[go: up one dir, main page]

KR20090016515A - Method for liquefying hydrogen - Google Patents

Method for liquefying hydrogen Download PDF

Info

Publication number
KR20090016515A
KR20090016515A KR1020097000481A KR20097000481A KR20090016515A KR 20090016515 A KR20090016515 A KR 20090016515A KR 1020097000481 A KR1020097000481 A KR 1020097000481A KR 20097000481 A KR20097000481 A KR 20097000481A KR 20090016515 A KR20090016515 A KR 20090016515A
Authority
KR
South Korea
Prior art keywords
hydrogen
stream
hydrogen stream
precooling
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020097000481A
Other languages
Korean (ko)
Inventor
안드레아스 퀸디그
Original Assignee
린데 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 린데 악티엔게젤샤프트 filed Critical 린데 악티엔게젤샤프트
Publication of KR20090016515A publication Critical patent/KR20090016515A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/60Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

본 발명은 수소를 액화하기 위한 프로세스에 관한 것이다. 특정 에너지 소비를 감소시키기 위해, 이하의 프로세스 단계가 이용된다: a) 140 내지 130 K의 온도로 가압된 LNG 스트림에 대한 간접적인 열교환에 의해 수소 스트림(stream)을 예비 냉각하는 단계, b) 85 내지 75K의 온도로 냉각제에 대한 간접적 열교환에 의해 수소 스트림을 예비냉각하는 단계, c) 이경우 냉각제의 예비 냉각이 가압된 LNG 스트림에 대해 일어나는 단계; d) 예비 냉각된 수소 스트림의 냉각 및 적어도 부분적인 액화가 폐쇄 냉각 회로를 통해 채널된 다른 수소 스트림에 대한 간접적 열교환에 의해 일어나는 단계; e) 폐쇄 냉각 회로를 통해 채널된 응축된 수소 스트림의 예비 냉각이 가압된 LNG 스트림에 대해 일어나는 단계.The present invention relates to a process for liquefying hydrogen. In order to reduce the specific energy consumption, the following process steps are used: a) precooling the hydrogen stream by indirect heat exchange with the LNG stream pressurized to a temperature of 140 to 130 K, b) 85 Precooling the hydrogen stream by indirect heat exchange with the coolant to a temperature of from about 75 K, c) in which case precooling of the coolant takes place over the pressurized LNG stream; d) cooling and at least partial liquefaction of the pre-cooled hydrogen stream occurs by indirect heat exchange with another hydrogen stream channeled through the closed cooling circuit; e) preliminary cooling of the condensed hydrogen stream channeled through the closed cooling circuit occurs to the pressurized LNG stream.

Description

수소를 액화하기 위한 방법 {PROCESS FOR LIQUEFYING HYDROGEN}Method for liquefying hydrogen {PROCESS FOR LIQUEFYING HYDROGEN}

본 발명은 수소를 액화하기 위한 방법에 관한 것이다.The present invention relates to a method for liquefying hydrogen.

특히 수소는 점증하는 에너지 요구 및 증가된 환경 의식에 의해 에너지 캐리어로서 현재 그 중요성이 증가하고 있다. 트럭, 버스, 자동차 및 기관차는 연료 전지 및 전기 모터의 조합에 의해서 뿐만 아니라 천연 가스 또는 수소에 의해 작동되는 엔진에 의해 동력을 공급받는다. 이러한 경우에, "차 안에(on board)" 수소의 저장의 가장 현명한 형태는 운송의 이전에 언급된 수단인 액체 형태이다. 이러한 목적을 위해, 수소는 약 25 K로 냉각되어야 하고 이 온도에서 유지되어야 하며 - 이 온도는 저장 콘테이너 또는 저장 탱크 상의 적절한 절연 수단을 이용함에 의해서만 이루어질 수 있으며 -, GH2의 낮은 밀도에 의해, 운송의 이전 언급된 수단에서의 가스상 형태로의 저장은 대체로 덜 바람직한데, 왜냐하면 이러한 경우에 저장은 높은 압력 하에서 큰 부피의 그리고 무거운 저장 탱크에서 일어나야만 하기 때문이다.In particular, hydrogen is of increasing importance as an energy carrier due to increasing energy demands and increased environmental awareness. Trucks, buses, automobiles and locomotives are powered by a combination of fuel cells and electric motors as well as by engines operated by natural gas or hydrogen. In this case, the smartest form of storage of hydrogen “on board” is in liquid form, the previously mentioned means of transport. For this purpose, the hydrogen must be cooled to about 25 K and maintained at this temperature-this temperature can only be achieved by using suitable insulation means on the storage container or storage tank-by the low density of GH 2 , Storage in gaseous form in the previously mentioned means of transport is generally less desirable because in this case the storage must take place in large volume and heavy storage tanks under high pressure.

