KR20050047595A - Apparatus for reducing exhaust gas in low temperature starting - Google Patents
Apparatus for reducing exhaust gas in low temperature starting Download PDFInfo
- Publication number
- KR20050047595A KR20050047595A KR1020030081334A KR20030081334A KR20050047595A KR 20050047595 A KR20050047595 A KR 20050047595A KR 1020030081334 A KR1020030081334 A KR 1020030081334A KR 20030081334 A KR20030081334 A KR 20030081334A KR 20050047595 A KR20050047595 A KR 20050047595A
- Authority
- KR
- South Korea
- Prior art keywords
- gasoline
- catalytic reactor
- engine
- gas
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000007789 gas Substances 0.000 claims abstract description 64
- 230000003197 catalytic effect Effects 0.000 claims abstract description 42
- 239000003054 catalyst Substances 0.000 claims abstract description 33
- 239000000446 fuel Substances 0.000 claims abstract description 29
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 18
- 239000001257 hydrogen Substances 0.000 claims abstract description 18
- 238000002347 injection Methods 0.000 claims abstract description 17
- 239000007924 injection Substances 0.000 claims abstract description 17
- 239000002826 coolant Substances 0.000 claims abstract description 16
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 13
- 230000003647 oxidation Effects 0.000 claims abstract description 8
- 230000001276 controlling effect Effects 0.000 claims abstract description 5
- 230000001105 regulatory effect Effects 0.000 claims abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 238000005057 refrigeration Methods 0.000 claims 3
- 229930195733 hydrocarbon Natural products 0.000 abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 11
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 239000010948 rhodium Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
- F02D41/064—Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0027—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
본 발명은 차량 냉시동시의 배기가스 저감을 위한 장치에 관한 것으로서, ECU가 냉시동시를 판단한 경우 촉매 반응기를 통해 가솔린으로부터 생성시킨 고온의 일산화탄소 및 수소를 연료로서 공급하여 엔진을 구동시킴으로써, 냉시동시의 탄화수소 배출문제를 해소할 수 있도록 된 배기가스 저감을 장치에 관한 것이다.The present invention relates to an apparatus for reducing exhaust gas during cold start, and when the ECU determines the cold start, the engine is supplied by supplying high temperature carbon monoxide and hydrogen generated from gasoline through the catalytic reactor as a fuel to drive the engine. The present invention relates to a device for reducing exhaust gas, which can solve a hydrocarbon emission problem.
이러한 본 발명의 장치는, 차량의 연료공급계로부터 가솔린을 공급받아 촉매에 의한 가솔린의 부분산화반응을 통해 일산화탄소와 수소를 생성하는 촉매 반응기와; 연료공급계로부터 촉매 반응기 사이의 연료라인 상에서 가솔린의 공급을 단속하는 밸브수단 및 가솔린의 공급 유량을 조절하기 위한 유량조절밸브와; 엔진 흡기관에 설치되어 상기 촉매 반응기로부터 가스라인을 통해 공급되는 일산화탄소와 수소를 흡기관 내부로 주입하는 가스주입밸브와; 엔진 냉각수의 온도를 검출하는 냉각수온 감지센서와; 상기 냉각수온 감지센서로부터 입력되는 신호를 토대로 엔진의 냉시동시를 판단하고 판단 결과에 따라 상기 밸브수단 및 가스주입밸브를 제어하기 위한 제어신호를 출력하는 ECU;를 포함한다.The apparatus of the present invention includes a catalytic reactor for receiving gasoline from a fuel supply system of a vehicle and generating carbon monoxide and hydrogen through partial oxidation of gasoline by a catalyst; Valve means for regulating the supply of gasoline on the fuel line between the fuel supply system and the catalytic reactor, and a flow control valve for adjusting the supply flow rate of the gasoline; A gas injection valve installed in an engine intake pipe and injecting carbon monoxide and hydrogen supplied through the gas line from the catalytic reactor into the intake pipe; A coolant temperature sensor for detecting an engine coolant temperature; And an ECU configured to determine a cold start time of the engine based on a signal input from the coolant temperature sensor and to output a control signal for controlling the valve means and the gas injection valve according to the determination result.
Description
본 발명은 차량 냉시동시의 배기가스 저감을 위한 장치에 관한 것으로서, ECU가 냉시동시를 판단한 경우 촉매 반응기를 통해 가솔린으로부터 생성시킨 고온의 일산화탄소 및 수소를 연료로서 공급하여 엔진을 구동시킴으로써, 냉시동시의 탄화수소 배출문제를 해소할 수 있도록 된 배기가스 저감을 장치에 관한 것이다.The present invention relates to an apparatus for reducing exhaust gas during cold start, and when the ECU determines the cold start, the engine is supplied by supplying high temperature carbon monoxide and hydrogen generated from gasoline through the catalytic reactor as a fuel to drive the engine. The present invention relates to a device for reducing exhaust gas, which can solve a hydrocarbon emission problem.
일반적으로 엔진에서 연소된 배기가스는 배기 매니폴드와 배기 파이프를 거쳐 대기로 배출되는데, 이렇게 배출되는 배기가스는 인체에 유해하고 환경을 오염시킬 수 있는 성분들을 다량 함유하고 있기 때문에 배출 전 반드시 정화처리를 하도록 규제하고 있다.In general, the exhaust gas from the engine is discharged to the atmosphere through the exhaust manifold and the exhaust pipe, and this exhaust gas contains a large amount of components that are harmful to the human body and may pollute the environment. To regulate.
특히, 배기가스에는 탄화수소, 일산화탄소, 질소산화물과 같은 유해한 가스가 포함되어 있는데, 현재 이러한 유해가스에 대한 배출기준이 각국 정부에 의해 정해져 있으며, 이에 각 자동차 제조사에서는 새로이 자동차를 개발할 때 이러한 기준을 충족시켜야 한다.In particular, the exhaust gas contains harmful gases such as hydrocarbons, carbon monoxide, and nitrogen oxides. Currently, emission standards for these harmful gases are set by governments, and each automobile manufacturer meets these standards when developing a new vehicle. You have to.
이와 같은 기준을 충족시키기 위하여, 현재 자동차에서는 삼원촉매 정화기를 엔진의 배기계에 설치하여 탄화수소와 일산화탄소의 산화 및 질소산화물의 환원을 촉진하도록 하고 있다. In order to meet such standards, automobiles are currently equipped with a three-way catalytic purifier in the exhaust system of the engine to promote oxidation of hydrocarbons and carbon monoxide and reduction of nitrogen oxides.
그런데, 배기가스 정화기술이 향상될수록 중요하게 대두되는 문제가 냉시동시, 즉 차량 시동을 건 후 가열되기 전까지 약 1분동안 발생하는 탄화수소의 정화에 대한 문제이다.However, as the exhaust gas purification technology improves, an important problem is the purification of hydrocarbons that occur for about one minute during cold start, that is, before heating after starting the vehicle.
이는 삼원촉매 정화기의 촉매가 열적노화현상이 발생하지 않는 고온의 특정 온도 범위에서 가장 효과적인 반응을 나타내기 때문인데, 시동 후 촉매가 가열되어 충분히 활성화되기 전까지는 미연소 탄화수소가 촉매에서 정화되지 않고 대기로 배출되는 문제가 있는 것이다.This is because the catalyst of the three-way catalytic purifier exhibits the most effective reaction in a specific temperature range of high temperature where thermal aging does not occur.Unburned hydrocarbons are not purged from the catalyst until the catalyst is heated and fully activated after startup. There is a problem that is discharged.
현재는 저온에서의 탄화수소 정화를 위하여 고가의 귀금속을 과량으로 사용한 촉매 정화기를 가능한 엔진 가까이 장착하는 방법을 사용하고 있다.Currently, a catalyst purifier using an excess of expensive precious metals is used as near as possible to the hydrocarbon purification at low temperatures.
그러나, 이러한 방법은 다량의 귀금속 사용으로 인해 촉매 정화기의 가격이 상승하는 문제가 있고, 촉매의 내구성 측면에서도 불리하므로, 이에 대한 개선방안이 절실히 요구되고 있는 실정이다.However, this method has a problem that the price of the catalyst purifier is increased due to the use of a large amount of precious metal, and also disadvantageous in terms of durability of the catalyst, there is an urgent need for improvement measures.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, ECU가 냉시동시를 판단한 경우 촉매 반응기를 통해 가솔린으로부터 생성시킨 고온의 일산화탄소 및 수소를 연료로서 공급하여 엔진을 구동시킴으로써, 냉시동시의 탄화수소 배출문제를 해소할 수 있도록 된 배기가스 저감을 장치를 제공하는데 그 목적이 있다. Accordingly, the present invention has been invented to solve the above problems, when the ECU determines the cold start time by supplying high-temperature carbon monoxide and hydrogen generated from gasoline through the catalytic reactor as a fuel to drive the engine, The purpose is to provide a device for reducing exhaust gas that can solve the hydrocarbon emission problem.
이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명은, 차량의 연료공급계로부터 가솔린을 공급받아 촉매에 의한 가솔린의 부분산화반응을 통해 일산화탄소와 수소를 생성하는 촉매 반응기와; 연료공급계로부터 촉매 반응기 사이의 연료라인 상에서 가솔린의 공급을 단속하는 밸브수단 및 가솔린의 공급 유량을 조절하기 위한 유량조절밸브와; 엔진 흡기관에 설치되어 상기 촉매 반응기로부터 가스라인을 통해 공급되는 일산화탄소와 수소를 흡기관 내부로 주입하는 가스주입밸브와; 엔진 냉각수의 온도를 검출하는 냉각수온 감지센서와; 상기 냉각수온 감지센서로부터 입력되는 신호를 토대로 엔진의 냉시동시를 판단하고 판단 결과에 따라 상기 밸브수단 및 가스주입밸브를 제어하기 위한 제어신호를 출력하는 ECU;를 포함한다.The present invention comprises a catalytic reactor for receiving gasoline from a fuel supply system of a vehicle to generate carbon monoxide and hydrogen through partial oxidation of gasoline by a catalyst; Valve means for regulating the supply of gasoline on the fuel line between the fuel supply system and the catalytic reactor, and a flow control valve for adjusting the supply flow rate of the gasoline; A gas injection valve installed in an engine intake pipe and injecting carbon monoxide and hydrogen supplied through the gas line from the catalytic reactor into the intake pipe; A coolant temperature sensor for detecting an engine coolant temperature; And an ECU configured to determine a cold start time of the engine based on a signal input from the coolant temperature sensor and to output a control signal for controlling the valve means and the gas injection valve according to the determination result.
특히, 상기 촉매 반응기는, 전단에 가솔린 및 공기를 공급받기 위한 각 유입구부와, 후단에 생성가스를 배출하기 위한 가스출구부가 구비된 반응기 케이스와; 상기 반응기 케이스 내부에서 상기 유입구부와 가스출구부 사이에 가솔린이 통과하도록 설치되어 가솔린의 부분산화반응을 촉진하는 촉매;를 포함하는 것 특징으로 한다.In particular, the catalytic reactor, the reactor case is provided with each inlet for receiving gasoline and air at the front end, and a gas outlet for discharging the product gas at the rear; And a catalyst installed in the reactor case to allow gasoline to pass between the inlet and the gas outlet, thereby promoting a partial oxidation reaction of the gasoline.
또한, 상기 촉매는 Pt, Rh, Ru, Ir, Ni 중 선택된 어느 하나의 금속을 알루미나에 담지시켜 슬러리를 제조하고 이를 벌집구조의 담체에 코팅하여서 된 것을 특징으로 한다.In addition, the catalyst is characterized in that the slurry is prepared by supporting any one metal selected from Pt, Rh, Ru, Ir, Ni in alumina and coated on a carrier of the honeycomb structure.
상기 ECU는, 냉시동시를 판단한 경우 가솔린으로부터 생성된 일산화탄소 및 수소가 엔진 흡기관에 공급될 수 있게 상기 밸브수단 및 가스주입밸브를 기설정 시간동안 개방하기 위한 제어신호를 출력하고, 상기 기설정 시간 이후 인젝터의 분사 제어를 위한 제어신호를 출력하는 것을 특징으로 한다.The ECU outputs a control signal for opening the valve means and the gas injection valve for a preset time so that carbon monoxide and hydrogen generated from gasoline can be supplied to the engine intake pipe when determining the cold start time, and the preset time Thereafter, a control signal for controlling the injection of the injector may be output.
상기 유량조절밸브는, 상기 촉매 반응기 내에서 가솔린 가스와 촉매의 접촉시간이 10-5에서 10-1초 사이가 될 수 있도록 유량 설정된 것을 특징으로 한다.The flow rate control valve is characterized in that the flow rate is set so that the contact time of the gasoline gas and the catalyst in the catalytic reactor is between 10 -5 to 10 -1 seconds.
이하, 첨부한 도면을 참조하여 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
첨부한 도 1은 본 발명에 따른 장치의 구성도이고, 도 2는 본 발명의 장치에서 촉매 반응기의 구조를 나타낸 단면도이다.1 is a configuration diagram of a device according to the present invention, Figure 2 is a cross-sectional view showing the structure of the catalytic reactor in the device of the present invention.
본 발명은 차량 냉시동시의 배기가스 저감을 위한 장치에 관한 것으로서, 특히 가솔린 자동차에서 냉시동시에 발생하는 탄화수소를 효과적으로 제거하기 위한 장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for reducing exhaust gas during cold start, and more particularly, to an apparatus for effectively removing hydrocarbons generated during cold start in a gasoline vehicle.
먼저, 본 발명의 장치는 가솔린을 공급받아 이 가솔린의 부분산화반응을 통해 일산화탄소와 수소를 생성하는 촉매 반응기(30)를 포함한다.First, the apparatus of the present invention includes a catalytic reactor 30 that receives gasoline and generates carbon monoxide and hydrogen through partial oxidation of the gasoline.
이 촉매 반응기(30)는 차량에 기설치된 연료공급계(10)로부터 별도의 연료라인(31)을 통해 자동차 연료인 가솔린을 공급받도록 되어 있으며, 연료공급계(10)로부터 촉매 반응기(30) 사이의 연료라인(31) 상에는 가솔린의 공급을 단속하는 밸브수단(32) 및 유량 조절을 위한 유량조절밸브(33)가 설치된다.The catalytic reactor 30 is to receive gasoline, which is an automobile fuel, from a fuel supply system 10 installed in a vehicle through a separate fuel line 31, and between the fuel supply system 10 and the catalytic reactor 30. On the fuel line 31 of the valve means 32 to control the supply of gasoline and a flow rate control valve 33 for adjusting the flow rate is provided.
상기 밸브수단(32)은 ECU(50)로부터 출력되는 제어신호에 의해 제어되도록 되어 있다.The valve means 32 is controlled by a control signal output from the ECU 50.
촉매 반응기(30)의 구조를 보면, 도 2에 나타낸 바와 같이, 반응기 케이스(34) 전단에 가솔린과 공기가 공급될 수 있도록 각 유입구부(35a,35b)가 구비되고, 반응기 케이스(34)의 내부에는 부분산화반응을 촉진하는 촉매(36)가 설치된다.Referring to the structure of the catalytic reactor 30, as shown in Figure 2, each inlet portion (35a, 35b) is provided so that gasoline and air can be supplied to the front of the reactor case 34, the reactor case 34 Inside, a catalyst 36 for promoting partial oxidation reaction is provided.
또한, 촉매(36)를 통과하면서 반응 생성된 가스가 배출될 수 있도록 반응기 케이스(34) 후단에는 가스출구부(37)가 구비된다. In addition, a gas outlet 37 is provided at the rear end of the reactor case 34 so that the reaction gas is discharged while passing through the catalyst 36.
본 발명의 장치에서 촉매 반응기(30)에서 생성된 가스가 엔진(20)의 흡기관(21)으로 공급되도록 되어 있는 바, 생성가스가 나오게 되는 촉매 반응기(30)의 가스출구부(37)는 별도의 가스라인(38)을 통해 엔진(20)의 흡기관(21)에 설치된 가스주입밸브(39)와 연결된다. In the apparatus of the present invention, the gas generated in the catalytic reactor 30 is to be supplied to the intake pipe 21 of the engine 20, so that the gas outlet portion 37 of the catalytic reactor 30 through which the generated gas comes out It is connected to the gas injection valve 39 installed in the intake pipe 21 of the engine 20 through a separate gas line 38.
한편, 상기 촉매 반응기(30)는 앞서 설명한 바대로 자동차 연료인 가솔린을 부분산화시켜 고온의 일산화탄소와 수소를 생성시키는 바, 이때의 반응식을 나타내면 다음과 같다.Meanwhile, as described above, the catalytic reactor 30 generates carbon monoxide and hydrogen at high temperature by partially oxidizing gasoline, which is an automobile fuel, and shows a reaction formula as follows.
CnHm + (n/2)O2 →nCO + (n + (m/2))H2 C n H m + (n / 2) O 2 → nCO + (n + (m / 2)) H 2
이 반응은 전형적인 발열반응이므로 별도의 외부 열원 없이 진행이 가능한데, 반응을 통해 생성된 가스의 온도는 1000℃ 이상으로 매우 높으며, 이렇게 온도가 높기 때문에 배기계 삼원촉매의 빠른 가열에 매우 유리하다.Since this reaction is a typical exothermic reaction, it is possible to proceed without a separate external heat source. The temperature of the gas generated through the reaction is very high, such as 1000 ° C. or higher.
상기 촉매 반응기(30)의 촉매(36)는 벌집형 구조의 촉매로 실시 가능하며, 이러한 벌집형 구조의 촉매는 배압이 적고 열적으로 안정하여 상기 반응에 적합하다.The catalyst 36 of the catalytic reactor 30 may be implemented as a catalyst of a honeycomb structure, and the catalyst of the honeycomb structure has a low back pressure and is thermally stable, which is suitable for the reaction.
이 반응을 일으키기 위하여 촉매 반응기(30)의 촉매에는 Pt, Rh, Ru, Ir, 및 Ni 중 선택된 어느 하나의 금속을 알루미나에 담지시킨 촉매가 사용되며, 이러한 촉매재료는 코킹에 강하고 산화반응에 대한 부분산화반응으로의 선택성이 우수하여, 일산화탄소와 수소의 수율을 높일 수 있다.In order to cause this reaction, a catalyst in which a metal selected from Pt, Rh, Ru, Ir, and Ni is supported on alumina is used as the catalyst of the catalytic reactor 30. Such a catalyst material is resistant to coking and resists oxidation. The selectivity in the partial oxidation reaction is excellent, and the yield of carbon monoxide and hydrogen can be increased.
한편, 본 발명의 장치에서 상기 반응식으로 나타낸 촉매 반응기(30)의 반응은 반응속도가 매우 빠르므로, 가솔린 가스와 촉매의 접촉시간은 10-5에서 10-1초 사이가 되도록 하는 것이 바람직하다.On the other hand, the reaction of the catalytic reactor 30 represented by the above reaction scheme in the apparatus of the present invention is very fast, it is preferable that the contact time of the gasoline gas and the catalyst is between 10 -5 to 10 -1 seconds.
이보다 접촉시간이 짧으면 전환율이 낮고, 이보다 접촉시간이 길면 반응이 과도하게 진행되어 이산화탄소로의 완전산화반응이 일어나므로, 바람직하지 않다.If the contact time is shorter than this, the conversion rate is low. If the contact time is longer than this, the reaction proceeds excessively and a complete oxidation reaction to carbon dioxide is not preferable.
이러한 접촉시간은 촉매 반응기(30)로 공급되는 가솔린의 유량에 관계되므로, 이 유량은 연료공급계(10)로부터 촉매 반응기(30)로 연결된 연료라인(31) 상에서 조정되어야 하며, 본 발명의 장치에서는 연료라인(31) 상에 설치된 밸브수단(32)의 개방시에 유량조절밸브(33)에 의해 조정된 규정 유량의 가솔린이 촉매 반응기로 공급될 수 있도록 되어 있다. Since this contact time is related to the flow rate of gasoline supplied to the catalytic reactor 30, this flow rate should be adjusted on the fuel line 31 connected from the fuel supply system 10 to the catalytic reactor 30, and the apparatus of the present invention. In this case, when the valve means 32 provided on the fuel line 31 is opened, gasoline at a prescribed flow rate adjusted by the flow rate control valve 33 can be supplied to the catalytic reactor.
한편, 상기 촉매 반응기(30)로부터 나온 고온의 생성가스는 가스라인(38)을 통해 엔진(20)의 흡기관(21)으로 공급되어지는데, 특히 이 가스라인(38)을 통해 공급되는 생성가스는 엔진(20)의 흡기관(21)에 설치된 가스주입밸브(39)를 통해 흡기관(21) 및 연소실로 공급되게 된다.On the other hand, the hot product gas from the catalytic reactor 30 is supplied to the intake pipe 21 of the engine 20 through the gas line 38, in particular the product gas supplied through the gas line 38 The gas is supplied to the intake pipe 21 and the combustion chamber through the gas injection valve 39 installed in the intake pipe 21 of the engine 20.
상기 가스주입밸브(39)는 ECU(50)로부터 출력되는 제어신호에 의해 제어되며, 이로써 촉매 반응기(30)에서 생성된 가스는 ECU(50)의 제어하에 선택적으로 흡기관(21)에 공급될 수 있게 된다.The gas injection valve 39 is controlled by a control signal output from the ECU 50, whereby the gas generated in the catalytic reactor 30 is selectively supplied to the intake pipe 21 under the control of the ECU 50. It becomes possible.
다음으로, 본 발명의 장치는 냉각수의 온도를 검출하여 그에 따른 전기적 신호 형태로 출력하는 냉각수온 감지센서(40)와, 이 냉각수온 감지센서(40)로부터 입력된 신호로부터 차량의 냉시동시를 판단하고 상기 밸브수단(32)과 가스주입밸브(39)를 제어하는 ECU(50)를 포함한다.Next, the apparatus of the present invention determines the cold start time of the vehicle from the coolant temperature sensor 40 for detecting the temperature of the coolant and outputting it in the form of an electrical signal according to the coolant temperature, and the signal input from the coolant temperature sensor 40. And an ECU 50 for controlling the valve means 32 and the gas injection valve 39.
이하, 본 발명의 작동상태를 첨부한 도 3을 참조하여 설명하면 다음과 같다.Hereinafter, with reference to Figure 3 attached to the operating state of the present invention.
먼저, 엔진(20)의 시동이 걸린 후, ECU(50)는 냉각수온 감지센서(40)로부터 입력되는 신호를 통해 현재의 냉각수온이 기설정 온도(도 3에서 60℃) 미만일 때 차량의 냉시동시로 판단하여 본 발명의 장치를 구성하고 있는 상기 밸브수단(32)과 가스주입밸브(39)를 개방하게 된다.First, after the engine 20 is started, the ECU 50 cools the vehicle when the current coolant temperature is lower than a preset temperature (60 ° C in FIG. 3) through a signal input from the coolant temperature sensor 40. By judging simultaneously, the valve means 32 and the gas injection valve 39 constituting the apparatus of the present invention are opened.
이와 같이 밸브수단(32)이 개방된 상태에서 촉매 반응기(30)는 연료공급계(10)로부터 가솔린을 공급받아 일산화탄소와 수소를 생성시키는 바, 최종 생성된 가스는 반응기 케이스(34)의 가스출구부(37), 가스라인(38) 및 가스주입밸브(39)를 통해 엔진(20)의 흡기관(21) 내로 공급되며, 결국 차량 엔진(20)은 일산화탄소와 수소를 연료로 하여 기동되어진다. As such, the catalytic reactor 30 receives gasoline from the fuel supply system 10 to generate carbon monoxide and hydrogen in the state in which the valve means 32 is opened. The final generated gas is a gas outlet of the reactor case 34. It is supplied into the intake pipe 21 of the engine 20 through the part 37, the gas line 38, and the gas injection valve 39, and finally the vehicle engine 20 is started using carbon monoxide and hydrogen as fuel. .
또한, 상기 ECU(50)는 기설정 시간 이후 제어신호를 출력하여 밸브수단(32)과 가스주입밸브(39)를 닫아주며, 이와 함께 정상적으로 인젝터(23)를 작동시켜 가솔린을 연소실에 공급하는 바, 이후 차량 엔진(20)은 가솔린을 연료로 하여 기동되어진다. In addition, the ECU 50 outputs a control signal after a preset time to close the valve means 32 and the gas injection valve 39. In addition, the ECU 50 operates the injector 23 to supply gasoline to the combustion chamber. After that, the vehicle engine 20 is started using gasoline as fuel.
여기서, 상기 ECU(50)가 본 발명의 장치를 작동시키는 시간은 삼원촉매 정화기(60)의 촉매가 가열되어 충분히 활성화되는 동안의 시간(도 3에서 100초)으로 미리 ECU(50)에 입력된다. Here, the time when the ECU 50 operates the apparatus of the present invention is input to the ECU 50 in advance as a time (100 seconds in FIG. 3) while the catalyst of the three-way catalytic purifier 60 is heated and sufficiently activated. .
이와 같이 하여, 본 발명의 장치에서는 ECU가 냉시동시를 판단한 경우 촉매 반응기에 의해 생성된 고온의 일산화탄소 및 수소를 연료로서 공급하여 엔진을 구동시킴으로써, 냉시동시의 탄화수소 배출문제를 해소할 수 있는 장점이 있게 된다. Thus, in the apparatus of the present invention, when the ECU determines the cold start, the engine is supplied with the high temperature carbon monoxide and hydrogen generated by the catalytic reactor as fuel to drive the engine, thereby eliminating the problem of hydrocarbon emission during the cold start. Will be.
한편, 본 발명의 장치를 구성하는 촉매 반응기에서 각 촉매재료를 사용하였을 때 일산화탄소로의 전환율을 조사하였는 바, 이를 설명하면 다음과 같다. On the other hand, the conversion rate to carbon monoxide was investigated when each catalyst material was used in the catalytic reactor constituting the apparatus of the present invention.
다음의 실시예는 촉매 반응기에서 촉매에 의한 일산화탄소로의 전환율을 알아보기 위한 것일 뿐, 본 발명이 다음의 예로 한정되지는 않는다.The following examples are only intended to determine the conversion rate of the catalyst to carbon monoxide in the catalyst reactor, the present invention is not limited to the following examples.
실시예 1 ~ 5Examples 1-5
먼저, 실시예 1로서, 백금(Pt)용액 3중량부를 알루미나 담지체 97 중량부에 담지시킨 후, 이를 습식 밀링하여 슬러리를 제조하였다. First, as Example 1, 3 parts by weight of a platinum (Pt) solution was supported on 97 parts by weight of an alumina carrier, and then wet milled to prepare a slurry.
이때, 백금은 질산염 형태의 전구체를 사용하였고, 알루미나는 단위 그램당 200 ~ 300 제곱미터의 비표면적을 갖는 활성 알루미나를 적용하였다.At this time, platinum was used as a precursor in the form of nitrate, and alumina was activated alumina having a specific surface area of 200 to 300 square meters per gram.
이후, 상기 슬러리를 벽두께가 165㎛이고 셀의 밀도가 단위 인치당 400개인 벌집구조의 세라믹 담체에 코팅한 후, 소성하여 촉매를 제조하였다.Thereafter, the slurry was coated on a ceramic carrier having a honeycomb structure having a wall thickness of 165 µm and a cell density of 400 per unit inch, and then calcined to prepare a catalyst.
다음으로, 실시예 2로서, 로듐(Rh)용액 3중량부를 담지시켰으며, 나머지는 상기 실시예 1과 동일하다.Next, as Example 2, 3 parts by weight of a rhodium (Rh) solution was carried, and the rest was the same as in Example 1.
실시예 3은 루테늄(Ru)용액 3중량부를 담지시켰으며, 나머지는 상기 실시예 1과 동일하다.Example 3 was loaded with 3 parts by weight of ruthenium (Ru) solution, the rest is the same as in Example 1.
또한, 실시예 4는 이리듐(Ir)용액 3중량부를 담지시켰으며, 나머지는 상기 실시예 1과 동일하다.In addition, Example 4 was loaded with 3 parts by weight of iridium (Ir) solution, the rest is the same as in Example 1.
또한, 살시예 5는 니켈(Ni)용액 3중량부를 담지시켰으며, 나머지는 상기 실시예 1과 동일하다.In addition, Salicy Example 5 was carried by 3 parts by weight of a nickel (Ni) solution, the rest is the same as in Example 1.
비교예 1 ~ 10Comparative Examples 1 to 10
한편, 비교예 1 ~ 10은 각각 철(Fe), 코발트(Co), 구리(Cu), 아연(Zn), 지르코니아(Zr), 몰리브덴(Mo), 팔라듐(Pd), 은(Ag), 텅스텐(W), 금(Au)용액 3중량부를 담지시켰으며, 나머지는 상기 실시예 1과 동일하다.On the other hand, Comparative Examples 1 to 10 are iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), zirconia (Zr), molybdenum (Mo), palladium (Pd), silver (Ag), and tungsten, respectively. (W) and gold (Au) solution was carried by 3 parts by weight, the rest is the same as in Example 1.
시험예 1Test Example 1
상기 실시예와 비교예의 촉매 반응기에 반응물로 가솔린과 공기를 주입하면서 부분산화반응의 진행 여부를 조사하였다.It was investigated whether the partial oxidation reaction proceeded while injecting gasoline and air as reactants into the catalytic reactors of the examples and comparative examples.
반응물 조성으로서, 가솔린과 공기의 비율은 탄소와 산소의 원자비가 1이 되도록 하였으며, 주입부의 온도는 버너로 900℃로 유지하였다.As the reactant composition, the ratio of gasoline and air was such that the atomic ratio of carbon and oxygen was 1, and the temperature of the inlet was maintained at 900 ° C. with a burner.
또한, 반응기는 단열조건에서 운전하였으며, 접촉시간은 5×10-3초가 되도록 하였다.In addition, the reactor was operated under adiabatic conditions, and the contact time was 5 × 10 −3 seconds.
이 반응기를 거쳐 나온 생성가스의 농도를 가스 크로마토 그래피를 이용하여 분석하였고, 총 5시간의 반응기 운전 후 촉매에 침적된 코크의 양을 CS 분석을 통하여 조사하였으며, 이러한 촉매별 반응시험의 결과는 하기 표 1에 나타내었다.The concentration of off-gas produced through this reactor was analyzed by gas chromatography. After 5 hours of reactor operation, the amount of coke deposited on the catalyst was investigated by CS analysis. Table 1 shows.
상기 표 1에서 알 수 있는 바와 같이, 본 발명에 의한 실시예의 촉매가 활성과 CO로의 선택성이 우수하고, 코크의 발생량도 적은 것으로 나타났다.As can be seen in Table 1, the catalyst of the embodiment according to the present invention was excellent in activity and selectivity to CO, it was also found that the amount of coke generated.
특히, 로듐을 적용한 경우가 가장 우수한 특성을 보였다.In particular, the application of rhodium showed the best characteristics.
시험예 2Test Example 2
상기 시험예 1에서 가장 우수한 특성을 보인 실시예 2의 로듐 촉매로 접촉시간에 대한 영향을 조사하였으며, 시험의 조건은 시험예 1과 동일하고, 다만 접촉시간만 하기 표 2에 나타낸 바와 같이 조절하였다.The effect on the contact time was investigated with the rhodium catalyst of Example 2 showing the best characteristics in Test Example 1, the test conditions were the same as in Test Example 1, but only the contact time was adjusted as shown in Table 2 below. .
상기 표 2에서 알 수 있는 바와 같이, 접촉시간을 10-5에서 10-1초 사이로 하는 것이 적당하며, 이보다 접촉시간이 짧으면 전환율이 낮아지게 되고, 이보다 접촉시간이 길면 반응이 과도하게 진행되어 이산화탄소로의 완전산화반응이 일어나게 된다.As can be seen in Table 2, it is appropriate to make the contact time between 10 -5 to 10 -1 seconds, and if the contact time is shorter than this, the conversion rate is lowered. Complete oxidation of the furnace occurs.
이상에서 설명한 바와 같이, 본 발명에 따른 차량 냉시동시의 배기가스 저감을 위한 장치에 의하면, ECU가 냉시동시를 판단한 경우 촉매 반응기를 통해 가솔린으로부터 생성시킨 고온의 일산화탄소 및 수소를 연료로서 공급하여 엔진을 구동시킴으로써, 냉시동시의 탄화수소 배출문제를 해소할 수 있는 효과가 있다.As described above, according to the apparatus for reducing the exhaust gas during cold start according to the present invention, when the ECU determines the cold start, the engine is supplied by supplying high-temperature carbon monoxide and hydrogen generated from gasoline through the catalytic reactor as fuel. By driving, there is an effect that can solve the hydrocarbon emission problem during cold start.
도 1은 본 발명에 따른 장치의 구성도,1 is a block diagram of a device according to the present invention,
도 2는 본 발명의 장치에서 촉매 반응기의 구조를 나타낸 단면도,2 is a cross-sectional view showing the structure of the catalytic reactor in the apparatus of the present invention,
도 3은 본 발명의 작동상태를 나타내는 플로우 차트.Figure 3 is a flow chart showing the operating state of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10 : 연료공급계 20 : 엔진10: fuel supply system 20: engine
21 : 흡기관 22 : 배기관21: intake pipe 22: exhaust pipe
23 : 인젝터 30 : 촉매 반응기23 injector 30 catalytic reactor
31 : 연료라인 32 : 밸브수단31 fuel line 32 valve means
33 : 유량조절밸브 34 : 반응기 케이스33: flow control valve 34: reactor case
35a : 공기 유입구부 35b : 연료 유입구부35a: air inlet section 35b: fuel inlet section
36 : 촉매 37 : 가스 출구부36 catalyst 37 gas outlet
38 : 가스라인 39 : 가스주입밸브38 gas line 39 gas injection valve
40 : 냉각수온 감지센서 50 : ECU40: coolant temperature sensor 50: ECU
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020030081334A KR20050047595A (en) | 2003-11-18 | 2003-11-18 | Apparatus for reducing exhaust gas in low temperature starting |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020030081334A KR20050047595A (en) | 2003-11-18 | 2003-11-18 | Apparatus for reducing exhaust gas in low temperature starting |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20050047595A true KR20050047595A (en) | 2005-05-23 |
Family
ID=37246506
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020030081334A Ceased KR20050047595A (en) | 2003-11-18 | 2003-11-18 | Apparatus for reducing exhaust gas in low temperature starting |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR20050047595A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6075752A (en) * | 1983-09-30 | 1985-04-30 | Mitsubishi Electric Corp | Controller for gas fuel engine |
| JPS62197663A (en) * | 1986-02-26 | 1987-09-01 | Houyuu:Kk | Heat engine using reformed fuel |
| JPH0571433A (en) * | 1991-09-12 | 1993-03-23 | Hitachi Ltd | Method of reducing total hydrocarbons in automobile exhaust gas |
| KR20000062658A (en) * | 1999-03-30 | 2000-10-25 | 제임스 이. 미러 | Engine Control Unit For Direct Injection Type Spark Ignition Engine |
| JP2003293867A (en) * | 2002-04-01 | 2003-10-15 | Nissan Motor Co Ltd | Fuel reformed gas engine |
-
2003
- 2003-11-18 KR KR1020030081334A patent/KR20050047595A/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6075752A (en) * | 1983-09-30 | 1985-04-30 | Mitsubishi Electric Corp | Controller for gas fuel engine |
| JPS62197663A (en) * | 1986-02-26 | 1987-09-01 | Houyuu:Kk | Heat engine using reformed fuel |
| JPH0571433A (en) * | 1991-09-12 | 1993-03-23 | Hitachi Ltd | Method of reducing total hydrocarbons in automobile exhaust gas |
| KR20000062658A (en) * | 1999-03-30 | 2000-10-25 | 제임스 이. 미러 | Engine Control Unit For Direct Injection Type Spark Ignition Engine |
| JP2003293867A (en) * | 2002-04-01 | 2003-10-15 | Nissan Motor Co Ltd | Fuel reformed gas engine |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3473898B2 (en) | Hydrogen purification equipment | |
| JP6448549B2 (en) | Exhaust system using reforming catalyst | |
| EP1787950B1 (en) | Fuel reformer and methods for using the same | |
| JP5159800B2 (en) | Hydrogen supply device for internal combustion engine and operation method of internal combustion engine | |
| US20030140622A1 (en) | Combination emission abatement assembly and method of operating the same | |
| EP1783336A1 (en) | Vehicle exhaust after treatment system | |
| JP2001232203A (en) | Methanol reforming catalyst and methanol reforming method | |
| WO2001047802A1 (en) | Apparatus for forming hydrogen | |
| GB2316018A (en) | Exhaust emission control device for diesel engines | |
| WO2010116874A2 (en) | Hydrogen generating apparatus and hydrogen generating method | |
| US20040131540A1 (en) | Device for producing hydrogen and method of operating the same | |
| EP1433746A3 (en) | Catalytic partial oxidation method | |
| US20050126158A1 (en) | System and method for reducing nitrogen oxides in the exhaust of an internal combustion engine | |
| US20040052693A1 (en) | Apparatus and method for removing NOx from the exhaust gas of an internal combustion engine | |
| EP1271679A1 (en) | Device for producing hydrogen and method of operating the same | |
| JP2001180912A (en) | Hydrogen purification equipment | |
| KR20050047595A (en) | Apparatus for reducing exhaust gas in low temperature starting | |
| JP6997948B2 (en) | Combustion catalyst | |
| JP5705128B2 (en) | Method and apparatus for testing catalytic materials | |
| JP2014058412A (en) | Fuel modifying/feeding system | |
| WO2009104735A1 (en) | Fuel reforming device | |
| KR100580010B1 (en) | Method for producing a catalyst for gasoline reforming | |
| JP2004255264A (en) | Water splitting composite medium and hydrogen supply system for fuel cell using the same | |
| JP4663095B2 (en) | Hydrogen purification equipment | |
| JP2008144668A (en) | Power system and ethanol conversion catalyst |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20031118 |
|
| PA0201 | Request for examination | ||
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20051021 Patent event code: PE09021S01D |
|
| E601 | Decision to refuse application | ||
| PE0601 | Decision on rejection of patent |
Patent event date: 20060327 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20051021 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |