronically steerable array (AESA)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368942A (en) * 1993-01-15 1994-11-29 The United States Of America As Represented By The Secreatary Of Commerce Method of adhering substrates
JP2701709B2 (en) 1993-02-16 1998-01-21 株式会社デンソー Method and apparatus for directly joining two materials
DE4409931A1 (en) 1994-03-23 1995-09-28 Karsten Baumann Fixture for teeth model support of articulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335572B2 (en) 2000-02-16 2008-02-26 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US8053329B2 (en) 2000-02-16 2011-11-08 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US8153505B2 (en) 2000-02-16 2012-04-10 Ziptronix, Inc. Method for low temperature bonding and bonded structure
KR101298859B1 (en) * 2000-02-16 2013-08-21 집트로닉스, 인크. Method For Low Temperature Bonding And Bonded Structure
US9082627B2 (en) 2000-02-16 2015-07-14 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US9331149B2 (en) 2000-02-16 2016-05-03 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US9391143B2 (en) 2000-02-16 2016-07-12 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US10312217B2 (en) 2000-02-16 2019-06-04 Invensas Bonding Technologies, Inc. Method for low temperature bonding and bonded structure

Also Published As

Publication number Publication date
IL129621A0 (en) 2000-02-29
SG73637A1 (en) 2000-06-20
IL129621A (en) 2002-03-10
JPH11335631A (en) 1999-12-07
DE19818962A1 (en) 1999-11-04
TW531556B (en) 2003-05-11
EP0953619A2 (en) 1999-11-03
EP0953619A3 (en) 1999-12-29
US6190778B1 (en) 2001-02-20
MY133023A (en) 2007-10-31

Similar Documents

Publication Publication Date Title
KR19990083518A (en) Process for joining two solid bodies and the resultant structural element
JP6092482B2 (en) Method and structure for processing semiconductor devices
KR102357336B1 (en) Schemes for Selective Deposition for Patterning Applications
JP2002502119A (en) Method of manufacturing semiconductor-on-insulator, especially SiCOI structures
US20020127499A1 (en) Mold, method for fabricating mold and pattern formation method
JPH05509445A (en) Direct board bonding method
JPH0729897A (en) Method for manufacturing semiconductor device
JP2009500819A (en) Method for assembling a substrate by depositing a thin bonding layer of oxide or nitride
CN117431638A (en) Single-layer two-dimensional material and preparation method thereof
JP2023174560A (en) Cationic element-assisted direct bonding method
JP2023174561A (en) Basic molecule-assisted direct bonding method
JP2018093222A (en) Layered bonded structures formed from reactive bonding of zinc metal and zinc peroxide
JP2008524837A (en) Method for joining two free surfaces of each of first and second different substrates
JPH11200063A (en) Surface coating method
JP2011148104A (en) Method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining
CN118525353A (en) Method for manufacturing donor substrate for transferring piezoelectric layer and method for transferring piezoelectric layer to support substrate
Shirahata et al. Atomic scale flattening of organosilane self-assembled monolayer and patterned tin hydroxide thin films
KR100250637B1 (en) Wafer prime method using dihydropyran
US20250176431A1 (en) Method for producing a donor substrate for transferring a piezoelectric layer, and method for transferring a piezoelectric layer to a carrier substrate
JPH067591B2 (en) Method of implanting organic molecules on silicon solid surface
KR100248358B1 (en) Manufacturing method of bonded SOI substrate
KR0165641B1 (en) Method for forming silane monolayers having high density of amine groups
JP2004237159A (en) Method for forming monomolecular film on Si substrate
Bae et al. Preparation of Self-Assembled Fullerene-Diaminododecane Multilayer Films on (MeO) Si (CH3) 2 (CH2) 4NH2-Modified Oxide Surfaces
JPH1050689A (en) Apparatus and method for removing particles in semiconductor production

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19990427

PG1501 Laying open of application
N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20030228

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid