[go: up one dir, main page]

KR20100101288A - Specific protein domain for the detection of salmonella contamination and its antibody manufacture method and also their utilization - Google Patents

Specific protein domain for the detection of salmonella contamination and its antibody manufacture method and also their utilization Download PDF

Info

Publication number
KR20100101288A
KR20100101288A KR1020090019695A KR20090019695A KR20100101288A KR 20100101288 A KR20100101288 A KR 20100101288A KR 1020090019695 A KR1020090019695 A KR 1020090019695A KR 20090019695 A KR20090019695 A KR 20090019695A KR 20100101288 A KR20100101288 A KR 20100101288A
Authority
KR
South Korea
Prior art keywords
salmonella
hila
flic
antibody
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020090019695A
Other languages
Korean (ko)
Inventor
이기성
김영호
이광수
길민석
Original Assignee
이기성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이기성 filed Critical 이기성
Priority to KR1020090019695A priority Critical patent/KR20100101288A/en
Publication of KR20100101288A publication Critical patent/KR20100101288A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1228Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K16/1235Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia from Salmonella (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56916Enterobacteria, e.g. shigella, salmonella, klebsiella, serratia

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 최근 국내에서는 수입식품이 개방화되고, 공장, 학교 등 단체 급식이 증가함에 따라 식품 위해 미생물에 의한 식중독 사고가 빈번하게 일어나고 있다. 살모넬라(Salmonella)는 각종 동물에 살모넬라증(salmonellosis)을 일으키며 사람에게는 오염된 음식물에 의한 감염형 식중독을 일으킨다. 동물과 사람에게 병원성을 갖고 있어, 장티푸스(enteric fever), 위장염(gastroenteritis), 패혈증(septicemia) 등의 질병을 일으키는 것으로 알려져 있다. Salmonella을 검출하기 위한 특이 단백질로는 Invasion(HilA)와 Flagellin(FliC)를 선정하였고, 항체제작을 위해 Salmonella의 HilA(65kda)와 FliC(55kda)크기의 단백질유전자를 클로닝한 후, 과대발현시키어 각각의 단백질을 분리, 정제하였다. 정제된 HilA, FliC 단백질을 이용하여 Salmonella를 탐지할 수 있는 항체를 제작하였다. 제작된 항체를 골드칩에 고정화시켜 비표지 방식인 SPR방식을 통해 Salmonella를 검출하였다. 본 연구에서 수행한 Salmonella의 특이 항체인 Salmonella HilA rabbit polyclonal antibody, Salmonella FliC rabbit polyclonal antibody는 다양한 바이오센서에 적용을 할 수 있고 병원성 미생물의 존재를 신속하게 검출할 수 있을 것이다.According to the present invention, food poisoning accidents caused by food hazard microorganisms are frequently occurring as imported foods are opened in Korea, and group meals such as factories and schools increase. Salmonella causes salmonellosis in various animals and infectious food poisoning from contaminated food in humans. Due to its pathogenicity in animals and humans, it is known to cause diseases such as enteric fever, gastroenteritis and septicemia. Invasion (HilA) and Flagellin (FliC) were selected as specific proteins to detect Salmonella, and overexpressed after cloning Salmonella's HilA (65kda) and FliC (55kda) -sized protein genes for antibody production. Protein was isolated and purified. Antibodies capable of detecting Salmonella were prepared using purified HilA and FliC proteins. The produced antibody was immobilized on a gold chip to detect Salmonella through the SPR method, which is a non-labeling method. Salmonella HilA rabbit polyclonal antibody and Salmonella FliC rabbit polyclonal antibody in this study can be applied to various biosensors and can detect the presence of pathogenic microorganisms quickly.

Description

살모넬라균의 오염 탐지용 특이단백질 부위 및 그에 대한 항체제조법과 활용. {Specific Protein Domain for the Detection of Salmonella Contamination and its Antibody Manufacture Method and also their utilization}Specific Protein Sites for Salmonella Contamination Detection and Antibody Preparation and Application thereof. {Specific Protein Domain for the Detection of Salmonella Contamination and its Antibody Manufacture Method and also their utilization}

본 발명은 식중독, 장관감염으로 인체 병원성을 유발하는 Salmonella속을 검출하기 위해 제작한 항체를 비표지 면역바이오센서칩의 분석·측정 방법인 SPR를 통해 신속한 반응과 높은 특이성을 측정하였고 보다 신속 정확한 Salmonella속 세균 검출능을 확인함으로써 본 발명을 완성하였다.The present invention measured the rapid response and high specificity of the antibody produced to detect Salmonella genus causing human pathogenicity due to food poisoning and intestinal infection through SPR, an analysis and measurement method of an unlabeled immunobio sensor chip, and more quickly and accurately Salmonella The present invention was completed by confirming the ability to detect genus bacteria.

기존 미생물 검출은 선택배지를 이용하여 배양한 후 세균의 성장 및 형태를 관찰하여 병원성 미생물의 감염여부를 판단하는 방법은 보통 pre-enrichment media, selective enrichment media, isolation on selective media를 사용하였고 생물학적 방법과 혈청학적 방법에 의해 추정적인 근거를 확인했다. 그러나 이러한 방법은 분석시간이 오래 걸리기 때문에 식품에서 살모넬라의 존재를 검출하기 위해 병원균에 대한 특이적 검출 방법과 보다 신속한 검출방법을 확립하기 위한 방향으 로 ELISA를 기본으로 하는 항원-항체 반응실험, polynucleotide 또는 oligonucleotide probes를 사용하는 DNA hybridization assays와 PCR(polymerase chain reaction)를 통한 DNA 검출 기법 등 많은 방법들이 개발되었다. 특히 PCR를 기본으로 특정유전자를 검출, 증폭하는 방법은 병원성 세균 탐색에 있어서 높은 특이성을 갖는 것으로 보고되었다. 그러나 PCR을 이용한 방법들도 기존의 검출방법에 비해 높은 검출 특이성을 갖지만 특정부위의 유전자를 증폭하는데 2시간 ~ 4시간이 걸린다. 또한 radio-immunoassay, fluorescence labeled antibody assay와 enzyme-link immunosorbent assays(ELISA) 등과 같은 많은 immunoassay 기술이 개발되었지만, 검출비용이 고가이고 시간이 오래 걸릴 뿐만 아니라, 전처리 과정이 복잡하다(Oh Byung-Keun. 2004 Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosensors and Bioelectronics. 19:1497-1504.)For the detection of existing microorganisms, cultures were selected using a selective medium, followed by observation of bacterial growth and morphology to determine whether the pathogenic microorganisms were infected. Pre-enrichment media, selective enrichment media, and isolation on selective media were used. Presumptive evidence was confirmed by serological methods. However, since these methods take a long time to analyze, polynucleotide-based antigen-antibody reaction experiments for the detection of Salmonella in food and the establishment of a faster and more rapid detection method for pathogens. Many methods have also been developed, including DNA hybridization assays using oligonucleotide probes and DNA detection through polymerase chain reaction (PCR). In particular, methods for detecting and amplifying specific genes based on PCR have been reported to have high specificity in the search for pathogenic bacteria. However, methods using PCR also have higher detection specificity than conventional detection methods, but it takes 2 to 4 hours to amplify a specific region of the gene. In addition, many immunoassay technologies such as radio-immunoassay, fluorescence labeled antibody assay and enzyme-link immunosorbent assays (ELISA) have been developed, but the detection cost is expensive and time-consuming, and the pretreatment process is complicated (Oh Byung-Keun. 2004 Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium.Biosensors and Bioelectronics. 19: 1497-1504.)

한편 Surface plasmon resonance(SPR) 기술은 생체분자간의 상호작용을 측정하는 기술로 잘 알려져 있으며 high specificity과 sensitivity하게 복잡한 생물학적 매체 시료를 짧은 시간에 간단하게 탐색할 수 있는 장점이 있어 Listeria monocytogenes(Paul Leonard. 2004. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosensors and Bioelectronics. 19:1331-1335.), Vibrio cholerae O1(Jyoung Jy-Young. 2006. Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosensors and Bioelectronics. 21:2315-319. ), Salmonella((Oh Byung-Keun. 2004 Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosensors and Bioelectronics. 19:1497-1504.)) 등의 다양한 병원성 세균 검출에 사용되고 있다.Surface plasmon resonance (SPR) technology is well known for measuring the interaction between biomolecules, and has the advantage of being able to easily search samples of biological media with high specificity and sensitivity in a short time. Listeria monocytogenes (Paul Leonard. 2004.A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance.Biosensors and Bioelectronics.19: 1331-1335.), Vibrio cholerae O1 cholerae O1 using surface plasmon resonance.Biosensors and Bioelectronics. 21: 2315-319.), Salmonella It is used to detect a variety of pathogenic bacteria, such as).

Salmonella속 미생물검출은 생물학적 방법, 혈청학적 방법, DNA hybridization assays, PCR 등의 방법은 장시간이 걸린며, 또한 radio-immunoassay, fluorescence labeled antibody assay, enzyme-link immunosorbent assays(ELISA)등은 검출비용의 고가, 오랜 소요시간, 전처리과정의 복잡, 숙련된 인력 필요 등 문제점이 있다. 또한 최신의 방법인 면역바이오센서는 부족한 실태이다.Biological detection of Salmonella genus takes a long time for biological methods, serological methods, DNA hybridization assays, PCR, etc., and radio-immunoassay, fluorescence labeled antibody assay, enzyme-link immunosorbent assays (ELISA), etc. There are problems such as long time required, complexity of the pretreatment process, and the need for skilled personnel. In addition, the state-of-the-art immune biosensor is lacking.

Salmonella에 대한 특이적 반응을 나타내는 항체인 HilA prediction 7 domains(15 mer peptides) 및 이에 대한 항체, FliC prediction 4 domains(15 mer peptides) 및 이에 대한 항체를 제작하였다.HilA prediction 7 domains (15 mer peptides) and antibodies thereto, FliC prediction 4 domains (15 mer peptides) and antibodies thereto were prepared.

본 발명에서 수행한 Salmonella의 특히 항체인 Salmonella HilA rabbit polyclonal antibody, Salmonella FliC rabbit polyclonal antibody는 다양한 바이오센서에 적용을 할 수 있고 병원성 미생물의 존재를 신속하게 검출할 수 있을 것이다.Salmonella HilA rabbit polyclonal antibody, Salmonella FliC rabbit polyclonal antibody, particularly antibodies of Salmonella carried out in the present invention can be applied to various biosensors and will be able to quickly detect the presence of pathogenic microorganisms.

상기 목적을 달성하기 위하여, 본 발명은 사람에 해를 끼치는 Salmonella에 대한 특이적 반응을 나타내는 항체를 제작하여 병원성 미생물의 존재를 신속하게 검출하는 것을 제공한다.In order to achieve the above object, the present invention provides for the rapid detection of the presence of pathogenic microorganisms by making an antibody showing a specific response to Salmonella harming humans.

Salmonella의 Invasion(HilA)와 Flagellin(FliC) 단백질의 peptide 서열에 대한 domain search를 위하여 특이 항원성이 높은 부위의 peptide를 선택하였다. 선택된 peptide region의 hydrophobicity와 antigenecity를 검색하였다. 또한, 본 발명은 Peptide 항원이 항원가가 올라가기 힘들기 때문에 항체가를 상승시키기 위해 carrier 단백질을 결합시켜 면역하였다. carrier로 KLH(Keyhole Limpet Haemocyanin)을 사용하였으며 BSA를 이용하여 결합시켰다. carrier와 결합시킨 peptide를 이용하여 emulsion을 제조하여 면역시켰다. 토끼 1마리당 emulsion 500㎍/0.5㎖씩 피하주사를 시행하였으며, 항원면역반응 측정을 위한 1차, 2차 3차 boosting은 각각 4주, 6주, 8주째에 동일한 항원을 IFA(Incomplete Freund’s adjuvant, Difco, Rockford)와 동일하게 혼합하여 토끼 1마리 당 200㎍/0.5㎖씩 피하주사 하였다. 각 boosting 단계마다 소량의 피를 채취하여 serum을 얻었고, 항체 생성여부 및 titer를 측정하였다. 3차 boosting 1주일 후 전채혈을 하였다. 소량의 피를 채취할 때는 꼬리 끝을 자른 후 피를 채취하며, 전채혈 시에는 심장채혈을 하였다. Peptides with high specific antigenicity were selected for domain search for peptide sequences of Salmonella's Invasion (HilA) and Flagellin (FliC) proteins. The hydrophobicity and antigenecity of selected peptide regions were examined. In addition, the present invention was immunized by binding the carrier protein to increase the antibody titer because Peptide antigen is difficult to rise antigen titer. KLH (Keyhole Limpet Haemocyanin) was used as a carrier and bound using BSA. Emulsions were prepared using peptides conjugated to carriers and immunized. Subcutaneous injection was performed with 500 µg / 0.5 ml of emulsion per rabbit, and the primary and secondary tertiary boosting for the measurement of antigenic immunity were the same antigens at 4, 6 and 8 weeks, respectively, using IFA (Incomplete Freund's adjuvant, Difco, Rockford) was mixed in the same manner and injected by subcutaneous 200μg / 0.5ml per rabbit. A small amount of blood was collected from each boosting step to obtain serum, and antibody production and titer were measured. One week after the third boosting, blood was collected. When a small amount of blood is collected, the tail tip is cut and the blood is collected.

항원의 주사로 유도된 면역반응은 토끼의 혈청에 존재하는 항체의 정도를 ELISA를 수행하여 결정하였다. 항체정제는 항원을 affinity-gel에 부착하여 column을 제작하여 항체를 분리하는 방법과 protein A를 이용한 column 방법을 통하여 정제하였고, 최종적으로 dialysis을 하였다. 그 결과 HilA는 15㎖(1㎎/㎖)를 FliC는 15㎖(10㎎/㎖)를 수획하였다. 제조된 항체는 50% glycerol이 포함된 PBS buffer에 녹여 -20℃에 보관하였고, Salmonella에 특이적으로 반응하는 Ab로 사용하였다.The immune response induced by injection of antigen was determined by ELISA to determine the degree of antibody present in rabbit serum. Antibody purification was performed by attaching the antigen to affinity-gel to prepare a column, separating the antibody, and using a column method using protein A. Finally, dialysis was performed. As a result, 15 ml (1 mg / ml) of HilA and 15 ml (10 mg / ml) of FliC were harvested. The prepared antibody was dissolved in PBS buffer containing 50% glycerol and stored at -20 ° C, and used as Ab that specifically reacts with Salmonella.

이하 실시예에 의하여 본 발명을 상세히 설명한다. 단, 하기 실시예들은 본 발명을 예시하는 것으로, 본 발명의 내용이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples. However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.

< 실시예 1> PCR에 의한 유전자 증폭 <Example 1> gene amplification by PCR

Salmonella 균주에서 추출한 genomic DNA를 template DNA로 사용하였고, PCR 증폭은 Gene CycleTM(BIO-RAD Co.)을 사용하여 수행하였다. PCR 반응용액은 제작된 primer(10pmol)를 각각 3㎕씩 첨가, template DNA(10ng Genomic DNA) 5㎕, 멸균증류수 39㎕를 PCR Mixer (Bioneer Co. Korea)에 첨가하여 혼합한 후 mineral oil을 첨가하였다. PCR 반응조건은 94℃ 4min간 denaturation을 1cycle, 94℃ 1min동안 denaturation, 60℃ 1min 간 annealing 72℃ 1min 30sec간 elongation과정을 30cycle 시행한 후, 72℃에서 10min 동안 final extension을 하였다. 증폭된 DNA는 0.8% agarose gel로 전기영동하여 확인하였다. 도1(HilA), 도2(FilC)에 그 결과를 나타내었다.Genomic DNA extracted from Salmonella strain was used as template DNA, and PCR amplification was performed using Gene Cycle TM (BIO-RAD Co.). For PCR reaction solution, add 3µl of each prepared primer (10pmol), add 5µl of template DNA (10ng Genomic DNA), 39µl of sterile distilled water to PCR Mixer (Bioneer Co. Korea), and add mineral oil. It was. PCR reaction conditions were 1 cycle of denaturation at 94 ° C for 4 min, 1 cycle of denaturation at 94 ° C for 1 min, 30 cycles of annealing at 60 ° C for 1 min, 72 ° C for 1min, 30sec, and final extension at 72 ° C for 10min. Amplified DNA was confirmed by electrophoresis with 0.8% agarose gel. The results are shown in FIG. 1 (HilA) and FIG. 2 (FilC).

1-1 1-1 primerprimer

Flic-Up : (BamHⅠ/ NdeⅠ) : 5'-gatcggatcccatatggcacaatgcattaatacaaac -3'Flic-Up: (BamHⅠ / NdeⅠ): 5'-gatcggatcccatatggcacaatgcattaatacaaac -3 '

Flic-down : (XhoⅠ/ SalⅠ) : 5'-gatcctcgaggtcgacacgcagtaaagagaggacgttttg-3'Flic-down: (XhoⅠ / SalⅠ): 5'-gatcctcgaggtcgacacgcagtaaagagaggacgttttg-3 '

HilA-Up : (EcoRⅠ/ NdeⅠ) : 5'-gatcgaattccatatgccacattttaatcctgttcct-3'HilA-Up: (EcoRⅠ / NdeⅠ): 5'-gatcgaattccatatgccacattttaatcctgttcct-3 '

HilA-down : (XhoⅠ/ SalⅠ) : 5'-gatcctcgaggtcgacccgtaatttaatcaagcggggatc-3'HilA-down: (XhoⅠ / SalⅠ): 5'-gatcctcgaggtcgacccgtaatttaatcaagcggggatc-3 '

<< 실시예Example 2> 항원 단백질의  2> of antigenic protein 클로닝Cloning 및 과대발현  And overexpression

Salmonella의 genomic DNA를 추출하여 PCR 기법으로 증폭하여, 약 hilA(1.6kb), fliC(1.5kb), 크기의 유전자 조각을 획득하였다. 획득되어진 유전자 조각은 pBliscriptSK(+) 클로닝하여, E. coli인 DH5α 숙주에 형질 전환시켰다. 형질 전환된 host cell를 배양하여 plasmid를 추출하여 overexpression vector인 pET22b(+)에 재 클로닝하였다. hilA와 fliC 유전자가 클로닝되었음을 확인하였고, BL21(DE3)Lys competent cell에 형질전환시켜 숙주세포를 IPTG를 첨가하여 과발현을 유도 배양후, 항원단백질을 6시간 과대발현시켰다. 그 결과 HilA 단백질은 65kDa, FliC 단백질은 55kDa크기의 단백질이 과대발현되었음을 확인하였다. 도3(HilA), 도4(FliC)에 그 결과를 나타내었다.Genomic DNA of Salmonella was extracted and amplified by PCR, and gene fragments of about hilA (1.6kb), fliC (1.5kb) and size were obtained. The obtained gene fragment was cloned into pBliscriptSK (+) and transformed into DH5α host, which is E. coli. The transformed host cell was cultured and the plasmid was extracted and recloned into overexpression vector pET22b (+). It was confirmed that the hilA and fliC genes were cloned, and transformed into BL21 (DE3) Lys competent cells to induce overexpression by adding IPTG to the host cell, and overexpressed the antigen protein for 6 hours. As a result, the HilA protein was overexpressed at 65kDa and the FliC protein at 55kDa. The results are shown in FIG. 3 (HilA) and FIG. 4 (FliC).

2-1 2-1 NucleotideNucleotide sequencesequence andand aminoamino acidacid sequencesequence ofof thethe SalmonellaSalmonella ..

hilAhilA genegene . .

Figure 112009014110673-PAT00002
Figure 112009014110673-PAT00002

Figure 112009014110673-PAT00003
Figure 112009014110673-PAT00003

2-2 2-2 NucleotideNucleotide sequencesequence andand aminoamino acidacid sequencesequence ofof thethe SalmonellaSalmonella ..

flicflic genegene . .

Figure 112009014110673-PAT00004
Figure 112009014110673-PAT00004

Figure 112009014110673-PAT00005
Figure 112009014110673-PAT00005

<< 실시예Example 3>  3> HisHis -- TagTag 을 이용한 Using HilAHilA , , FliCFliC 의 분리정제Separation and purification of

pET expression system을 이용하여 Salmonell sp. 단백질인 HilA와 FliC를 과발현한 후, Ni-NTA spin kit(Qiagen Co.)를 사용하여 분리 정제하였다. SDS-PAGE를 시행하여 65kDa의 HilA 단백질과 55kDa FliC 단백질을 분리정제하였다. 도5(HilA), 도6(FliC)에 그 결과를 나타내었다.Using the pET expression system, Salmonell sp. After overexpressing the proteins HilA and FliC, they were separated and purified using the Ni-NTA spin kit (Qiagen Co.). SDS-PAGE was performed to isolate and purify 65 kDa HilA protein and 55 kDa FliC protein. The results are shown in FIG. 5 (HilA) and FIG. 6 (FliC).

<< 실시예Example 4> 4> peptidepeptide 의 제작 Made of

Salmonella속을 검출하기 위한 특이 단백질로 결정한 HilA와 FliC의 peptide 서열을 분석하여, 항체형성에 가장 적합한 peptide domain을 찾아 peptide 합성을 하였다. The peptide sequences of HilA and FliC determined as specific proteins for the genus Salmonella were analyzed to find the most suitable peptide domain for antibody formation.

Figure 112009014110673-PAT00006
Figure 112009014110673-PAT00006

Salmonella의 HilA, FliC의 아미노산 서열에 대한 domain search에서는 유사성이 높은 특정 domain 부위로 peptide antibody를 만들 경우, 다른 비특이적 단백질을 검출할 수 있으므로 일반적인 domain 부위는 제외하였다. 또한 glycosylation site와 myristoylation site를 포함하는 region은 합성된 peptide와 expression된 단백질이 동일하지 않으므로 합성 peptide로 제작한 antibody로 detection 될 확률이 매우 낮아 제외하였다. 또한 Hydrophobicity가 낮고 antigenicity가 높은 지역이 일반적으로 specific antibody의 제작 가능성이 높으며, 3차 구조에서 외부로 노출되어 있을 가능성이 높은 지역을 선정하기 위해 HilA whole protein과 FliC whole protein의 hydrophobicity와 antigenicity를 확인한 결과, HilA는 prediction 7부위가 가장 우수하였고, FliC는 4 prediction 부위가 우수하였다. Prediction한 peptide region이 다른 protein에 대한 homology search로 분석한 결과, FliC prediction 4번과 HilA prediction 7번에서 peptide antibody 제작에 좋은 위치이고, antigenicity와 hydrophobicity가 높은 위치이며, 다른 species에서 homology가 낮기 때문에 cross reactivity는 없을 것으로 판단됨에 따라 HilA은 prediction 7번으로 FliC은 prediction 4번으로 결정하여 펩타이드로 합성하였다. 도7(HilA), 도8(FliC)에 그 결과를 나타내었다.In the domain search for the amino acid sequences of Salmonella's HilA and FliC, when the peptide antibody was made with a specific domain region with high similarity, other nonspecific proteins could be detected, so the general domain region was excluded. In addition, the region containing the glycosylation site and myristoylation site was excluded because the synthesized peptide and the expressed protein were not the same, so the probability of detection by the antibody made with the synthetic peptide was very low. Areas with low hydrophobicity and high antigenicity are generally more likely to produce specific antibodies, and the hydrophobicity and antigenicity of the HilA whole protein and FliC whole protein were selected to select the areas with high potential for external exposure in the tertiary structure. , HilA had the best prediction 7 site and FliC had the best 4 prediction site. Prediction of the peptide region by homology search for other proteins revealed that FliC prediction 4 and HilA prediction 7 were good positions for peptide antibody production, high antigenicity and hydrophobicity, and low homology in other species. As it was determined that there was no reactivity, HilA determined prediction 7 and FliC determined prediction 4 to synthesize the peptide. The results are shown in FIG. 7 (HilA) and FIG. 8 (FliC).

A. HilAA. HilA

Figure 112009014110673-PAT00007
Figure 112009014110673-PAT00007

B. FliC B. FliC

Figure 112009014110673-PAT00008
Figure 112009014110673-PAT00008

<< 실시예Example 5> 항체의 고정 5> Immobilization of Antibodies

SPR sensor chip CM5는 유리로 이루어진 판에 50nm의 두께로 금박이 입혀져 있으며 금박부분에는 dextran이 도포되어 있다. 실험재료 중 하나는 dextran표면에 고정되어 사용된다. Dextran면은 미세 유로 장치의 flow-cell부분과 접촉하여 유로 장치를 흘러가는 시료와 반응하게 된다. 센서칩 표면의 기종에 따라 둘 또는 네 개의 독립적인 유로 장치의 셀과 접촉하며, 필요에 따라 각 셀 별로 서로 다른 고정화 리간드를 사용하여 다양한 실험을 할 수 있다. 본 실험에서는 일반적으로 사용되는, 용액과 접촉하는 센서칩 표면에는 carboxyl기가 음성전하를 갖으며, dextran은 glucose의 직선형 중합체로서 생체 물질과의 비특이적인 결합이 거의 없고, 용액 중 생체 물질의 농도가 매우 낮아도 매우 효과적으로 리간드를 고정화 할 수 있는 CM5 chip을 사용하여 실험을 했다. 실험에 앞서 최적의 Ab고정화를 위해 10mM Sodium aetate(pH4.5-5.0)을 가지고 preconcentration하고 EDC/NHS를 injection하여 Sensor chip 표면을 활성화 시켰다. 항체를 10mM sodium acetate(pH5.0)에서 100ug/ml 로 희석하여 1분(5μl/min) 동안 injection 했고. 1M ethanolamine(pH 8.5)으로 미반응 활성기들을 Blocking하고 CM5 chip Ab를 고정화 하였고 고정화 값은 도9(HilA), 도10(FliC)에 나타내었다.SPR sensor chip CM5 is coated with gold leaf on glass plate with 50nm thickness and dextran is applied on the gold leaf part. One of the test materials is used fixed to the dextran surface. The dextran surface is in contact with the flow-cell portion of the microchannel device and reacts with the sample flowing through the channel device. Depending on the type of surface of the sensor chip, it contacts the cells of two or four independent flow path devices, and if necessary, various experiments can be performed using different immobilized ligands for each cell. In this experiment, the carboxyl group has a negative charge on the surface of the sensor chip that is commonly used in contact with the solution. Dextran is a linear polymer of glucose, which has almost no nonspecific binding to the biological material, and has a very high concentration of the biological material in the solution. The experiment was carried out using a CM5 chip that can immobilize ligand very effectively even if low. Before the experiment, the sensor chip surface was activated by preconcentration with 10mM sodium aetate (pH4.5-5.0) and injection of EDC / NHS for optimal Ab fixation. The antibody was diluted to 100 ug / ml in 10 mM sodium acetate (pH 5.0) and injected for 1 minute (5 μl / min). Blocking unreacted activators with 1M ethanolamine (pH 8.5) and immobilization of CM5 chip Ab, the immobilization values are shown in Figure 9 (HilA), Figure 10 (FliC).

<< 실시예Example 6>  6> SalmonellaSalmonella cellcell  and HilAHilA , , FliCFliC AgAg 의 농도별 굴절률 변화Refractive Index Variation by Concentration of

Cell과 Ag농도를 PBS beffer에 희석해서 sensor chip surface에 15분(1μl/min)동안 interaction을 했다. 그 결과를 도11(HilA), 도12(FliC)에 나타내었다. 세포 농도의 변화 및 Ag(HilA, FliC) 농도의 변화에 따라 매우 비례적으로 바이오 센서칩이 작용하였다.Cell and Ag concentrations were diluted in PBS beffer to interact with the sensor chip surface for 15 minutes (1 μl / min). The results are shown in FIG. 11 (HilA) and FIG. 12 (FliC). The biosensor chip acted very proportionally with the change of cell concentration and the change of Ag (HilA, FliC) concentration.

<< 실시예Example 7> AFM( 7> AFM ( AtomicAtomic forceforce microscopymicroscopy analysisanalysis ))

Antibody와 cell의 binding의 surface topography를 연구하기 위해 atomic force microscopy를 사용하였다. 그 결과를 도13(HilA의 2차원 영상),도14(HilA의 3차원 영상), 도15(FliC의 2차원 영상)에 도16(FliC의 3차원 영상)에 나타내었다. 세균세포가 바이오센서칩에 반응·결합된 상태가 AFM의 2차원·3차원 영상에 잘 일치되었다.Atomic force microscopy was used to study surface topography of antibody and cell binding. The results are shown in Fig. 13 (two-dimensional image of Hilia), Fig. 14 (three-dimensional image of Hilia), and Fig. 15 (three-dimensional image of FliC). Bacterial cells responded and bound to biosensor chips well in accordance with two-dimensional and three-dimensional images of AFM.

도 1은 본 발명의 Salmonella 특이 HliA 유전자를 증폭하는 과정을 도식화하여 나타낸 것이고, 1 is a diagram showing the process of amplifying the Salmonella specific HliA gene of the present invention,

2은 본 발명의 Salmonella 특이 FilC 유전자를 증폭하는 과정을 도식화하여 나타낸 것이고, Figure 2 shows a schematic diagram of the process of amplifying the Salmonella specific FilC gene of the present invention,

3는 본 발명의 Salmonella를 검출하기 위한 HilA protein을 과발현시키는 과정을 도식화하여 나타낸 것이고, Figure 3 is a schematic diagram showing the process of overexpressing the HilA protein for detecting Salmonella of the present invention,

도 4는 본 발명의 Salmonella를 검출하기 위한 FilC protein을 과발현시키는 과정을 도식화하여 나타낸 것이고, 4 is a schematic diagram showing the process of overexpressing the FilC protein for detecting Salmonella of the present invention,

5은 Salmonella의 항체제작을 위해 HilA 단백질을 순수분리정제하는 과정을 도식화하여 나타낸 것이고, Figure 5 shows the schematic diagram showing the process of pure separation and purification of HilA protein for the production of Salmonella antibody,

도 6은 Salmonella의 항체제작을 위해 FilC 단백질을 순수분리정제하는 과정을 도식화하여 나타낸 것이고, Figure 6 shows the schematic diagram showing the process of pure separation and purification of FilC protein for the production of Salmonella antibody,

7는 Salmonella의 HilA 항체제작을 위한 과정을 도식화하여 나타낸 것이고, Figure 7 Schematic representation of the procedure for producing Salmonella HilA antibody,

8는 Salmonella의 FilC 항체제작을 위한 과정을 도식화하여 나타낸 것이고, Figure 8 Schematic representation of the procedure for Salmonella FilC antibody production,

도 9는 골드칩에 제작한 Salmonella HilA polycolnal Antibody를 고정화시키는 과정을 도식화하여 나타낸 것이고, 9 is a schematic diagram illustrating a process of immobilizing Salmonella HilA polycolnal Antibody prepared on a gold chip,

10는 골드칩에 제작한 Salmonella FilC polycolnal Antibody를 고정화시키는 과정을 도식화하여 나타낸 것이고, 10 will represented by illustrating a process of fixing a Salmonella FilC polycolnal Antibody production in the gold chip,

도 11 고정화된 Salmonella HilA polycolnal Antibody에 Cell과 HilA Ag을 흘려 반응하는 과정을 도식화하여 나타낸 것이고, 11 is Schematic representation of the reaction of flowing cells and HilA Ag to the immobilized Salmonella HilA polycolnal Antibody,

12 고정화된 Salmonella FilC polycolnal Antibody에 Cell과 FilC Ag을 흘려 반응하는 과정을 도식화하여 나타낸 것이고, Figure 12 Schematic representation of the reaction by flowing Cell and FilC Ag to the immobilized Salmonella FilC polycolnal Antibody,

도 13은 Salmonella HilA 항체와 Cell과의 surface topography을 확인하는 AFM 2차원 결과를 도식화하여 나타낸 것이다. FIG. 13 is a schematic of AFM two-dimensional results confirming surface topography of Salmonella HilA antibody and Cell. FIG.

14은 Salmonella HilA 항체와 Cell과의 surface topography을 확인하는 AFM 3차원 결과를 도식화하여 나타낸 것이다. Figure 14 shows the schematic view showing the 3-dimensional AFM results to determine the surface topography of the Salmonella antibody HilA and Cell.

15은 Salmonella FilC 항체와 Cell과의 surface topography을 확인하는 AFM 2차원 결과를 도식화하여 나타낸 것이다. Figure 15 shows the schematic view showing the 2-dimensional AFM results to determine the surface topography of the Salmonella antibody FilC and Cell.

도 16은 Salmonella FilC 항체와 Cell과의 surface topography을 확인하는 AFM 3차원 결과를 도식화하여 나타낸 것이다. FIG. 16 schematically shows AFM three-dimensional results confirming surface topography of Salmonella FilC antibody and Cell. FIG.

Claims (2)

Salmonella HliA의 prediction 7 peptide(15 mer ; KNEDNIWFKRWKQD-C) 항체제작 및 이의 활용Production and Application of Prediction 7 Peptide (15 mer; KNEDNIWFKRWKQD-C) Antibody of Salmonella HliA Salmonella FliC의 prediction 4 peptide(15 mer ; GTDQKIDGDLKFDD-C) 항체제작 및 이의 활용Production and Application of Prediction 4 Peptide (15 mer; GTDQKIDGDLKFDD-C) Antibody of Salmonella FliC
KR1020090019695A 2009-03-09 2009-03-09 Specific protein domain for the detection of salmonella contamination and its antibody manufacture method and also their utilization Ceased KR20100101288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090019695A KR20100101288A (en) 2009-03-09 2009-03-09 Specific protein domain for the detection of salmonella contamination and its antibody manufacture method and also their utilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090019695A KR20100101288A (en) 2009-03-09 2009-03-09 Specific protein domain for the detection of salmonella contamination and its antibody manufacture method and also their utilization

Publications (1)

Publication Number Publication Date
KR20100101288A true KR20100101288A (en) 2010-09-17

Family

ID=43006831

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090019695A Ceased KR20100101288A (en) 2009-03-09 2009-03-09 Specific protein domain for the detection of salmonella contamination and its antibody manufacture method and also their utilization

Country Status (1)

Country Link
KR (1) KR20100101288A (en)

Similar Documents

Publication Publication Date Title
Bergwerff et al. Surface plasmon resonance biosensors for detection of pathogenicmicroorganisms: Strategies to secure food and environmental safety
TWI392735B (en) Hybridoma cell line producing monoclonal antibodies against the foot-and-mouth disease virus, the monoclonal antibodies therefrom, and reagent and elisa kit comprising the same
JP2014221062A (en) Detection of anaplasma platys
CN104650195B (en) EV71 virus VP 1 recombinant antigen and its monoclonal antibody and application
Widiyanti et al. Development of immunochromatography-based methods for detection of leptospiral lipopolysaccharide antigen in urine
TWI586365B (en) Compositions and methods for detection of antibodies specific for anaplasma phagocytophilum (aph) and anaplasma platys (apl)
JP2015071607A (en) Methods and compositions for detection of ehrlichia chaffeensis (vlpt)
KR101678428B1 (en) Method for detection of pneumococcus
EP2405268A1 (en) Method for detecting substance in biological sample
CN111848750B (en) Method and kit for rapidly enriching and detecting 2019-nCoV
Bannantine et al. Monoclonal antibodies bind a SNP-sensitive epitope that is present uniquely in Mycobacterium avium subspecies paratuberculosis
CN103197078B (en) Application of salmonella pullorum secreted protein SpiC
CN108893476A (en) Babesiamicrofti 2D97 antigen protein and its application
CN102533663A (en) Foot-and-mouth disease hybridoma cell strain, monoclonal antibody, detection reagent and kit
BRPI0816437B1 (en) purified polypeptides and methods for detecting ehrlichia chaffeensis in a test sample
KR20100101248A (en) Specific protein domain for the detection of listeria contamination and its antibody manufacture method and also their utilization
US8591899B2 (en) Diagnosis of Bacillus anthracis infection based on detection of bacterial secreted biomarkers
KR20100101234A (en) Specific protein domain for the detection of vibrio contamination and its antibody manufacture method and also their utilization
KR20100101288A (en) Specific protein domain for the detection of salmonella contamination and its antibody manufacture method and also their utilization
JP6514714B2 (en) Compositions and methods for identifying species of Ehrlichia
Walderich et al. Development of monoclonal antibodies specifically recognizing the cyst stage of Entamoeba histolytica.
Lu et al. Development of a colloidal gold immunochromatographic assay utilizing dual-antibody sandwich method for detecting Orientia tsutsugamushi
KR101311736B1 (en) Sandwich immunoassay Biochip and immunoassay method using the same
Susanti et al. Production and characterization of immunoglobulin G anti-rLipL32 antibody as a biomarker for the diagnosis of leptospirosis
TWI521063B (en) Biological sensing device and method for separating biomolecule

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20090309

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110302

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20110621

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20110302

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I