[go: up one dir, main page]

KR20100138078A - Manufacturing method of polymer gate insulating film - Google Patents

Manufacturing method of polymer gate insulating film Download PDF

Info

Publication number
KR20100138078A
KR20100138078A KR1020090056438A KR20090056438A KR20100138078A KR 20100138078 A KR20100138078 A KR 20100138078A KR 1020090056438 A KR1020090056438 A KR 1020090056438A KR 20090056438 A KR20090056438 A KR 20090056438A KR 20100138078 A KR20100138078 A KR 20100138078A
Authority
KR
South Korea
Prior art keywords
polymer
insulating film
crosslinking agent
cyanoethylated
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020090056438A
Other languages
Korean (ko)
Other versions
KR101100647B1 (en
Inventor
이시우
웬타오 주
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020090056438A priority Critical patent/KR101100647B1/en
Publication of KR20100138078A publication Critical patent/KR20100138078A/en
Application granted granted Critical
Publication of KR101100647B1 publication Critical patent/KR101100647B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/478Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a layer of composite material comprising interpenetrating or embedded materials, e.g. TiO2 particles in a polymer matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: A method for manufacturing a polymer gate insulation layer is provided to obtain a high insulation property and a high dielectric constant by reducing the content of OH in an insulation layer. CONSTITUTION: Solutions including polymer and crosslinker to form cross-link by reacting with polymer is spin-coated on a substrate. A coating layer is annealed at 40 to 270 degrees centigrade. The polymer is cyanoethylated polymer selected among pullulan, cellulose, polyvinyl alcohol, and sucrose.

Description

고분자 게이트 절연막의 제조방법{METHOD FOR PREPARING A POLYMER GATE DIELECTRIC} Manufacturing Method of Polymer Gate Insulator {METHOD FOR PREPARING A POLYMER GATE DIELECTRIC}

본 발명은 우수한 절연특성 및 높은 유전상수를 갖는, 유기반도체 소자용, 특히 유기박막 트랜지스터용 게이트 절연막을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a gate insulating film for an organic semiconductor device, in particular for an organic thin film transistor, having excellent insulating properties and high dielectric constant.

유기반도체 소자로서 가장 많이 연구되고 또 사용되고 있는 유기박막 트랜지스터의 성능을 개선하기 위해서는, 절연특성이 좋고 유전상수가 높은 게이트 절연막이 필수적으로 요구된다.In order to improve the performance of the organic thin film transistor which is most studied and used as an organic semiconductor device, a gate insulating film having good insulation characteristics and high dielectric constant is essential.

고분자 절연막 내에는 히드록시기(OH기)와 같은 극성이 큰 기능기가 있어 트랜지스터가 작동할 때 히스테리시스(hysteresis)를 유발하는 문제점이 있다. 절연막으로 널리 활용되는 폴리비닐페놀(PVP)이 그 대표적인 예이다.In the polymer insulating layer, there is a large functional group such as a hydroxyl group (OH group), which causes a problem of causing hysteresis when the transistor is operated. Polyvinylphenol (PVP), which is widely used as an insulating film, is a representative example.

이러한 경우에, 절연막 형성 고분자와 함께 가교제를 사용하게 되면 가교제가 분자 사슬의 히드록시기와 결합하여 극성기를 줄여주고 가교에 의해 고분자 구조를 치밀하게 하여 히스테리시스도 줄이고 절연특성을 개선할 수 있다. 또한, 게 이트 절연막 형성 물질로서 유전율이 큰 절연체를 활용하면 트랜지스터의 동작 전압이 낮아지는 긍정적인 효과가 있다.In such a case, when the crosslinking agent is used together with the insulating film forming polymer, the crosslinking agent may combine with the hydroxyl group of the molecular chain to reduce the polar group, and the polymer structure may be densified by crosslinking to reduce the hysteresis and improve the insulating property. In addition, the use of an insulator having a high dielectric constant as the gate insulating film forming material has a positive effect of lowering the operating voltage of the transistor.

이에, 본 발명자들은 예의 연구를 계속한 결과, 유전율이 높은 특정 고분자와 상기 고분자와 반응할 수 있는 특정 가교제를 함유하는 용액을 이용하여 열처리를 통해 절연막을 형성할 경우 우수한 절연특성 및 높은 유전상수를 갖는 고분자 절연막을 제조할 수 있음을 발견하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have intensively studied, and as a result, when the insulating film is formed by heat treatment using a solution containing a specific polymer having a high dielectric constant and a specific crosslinking agent that can react with the polymer, excellent insulation properties and a high dielectric constant are obtained. The present invention has been accomplished by discovering that a polymer insulating film can be prepared.

따라서, 본 발명의 목적은 우수한 절연특성 및 높은 유전상수를 갖는, 유기반도체 소자용, 특히 유기박막 트랜지스터용 고분자 게이트 절연막을 제조하는 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for producing a polymer gate insulating film for an organic semiconductor device, in particular for an organic thin film transistor, having excellent insulating properties and high dielectric constant.

상기 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,

히드록시기의 일부가 시아노에틸화된, 풀루란, 셀룰로오즈, 폴리비닐알콜 및 수크로오즈 중에서 선택된 시아노에틸화된 고분자 및 상기 고분자와 반응하여 가교를 형성하는 가교제를 함유하는 용액을 기판 위에 스핀 코팅한 후, 이 코팅층을 40 내지 270℃ 범위에서 열처리하는 것을 포함하는,Spin coating a substrate with a solution containing a cyanoethylated polymer selected from pullulan, cellulose, polyvinyl alcohol and sucrose and a crosslinking agent which reacts with the polymer to form crosslinks, wherein a part of the hydroxy group is cyanoethylated After that, including the heat treatment in the range of 40 to 270 ℃,

고분자 절연막의 제조방법을 제공한다.Provided is a method of manufacturing a polymer insulating film.

본 발명에 따른 고분자 절연막 제법에 의하면, 열처리를 통해 유전율이 높은 특정 고분자와 상기 고분자와 반응할 수 있는 가교제를 가교처리함으로써, 형성되는 절연막 내의 히드록시기의 함량을 감소시키고 우수한 절연특성 및 높은 유전상수를 갖는 고분자 절연막을 제조할 수 있다. 이러한 본 발명의 고분자 절연막은 그 우수한 물성에 기인하여 유기반도체 소자, 특히 유기박막 트랜지스터의 고분자 게이트 절연막으로 유용하게 사용될 수 있다.According to the polymer insulating film production method according to the present invention, by cross-linking a specific polymer having a high dielectric constant and a crosslinking agent that can react with the polymer through heat treatment, it is possible to reduce the content of hydroxy groups in the formed insulating film and to provide excellent insulation properties and high dielectric constant The polymer insulating film which can have can be manufactured. Such a polymer insulating film of the present invention can be usefully used as a polymer gate insulating film of an organic semiconductor device, particularly an organic thin film transistor due to its excellent physical properties.

본 발명에 따른 고분자 절연막 제법은, 히드록시기의 일부가 시아노에틸화된, 풀루란, 셀룰로오즈, 폴리비닐알콜 및 수크로오즈 중에서 선택된 시아노에틸화된 고분자 및 상기 고분자와 반응하여 가교를 형성하는 가교제를 함유하는 용액으로 이루어진 코팅층을 40 내지 270℃ 범위에서 열처리함으로써, 상기 두 물질에 존재하는 알콕시기 및/또는 히드록시기를 서로 반응시켜 두 물질 간에 가교를 형성하는 것을 특징으로 한다. 즉, 상기 고분자 및 가교제를 함유하는 용액의 코팅층을 열처리하면, 용매 및 반응 부산물들이 증발하면서 가교가 이루어지는데, 고분자와 가교제에 존재하는 알콕시기 및/또는 히드록시기가 서로 반응하여 물 또는 알콜이 생성되고 고분자와 가교제가 서로 사슬을 형성하며 열처리에 의해 물 및 알콜이 빠져 나가고 치밀한 막이 생성된다.The polymer insulating film production method according to the present invention is a cyanoethylated polymer selected from pullulan, cellulose, polyvinyl alcohol and sucrose in which a part of the hydroxy group is cyanoethylated, and a crosslinking agent which reacts with the polymer to form a crosslink. By heat-treating the coating layer consisting of a solution containing from 40 to 270 ℃ range, the alkoxy group and / or hydroxy groups present in the two materials are reacted with each other to form a crosslink between the two materials. That is, when the coating layer of the solution containing the polymer and the crosslinking agent is heat-treated, crosslinking occurs while the solvent and the reaction by-products evaporate. The polymer and the crosslinker form a chain with each other, and the heat treatment causes the water and the alcohol to escape and a dense film is formed.

본 발명에서는, 상기 시아노에틸화된 고분자 100 중량부를 기준으로 상기 가교제를 1 내지 200 중량부의 양으로 사용할 수 있다.In the present invention, the crosslinking agent may be used in an amount of 1 to 200 parts by weight based on 100 parts by weight of the cyanoethylated polymer.

본 발명에 사용되는 시아노에틸화된 고분자는 10,000 내지 10,000,000 범위의 중량평균분자량을 가질 수 있으며, 1 내지 100%의 치환도, 바람직하게는 50 내지 100%의 치환도로 히드록시기가 시아노에틸기로 치환될 수 있다.The cyanoethylated polymer used in the present invention may have a weight average molecular weight in the range of 10,000 to 10,000,000, and the hydroxy group is substituted with the cyanoethyl group with a degree of substitution of 1 to 100%, preferably 50 to 100%. Can be.

본 발명에 사용되는 가교제의 예로는 디이소시아네이트 화합물, 아실 할라이드 화합물, 트리알콕시실릴 또는 트리클로로실릴 화합물, 2개 이상의 에폭시기-함유 에폭사이드, 멜라민 유도체 또는 멜라민 유도체-함유 고분자, 및 이들의 혼합물을 들 수 있다.Examples of crosslinking agents used in the present invention include diisocyanate compounds, acyl halide compounds, trialkoxysilyl or trichlorosilyl compounds, two or more epoxy group-containing epoxides, melamine derivatives or melamine derivative-containing polymers, and mixtures thereof. Can be.

상기 디이소시아네이트 화합물의 구체예로서 하기 화학식 1a 내지 1i로 표시되는 화합물을 들 수 있다:Specific examples of the diisocyanate compound include compounds represented by the following Chemical Formulas 1a to 1i:

Figure 112009038305697-PAT00001
Figure 112009038305697-PAT00001

Figure 112009038305697-PAT00002
Figure 112009038305697-PAT00002

Figure 112009038305697-PAT00003
Figure 112009038305697-PAT00003

Figure 112009038305697-PAT00004
Figure 112009038305697-PAT00004

Figure 112009038305697-PAT00005
Figure 112009038305697-PAT00005

Figure 112009038305697-PAT00006
Figure 112009038305697-PAT00006

Figure 112009038305697-PAT00007
Figure 112009038305697-PAT00007

Figure 112009038305697-PAT00008
Figure 112009038305697-PAT00008

Figure 112009038305697-PAT00009
Figure 112009038305697-PAT00009

상기 식에서, Where

R1 내지 R7은 각각 독립적으로 수소 또는 C1-10 알킬이고,R 1 to R 7 are each independently hydrogen or C 1-10 alkyl,

R8 내지 R10은 각각 독립적으로 수소 또는

Figure 112009038305697-PAT00010
이고,R 8 to R 10 are each independently hydrogen or
Figure 112009038305697-PAT00010
ego,

X는 할로겐이다.X is halogen.

상기 아실 할라이드 화합물의 구체예로서 하기 화학식 2a 내지 2d로 표시되는 화합물을 들 수 있다:Specific examples of the acyl halide compound include compounds represented by the following Chemical Formulas 2a to 2d:

Figure 112009038305697-PAT00011
Figure 112009038305697-PAT00011

Figure 112009038305697-PAT00012
Figure 112009038305697-PAT00012

Figure 112009038305697-PAT00013
Figure 112009038305697-PAT00013

Figure 112009038305697-PAT00014
Figure 112009038305697-PAT00014

상기 식에서, Where

X1 내지 X8은 각각 독립적으로 할로겐이고,X 1 to X 8 are each independently halogen,

n은 각각 독립적으로 1 내지 10의 정수이다.n is each independently an integer of 1 to 10.

상기 트리알콕시실릴 또는 트리클로로실릴 화합물의 구체예로서 하기 화학식 3a 내지 3d로 표시되는 화합물을 들 수 있다:Specific examples of the trialkoxysilyl or trichlorosilyl compound include compounds represented by the following formulas 3a to 3d:

Figure 112009038305697-PAT00015
Figure 112009038305697-PAT00015

Figure 112009038305697-PAT00016
Figure 112009038305697-PAT00016

Figure 112009038305697-PAT00017
Figure 112009038305697-PAT00017

Figure 112009038305697-PAT00018
Figure 112009038305697-PAT00018

상기 2개 이상의 에폭시기-함유 에폭사이드의 구체예로서 하기 화학식 4로 표시되는 화합물을 들 수 있다:Specific examples of the two or more epoxy group-containing epoxides include compounds represented by the following general formula (4):

Figure 112009038305697-PAT00019
Figure 112009038305697-PAT00019

상기 멜라민 유도체 또는 멜라민 유도체-함유 고분자의 구체예로서 하기 화학식 5a 내지 5c로 표시되는 화합물을 들 수 있다:Specific examples of the melamine derivatives or melamine derivative-containing polymers include compounds represented by the following formulas 5a to 5c:

Figure 112009038305697-PAT00020
Figure 112009038305697-PAT00020

Figure 112009038305697-PAT00021
Figure 112009038305697-PAT00021

Figure 112009038305697-PAT00022
Figure 112009038305697-PAT00022

상기 식에서, Where

Y1 내지 Y6는 각각 독립적으로 수소 또는 C1-10 알킬이고,Y 1 to Y 6 are each independently hydrogen or C 1-10 alkyl,

m은 각각 독립적으로 1 내지 10의 정수이다. m is each independently 1-10.

상기 고분자 및 가교제를 함유하는 용액의 용매로는 극성 용매를 사용할 수 있으며, 바람직하게는 디메틸포름아미드, CH3CN, 디메틸설폭사이드 및 이들의 혼합물로 이루어진 군으로부터 선택된 용매를 사용할 수 있다. 상기 용액 중의 고분자 농도는 0.5 내지 50 중량%이고, 가교제 농도는 0.1 내지 25 중량%일 수 있다.As the solvent of the solution containing the polymer and the crosslinking agent, a polar solvent may be used, and preferably, a solvent selected from the group consisting of dimethylformamide, CH 3 CN, dimethyl sulfoxide and mixtures thereof may be used. The polymer concentration in the solution may be 0.5 to 50% by weight, and the crosslinking agent concentration may be 0.1 to 25% by weight.

고분자 및 가교제를 함유하는 용액을 기판 위에 스핀 코팅시 10,000 rpm을 초과하지 않는 범위 내에서 스핀 코팅을 수행하는 것이 바람직하며, 더욱 바람직하게는 500 내지 10,000 rpm의 속도로 스핀 코팅을 수행할 수 있다.When spin coating a solution containing a polymer and a crosslinking agent onto a substrate, it is preferable to perform spin coating within a range not exceeding 10,000 rpm, and more preferably, spin coating may be performed at a speed of 500 to 10,000 rpm.

본 발명에서는, 스핀 코팅된 코팅층을 40 내지 270℃, 바람직하게는 150 내지 200℃의 범위에서 적당한 시간 동안 열처리할 수 있다. 270℃ 보다 높은 온도에서 열처리할 경우에는 고분자의 열분해가 일어날 수 있다.In the present invention, the spin-coated coating layer may be heat-treated for a suitable time in the range of 40 to 270 ℃, preferably 150 to 200 ℃. If heat treated at a temperature higher than 270 ° C, thermal decomposition of the polymer may occur.

이와 같이, 본 발명에 따른 고분자 절연막 제법에 의하면, 열처리를 통해 유전율이 높은 특정 고분자와 상기 고분자와 반응할 수 있는 가교제를 가교처리함으로써, 형성되는 절연막 내의 히드록시기의 함량을 감소시키고 우수한 절연특성 및 높은 유전상수를 갖는 고분자 절연막을 제조할 수 있다. 고분자 절연막의 두께는 0.02 내지 5 ㎛의 범위일 수 있다.As described above, according to the polymer insulating film production method according to the present invention, by cross-linking a specific polymer having a high dielectric constant and a crosslinking agent that can react with the polymer through heat treatment, the content of the hydroxyl group in the insulating film to be formed to reduce the excellent insulating properties and high A polymer insulating film having a dielectric constant can be prepared. The thickness of the polymer insulating film may range from 0.02 to 5 μm.

이러한 본 발명의 고분자 절연막은 그 우수한 물성에 기인하여 유기반도체 소자, 특히 유기박막 트랜지스터의 고분자 게이트 절연막으로 유용하게 사용될 수 있다.Such a polymer insulating film of the present invention can be usefully used as a polymer gate insulating film of an organic semiconductor device, particularly an organic thin film transistor due to its excellent physical properties.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the invention only.

실시예 1: 고분자 절연막의 제조Example 1: Preparation of Polymer Insulating Film

시아노에틸화된 풀루란 (치환도: 89%, 중량평균분자량: 489,000) 및 폴리(메틸화된 멜라민-코-포름알데히드) (화학식 5b의 화합물, Y1 내지 Y4: 메틸, m: 1)를 디메틸포름아미드와 CH3CN의 1:1(v/v) 혼합물에 용해시켜 시아노에틸화된 풀루란의 농도가 5 중량%이고 폴리(메틸화된 멜라민-코-포름알데히드)의 농도가 1.5 중량%인 용액을 제조하였다.Cyanoethylated pullulan (degree of substitution: 89%, weight average molecular weight: 489,000) and poly (methylated melamine-co-formaldehyde) (compound of formula 5b, Y 1 to Y 4 : methyl, m: 1) Was dissolved in a 1: 1 (v / v) mixture of dimethylformamide and CH 3 CN to give 5% by weight of cyanoethylated pullulan and 1.5% of poly (methylated melamine-co-formaldehyde). A solution by weight was prepared.

이 용액을 n-형 실리콘 웨이퍼 위에 3,000 rpm의 속도로 스핀 코팅한 후, 이 코팅층을 50, 100, 150 및 200℃ 각각의 온도에서 열처리하여 두께 0.260, 0.234, 0.232 및 0.217 ㎛ 각각의 고분자 절연막을 제조하였다.The solution was spin-coated on an n-type silicon wafer at a rate of 3,000 rpm, and then the coating layer was heat-treated at temperatures of 50, 100, 150 and 200 ° C. to obtain polymer insulating films of 0.260, 0.234, 0.232 and 0.217 μm in thickness. Prepared.

실시예 2: 유기박막 트랜지스터의 제조 - (1)Example 2 Fabrication of Organic Thin Film Transistor-(1)

상기 실시예 1에서 제조된, n-형 실리콘 웨이퍼 상에 코팅된 고분자 절연막 위에 유기분자 빔(beam) 증착 시스템을 이용하여 50℃에서 0.2 내지 0.3Ås-1의 속도로 펜타센(pentacene)을 증착하여 두께 60nm의 펜타센 막을 형성하였다. 형성된 펜타센 막 위에 Au 전극을 증착한 후 새도우 마스크를 이용하여 너비 1500 ㎛ 및 길이 150 ㎛ 의 채널(channel)이 형성되도록 패턴화하여 도 4에 도시된 바와 같은 상부-접촉(top-contact) 구조를 갖는 유기박막 트랜지스터를 제조하였다.Pentacene was deposited at a rate of 0.2 to 0.3 μs −1 at 50 ° C. using an organic molecular beam deposition system on a polymer insulating film coated on an n-type silicon wafer prepared in Example 1 To form a pentacene film having a thickness of 60 nm. After depositing an Au electrode on the formed pentacene film, a top-contact structure as shown in FIG. 4 was patterned to form a channel having a width of 1500 μm and a length of 150 μm using a shadow mask. An organic thin film transistor having a was prepared.

상기 실시예 1에서 얻어진 박막의 열처리 온도(50, 100, 150 및 200℃)에 따른 히드록시기 함량의 변화를 보여주는 흡광 강도 그래프를 도 1에, 그리고 히스테리시스 및 유전상수의 변화를 보여주는 그래프를 도 2에 각각 나타내었다.Absorption intensity graph showing a change in the hydroxyl group content according to the heat treatment temperature (50, 100, 150 and 200 ℃) of the thin film obtained in Example 1 is shown in Figure 1, and a graph showing the change in hysteresis and dielectric constant in Figure 2 Respectively.

또한, 실시예 2에서 얻어진 유기박막 트랜지스터의 박막 열처리 온도에 따른 전압-전류의 변화 그래프를 도 3a 내지 3c에 나타내었다 (도 3a: 50℃ 열처리, 도 3b: 열처리하지 않음, 도 3c: 200℃ 열처리).3A to 3C show graphs of voltage-current change according to the thin film heat treatment temperature of the organic thin film transistor obtained in Example 2 (FIG. 3A: 50 ° C. heat treatment, FIG. 3B: no heat treatment, and FIG. 3C: 200 ° C.). Heat treatment).

도 1로부터, 열처리 온도가 증가할수록 3000 cm-1 근처에 나타나는 히드록시기(-OH)의 양이 줄어들고 2800cm-1에 나타나는 메틸기(-CH3)의 양도 상대적으로 줄어드는 것을 알 수 있다. 이에 따라, 도 2로부터, 형성된 막의 히스테리시스가 줄어들고 유전상수가 커짐을 알 수 있다.From Figure 1, increasing the heat treatment temperature reduces the amount of the hydroxy group (-OH) appearing near 3000 cm -1 it can be seen that decreasing the relative transfer of the methyl group (-CH 3) appears to 2800cm -1. Accordingly, it can be seen from FIG. 2 that the hysteresis of the formed film is reduced and the dielectric constant is increased.

나아가, 도 3a 내지 3c에서 보는 바와 같이, 200℃에서 열처리한 절연막으로 만든 트랜지스터가 전류의 흐름도 높고 또한 전압의 변화에 따라 전류가 급격히 증가하여 소자의 특성이 개선됨을 알 수 있다. Further, as shown in FIGS. 3A to 3C, it can be seen that the transistor made of the insulating film heat-treated at 200 ° C. has a high flow rate of current and the current rapidly increases with the change of the voltage, thereby improving the characteristics of the device.

실시예 3: 유기박막 트랜지스터의 제조 - (2)Example 3 Fabrication of Organic Thin Film Transistor-(2)

가교제로서 폴리(메틸화된 멜라민-코-포름알데히드) 대신에 하기 표 1에 기재된 화합물을 사용하고 열처리를 200℃에서 수행한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고분자 절연막을 제조하고, 이를 이용하여 상기 실시예 2와 동일한 방법으로 유기박막 트랜지스터를 제조하였다.A polymer insulating film was prepared in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of the poly (methylated melamine-co-formaldehyde) as a crosslinking agent, and the heat treatment was performed at 200 ° C. Using this, an organic thin film transistor was manufactured in the same manner as in Example 2.

실시예 3에서 얻어진 다양한 유기박막 트랜지스터의 전압-전류의 변화 그래프를 하기 표 1a 내지 1e에 함께 나타내었다.Voltage-current change graphs of various organic thin film transistors obtained in Example 3 are shown together in Tables 1A to 1E.

Figure 112009038305697-PAT00023
Figure 112009038305697-PAT00023

Figure 112009038305697-PAT00024
Figure 112009038305697-PAT00024

Figure 112009038305697-PAT00026
Figure 112009038305697-PAT00026

Figure 112009038305697-PAT00027
Figure 112009038305697-PAT00027

도 1은 실시예 1에서 얻어진 박막의 열처리 온도(50, 100, 150 및 200℃)에 따른 히드록시기 함량의 변화를 보여주는 흡광 강도 그래프이고,1 is a graph of absorbance intensity showing the change of the hydroxyl group content according to the heat treatment temperature (50, 100, 150 and 200 ℃) of the thin film obtained in Example 1,

도 2는 실시예 1에서 얻어진 박막의 열처리 온도(50, 100, 150 및 200℃)에 따른 히스테리시스 및 유전상수의 변화를 보여주는 그래프이고,2 is a graph showing changes in hysteresis and dielectric constant according to the heat treatment temperatures (50, 100, 150, and 200 ° C.) of the thin film obtained in Example 1,

도 3a 내지 3c는 실시예 2에서 얻어진 유기박막 트랜지스터의 박막 열처리 온도에 따른 전압-전류의 변화 그래프로서, 도 3a는 50℃에서 열처리하여 제조된 박막을, 도 3b는 열처리하지 않고 제조된 박막을, 도 3c는 200℃에서 열처리하여 제조된 박막을 사용한 경우이고,3A to 3C are graphs of voltage-current change according to the thin film heat treatment temperature of the organic thin film transistor obtained in Example 2, and FIG. 3A is a thin film prepared by heat treatment at 50 ° C., and FIG. 3B is a thin film prepared without heat treatment. 3c illustrates a case where a thin film prepared by heat treatment at 200 ° C. is used.

도 4는 실시예 2에서 제조된 상부-접촉 유기박막 트랜지스터의 단면 모식도이다.4 is a schematic cross-sectional view of a top-side organic thin film transistor manufactured in Example 2. FIG.

Claims (10)

히드록시기의 일부가 시아노에틸화된, 풀루란, 셀룰로오즈, 폴리비닐알콜 및 수크로오즈 중에서 선택된 시아노에틸화된 고분자 및 상기 고분자와 반응하여 가교를 형성하는 가교제를 함유하는 용액을 기판 위에 스핀 코팅한 후, 이 코팅층을 40 내지 270℃ 범위에서 열처리하는 것을 포함하는,Spin coating a substrate with a solution containing a cyanoethylated polymer selected from pullulan, cellulose, polyvinyl alcohol and sucrose and a crosslinking agent which reacts with the polymer to form crosslinks, wherein a part of the hydroxy group is cyanoethylated After that, including the heat treatment in the range of 40 to 270 ℃, 고분자 절연막의 제조방법.Method for producing a polymer insulating film. 제 1 항에 있어서,The method of claim 1, 상기 시아노에틸화된 고분자 100 중량부를 기준으로 상기 가교제를 1 내지 200 중량부의 양으로 사용하는 것을 특징으로 하는, 고분자 절연막의 제조방법.The crosslinking agent is used in an amount of 1 to 200 parts by weight based on 100 parts by weight of the cyanoethylated polymer. 제 1 항에 있어서,The method of claim 1, 상기 시아노에틸화된 고분자가 10,000 내지 10,000,000의 중량평균분자량을 갖는 것을 특징으로 하는, 고분자 절연막의 제조방법.The cyanoethylated polymer has a weight average molecular weight of 10,000 to 10,000,000, characterized in that the manufacturing method of the polymer insulating film. 제 1 항에 있어서,The method of claim 1, 상기 시아노에틸화된 고분자가 1 내지 100%의 히드록시기가 시아노에틸기로 치환된 것임을 특징으로 하는, 고분자 절연막의 제조방법.The cyanoethylated polymer is a method of producing a polymer insulating film, characterized in that 1 to 100% of the hydroxy group is substituted with a cyanoethyl group. 제 1 항에 있어서,The method of claim 1, 상기 가교제가 디이소시아네이트 화합물, 아실 할라이드 화합물, 트리알콕시실릴 화합물, 트리클로로실릴 화합물, 2개 이상의 에폭시기-함유 에폭사이드, 멜라민 유도체, 멜라민 유도체-함유 고분자, 또는 이들의 혼합물인 것을 특징으로 하는, 고분자 절연막의 제조방법.Wherein the crosslinking agent is a diisocyanate compound, an acyl halide compound, a trialkoxysilyl compound, a trichlorosilyl compound, two or more epoxy group-containing epoxides, melamine derivatives, melamine derivative-containing polymers, or mixtures thereof Method for producing an insulating film. 제 1 항에 있어서,The method of claim 1, 상기 고분자 및 가교제를 함유하는 용액이 디메틸포름아미드, CH3CN, 디메틸설폭사이드 및 이들의 혼합물로 이루어진 군으로부터 선택된 용매를 사용하여 형성된 것임을 특징으로 하는, 고분자 절연막의 제조방법.The solution containing the polymer and the crosslinking agent is formed using a solvent selected from the group consisting of dimethylformamide, CH 3 CN, dimethyl sulfoxide and mixtures thereof. 제 1 항에 있어서,The method of claim 1, 상기 고분자 및 가교제를 함유하는 용액이 고분자 및 가교제를 각각 0.5 내지 50 중량% 및 0.1 내지 25 중량%의 농도로 함유하는 것을 특징으로 하는, 고분자 절연막의 제조방법.The solution containing the polymer and the crosslinking agent contains the polymer and the crosslinking agent at concentrations of 0.5 to 50% by weight and 0.1 to 25% by weight, respectively. 제 1 항에 있어서,The method of claim 1, 상기 코팅층의 열처리를 150 내지 200℃에서 수행하는 것을 특징으로 하는, 고분자 절연막의 제조방법.Method for producing a polymer insulating film, characterized in that to perform the heat treatment of the coating layer at 150 to 200 ℃. 제 1 항 내지 제 8 항 중 어느 한 항의 방법에 의해 제조된 고분자 절연막.The polymer insulating film manufactured by the method of any one of Claims 1-8. 제 9 항에 있어서,The method of claim 9, 상기 절연막이 유기박막 트랜지스터용 게이트 절연막으로 사용되는 것을 특징으로 하는 고분자 절연막.The insulating film is a polymer insulating film, characterized in that used as a gate insulating film for an organic thin film transistor.
KR1020090056438A 2009-06-24 2009-06-24 Manufacturing method of polymer gate insulating film Expired - Fee Related KR101100647B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090056438A KR101100647B1 (en) 2009-06-24 2009-06-24 Manufacturing method of polymer gate insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090056438A KR101100647B1 (en) 2009-06-24 2009-06-24 Manufacturing method of polymer gate insulating film

Publications (2)

Publication Number Publication Date
KR20100138078A true KR20100138078A (en) 2010-12-31
KR101100647B1 KR101100647B1 (en) 2012-01-03

Family

ID=43511596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090056438A Expired - Fee Related KR101100647B1 (en) 2009-06-24 2009-06-24 Manufacturing method of polymer gate insulating film

Country Status (1)

Country Link
KR (1) KR101100647B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981358B2 (en) 2012-06-27 2015-03-17 Samsung Display Co., Ltd. Organic insulating layer composition, method of forming organic insulating layer, and organic thin film transistor including the organic insulating layer
EP2903046A1 (en) 2014-01-30 2015-08-05 National Research Council Of Canada CNT thin film transistor with high K polymeric dielectric

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562997A (en) * 1991-08-30 1993-03-12 Kyocera Corp Thin film transistor
KR101012950B1 (en) * 2003-10-15 2011-02-08 삼성전자주식회사 Compositions for forming organic insulators and organic insulators made therefrom
KR100918362B1 (en) * 2006-07-27 2009-09-22 주식회사 엘지화학 Organic thin film transistor and its manufacturing method
KR101353824B1 (en) * 2007-06-12 2014-01-21 삼성전자주식회사 Composition for Preparing Organic Insulator and Organic Insulator Prepared using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981358B2 (en) 2012-06-27 2015-03-17 Samsung Display Co., Ltd. Organic insulating layer composition, method of forming organic insulating layer, and organic thin film transistor including the organic insulating layer
EP2903046A1 (en) 2014-01-30 2015-08-05 National Research Council Of Canada CNT thin film transistor with high K polymeric dielectric
US9620728B2 (en) 2014-01-30 2017-04-11 National Research Council Of Canada CNT thin film transistor with high K polymeric dielectric

Also Published As

Publication number Publication date
KR101100647B1 (en) 2012-01-03

Similar Documents

Publication Publication Date Title
US6617609B2 (en) Organic thin film transistor with siloxane polymer interface
US7282735B2 (en) TFT having a fluorocarbon-containing layer
JP2006295166A (en) Electronic device, thin film transistor, and method for manufacturing thin film transistor
Ko et al. Electrically and thermally stable gate dielectrics from thiol–ene cross-linked systems for use in organic thin-film transistors
EP2157614B1 (en) Gate insulating film forming agent for thin-film transistor
WO2005086254A1 (en) Field effect transistor, method of producing the same, and method of producing laminated member
CN112204070B (en) Organic dielectric materials and devices containing them
WO2009113549A1 (en) Composition for forming underlayer film for image formation
Kim et al. Controlling the gate dielectric properties of vinyl-addition polynorbornene copolymers via thiol–ene click chemistry for organic field-effect transistors
Song et al. One‐Step Fabricated and Solution‐Processed Hybrid Gate Dielectrics for Low‐Voltage Organic Thin‐Film Transistors
KR101100647B1 (en) Manufacturing method of polymer gate insulating film
JP4462215B2 (en) Method for dedoping organic semiconductors
KR101450137B1 (en) Copolymer for organic semiconductor and organic thin film transistor and organic electronic device using same
KR101649553B1 (en) Organic field-effect transistors, and method for preparing thereof
EP3185322B1 (en) Thin film transistor, method of manufacturing the same, and electronic device including the same
JP2010138395A (en) Polythiophene and electronic device including polythiophene
KR100873997B1 (en) Manufacturing method of organic thin film transistor using organic protective film with improved water barrier property
KR101005808B1 (en) Photocurable organic insulator manufacturing method and organic thin film transistor using same
KR101140686B1 (en) Composition for Organic Gate Insulating Film And Organic Gate Insulating Film Prepared by using the same
KR20110096136A (en) Gate insulating film former for thin film transistor
KR101685035B1 (en) Polymer compound for forming organic gate insulator of thin-film transistor and thin-film transistor using the same
KR101607962B1 (en) Low-temperature solution processed alumina/polyimide gate insulators and thin-film transistors comprising the same
Yoo et al. Low-temperature crosslinked soluble polyimide as a dielectric for organic thin-film transistors: enhanced electrical stability and performance
KR101393695B1 (en) Insulating film material for semiconductor device and method for preparing insulating film using the same
KR101446712B1 (en) High thermal resistant polyimide compopnds, composition containing the same for forming organic gate insulator and thin-film transistor using the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

T11-X000 Administrative time limit extension requested

St.27 status event code: U-3-3-T10-T11-oth-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

T11-X000 Administrative time limit extension requested

St.27 status event code: U-3-3-T10-T11-oth-X000

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20141224

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20141224

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000