수소 액화 프로세스는 두 개의 프로세스 단계를 일반적으로 포함하는데, 그 이름은 소위 예비 냉각 단계 및 차후 액화 단계이다. 상기 프로세스에서, 수소는 액화될 수 있기 이전에 상위 줄-톰슨 역전 온도 미만의 온도로 냉각되어야 하고, 이는 그 온도 미만에서 팽창 가스가 냉각되는 온도라고 이해된다. 따라서 수소는 차후 액화 프로세스로 공급될 수 있기 이전에 적어도 -150℃의 온도로 일반적으로 예비 냉각되어야 한다.The hydrogen liquefaction process generally includes two process steps, namely the so-called preliminary cooling step and the subsequent liquefaction step. In this process, hydrogen must be cooled to a temperature below the upper Joule-Thompson inversion temperature before it can be liquefied, which is understood to be the temperature below which the expansion gas is cooled. Therefore, hydrogen must generally be precooled to a temperature of at least -150 ° C before it can be supplied to subsequent liquefaction processes.

가스상(gaseous) 수소는 약 75% 오르소-수소(ortho-hydrogen) 및 약 25% 파라-수소(para-hydrogen)로 일반적으로 이루어진다. 이러한 이유 때문에, 액화 프로세스 동안 - 액화된 수소가 더 긴 시간 주기에 걸쳐 간헐적으로(intermediately) 저장되기 때문에 - 오르소-수소는 파라-수소로 변환되어야 한다. 일반적으로, 적어도 99% 파라-수소의 비율을 목표로 한다. 이러한 변환이 수행되지 않는다면, 액화된 수소의 더 빠른 증발이 초래될 것이다. 오르소-수소로부터 파라-수소로의 변환은 적절한 변환 촉매에 의해 일어난다.Gaseous hydrogens generally consist of about 75% ortho-hydrogen and about 25% para-hydrogen. For this reason, ortho-hydrogen must be converted to para-hydrogen during the liquefaction process-because liquefied hydrogen is stored intermediately over a longer period of time. In general, aim for a ratio of at least 99% para-hydrogen. If this conversion is not performed, faster evaporation of liquefied hydrogen will result. The conversion from ortho-hydrogen to para-hydrogen occurs with an appropriate conversion catalyst.

수소를 액화하기 위한 다수의 방법이 문헌에서 공지되어 있는데, 이 경우 가스상 수소의 예비 냉각은 냉각제 회로 또는 냉각제 혼합물 회로에 대해 일어난다. 질소는 이 경우에 냉각제로서 종종 이용된다. 수소 액화 방법은 국제 특허 출원 WO 2005/080892호 및 유럽 특허 출원 제 1 580 506호로부터 공지되어 있고, 여기서 액화되는 수소 스트림의 예비 냉각은 가압된 LNG(액화 천연 가스) 스트림과 간접적인 열 교환으로 일어난다. 이 프로세스 동안 LNG 증발은 그 냉함(cold)을 예비 냉각되는 가스상 수소 스트림으로 전달한다. 이 증발은 적절한 천연 가스 버 너(burners)에 의해 일반적으로 일어나고, 이 버너는 워터 배스에 잠겨 있으며 LNG의 작은 부분적 스트림으로 작동된다.Many methods for liquefying hydrogen are known in the literature, in which case precooling of gaseous hydrogen takes place for the coolant circuit or the coolant mixture circuit. Nitrogen is often used in this case as coolant. Hydrogen liquefaction processes are known from International Patent Application WO 2005/080892 and European Patent Application No. 1 580 506, wherein the preliminary cooling of the liquefied hydrogen stream is by indirect heat exchange with a pressurized LNG (liquefied natural gas) stream. Happens. LNG evaporation during this process transfers its cold into a gaseous hydrogen stream that is precooled. This evaporation is usually caused by suitable natural gas burners, which are submerged in a water bath and operated with a small partial stream of LNG.

본 발명의 목적은 수소를 액화하기 위한 방법을 제공하는 것이고, 이는 최신식의 부품을 형성하는 방법과 비교하여 낮은 비에너지 소비(specific energy consumption)를 갖는다.It is an object of the present invention to provide a method for liquefying hydrogen, which has a lower specific energy consumption compared to the method of forming state of the art components.

수소를 액화하기 위한 본 발명에 따른 방법은 이하의 방법 단계를 포함한다:The process according to the invention for liquefying hydrogen comprises the following process steps:

a) 가압된 LNG 스트림에 대해 간접적 열교환에 의해 140 내지 130 K의 온도로 수소 흐름을 예비 냉각하는 단계,a) precooling the hydrogen flow to a temperature of 140 to 130 K by indirect heat exchange on the pressurized LNG stream,

b) 냉각제에 대해 간접적 열교환에 의해 85 내지 75 K의 온도로 수소 스트림을 예비 냉각하는 단계,b) precooling the hydrogen stream to a temperature of 85 to 75 K by indirect heat exchange with the coolant,

c) 냉각제의 예비 냉각이 가압된 LNG 스트림에 대해 일어나는 단계,c) precooling of the coolant occurs for the pressurized LNG stream,

d) 폐쇄 냉각 회로에서 순환되는 추가적인 수소 스트림에 대해 간접적 열교환에 의해 예비 냉각된 수소 스트림의 적어도 부분적인 액화 및 냉각이 일어나는 단계; 및d) at least partial liquefaction and cooling of the pre-cooled hydrogen stream by indirect heat exchange occurs for the additional hydrogen stream circulated in the closed cooling circuit; And

e) 폐쇄 냉각 회로에서 순환되는 압축된 수소 스트림의 예비 냉각이 가압된 LNG 스트림에 대해 일어나는 단계.e) preliminary cooling of the compressed hydrogen stream circulated in a closed cooling circuit occurs to the pressurized LNG stream.

수소를 액화하기 위한 본 발명에 따른 방법은 도면에서 도시된 예시적 실시예를 참고로 하여 이하에서 더욱 자세하게 설명될 것이다.The method according to the invention for liquefying hydrogen will be described in more detail below with reference to the exemplary embodiments shown in the drawings.

도 1은 본 발명에 따른 수소를 액화하기 위한 방법의 흐름도이다.1 is a flow chart of a method for liquefying hydrogen according to the present invention.

액화되는 수소 스트림은 300K의 온도 및 2200kPa의 압력으로 라인(1)을 통해 열교환기(E1)로 공급된다. 열교환기에서, 수소 스트림은 LNG 스트림에 대해 135K의 온도로 냉각되고, 이 LNG 스트림은 열교환기(E1)를 통해 라인(A)를 통해 유도되며 125K의 온도 및 7800kPa의 압력을 갖는다.The liquefied hydrogen stream is fed to heat exchanger E1 via line 1 at a temperature of 300 K and a pressure of 2200 kPa. In the heat exchanger, the hydrogen stream is cooled to a temperature of 135K for the LNG stream, which is led through line A through heat exchanger E1 and has a temperature of 125K and a pressure of 7800 kPa.

도면에서 도시된 모든 열교환기들은 각각의 경우에 하나 이상의 열교환기를 나타내고, 필요하다면 상이한 열교환기 또는 열교환기 형태를 나타낸다.All heat exchangers shown in the figures represent one or more heat exchangers in each case and, if necessary, different heat exchangers or heat exchanger types.

예비 냉각된 수소 스트림은 이제 라인(2)을 통해서 추가적인 열교환기(E2)로 공급되고 거기서 이하에서 더욱 자세하게 설명될 질소 냉각 회로에 대해 80K의 온도로 냉각된다.The pre-cooled hydrogen stream is now fed via line 2 to an additional heat exchanger E2 where it is cooled to a temperature of 80 K for the nitrogen cooling circuit which will be described in more detail below.

80K로 예비 냉각된 수소 스트림은 바람직하게는 흡착적으로(adsorptively) 작동하는 정화 장치(4)로 라인(3)을 통해 이후 공급되고, 여기서 오염물질의 최종 흔적이 액화되는 수소 스트림으로부터 제거된다. 정화 장치(4)는 일반적으로 평행하게 배열된 적어도 두 개의 흡착기를 포함하고 이에 의해 연속적인 정화 프로세스가 스위칭에 의해 실현될 수 있다.The hydrogen stream, precooled to 80K, is then fed via line 3 to a purifier 4, which preferably operates adsorbently, where the final traces of contaminants are removed from the liquefied hydrogen stream. The purification device 4 generally comprises at least two adsorbers arranged in parallel so that a continuous purification process can be realized by switching.

라인(5)을 통해 정화 장치(4)로부터 회수된 액화되는 수소 스트림은 열교환 기(E4)로 공급되고 거기서 이전에 이미 설명된 폐쇄 수소 냉각 회로에 대해 26K의 온도로 냉각된다. 대략 200kPa로의 압력 감소가 열교환기(E4)의 하류의 팽창 장치(8)에서 일어나고, 이는 냉각된 수소 스트림의 부분적 액화를 초래한다. 열교환기(E7)에서 가스상의 완료된 액화 이후, 액체 수소 생성물 스트림이 라인(9)을 통해 회수되고 추가적인 이용 및/또는 중간 저장으로 공급된다.The liquefied hydrogen stream recovered from the purification device 4 via line 5 is fed to a heat exchanger E4 where it is cooled to a temperature of 26K for the previously closed hydrogen cooling circuit previously described. The pressure reduction to approximately 200 kPa occurs in the expansion device 8 downstream of the heat exchanger E4, which results in partial liquefaction of the cooled hydrogen stream. After the complete liquefaction of the gaseous phase in the heat exchanger E7, the liquid hydrogen product stream is recovered via line 9 and fed to further use and / or intermediate storage.

대안적으로, 팽창 장치(8)는 팽창 밸브 및 팽창 밸브 이후의 배출기로 이루어진 조합에 의해 구현될 수 있다. 이러한 경우에, 액체 수소 생성물 스트림의 중간 저장 동안 생성된 가스상 수소가 배출기로 공급될 수 있다.Alternatively, the expansion device 8 can be implemented by a combination consisting of an expansion valve and an ejector after the expansion valve. In this case, gaseous hydrogen produced during the intermediate storage of the liquid hydrogen product stream can be fed to the exhaust.

개방 수소 냉각 회로는 라인 섹션들(17, 11, 13, 15, 16), 열교환기(E4, E5, E6, E7), 적어도 하나의 팽창 장치(12), 및 바람직하게 다중-스테이지 압축기(14)로 이루어진다. 수소는 먼저 라인(17)을 통해 열교환기(E4)로 공급되고 거기서 냉각된다. 이후 라인(11)을 통해 팽창 장치(12)로 공급되고 거기서 수소의 액화를 위해 필요한 피크 콜드(peak cold)를 제공할 목적으로 팽창된다.The open hydrogen cooling circuit comprises line sections 17, 11, 13, 15, 16, heat exchangers E4, E5, E6, E7, at least one expansion device 12, and preferably a multi-stage compressor 14. ) Hydrogen is first supplied to heat exchanger E4 via line 17 and cooled there. It is then supplied via line 11 to expansion device 12 where it is expanded for the purpose of providing the peak cold necessary for the liquefaction of hydrogen.

이후, 증발이 열교환기(E7)에서 일어나고 수소 스트림과의 간접적 열교환으로 열교환기(E4)에서 팽창된 수소 스트림의 열이 라인(17)에서 냉각되고 액화된다. 가열된 수소 스트림은 라인(13)을 통해 열교환기(E5)로 공급되고, 압축기 유닛(14)에서 원하는 회로 압력으로 압축되기 이전에 거기서 자체적으로(against itself) 가열된다.Evaporation then takes place in heat exchanger E7 and indirect heat exchange with the hydrogen stream causes the heat of the hydrogen stream expanded in heat exchanger E4 to be cooled and liquefied in line 17. The heated hydrogen stream is fed to heat exchanger E5 via line 13 and heated there against itself before being compressed to the desired circuit pressure in compressor unit 14.

압축된 수소 스트림은 라인(15)을 통해 열교환기(E6)로 공급되고, 거기서 라인(C)을 통해 열교환기(E6)로 공급되는 추가적인 부분적 LNG 스트림에 대해 거기서 냉각된다. 이 냉각된 수소 스트림은 이후 라인(16)을 통해 열교환기(E5)로 공급되고, 거기서 자체적으로 냉각되며 이후 라인 섹션(17)을 통해 다시 이미 설명된 열교환기(E4)로 공급된다.The compressed hydrogen stream is fed to heat exchanger E6 via line 15 where it is cooled there for an additional partial LNG stream which is fed to heat exchanger E6 via line C. This cooled hydrogen stream is then fed to heat exchanger E5 via line 16, where it is cooled on its own and then to heat exchanger E4 as already described again via line section 17.

명확성을 위해, 다수의 팽창 장치들은 도면에서 도시되지 아니하였다; 이 팽창 장치들에 각각의 경우에 라인 섹션(17 및 11)으로부터의 냉각된 부분적인 수소 스트림이 공급되고, 완료된 냉각 팽창 이후 팽창 장치(12)의 상류에 위치한 도시된 냉각 회로(13)로 다시 공급된다(E4 이전 및/또는 E4 이후).For clarity, many expansion devices are not shown in the figures; These expansion devices are in each case supplied with a cooled partial hydrogen stream from the line sections 17 and 11 and back to the shown cooling circuit 13 located upstream of the expansion device 12 after the completed cooling expansion. Supplied (before E4 and / or after E4).

열교환기(E2)에 의해 액화되는 천연 가스 스트림을 예비 냉각시키는데 이용되는 이전에 언급된 질소 냉각 회로는 라인 영역들(20, 21, 23, 24) 뿐만 아니라 추가적인 열교환기(E3), 팽창 장치(25), 그리고 바람직하게 다중-스테이지 압축기 유닛(22)을 갖는다.The previously mentioned nitrogen cooling circuit used to precool the natural gas stream liquefied by heat exchanger (E2) is provided with additional heat exchanger (E3), expansion device (as well as line regions 20, 21, 23, 24). 25, and preferably a multi-stage compressor unit 22.

팽창 장치(25)에서 팽창되고 프로세스에서 냉각 효과를 갖는 질소 스트림은 라인(20)을 통해 이전에 언급된 열교환기(E2)로 공급되고 거기서 냉각되고 증발되는 수소 스트림에 대해 가열된다. 증발된 질소 스트림은 이후 라인(21)을 통해 압축기 유닛(22)으로 공급되고 거기서 원하는 회로 압력으로 압축된다. 압축된 질소 스트림은 라인(23)을 통해 열교환기(E3)로 공급되고 거기서 라인(B)을 통해 열교환기(E3)로 공급되는 추가적인 LNG 스트림에 대해 냉각된다. 냉각된 질소 스트림은 이후 라인(24)을 통해 이전에 언급된 팽창 장치(25)로 공급된다.The nitrogen stream which is expanded in the expansion device 25 and which has a cooling effect in the process is fed to the heat exchanger E2 mentioned previously via line 20 and heated to the hydrogen stream which is cooled and evaporated there. The evaporated nitrogen stream is then fed to compressor unit 22 via line 21 and compressed there to the desired circuit pressure. The compressed nitrogen stream is fed to heat exchanger E3 via line 23 where it is cooled to an additional LNG stream which is fed to heat exchanger E3 via line B. The cooled nitrogen stream is then fed via line 24 to the previously mentioned expansion device 25.

본 발명에 따르면, 수소 액화 프로세스 분위기에서 이용 가능한 LNG는, 액화되는 수소 스트림을 예비 냉각시키는데 이용되고(열교환기(E1)), 질소 냉각 회로에 서 압축된 질소를 냉각시키는데 이용되며(열교환기(E3)), 개방 수소 냉각 회로에서 순환하는 압축된 수소 스트림을 냉각시키는데 이용된다(열교환기(E6)).According to the invention, the LNG available in the hydrogen liquefaction process atmosphere is used to precool the liquefied hydrogen stream (heat exchanger (E1)) and to cool the compressed nitrogen in a nitrogen cooling circuit (heat exchanger ( E3)), which is used to cool the compressed hydrogen stream circulating in the open hydrogen cooling circuit (heat exchanger E6).

명확성을 위해, 원하거나 또는 가능하게 요구되는 수소의 오르소-파라 변환에 이용되는 촉매 및/또는 촉매 장착은 도면에서 도시되지 아니하였다. 일반적으로 제 1 오르소-파라 변환은 정화 장치(4)의 하류에서 제공될 것이다. 이 정화 장치(4)에서, 약 25%로부터 약 43%로의 파라-수소의 함유량의 증가가 일어날 수 있다. 이후의 오르소-파라 변환은 바람직하게 열교환기(E4)의 통로에 배열된 촉매에 의해 일어난다. 바람직하게, 라인(9)을 통해 회수된 액체 수소 생성물 스트림은 적어도 99% 파라-수소로 이루어져야 한다.For clarity, the catalysts and / or catalyst mountings used for the ortho-para conversion of hydrogen, which are desired or possibly desired, are not shown in the figures. Generally the first ortho-para conversion will be provided downstream of the purification device 4. In this purifying device 4, an increase in the content of para-hydrogen from about 25% to about 43% may occur. Subsequent ortho-para conversion is preferably effected by a catalyst arranged in the passage of the heat exchanger E4. Preferably, the liquid hydrogen product stream recovered via line 9 should consist of at least 99% para-hydrogen.

Claims (2)

수소를 액화시키기 위한 방법으로서,As a method for liquefying hydrogen, a) 가압된 LNG 스트림에 대한 간접적인 열교환에 의해 140 내지 130 K의 온도로 수소 스트림을 예비 냉각하는 단계;a) precooling the hydrogen stream to a temperature of 140 to 130 K by indirect heat exchange with the pressurized LNG stream; b) 냉각제에 대한 간접적 열교환에 의해 85 내지 75K의 온도로 상기 수소 스트림을 예비 냉각하는 단계; b) precooling said hydrogen stream to a temperature of 85 to 75K by indirect heat exchange with a coolant; c) 상기 냉각제의 예비 냉각이 가압된 LNG 스트림에 대해 일어나는 단계; c) precooling of said coolant occurs with a pressurized LNG stream; d) 상기 예비 냉각된 수소 스트림의 냉각 및 적어도 부분적인 액화가 폐쇄 냉각 회로(closed cooling circuit)로 순환되는 추가적인 수소 스트림에 대한 간접적 열교환에 의해 일어나는 단계; 및d) cooling and at least partial liquefaction of said pre-cooled hydrogen stream occurs by indirect heat exchange for an additional hydrogen stream circulated to a closed cooling circuit; And e) 폐쇄 냉각 회로로 순환되는 상기 응축된 수소 스트림의 예비 냉각이 가압된 LNG 스트림에 대해 일어나는 단계를 포함하는,e) preliminary cooling of said condensed hydrogen stream circulated to a closed cooling circuit occurs for a pressurized LNG stream, 수소를 액화시키기 위한 방법.Method for liquefying hydrogen. 제 1 항에 있어서,The method of claim 1, 상기 수소 스트림을 예비 냉각 시키기 위한 냉각제로서 질소가 이용되는 것을 특징으로 하는,Characterized in that nitrogen is used as a coolant for precooling the hydrogen stream, 수소를 액화시키기 위한 방법.Method for liquefying hydrogen.
KR1020097000481A 2006-06-12 2007-06-01 Method for liquefying hydrogen Withdrawn KR20090016515A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006027199.8 2006-06-12
DE102006027199A DE102006027199A1 (en) 2006-06-12 2006-06-12 Process for liquefying hydrogen

Publications (1)

Publication Number Publication Date
KR20090016515A true KR20090016515A (en) 2009-02-13

Family

ID=38663834

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097000481A Withdrawn KR20090016515A (en) 2006-06-12 2007-06-01 Method for liquefying hydrogen

Country Status (9)

Country Link
US (1) US20100083695A1 (en)
EP (1) EP2027423A2 (en)
JP (1) JP2009540259A (en)
KR (1) KR20090016515A (en)
CN (1) CN101466990A (en)
CA (1) CA2655037A1 (en)
DE (1) DE102006027199A1 (en)
RU (1) RU2009100154A (en)
WO (1) WO2007144078A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458098B1 (en) * 2013-06-26 2014-11-05 한국과학기술연구원 A pre-cooler for hydrogen liquefying apparatus
KR20210048024A (en) 2019-10-22 2021-05-03 고등기술연구원연구조합 System for cold heat transfer and hydrogen liquefaction using cold heat circulation of liguified hydrogen
KR20210068698A (en) * 2019-12-02 2021-06-10 한국기계연구원 Hydrogen liquefying apparatus and hydrogen liquefying process
KR102373686B1 (en) 2020-12-23 2022-03-15 주식회사 헥사 Pre-cooling module of hydrogen and hydrogen liquefier containing thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080919B (en) * 2011-01-18 2013-08-07 四川亚联高科技股份有限公司 Hydrogen liquefaction process
JP5783945B2 (en) * 2012-03-30 2015-09-24 大陽日酸株式会社 Liquefaction device and starting method thereof
GB2512360B (en) 2013-03-27 2015-08-05 Highview Entpr Ltd Method and apparatus in a cryogenic liquefaction process
EP3162871A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
EP3163236A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
EP3163235A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Novel cascade process for cooling and liquefying hydrogen in large-scale
WO2017154044A1 (en) * 2016-03-10 2017-09-14 日揮株式会社 Novel production equipment and production method of liquefied hydrogen and liquefied natural gas
US10634425B2 (en) * 2016-08-05 2020-04-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integration of industrial gas site with liquid hydrogen production
CN106352656B (en) * 2016-08-23 2018-10-09 杭州福斯达深冷装备股份有限公司 It is a kind of with the devices and methods therefor of liquid nitrogen washing ammonia synthesis gas coproduction LNG
KR20200109054A (en) * 2019-03-12 2020-09-22 주식회사 한국초저온 Apparatus for hydrogen liquefaction using cold energy of liquid natural gas
US20210131725A1 (en) * 2019-10-31 2021-05-06 Hylium Industries, Inc. Hydrogen liquefaction system
KR102470782B1 (en) * 2020-08-19 2022-11-28 고등기술연구원연구조합 Hydrogen Liquefaction System and Method
CN112557577A (en) * 2020-10-22 2021-03-26 合肥综合性国家科学中心能源研究院(安徽省能源实验室) System for testing dynamic performance of catalytic conversion of para-hydrogen
FR3123422B1 (en) * 2021-05-31 2024-01-19 Engie DEVICE AND METHOD FOR COOLING A FLOW OF A TARGET FLUID TO A TEMPERATURE LESS OR EQUAL TO 90 K
WO2022261224A1 (en) 2021-06-08 2022-12-15 Chart Energy & Chemicals, Inc. Hydrogen liquefaction system and method
CN113983352B (en) * 2021-11-12 2025-05-06 重庆耐德能源装备股份有限公司 Hydrogen cooling system for combined hydrogenation and liquefied natural gas refueling stations
FR3132566B1 (en) 2022-02-04 2024-03-08 Air Liquide Method and apparatus for cooling carbon dioxide and hydrogen
US20230249119A1 (en) * 2022-02-08 2023-08-10 Air Products And Chemicals, Inc. Method for producing high purity hydrogen
CN114909871B (en) 2022-04-22 2023-05-09 湖南大学 A method and device for preparing liquid hydrogen by offshore off-grid superconducting wind power
CN117168087A (en) * 2022-05-25 2023-12-05 上海司氢科技有限公司 Modular hydrogen liquefaction system
FR3148081B1 (en) * 2023-04-19 2025-06-06 Engie DEVICE AND METHOD FOR PRE-COOLING A TARGET FLUID TO BE LIQUEFYING
FR3149080B3 (en) 2023-05-23 2025-04-25 Air Liquide Method and apparatus for cooling a flow of gaseous hydrogen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE573733A (en) * 1957-12-11 1900-01-01
US3398545A (en) * 1965-03-19 1968-08-27 Conch Int Methane Ltd Hydrogen recovery from a refinery tail gas employing two stage scrubbing
US3347055A (en) * 1965-03-26 1967-10-17 Air Reduction Method for recuperating refrigeration
US4090361A (en) * 1976-03-15 1978-05-23 Terry Lynn E Power cycles based upon cyclical hydriding and dehydriding of a material
GB2142423B (en) * 1983-03-10 1986-08-06 Smith Dr Eric Murray Production of liquid hydrogen
JPS61140777A (en) * 1984-12-11 1986-06-27 株式会社神戸製鋼所 Manufacture of liquid h2 and gas natural gas
JPH0448184A (en) * 1990-06-13 1992-02-18 Tokyo Gas Co Ltd Method for producing liquid hydrogen
FR2723183B1 (en) * 1994-07-29 1997-01-10 Grenier Maurice HYDROGEN LIQUEFACTION PROCESS AND PLANT
JP3647028B2 (en) * 2001-02-19 2005-05-11 日本エア・リキード株式会社 Liquid hydrogen production method and liquid hydrogen production equipment
JP4429552B2 (en) * 2001-07-16 2010-03-10 関西電力株式会社 Liquid hydrogen production system
JP2004210597A (en) * 2003-01-06 2004-07-29 Toshiba Corp Waste heat utilizing hydrogen / oxygen system and method for producing liquid hydrogen
JP4217656B2 (en) * 2004-01-27 2009-02-04 関西電力株式会社 Hydrogen liquefier and liquid hydrogen production system
WO2005080892A1 (en) * 2004-02-23 2005-09-01 Shell Internationale Research Maatschappij B.V. Liquefying hydrogen
GB0406615D0 (en) * 2004-03-24 2004-04-28 Air Prod & Chem Process and apparatus for liquefying hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458098B1 (en) * 2013-06-26 2014-11-05 한국과학기술연구원 A pre-cooler for hydrogen liquefying apparatus
KR20210048024A (en) 2019-10-22 2021-05-03 고등기술연구원연구조합 System for cold heat transfer and hydrogen liquefaction using cold heat circulation of liguified hydrogen
KR20210068698A (en) * 2019-12-02 2021-06-10 한국기계연구원 Hydrogen liquefying apparatus and hydrogen liquefying process
KR102373686B1 (en) 2020-12-23 2022-03-15 주식회사 헥사 Pre-cooling module of hydrogen and hydrogen liquefier containing thereof

Also Published As

Publication number Publication date
JP2009540259A (en) 2009-11-19
RU2009100154A (en) 2010-07-20
EP2027423A2 (en) 2009-02-25
CN101466990A (en) 2009-06-24
WO2007144078A3 (en) 2008-01-17
WO2007144078A2 (en) 2007-12-21
DE102006027199A1 (en) 2007-12-13
US20100083695A1 (en) 2010-04-08
CA2655037A1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
KR20090016515A (en) Method for liquefying hydrogen
CN112361712B (en) Hydrogen liquefying equipment adopting helium refrigerating circulation system
JP5739388B2 (en) Method and apparatus for liquefying hydrogen
JP6772267B2 (en) Methods and systems for separating nitrogen from liquefied natural gas using liquefied nitrogen
CN112361711B (en) Hydrogen liquefying equipment provided with three turbine expander units connected in series
CN108759301B (en) Hydrogen liquefaction process
CN112361713B (en) Hydrogen liquefying equipment provided with parallel turbine expander units
CN102080919B (en) Hydrogen liquefaction process
JP2019505755A (en) Inflator-based LNG production process reinforced with liquid nitrogen
KR101739167B1 (en) Direct Densification Method and System Utilizing Waste Heat for On-Board Recovery and Storage of CO2 From Motor Vehicle Internal Combustion Engine Exhaust Gases
CN112539601B (en) Hydrogen liquefaction device with precooling throttling
JP3647028B2 (en) Liquid hydrogen production method and liquid hydrogen production equipment
CN114087845B (en) Liquid hydrogen production device, system and method based on parahydrogen circulation
JP4619575B2 (en) Hydrogen gas production method and hydrogen gas production facility
CN210463761U (en) Throttling hydrogen liquefying device with precooling function
CA2499578A1 (en) Modular lng process
CN214095167U (en) Hydrogen liquefaction equipment adopting helium refrigeration cycle system
CN114659338B (en) Refrigeration system and method for separating heavy hydrocarbon and methane in natural gas BOG
JP2003028567A (en) Method and system for manufacturing liquid hydrogen
CN109357475B (en) A system for producing liquid oxygen and liquid nitrogen by using LNG cold energy in steps
CN113983758A (en) Precooled multistage BOG expanded offshore LNG flash evaporation gas reliquefaction device and process
US6598423B1 (en) Sacrificial cryogen gas liquefaction system
CN103717292B (en) For the method and apparatus cooled down and compress wet carbon dioxide enriched gas
US20250060155A1 (en) Apparatus and Process for Pre-Liquefaction Fluid Processing for Improved Liquefaction Operations
TWI605015B (en) Purification of hydrogen gas filtration device

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20090109

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid