KR20000074483A - Doping Method of Samarium in Cladding of Fiber Doped Erbium in Core - Google Patents
Doping Method of Samarium in Cladding of Fiber Doped Erbium in Core Download PDFInfo
- Publication number
- KR20000074483A KR20000074483A KR1019990018456A KR19990018456A KR20000074483A KR 20000074483 A KR20000074483 A KR 20000074483A KR 1019990018456 A KR1019990018456 A KR 1019990018456A KR 19990018456 A KR19990018456 A KR 19990018456A KR 20000074483 A KR20000074483 A KR 20000074483A
- Authority
- KR
- South Korea
- Prior art keywords
- samarium
- doped
- erbium
- optical fiber
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 229910052772 Samarium Inorganic materials 0.000 title claims abstract description 32
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000005253 cladding Methods 0.000 title claims description 20
- 229910052691 Erbium Inorganic materials 0.000 title abstract description 18
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 title abstract description 18
- 239000000835 fiber Substances 0.000 title abstract description 9
- 239000013307 optical fiber Substances 0.000 claims abstract description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 229910003910 SiCl4 Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910006113 GeCl4 Inorganic materials 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
- C03B37/01493—Deposition substrates, e.g. targets, mandrels, start rods or tubes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/07—Controlling or regulating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lasers (AREA)
Abstract
Description
본 발명은 코어에 어븀이 도핑된 광섬유(Erbium doped fiber: 이하 EDF라 한다)의 클래드 영역에 사마리움(Samarium, Sm)을 도핑하여 EDF의 넓은 이득 대역폭과 이득 평탄화 특성을 개선하는 방법에 관한 것이다.The present invention relates to a method of improving the wide gain bandwidth and gain planarization characteristics of an EDF by doping a samarium (Sm) in a clad region of an erbium doped fiber (EDF) in a core. .
어븀을 첨가한 광섬유(EDF)가 파장분할 다중화 시스템에 사용되거나 광섬유 증폭기에 이용되기 위해서는 이득 특성이 파장별로 균일해야 한다. 도 1의 EDF의 이득 곡선에서 볼 수 있듯이 전체 발광 스펙트럼 영역인 1530nm ~ 1560nm 중 직선으로 표시된 균일 이득 영역은 약 20nm정도이다. 따라서, 파장분할다중방식에 있어서 이러한 1530nm 부근 약 10nm의 불균등 이득 대역을 균일한 이득 대역에 포함시켜 더 많은 수의 채널을 확보하는 것이 중요한 문제이고 이를 구현하기 위한 여러 가지 방식들이 제안되어 있으며 이에 관련된 논문들은 다음과 같다.In order for erbium-doped fiber (EDF) to be used in a wavelength division multiplexing system or in an optical fiber amplifier, gain characteristics must be uniform for each wavelength. As can be seen from the gain curve of the EDF of FIG. 1, the uniform gain region indicated by the straight line among the entire emission spectrum regions 1530 nm to 1560 nm is about 20 nm. Therefore, in the wavelength division multiplexing method, it is important to secure a larger number of channels by including an uneven gain band of about 10 nm in a uniform gain band in the vicinity of 1530 nm, and various methods have been proposed and related to this. The papers are as follows.
사마리움이 도핑된 광섬유와 어븀이 도핑된 광섬유를 적절한 조합으로 이득 평탄화를 얻는 방법이 리아우(Shien-Kuei Liaw and Yung-Kuang Chen, IEEE PHOTONICS TECHNOLOGY LETTERS. VOL. 8. NO. 7, JULY 1996)에 의해서 발표되었다. 그리고 스리바스타브(A.K. Srivastava, J.L. Zyskind, J.D. Evankow, J.W. Sulhoff, Y.Sun and M.A. Mills IEEE PHOTONICS TECHNOLOGy LETTERS. VOL. 8, No.12, DECEMBER 1997)도 유사하게 어븀이 도핑된 광섬유와 사마리움이 도핑된 광섬유를 직렬의 여러 가지 조합으로 구성하여 이득 평탄화를 얻었다.A good combination of samarium-doped and erbium-doped fibers is to obtain gain planarization from Liao (Shien-Kuei Liaw and Yung-Kuang Chen, IEEE PHOTONICS TECHNOLOGY LETTERS. VOL. 8. NO. 7, JULY 1996 Was announced. And Srivastava (AK Srivastava, JL Zyskind, JD Evankow, JW Sulhoff, Y. Sun and MA Mills IEEE PHOTONICS TECHNOLOGy LETTERS.VOL. 8, No. 12, DECEMBER 1997) similarly erbium-doped fiber and samarium This doped fiber was constructed in various combinations in series to obtain gain flattening.
본 발명은 종래의 사마리움이 도핑된 광섬유와 어븀이 도핑된 광섬유의 조합에 의한 이득 평탄화와 대역폭을 넓히는 방식을 개선하기 위하여 하나의 광섬유로 동일한 효과를 얻을 수 있도록 광섬유의 클래드 영역에 사마리움을 첨가시켜 사마리움의 흡수 스펙트럼 대역을 이용하여 코어에 어븀이 도핑된 광섬유의 1,530nm대 첨두 영역을 감쇄시켜 이 부분을 평탄화 영역으로 개선함으로써 이득 평탄화와 대역폭을 넓히는 것을 목적으로 한다.In order to improve the method of flattening the gain and widening the bandwidth by a combination of a conventional samarium-doped optical fiber and an erbium-doped optical fiber, the samarium is applied to the clad region of the optical fiber so that the same effect can be obtained with one optical fiber. By using the absorption spectrum band of samarium, the core is designed to attenuate the peak area of 1530 nm of the erbium-doped optical fiber and to improve this area into a flattened area, thereby broadening gain flattening and bandwidth.
도 1은 일반적 EDF의 파장에 따른 이득 스펙트럼을 나타낸 도표1 is a chart showing the gain spectrum according to the wavelength of a general EDF
도 2는 사마리움(Sm)의 흡수 스펙트럼 곡선을 나타낸 도표2 is a graph showing the absorption spectral curve of samarium (Sm)
도 3은 어븀(Er)의 흡수 스펙트럼 곡선을 나타낸 도표3 is a graph showing the absorption spectral curve of Erbium (Er)
도 4(a)∼(e)는 본 발명에서 제안된 사마리움을 이용한 여러가지 광섬유 구조도4 (a) to (e) is a structure diagram of various optical fibers using samarium proposed in the present invention
도 5는 펌프광과 신호광의 제안된 구조에서의 정규화된 파워분포와 사마리움이 첨가된 영역을 나타낸 도표5 is a diagram showing the normalized power distribution and the region to which samarium is added in the proposed structure of the pump light and the signal light.
도 6(a)는 일반적인 EDF의 ASE 스펙트럼 곡선을 나타낸 도표Figure 6 (a) is a chart showing the ASE spectral curve of a typical EDF
(b)는 실시예 1의 ASE 스펙트럼 곡선을 나타낸 도표(b) is a table showing the ASE spectral curve of Example 1
도 7은 실시예 2의 광섬유 구조와 정규화된 HE11 모드 파워 분포를 나타낸 도표7 is a diagram showing the optical fiber structure and normalized HE11 mode power distribution of Example 2;
도 8은 실시예 2 광섬유의 이득 특성을 나타낸 그래프 도표8 is a graph showing the gain characteristics of the optical fiber of Example 2
< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>
1: 어븀이 도핑된 코어 2: 사마리움이 도핑된 클래드1: Erbium-doped core 2: Samarium-doped clad
일반적인 어븀이 도핑된 광섬유(EDF)의 이득 특성을 나타내는 도 1에서 보듯이 1,530nm 부근에서의 첨두 영역의 존재로 인해 광섬유의 균일한 이득 대역폭이 줄어들게 된다. 본 발명은 1,530nm 부근의 첨두 영역을 균일 이득 대역으로 만들기 위해서 도 2에 나타내고 있는 사마리움의 흡수 스펙트럼을 이용한 것이다. 도 2에서 알 수 있듯이 1,530nm 부근에서 사마리움의 흡수 특성을 이용하여 어븀의 1,530nm 부근의 발광 첨두 영역을 감쇄시킬 수 있다. 또한 도 3에서 보듯이 펌프광 파장대인 980nm 부근에서 사마리움은 어븀에 비해서 매우 적은 흡수를 보이므로 사마리움을 사용함으로써 기존의 어븀 첨가 광섬유에 사용되는 펌프광에 미치는 영향은 거의 없으므로 기존의 EDF 특성은 유지하고 첨두 영역만을 감소시켜 어븀이 도핑된 광섬유의 이득 대역폭을 개선할 수 있다. 위와 같은 특성을 갖는 사마리움을 어븀이 도핑된 광섬유의 클래딩에 첨가시킴으로써, 상기에서 언급한 특성을 얻을 수 있고 이러한 광섬유에 대한 여러 가지 가능한 구조를 도 4(a)∼(e)에 나타내었다. 이러한 구조를 갖는 어븀이 도핑된 광섬유에서 가장 간단한 구조에서의 980nm의 파장을 갖는 펌프광과 첨두 영역의 파장인 1,530nm 시그날의 광섬유에서의 정규화된 HE11 mode의 파워 분포를 도 5에 나타내었다. 도 5에서 같이 점선으로 표시된 980nm의 파장을 갖는 펌프광의 파워는 코어 영역에 주로 분포하는 반면 실선으로 표시된 1,530nm의 파장을 갖는 시그날의 파워는 펌프광에 비하여 상당히 더 많은 부분이 클래딩에 분포하게 된다. 그러므로, 사마리움이 도핑된 영역의 클래딩에 의해서 1,530nm 부근의 시그날의 파워가 흡수되어 첨두 부분이 줄어들게 되어 그 특성을 개선할 수 있다. 본 발명은 기존의 어븀이 도핑된 광섬유(EDF)와 사마리움이 도핑된 광섬유(SDF)의 여러가지 조합에 의한 방식에 비하여 하나의 광섬유를 통해서 상기의 특성을 얻음으로써 종래의 EDF와 SDF를 이용한 이득 최적화의 복잡한 문제 및 파이버 간의 연결에 있어서 연결 손실 문제 등을 쉽게 개선할 수 있다. 또한 사마리움의 약한 흡수 대역이 어븀의 발광 대역에 걸쳐 고르게 분포되어 있으므로 증폭된 자발 방출(Amplified Spontaneous Emission, ASE) 준위(level)도 감소되어 노이즈 특성도 개선시킬 수 있다.As shown in FIG. 1, which shows a gain characteristic of a typical erbium-doped optical fiber (EDF), the uniform gain bandwidth of the optical fiber is reduced due to the presence of the peak region around 1530 nm. The present invention uses the absorption spectrum of samarium shown in Fig. 2 to make the peak region near 1,530 nm into a uniform gain band. As can be seen in FIG. 2, the light emission peak region around 1,530 nm of erbium can be attenuated by using the absorption characteristic of samarium at around 1,530 nm. In addition, as shown in FIG. 3, samarium shows very little absorption compared to erbium in the vicinity of 980 nm, which is the wavelength of the pump light. Therefore, the use of samarium has little effect on the pump light used for the conventional erbium-doped optical fiber, and thus maintains the existing EDF characteristics. By reducing only the peak region, the gain bandwidth of the erbium-doped optical fiber can be improved. By adding samarium having the above characteristics to the cladding of the erbium-doped optical fiber, the above-mentioned characteristics can be obtained and various possible structures for such optical fibers are shown in FIGS. 4 (a) to (e). The power distribution of the normalized HE11 mode in the optical fiber having a wavelength of 980 nm in the simplest structure in the erbium-doped optical fiber having such a structure and the optical fiber of the 1,530 nm signal which is the wavelength of the peak region is shown in FIG. 5. As shown in FIG. 5, the power of the pump light having the wavelength of 980 nm indicated by the dotted line is mainly distributed in the core region, while the power of the signal having the wavelength of 1,530 nm indicated by the solid line is distributed more significantly in the cladding than the pump light. Therefore, the power of the signal around 1530 nm is absorbed by the cladding of the samarium doped region, and the peak portion is reduced, thereby improving its characteristics. The present invention obtains the above characteristics through a single optical fiber compared to the conventional combination of various combinations of the conventional erbium-doped optical fiber (EDF) and samarium-doped optical fiber (SDF). The complexities of optimization and the loss of connectivity in fiber-to-fiber can be easily improved. In addition, since the weak absorption band of samarium is evenly distributed over the emission band of erbium, the amplified spontaneous emission (ASE) level is also reduced, thereby improving noise characteristics.
이하 본 발명을 다음의 실시예에 의하여 설명하고자 한다. 그러나 이들이 본발명의 기술적 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described by the following examples. However, these do not limit the technical scope of the present invention.
< 실시예 1 ><Example 1>
도 4(a)∼(e)에서 제안된 구조 중 (a)구조를 화학기상증착법(Modified Chemical Vapor Deposition, MCVD)과 솔루션 소우킹(Solution Soaking)법에 의해 제작한다. 모재는 25×19 석영 튜브에 클래딩을 SiCl4 150 SCCM(Standard Cubic Centimeter per Minute)으로 1,980℃에서 9회 증착한 후 1,650℃에서 다공질 클래딩을 SiCl4 150 SCCM으로 1회 증착하여 이 영역에 0.01M의 사마리움을 도핑하였다. 어븀을 도핑 시키기 위하여 석영 튜브의 다공질 코어를 GeCl4 150 SCCM와 SiCl4 50 SCCM으로 3회 증착하고 어븀 0.02M을 도핑시킨 후, 건조, 소결, 붕괴, 에칭 (Etching) 과정을 거쳐 제작된 모재를 광섬유로 만들면, 코어 반지름은 1.66㎛이고 사마리움이 도핑된 클래딩 영역의 두께는 1.92㎛이고 코어의 굴절률은 1.4717, 클래딩의 굴절률은 1.457이며 코어와 클래딩의 굴절률의 차이를 코어의 굴절률의 비로 나타낸 비굴절률차(△)는 약 0.01인 간단한 계단형 굴절률 구조이다. 한편 상기 광섬유 모재의 제작 과정에서 어븀, 사마리움의 도핑방법은 알루미늄을 첨가한 용액도핑(Solution Doping) 방법을 사용했다. 알루미늄을 사용한 이유는 알루미늄이 어븀과 같이 첨가되었을 경우에 더 평탄한 이득 스펙트럼을 얻을 수 있고, 더욱이 알루미늄은 광섬유(Glass Host)에 희토류 금속인 사마리움의 농도를 증가시켜주는 역할을 하기 때문이다. 용액조성은 코어의 경우 어븀 0.02M, 알루미늄 0.30M, 알콜 250㎖이며, 클래딩의 경우 사마리움 0.01M, 알루미늄 0.06M, 알콜 250㎖ 이다. 이와 같은 방법으로 제조한 광섬유의 역방향 ASE 스펙트럼 곡선을 도 6의 (b)에 나타내었다. 여기에서, Gap A는 1,530nm의 최고점과 1,540nm 부근의 최저점의 차이이고, Gap B는 1,530nm의 최고점과 1,550nm 부근의 최고점과의 차이이다. 도 6(b)에서와 같이 사마리움을 클래딩에 도핑 할 경우, 사마리움이 상당한 파워를 흡수하는 것을 알 수 있다. 한편 도 6(a)는 일반적인 어븀이 도핑된 광섬유의 ASE 스펙트럼 곡선을 나타낸 그래프이다.Among the structures proposed in FIGS. 4 (a) to 4 (e), the structure (a) is manufactured by Modified Chemical Vapor Deposition (MCVD) and Solution Soaking. The base material was deposited 9 times at 1,980 ° C with cladding with SiCl4 150 SCCM (Standard Cubic Centimeter per Minute) in a 25 × 19 quartz tube, and then once with porous cladding with SiCl4 150 SCCM at 1,650 ° C, Dome was doped. In order to dope the erbium, the porous core of the quartz tube was deposited three times with GeCl4 150 SCCM and SiCl4 50 SCCM, doped with erbium 0.02M, and then dried, sintered, collapsed, and etched. When the core radius is 1.66 µm, the thickness of the samarium-doped cladding region is 1.92 µm, the refractive index of the core is 1.4717, the refractive index of the cladding is 1.457, and the difference in refractive index between the core and the cladding is expressed as the ratio of the refractive index of the core. (Δ) is a simple stepped refractive index structure that is about 0.01. Meanwhile, the doping method of erbium and samarium in the fabrication process of the optical fiber base material used a solution doping method in which aluminum was added. The reason for using aluminum is that a flatter gain spectrum can be obtained when aluminum is added together with erbium. Furthermore, aluminum plays a role in increasing the concentration of samarium, a rare earth metal, in the optical fiber (Glass Host). The solution composition is Erbium 0.02M, Aluminum 0.30M, Alcohol 250ml, and Cladding is Samarium 0.01M, Aluminum 0.06M, Alcohol 250ml. The reverse ASE spectral curve of the optical fiber manufactured by the above method is shown in FIG. Here, Gap A is the difference between the highest point of 1,530 nm and the lowest point around 1,540 nm, and Gap B is the difference between the highest point of 1,530 nm and the highest point near 1,550 nm. When doping samarium to the cladding as shown in Figure 6 (b), it can be seen that the samarium absorbs significant power. 6 (a) is a graph showing the ASE spectral curve of a typical erbium-doped optical fiber.
< 실시예 2 ><Example 2>
도 4(a)∼(e)에 제안된 구조 중 (b)의 구조로, 실시예 1과 같이 MCVD와 솔루션 소우킹(Solution Soaking)법에 의해 제작한다. 모재는 25×19 석영 튜브를 사용하고 모재 제작 과정은 다음과 같다. 클래딩 SiCl4 150 SCCM으로 1,950℃에서 8회 증착한 후, 1,650℃에서 사마리움을 도핑 할 다공질 클래딩을 1회 증착하고 다시 클래딩 및 코어를 1회 증착하고 어븀을 도핑 할 다공질 코어는 SiCl4 50 SCCM와 GeCl4 150 SCCM으로 2회 증착한다. 어븀의 경우 250㎖의 알콜에 어븀 0.1M, 알루미늄 0.8M, 사마리움의 경우 250㎖의 알콜에 사마리움 0.01M과 알루미늄 0.06M으로 용액도핑법을 이용하여 사마리움과 어븀을 각각 클래딩과 코어에 도핑하였다. 이 모재를 광섬유로 제작하여 조사한 결과 차단 파장 900nm, 코어 반지름 1.73㎛, 코어의 굴절률은 1.4707, 클래딩의 굴절률은 1.457, 사마리움 도핑 영역과 코어와의 이격 거리는 1.42㎛이고, 사마리움이 도핑된 클래딩 영역의 두께는 1.32㎛이었다. 도 7은 점선으로 표시된 980nm과 실선으로 표시된 1,530nm에서 HE11 모드의 정규화된 파워 분포와 사마리움 도핑 영역과 어븀 도핑 영역을 나타낸다. 이득 특성은 도 8에 나타나 있다. 평균 이득은 15.5dB 이고 대역폭은 1,530nm부터 1,570nm까지 약 40nm이며 이 구간에서 최고 이득과 최저 이득의 차이는 2dB이하로 1,530nm에서의 이득 특성을 개선하였다.The structure of (b) among the structures proposed in FIGS. 4 (a) to 4 (e) is manufactured by MCVD and Solution Soaking method as in Example 1. The base material is 25 × 19 quartz tube, and the base material manufacturing process is as follows. The cladding SiCl4 150 SCCM was deposited 8 times at 1,950 ° C, then the porous cladding to be doped with samarium at 1,650 ° C was deposited once, the cladding and the core were deposited once, and the porous cores for doping erbium were SiCl4 50 SCCM and GeCl4. Deposit twice with 150 SCCM. In the case of erbium, salineium and erbium were added to the cladding and core, respectively, by solution doping with 250 ml of alcohol, 0.1 M of erbium, 0.8 M of aluminum, and 250 ml of samarium. Doped. The base material was fabricated and inspected, and the cutoff wavelength was 900nm, core radius was 1.73㎛, the refractive index of the core was 1.4707, the refractive index of the cladding was 1.457, the distance between the samarium doped region and the core was 1.42㎛, and the samarium-doped cladding The thickness of the region was 1.32 mu m. FIG. 7 shows normalized power distribution, samarium doped region and erbium doped region in HE11 mode at 980 nm indicated by dotted lines and 1,530 nm indicated by solid lines. The gain characteristic is shown in FIG. The average gain is 15.5dB and the bandwidth is about 40nm from 1530nm to 1570nm, and the difference between the highest gain and the lowest gain in this section is less than 2dB, improving the gain characteristics at 1530nm.
본 발명은 광섬유의 클래딩에 사마리움을 첨가함으로써 넓은 대역폭과 이득 평탄화를 하나의 광섬유로 구현하여 파장분할다중방식(WDM)에 많은 채널을 가능하게 해줄 수 있다. 또한 사마리움의 약한 흡수 대역이 어븀의 발광 대역에 걸쳐 고르게 분포되어 있으므로 ASE 수준을 감소시키며 기존의 조합 방식과 달리 단지 하나의 광섬유로 상기와 같은 특성을 구현 할 수 있다.According to the present invention, by adding samarium to the cladding of the optical fiber, a wide bandwidth and gain planarization can be realized as a single optical fiber, thereby enabling many channels in the wavelength division multiplexing (WDM). In addition, since the weak absorption band of samarium is evenly distributed over the light emission band of erbium, the ASE level is reduced, and unlike the conventional combination method, the above characteristics can be realized with only one optical fiber.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1019990018456A KR20000074483A (en) | 1999-05-21 | 1999-05-21 | Doping Method of Samarium in Cladding of Fiber Doped Erbium in Core |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1019990018456A KR20000074483A (en) | 1999-05-21 | 1999-05-21 | Doping Method of Samarium in Cladding of Fiber Doped Erbium in Core |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20000074483A true KR20000074483A (en) | 2000-12-15 |
Family
ID=19587064
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1019990018456A Ceased KR20000074483A (en) | 1999-05-21 | 1999-05-21 | Doping Method of Samarium in Cladding of Fiber Doped Erbium in Core |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR20000074483A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2703854A1 (en) * | 2012-08-29 | 2014-03-05 | OFS Fitel, LLC | Double-clad, gain-producting fibers with increased cladding absorption while maintaining single-mode operation |
| EP2703853A1 (en) * | 2012-08-29 | 2014-03-05 | OFS Fitel, LLC | Gain-producing fibers with increased cladding absorption while maintaining single-mode operation |
| KR101423987B1 (en) * | 2012-03-29 | 2014-08-13 | 광주과학기술원 | Optical fiber for pump protection and pump light source having the same and beam combiner and fiber laser |
| RU2834606C1 (en) * | 2024-06-21 | 2025-02-11 | Федеральное государственное автономное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" | Method of forming waveguide, spatially inhomogeneous and diffraction structures in near-surface regions of electrooptical crystals |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0345957A2 (en) * | 1988-06-10 | 1989-12-13 | PIRELLI GENERAL plc | Optical fibre amplifier |
| KR910008439A (en) * | 1989-10-24 | 1991-05-31 | 피에르 지오반니 지안네시 | Fiber Optic Telecommunication Line Amplifier And Fiber Optic Telecommunication Line Incorporating This Amplifier |
| KR910008432A (en) * | 1989-10-30 | 1991-05-31 | 피에르 지오반니 지아네시 | Active Fiber Optical Amplifier with Wide Band Signal Wavelength |
| KR960006253A (en) * | 1994-07-28 | 1996-02-23 | 김광호 | Optical amplifier |
| KR100196086B1 (en) * | 1990-01-22 | 1999-06-15 | 마르꼬 떼데취 | Optical power amplifier with doped active fiber |
-
1999
- 1999-05-21 KR KR1019990018456A patent/KR20000074483A/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0345957A2 (en) * | 1988-06-10 | 1989-12-13 | PIRELLI GENERAL plc | Optical fibre amplifier |
| KR910008439A (en) * | 1989-10-24 | 1991-05-31 | 피에르 지오반니 지안네시 | Fiber Optic Telecommunication Line Amplifier And Fiber Optic Telecommunication Line Incorporating This Amplifier |
| KR910008432A (en) * | 1989-10-30 | 1991-05-31 | 피에르 지오반니 지아네시 | Active Fiber Optical Amplifier with Wide Band Signal Wavelength |
| KR100196086B1 (en) * | 1990-01-22 | 1999-06-15 | 마르꼬 떼데취 | Optical power amplifier with doped active fiber |
| KR960006253A (en) * | 1994-07-28 | 1996-02-23 | 김광호 | Optical amplifier |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101423987B1 (en) * | 2012-03-29 | 2014-08-13 | 광주과학기술원 | Optical fiber for pump protection and pump light source having the same and beam combiner and fiber laser |
| EP2703854A1 (en) * | 2012-08-29 | 2014-03-05 | OFS Fitel, LLC | Double-clad, gain-producting fibers with increased cladding absorption while maintaining single-mode operation |
| EP2703853A1 (en) * | 2012-08-29 | 2014-03-05 | OFS Fitel, LLC | Gain-producing fibers with increased cladding absorption while maintaining single-mode operation |
| RU2834606C1 (en) * | 2024-06-21 | 2025-02-11 | Федеральное государственное автономное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" | Method of forming waveguide, spatially inhomogeneous and diffraction structures in near-surface regions of electrooptical crystals |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2002009376A (en) | Optical fiber for optical amplification | |
| Tsuchida et al. | Cladding pumped seven-core EDFA using an absorption-enhanced erbium doped fibre | |
| CN110289539A (en) | A Broadband Multidimensional Optical Fiber Amplifier | |
| US5282079A (en) | Optical fibre amplifier | |
| CN101719621A (en) | Large-power multiwaveband multicore optical fiber laser | |
| CN2938146Y (en) | Photonic crystal fiber with depressed index layer | |
| CN112689928A (en) | Bismuth-doped optical fiber amplifier | |
| US20020105720A1 (en) | L band amplifier with distributed filtering | |
| Liaw et al. | Passive gain-equalized wide-band erbium-doped fiber amplifier using samarium-doped fiber | |
| JP2004513056A (en) | Phosphorus-silicate fiber suitable for amplifying extended band | |
| JPH09139534A (en) | Rare earth element doped fiber amplifier | |
| EP1189316B1 (en) | Optical fiber for optical amplification and optical fiber amplifier | |
| KR20000074483A (en) | Doping Method of Samarium in Cladding of Fiber Doped Erbium in Core | |
| CA1306533C (en) | Optical fibre amplifier | |
| JPH11340548A (en) | Optical fiber for optical amplifier with flat gain | |
| JP4532079B2 (en) | Optical fiber | |
| Tammela et al. | Very short Er-doped silica glass fiber for L-band amplifiers | |
| EP1672822B1 (en) | Optical fibre for an optical amplifier with rare earth element amplification and Raman optical amplification | |
| US20050069270A1 (en) | Large mode field diameter optical fiber | |
| Wysocki et al. | Options for gain-flattened erbium-doped fiber amplifiers | |
| CN1362638A (en) | Optical fibre for amplifying and amplifier comprising said optical fibre | |
| Huang et al. | High Gain, Low Noise E+ S Band Bi-doped Phosphosilicate Fiber with 90-nm Broad Bandwidth | |
| Ryu et al. | Gain Controlling of Erbium-Doped Fiber Amplifier by Samarium Doped Inner-Cladding in the 1.5 µm Region | |
| Kim et al. | 41-nm 3-dB gain-band optical amplifier using an Er-doped core and Sm-doped inner-cladding fiber without external filters | |
| Ryu et al. | In-line gain control of the erbium doped fiber amplifier using samarium doped inner-cladding in the 1.5 µm region |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19990521 |
|
| PA0201 | Request for examination | ||
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20010425 Patent event code: PE09021S01D |
|
| E601 | Decision to refuse application | ||
| PE0601 | Decision on rejection of patent |
Patent event date: 20010928 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20010425 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |