[go: up one dir, main page]

KR20150037144A - Intelligent Battery Sensor Apparatus and Method thereof - Google Patents

Intelligent Battery Sensor Apparatus and Method thereof Download PDF

Info

Publication number
KR20150037144A
KR20150037144A KR20130116455A KR20130116455A KR20150037144A KR 20150037144 A KR20150037144 A KR 20150037144A KR 20130116455 A KR20130116455 A KR 20130116455A KR 20130116455 A KR20130116455 A KR 20130116455A KR 20150037144 A KR20150037144 A KR 20150037144A
Authority
KR
South Korea
Prior art keywords
battery
soc
capacity
current
ocv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR20130116455A
Other languages
Korean (ko)
Other versions
KR102079038B1 (en
Inventor
김승현
Original Assignee
현대모비스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대모비스 주식회사 filed Critical 현대모비스 주식회사
Priority to KR1020130116455A priority Critical patent/KR102079038B1/en
Priority to CN201410424325.2A priority patent/CN104518247B/en
Publication of KR20150037144A publication Critical patent/KR20150037144A/en
Application granted granted Critical
Publication of KR102079038B1 publication Critical patent/KR102079038B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 지능형 배터리 센서 장치 및 그 동작 방법에 관한 것으로서, 본 발명에 따른 지능형 배터리 센서 장치는 차량의 배터리가 정격 용량이 아닌 배터리로 교체되더라도 교체된 배터리의 SOC를 정확하게 산출할 수 있는 것을 특징으로 한다. 본 발명에 따르면, 배터리가 교체되더라도 SOC를 정확하게 산출할 수 있는 효과가 있고, 특히 다른 용량, 다른 제조업체의 배터리로 교체되더라도 SOC를 정확하게 산출할 수 있는 이점이 있다.The present invention relates to an intelligent battery sensor device and an operation method thereof, and an intelligent battery sensor device according to the present invention can accurately calculate the SOC of a replaced battery even if the battery of the vehicle is replaced with a battery other than the rated capacity do. According to the present invention, there is an effect that the SOC can be accurately calculated even if the battery is replaced, and the SOC can be accurately calculated even if the battery is replaced with a battery of another manufacturer or another manufacturer.

Description

지능형 배터리 센서 장치 및 그 동작 방법{Intelligent Battery Sensor Apparatus and Method thereof}Technical Field [0001] The present invention relates to an intelligent battery sensor device,

본 발명은 지능형 배터리 센서 장치 및 그 동작 방법에 관한 것으로서, 보다 구체적으로는 교체된 배터리의 SOC를 정확하게 산출하는 장치 및 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an intelligent battery sensor device and an operation method thereof, and more particularly, to an apparatus and method for accurately calculating an SOC of a replaced battery.

종래의 차량용 배터리 용량 측정방법은 도 1에 도시된 바와 같이, 교체된 배터리의 내부 저항이 아닌 기존 배터리의 용량을 기준으로 교체된 배터리의 충전이 완료된 이후에도 유입되는 전류량을 측정하여 교체된 배터리의 용량을 측정하였다.As shown in FIG. 1, a conventional method for measuring the capacity of a vehicle includes measuring the amount of current flowing after the replacement of the battery is completed based on the capacity of the existing battery rather than the internal resistance of the replaced battery, Were measured.

이러한 차량용 배터리 용량 측정 방법에 따르면, 차량용 배터리가 교체된 이후, 특히 차량용 배터리가 이전보다 큰 배터리로 교체된 이후에도 교체된 배터리의 용량을 정확하게 측정할 수 있으므로, 교체된 배터리의 SOC 등을 정확하게 산출할 수 있다.According to this vehicle battery capacity measurement method, since the capacity of the replaced battery can be accurately measured even after the vehicle battery is replaced, especially after the battery for the vehicle is replaced with the battery larger than the previous one, the SOC of the replaced battery can be accurately calculated .

그러나, 종래 기술은 배터리가 기존 배터리보다 큰 용량으로 교체될 경우에만 교체된 배터리의 SOC 등을 정확하게 산출할 수 있다 라는 제약이 있다.However, the conventional art has a limitation that the SOC of the replaced battery can be accurately calculated only when the battery is replaced with a capacity larger than that of the existing battery.

즉, (차량의 배터리가 항상 기존 용량보다 큰 용량의 배터리로만 교체되는 것이 아니기 때문에) 종래 기술은 배터리가 기존 용량보다 작은 용량의 배터리로 교체될 경우 SOC를 정확하게 산출할 수 없고, 기존 용량보다 큰 용량의 배터리로 교체되더라도, 교체된 배터리가 기존 배터리와 사양이 다르기 때문에 기입력된 SOC-OCV 맵을 이용할 수 없으므로, IBS가 Recalibration될 경우 SOC를 정확하게 산출할 수 없다 라는 문제점이 있다. That is, the prior art can not accurately calculate the SOC when the battery is replaced with a battery having a capacity smaller than the existing capacity (because the battery of the vehicle is not always replaced with a battery having a capacity larger than the existing capacity) The SOC-OCV map can not be used because the replaced battery has different specifications from the existing battery, so that the SOC can not be accurately calculated when the IBS is recalibrated.

본 발명은 상기와 같은 문제점을 감안하여 창출한 것으로서, 차량의 배터리가 정격 용량이 아닌 배터리로 교체되더라도 교체된 배터리의 SOC를 정확하게 산출할 수 있는 지능형 배터리 센서 장치 및 그 동작 방법을 제공하는 데 그 목적이 있다.An object of the present invention is to provide an intelligent battery sensor device and an operation method thereof that can accurately calculate the SOC of a replaced battery even if the battery of the vehicle is replaced with a battery other than the rated capacity. There is a purpose.

전술한 목적을 달성하기 위하여, 본 발명의 일면에 따른 지능형 배터리 센서 장치는 차량에 배터리가 장착되면 장착된 상기 배터리로부터 전압, 전류 및 온도 정보를 감지하는 센서부; 및 장착된 상기 배터리의 SOC 및 용량에 특정 오차가 반영된 상기 배터리의 SOC를 예측하고, 상기 배터리의 충전이 완료될 때까지 상기 센서부에 의해 감지된 전류의 적산 값을 산출하며, 예측된 각 SOC와, 상기 배터리의 충전 완료 후 산출된 전류의 적산 값을 토대로 산출된 상기 배터리의 SOC, 상기 용량에 특정 오차를 반영한 상기 배터리의 SOC를 각각 비교하며, 비교결과를 토대로 상기 배터리의 용량을 판단하며, 판단된 상기 배터리의 용량에 따라 상기 배터리의 SOC를 산출하는 제어부를 포함한다.According to an aspect of the present invention, there is provided an intelligent battery sensor device including: a sensor unit for sensing voltage, current, and temperature information from a battery mounted in a vehicle; And estimating an SOC of the battery in which a specific error is reflected in the SOC and the capacity of the mounted battery, calculating an integrated value of the current sensed by the sensor unit until charging of the battery is completed, The SOC of the battery calculated based on the integrated value of the current calculated after completion of charging the battery, and the SOC of the battery reflecting the specific error to the capacity, respectively, and the capacity of the battery is determined based on the comparison result And a controller for calculating an SOC of the battery according to the determined capacity of the battery.

본 발명의 다른 면에 따른 지능형 배터리 센서 장치의 동작 방법은 차량에 장착된 배터리의 SOC 및 용량에 특정 오차가 반영된 상기 배터리의 SOC를 예측하는 단계; 상기 배터리의 충전이 완료될 때까지 전류 적산 값을 산출하는 단계; 예측된 각 SOC와, 상기 배터리의 충전 완료 후 산출된 전류 적산 값을 토대로 산출된 상기 배터리의 SOC, 상기 용량에 특정 오차를 반영한 상기 배터리의 SOC를 각각 비교하는 단계; 및 비교결과를 토대로 상기 배터리의 용량을 판단하여 판단된 상기 배터리의 용량에 따라 상기 배터리의 SOC를 산출하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of operating an intelligent battery sensor device, including: predicting an SOC of the battery, the SOC of the battery mounted in the vehicle and a specific error being reflected in the capacity; Calculating a current integrated value until charging of the battery is completed; Comparing each of the predicted SOCs and the SOC of the battery based on the current integrated value calculated after completion of charging the battery, and comparing the SOC of the battery that reflects the specific error with the capacity; And calculating the SOC of the battery according to the determined capacity of the battery by determining the capacity of the battery based on the comparison result.

본 발명에 따르면, 배터리가 교체되더라도 SOC를 정확하게 산출할 수 있는 효과가 있다.According to the present invention, SOC can be accurately calculated even if the battery is replaced.

특히 다른 용량, 다른 제조업체의 배터리로 교체되더라도 SOC를 정확하게 산출할 수 있는 이점이 있다.Especially, it has an advantage that the SOC can be accurately calculated even if it is replaced with a battery of another manufacturer or another manufacturer.

도 1은 종래의 기술을 설명하기 위한 도면.
도 2는 본 발명의 일 실시예에 따른 지능형 배터리 센서 장치를 설명하기 위한 도면.
도 3은 본 발명의 일 실시예에 따른 지능형 배터리 센서의 동작 방법을 설명하기 위한 흐름도.
1 is a view for explaining a conventional technique;
2 is a view for explaining an intelligent battery sensor device according to an embodiment of the present invention;
3 is a flowchart illustrating an operation method of an intelligent battery sensor according to an embodiment of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 용이하게 이해할 수 있도록 제공되는 것이며, 본 발명은 청구항의 기재에 의해 정의된다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자 이외의 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. And is intended to enable a person skilled in the art to readily understand the scope of the invention, and the invention is defined by the claims. It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In the present specification, the singular form includes plural forms unless otherwise specified in the specification. It is noted that " comprises, " or "comprising," as used herein, means the presence or absence of one or more other components, steps, operations, and / Do not exclude the addition.

배터리 센서는 배터리 제조사로부터 제공된 SOC-OCV 맵을 이용하여 배터리가 최초 Power On Reset되고, 특정 시간(대략 3-4시간) 경과 후 획득된 OCV(Open Circuit Voltage)를 이용하여 최초 SOC를 획득한다.The battery sensor is initially powered on reset using the SOC-OCV map provided by the battery manufacturer, and acquires the initial SOC using OCV (Open Circuit Voltage) obtained after a predetermined time (approximately 3-4 hours).

즉, 배터리 센서는 차량에 배터리가 최초 장착된 후 일정 암전류 이하에서 특정 시간(대략 3-4시간)이 경과 되어야 최초 장착된 배터리가 안정된 것으로 판단한다.That is, the battery sensor judges that the battery installed initially is stable after a certain time (approximately 3-4 hours) has elapsed after a battery is first installed in the vehicle under a certain dark current.

그러나, 차량 출고시 장착된 배터리가 다른 사양의 배터리로 교체될 경우, 배터리 센서에 기입력된 SOC-OCV 맵과 교체된 배터리의 특성이 다르기 때문에 SOC 산출에 있어서 문제가 발생할 수도 있다.However, when the battery mounted at the time of vehicle shipment is replaced with a battery of another specification, there may be a problem in SOC calculation because the SOC-OCV map already input to the battery sensor is different from the characteristics of the replaced battery.

즉, 배터리 센서가 시판 중인 모든 사양의 배터리 SOC-OCV 맵을 기저장하는 것은 현실적으로 불가능하고, 또한 어떤 사양의 배터리로 교체되었는지 조차 판단할 수 없기 때문에 배터리가 교체될 경우 어떤 배터리로 교체되었는지 배터리 용량 판단 자기학습 알고리즘이 필요하다.That is, it is practically impossible to store the battery SOC-OCV map of all the commercially available specifications of the battery sensor, and it is not possible to determine which specification battery has been replaced. Therefore, A judgment self learning algorithm is needed.

단 배터리 교체시 차량의 배터리 장착 레이아웃에 따른 한계 및 차량의 성능 저하를 막기 위해 배터리의 교체는 최초 장착된 차량의 배터리 대비 ±10Ah 내에서 교체되고, 배터리 타입(Flooded, AGM)은 동일하게 교체되어야 한다.However, in order to prevent the limitations of the battery mounting layout of the vehicle and deterioration of the vehicle performance when replacing the battery, the replacement of the battery should be performed within ± 10 Ah of the battery of the originally installed vehicle and the battery type (Flooded, AGM) do.

또한, 배터리의 SOC와 OCV는 선형관계에 있다.Also, the SOC and OCV of the battery are in a linear relationship.

즉, OCV를 slope이 a, offset 값이 b인 a*SOC + b의 일차 함수형태로 나타낼 수 있다.That is, OCV can be expressed as a linear function of a * SOC + b with slope a and offset b.

SOC와 OCV의 선형적 특성은 배터리의 제조사별, 용량별로 편차가 있어서, 배터리의 특성을 판단하는 하나의 대표 값(기준 값)으로 사용될 수 없다.The linear characteristics of the SOC and the OCV vary according to the manufacturer and the capacity of the battery, and thus can not be used as a representative value (reference value) for determining the characteristics of the battery.

그러나, SOC-OCV 맵 상에서 Slope는 평균적으로 용량별 비슷한 특성을 나타내기 때문에 제조사별 배터리를 용량별로 나누고, 용량별로 나누어진 배터리들의 SOC와 OCV의 선형적 특성에 따른 Slope에 대해 평균 Slope를 산출하여 계산된 Offset값을 적용할 경우, 교체된 배터리의 SOC-OCV 맵을 결정할 수 있다.However, since the Slope on the SOC-OCV map shows similar characteristics on average, the manufacturer's battery is divided by capacity and the average slope is calculated for the slope according to the linear characteristics of the SOC and OCV of the batteries classified by the capacity When applying the calculated Offset value, the SOC-OCV map of the replaced battery can be determined.

즉, 차량에 최초 장착된 배터리로부터 획득된 OCV값과, 다양한 제조사별 배터리의 SOC-OCV맵에 대한 평균 slope를 토대로 초기 예상 SOC를 산출할 수 있기 때문에, offset값을 계산하여 최종적으로 SOC-OCV맵을 결정할 수 있다.That is, since the initial expected SOC can be calculated based on the OCV value obtained from the battery first installed in the vehicle and the average slope of the SOC-OCV map of various manufacturers' batteries, the offset value is calculated and finally SOC-OCV The map can be determined.

배터리가 교체 후 교체된 배터리의 전압은 안정화된 전압 즉. OCV(Open Circuit Voltage)라고 볼 수 없기 때문에 배터리가 교체된 후 일정 조건하에 특정 시간(대략 3-4시간) 경과 후 획득된 전압을 OCV라 한다.After the battery is replaced, the voltage of the replaced battery is stabilized. OCV (Open Circuit Voltage) can not be seen because the battery is replaced after a certain period of time (about 3-4 hours) after the voltage obtained is called OCV.

이하에서는 배터리가 용량이 60Ah와 68Ah사이인 배터리로 교체된 것을 기준으로 설명한다.In the following, the battery is replaced with a battery having a capacity between 60 Ah and 68 Ah.

이하, 도 2를 참조하여 본 발명의 일 실시예에 따른 지능형 배터리 센서 장치를 설명한다. 도 2는 본 발명의 일 실시예에 따른 지능형 배터리 센서 장치를 설명하기 위한 도면이다.Hereinafter, an intelligent battery sensor device according to an embodiment of the present invention will be described with reference to FIG. 2 is a view for explaining an intelligent battery sensor device according to an embodiment of the present invention.

도 2에 도시된 바와 같이, 지능형 배터리 센서 장치(100)는 제어부(110), 센서부(120) 및 저장부(130)를 포함한다. 2, the intelligent battery sensor device 100 includes a control unit 110, a sensor unit 120, and a storage unit 130. [

제어부(110)는 차량에 최초 장착된 배터리(200)의 OCV(Open Circuit Voltage)를 획득한 후 전류 적산을 시작한다.The controller 110 acquires OCV (Open Circuit Voltage) of the battery 200 initially mounted on the vehicle, and then starts current integration.

예컨대, 차량의 배터리가 교체될 경우, 센서부(120)는 최초 장착된 배터리(200)로부터 전압, 전류, 온도 정보를 감지한다. For example, when the battery of the vehicle is replaced, the sensor unit 120 senses voltage, current, and temperature information from the battery 200 initially installed.

제어부(110)는 얼터네이터를 제어하여 배터리(200)의 충전이 완료(배터리가 100% 충전)될 때까지 전류 적산 값을 산출한다.The control unit 110 controls the alternator to calculate the current integrated value until the charging of the battery 200 is completed (the battery is charged to 100%).

한편, 차량에 최초 장착된 배터리(200)의 용량이 60Ah일 경우, 시판 중인 배터리의 용량을 기준으로 ±10Ah 사이의 배터리 용량은 68Ah이다.On the other hand, when the capacity of the battery 200 initially installed in the vehicle is 60 Ah, the battery capacity between +/- 10 Ah based on the capacity of the commercially available battery is 68 Ah.

제어부(110)는 기실험으로 획득된 전압 α, 전류 β값을 토대로 일정시간 동안 감지된 배터리(200)의 전압이 기실험으로 획득된 전압 α이상, 일정시간 동안 감지된 배터리(200)의 전류가 기실험으로 획득된 전류 β이하로 흐르면, 배터리(200)의 충전이 완료된 것으로 판단한다.The control unit 110 determines whether the voltage of the battery 200 sensed for a predetermined time based on the voltage? And the current? Obtained in the first experiment is higher than the voltage? It is judged that the charging of the battery 200 is completed.

제어부(110)는 배터리(200)의 충전이 완료된 것으로 판단되면, 배터리(200)의 SOC를 100%으로 설정하고, 이후 센서부(120)가 Recalibration될 경우 사용할 SOC-OCV맵을 결정한다.The control unit 110 sets the SOC of the battery 200 to 100% and determines the SOC-OCV map to be used when the sensor unit 120 is recalibrated.

예컨대, 제어부(110)는 차량에 배터리(200)가 장착된 후 일정 암전류 이하에서 특정 시간(3-4시간)이 경과되면, 저장부(130)에 저장된 배터리(200)의 SOC-OCV맵을 이용하여 배터리(200)의 SOC를 초기화하며, 센서부(120)를 Recalibration한다.For example, when a predetermined time (3-4 hours) has elapsed after a battery 200 is mounted on a vehicle and the battery voltage is below a certain dark current, the controller 110 controls the SOC-OCV map of the battery 200 stored in the storage unit 130 The SOC of the battery 200 is initialized and the sensor unit 120 is recalibrated.

여기서 배터리(200)의 용량은 60Ah이고, 배터리(200)의 용량에 오차를 반영하여 오차가 반영된 배터리(200)의 용량은 68Ah이다.Here, the capacity of the battery 200 is 60 Ah, and the capacity of the battery 200 in which the error is reflected in the capacity of the battery 200 is 68 Ah.

제어부(110)는 획득된 배터리(200)의 OCV를 토대로 용량이 60Ah인 배터리(200) 및 용량이 68Ah인 배터리에 대한 평균 slope 및 평균 offset을 이용하여 배터리(200)와 용량에 오차를 반영한 배터리(200)의 SOC-OCV맵을 획득할 수 있다.The control unit 110 calculates the average slope and the average offset for the battery 200 having the capacity of 60 Ah and the battery having the capacity of 68 Ah based on the obtained OCV of the battery 200, The SOC-OCV map of the mobile terminal 200 can be acquired.

즉, 제어부(110)는 최초 장착된 배터리(200)의 SOC와, 용량에 오차를 반영한 배터리(200)의 SOC를 예측하고, 예측된 각 SOC와, 배터리(200)의 충전 완료 후 산출된 전류 적산 값을 토대로 산출된 최초 장착된 배터리(200)의 SOC, 용량에 오차를 반영한 배터리(200)의 SOC를 각각 비교하며, 비교결과를 토대로 최종 배터리(200)의 용량을 예측할 수 있다.That is, the control unit 110 predicts the SOC of the battery 200 that is installed first and the SOC of the battery 200 that reflects the error in the capacity, and calculates the estimated SOC and the calculated current The SOC of the initially installed battery 200 calculated based on the accumulated value and the SOC of the battery 200 that reflects the error are compared with each other and the capacity of the final battery 200 can be predicted based on the comparison result.

예컨대, 제어부(110)는 최초 획득된 배터리(200)의 OCV를 토대로 용량이 60Ah인 배터리(200)의 평균 SOC-OCV맵을 이용할 경우 SOC를 60%로 예측할 수 있고, 용량이 68Ah인 배터리의 평균 SOC-OCV맵을 이용할 경우 SOC를 67%로 예측할 수 있다.For example, when the average SOC-OCV map of the battery 200 having the capacity of 60 Ah is used based on the OCV of the initially acquired battery 200, the control unit 110 can estimate the SOC at 60% Using the average SOC-OCV map, the SOC can be estimated at 67%.

또한, 계산된 전류 적산 값이 20Ah일 경우, 용량 대비 SOC를 (적산량/CNOM)*100의 식에 의해 퍼센티지로 환산할 수 있으며, 퍼센티지로 환산할 경우, 최초 장착된 배터리(200)와, 용량에 오차를 반영한 배터리(200)의 용량 대비 SOC 퍼센티지 환산값은 100-(20/60)*100 = 66%, 100-(20/68)*100 = 70% (100%에서 빼는 이유는 배터리의 충전이 완료되었다고 판단되기 때문)이고, 이 결과를 토대로 배터리의 용량을 60Ah로 예상할 경우 오차가 |60-66|=6%, 68Ah로 예상할 경우의 오차가 |67-70|=3%가 되므로, 배터리(200)의 용량을 68Ah라고 판단할 수 있다.If the calculated current integrated value is 20 Ah, the SOC based on capacity can be converted into a percentage by the formula of (integration amount / CNOM) * 100, and if converted into a percentage, 100% (20/60) * 100 = 66%, 100- (20/68) * 100 = 70% (100% is subtracted from 100% of the capacity of the battery (200) , The error is estimated to be 60-66 | = 6% and 68Ah when the battery capacity is estimated to be 60 Ah based on the result of this calculation. If the error is | 67-70 | = 3 %, It is possible to determine that the capacity of the battery 200 is 68 Ah.

한편, 제어부(110)는 OCV = a*SOC + b에 의하여, 최초 OCV값, 선택된 배터리(200)의 용량에 따른 SOC-OCV맵의 slope값, 전류 적산에 의해 산출된 SOC값을 토대로 새로운 offset값을 산출할 수 있다.On the other hand, based on OCV = a * SOC + b, the controller 110 calculates a new offset based on the initial OCV value, the slope value of the SOC-OCV map according to the capacity of the selected battery 200, Value can be calculated.

제어부(110)는 산출된 최종 배터리(200)의 용량과 SOC-OCV맵을 저장부(130)에 저장하고, 저장된 정보를 토대로 센서부(120)의 다음 Recalibration시부터 새롭게 교체된 배터리에 대해서 정확한 SOC를 판단할 수 있다.The control unit 110 stores the calculated capacity of the final battery 200 and the SOC-OCV map in the storage unit 130 and generates a correct SOC-OCV map for the newly replaced battery from the next recalibration of the sensor unit 120 based on the stored information. The SOC can be determined.

전술한 바와 같은 방식으로 60Ah와 68Ah 이외에도 다른 용량(ex. 기준용량이 90Ah일 경우 80Ah, 90Ah, 100Ah)도 CNOM값을 판단할 수 있다.The CNOM value can be determined in addition to 60Ah and 68Ah in the above-described manner as well as other capacities (e.g., 80Ah, 90Ah, and 100Ah when the reference capacity is 90Ah).

이상, 도 2를 참조하여 본 발명의 일 실시예에 따른 지능형 배터리 센서 장치를 설명하였고, 이하에서는 도 3을 참조하여 본 발명의 일 실시예에 따른 지능형 배터리 센서의 동작 방법을 설명한다. 도 3은 본 발명의 일 실시예에 따른 지능형 배터리 센서의 동작 방법을 설명하기 위한 흐름도이다.2, an intelligent battery sensor device according to an embodiment of the present invention has been described. Hereinafter, an operation method of the intelligent battery sensor according to an embodiment of the present invention will be described with reference to FIG. 3 is a flowchart illustrating an operation method of an intelligent battery sensor according to an embodiment of the present invention.

도 3에 도시된 바와 같이, 최초 장착된 배터리(200)의 파워 온 리셋 여부를 확인하고(S300), 판단결과, 배터리(200)가 파워 온 리셋된 경우, 배터리(200)의 안정화 상태에서 센서부(120)의 Recalibration이후 배터리(200)의 OCV를 획득한다(S301).It is determined whether or not the initially mounted battery 200 is powered on reset as shown in FIG. 3 (S300). If it is determined that the battery 200 is powered on, OCV of the battery 200 is acquired after Recalibration of the unit 120 (S301).

획득된 OCV를 토대로 Slope을 이용하여 Offest을 결정한다(S302).Based on the obtained OCV, Offest is determined using Slope (S302).

예컨대, 획득된 배터리(200)의 OCV를 토대로 배터리(200)의 용량과 배터리(200)의 용량에 오차를 반영한 값을 60Ah, 68Ah라하며, 용량이 60Ah인 배터리(200) 및 용량이 68Ah인 배터리에 대한 평균 slope와, 평균 offset을 산출하고, 배터리(200)의 SOC와 용량에 오차를 반영한 배터리의 SOC를 획득한다.For example, a value reflecting the error in the capacity of the battery 200 and the capacity of the battery 200 is 60 Ah and 68 Ah, based on the obtained OCV of the battery 200, and the battery 200 having the capacity of 60 Ah and the battery 200 having the capacity of 68 Ah Calculates an average slope and an average offset for the battery, and acquires the SOC of the battery that reflects the error in the SOC and the capacity of the battery 200. [

즉, 용량이 60Ah인 배터리의 예측 SOC(Expected_SOC_60Ah)와, 용량이 68Ah인 배터리의 예측 SOC(Expected_SOC_68Ah)를 산출한다.That is, the predicted SOC (Expected_SOC_60Ah) of the battery having the capacity of 60 Ah and the predicted SOC (Expected_SOC_68Ah) of the battery having the capacity of 68 Ah are calculated.

산출된 배터리(200)의 전류 적산 량을 토대로 배터리(200)로 인가된 전압 및 전류를 감지하고(S303), 기실험으로 획득된 전압 α, 전류 β값을 토대로 일정시간 동안 감지된 전압이 기실험으로 획득된 전압 α이상, 일정시간 동안 감지된 전류가 기실험으로 획득된 전류 β이하로 흐르는지 여부를 판단한다(S304).The voltage and current applied to the battery 200 are sensed based on the calculated current accumulation amount of the battery 200 (S303), and a voltage sensed for a predetermined time based on the voltage? And the current? In operation S304, it is determined whether or not the current sensed for a predetermined period of time is equal to or greater than the voltage a obtained in the experiment, flowing below the current beta obtained in the experiment.

판단결과, 기실험으로 획득된 전압 α, 전류 β값을 토대로 일정시간 동안 감지된 전압이 기실험으로 획득된 전압 α이상, 일정시간 동안 감지된 전류가 기실험으로 획득된 전류 β이하로 흐르면, 배터리(200)의 충전이 완료된 것으로 판단하여 배터리(200)의 충전 완료 판단 플래그를 온으로 설정하고, 배터리(200)의 SOC를 100%로 설정한다(S305).As a result of the judgment, if the voltage sensed for a predetermined time based on the voltage α and the current β obtained in the above experiment flows above the voltage α obtained in the experiment and the current sensed for a predetermined time flows below the current β obtained in the experiment, It is determined that the battery 200 is completely charged and the charge completion flag of the battery 200 is turned on and the SOC of the battery 200 is set to 100% at step S305.

용량 대비 SOC를 퍼센티지로 환산한다(S306).The SOC is converted into a percentage of the capacity (S306).

예컨대, 계산된 전류 적산 값이 20Ah일 경우 용량 대비 SOC를 (적산량/CNOM)*100의 식에 의해 퍼센티지로 환산할 수 있으며, 환산할 경우 100-(20/60)*100 = 66%, 100-(20/68)*100 = 70% (100%에서 빼는 이유는 배터리의 충전이 완료되었다고 판단되기 때문)이다.For example, when the calculated current integrated value is 20 Ah, the SOC can be converted into a percentage by the formula of (cumulative amount / CNOM) * 100 in terms of capacity, and when converted, 100 - (20/60) * 100 = 66% 100- (20/68) * 100 = 70% (100% is subtracted because the charging of the battery is judged to be completed).

최초 장착된 배터리(200)의 SOC와 용량에 오차를 반영한 배터리의 SOC를 획득하고, 획득된 예측 SOC값과, 배터리(200)의 충전 완료 후 산출된 전류 적산 값을 토대로 산출한 SOC값을 비교한다(S307).The SOC of the battery reflecting the error in the SOC and the capacity of the initially installed battery 200 is obtained and the SOC value calculated based on the obtained predicted SOC value and the current integrated value calculated after completion of charging the battery 200 is compared (S307).

예컨대, |Expected_SOC_60Ah-[100-(적산전류량/60)*100]|이|Expected_SOC_68Ah-[100-(적산전류량/68)*100]|보다 작거나 같은지 여부를 판단한다.For example, it is determined whether | Expected_SOC_60Ah- [100- (accumulated current amount / 60) * 100] | is greater than or equal to Expected_SOC_68Ah- [100- (accumulated current amount / 68) * 100] |

판단결과, |Expected_SOC_60Ah-[100-(적산전류량/60)*100]|이|Expected_SOC_68Ah-[100-(적산전류량/68)*100]|보다 작거나 같을 경우, 배터리(200)의 용량을 60으로 설정하고(S308), |Expected_SOC_60Ah-[100-(적산전류량/60)*100]|이|Expected_SOC_68Ah-[100-(적산전류량/68)*100]|보다 클 경우, 배터리의 용량을 68로 설정한다(S309). As a result of the determination, if the capacity of the battery 200 is 60 (= 100 - (cumulative current amount / 60) * 100] or less than or equal to [Expected_SOC_60Ah- Is greater than | Expected_SOC_60Ah- [100- (accumulated current amount / 60) * 100] | is greater than Expected_SOC_68Ah- [100- (accumulated current amount / 68) * 100] |, the capacity of the battery is set to 68 (S309).

배터리 용량인식 플래그를 온으로 설정하고(S310), 센서부(120)의 Recalibration시 산출된 Slope및 Offset을 이용하여 OCV맵을 적용한다(S311).The battery capacity recognition flag is set to ON (S310), and the OCV map is applied using Slope and Offset calculated at the time of Recalibration of the sensor unit 120 (S311).

이상 바람직한 실시예와 첨부도면을 참조하여 본 발명의 구성에 관해 구체적으로 설명하였으나, 이는 예시에 불과한 것으로 본 발명의 기술적 사상을 벗어나지 않는 범주내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Therefore, the scope of the present invention should not be limited by the illustrated embodiments, but should be determined by the scope of the appended claims and equivalents thereof.

100 : 지능형 배터리 센서 장치 110 : 제어부
120 : 센서부 130 : 저장부
200 : 배터리
100: Intelligent battery sensor device 110:
120: sensor unit 130: storage unit
200: Battery

Claims (6)

차량에 배터리가 장착되면 장착된 상기 배터리로부터 전압, 전류 및 온도 정보를 감지하는 센서부; 및
장착된 상기 배터리의 SOC 및 용량에 특정 오차가 반영된 상기 배터리의 SOC를 예측하고, 상기 배터리의 충전이 완료될 때까지 상기 센서부에 의해 감지된 전류의 적산 값을 산출하며, 예측된 각 SOC와, 상기 배터리의 충전 완료 후 산출된 전류의 적산 값을 토대로 산출된 상기 배터리의 SOC, 상기 용량에 특정 오차를 반영한 상기 배터리의 SOC를 각각 비교하며, 비교결과를 토대로 상기 배터리의 용량을 판단하며, 판단된 상기 배터리의 용량에 따라 상기 배터리의 SOC를 산출하는 제어부
를 포함하는 지능형 배터리 센서 장치.
A sensor unit for sensing voltage, current, and temperature information from the battery when the battery is mounted on the vehicle; And
Estimating an SOC of the battery in which a specific error is reflected in the mounted SOC and the capacity of the battery, calculating an integrated value of the current sensed by the sensor unit until charging of the battery is completed, SOC of the battery, which is calculated based on the integrated value of the current calculated after completion of charging the battery, SOC of the battery that reflects a specific error to the capacity, respectively, and determines the capacity of the battery based on the comparison result, And a controller for calculating the SOC of the battery according to the determined capacity of the battery
Wherein the sensing means senses the presence of the sensor.
제1항에 있어서,
상기 제어부는 상기 배터리가 파워 온 리셋된 경우, 상기 배터리의 안정화 상태에서 상기 센서부의 Recalibration이후 상기 배터리의 OCV를 획득하고, 획득된 상기 배터리의 OCV를 토대로 장착된 상기 배터리의 SOC 및 상기 용량에 특정 오차가 반영된 상기 배터리의 SOC를 예측하는 것
인 지능형 배터리 센서 장치.
The method according to claim 1,
Wherein the control unit acquires the OCV of the battery after the recalibration of the sensor unit in the stabilized state of the battery when the battery is powered on and determines the SOC and the capacity of the battery mounted on the basis of the obtained OCV of the battery Estimating the SOC of the battery in which the error is reflected
Gt; sensor device. ≪ / RTI >
제1항에 있어서,
상기 제어부는 상기 배터리의 충전이 완료된 후 산출된 전류의 적산 값 및 상기 배터리의 용량 및 상기 용량에 특정 오차가 반영된 용량을 토대로 상기 배터리의 SOC 및 상기 용량에 특정 오차를 반영한 상기 배터리의 SOC를 산출하는 것
인 지능형 배터리 센서 장치.
The method according to claim 1,
The control unit calculates the SOC of the battery that reflects a specific error in the SOC of the battery and the capacity based on the integrated value of the current calculated after the charging of the battery is completed and the capacity of the battery and the capacity in which the specific error is reflected in the capacity To do
Gt; sensor device. ≪ / RTI >
차량에 장착된 배터리의 SOC 및 용량에 특정 오차가 반영된 상기 배터리의 SOC를 예측하는 단계;
상기 배터리의 충전이 완료될 때까지 전류 적산 값을 산출하는 단계;
예측된 각 SOC와, 상기 배터리의 충전 완료 후 산출된 전류 적산 값을 토대로 산출된 상기 배터리의 SOC, 상기 용량에 특정 오차를 반영한 상기 배터리의 SOC를 각각 비교하는 단계; 및
비교결과를 토대로 상기 배터리의 용량을 판단하여 판단된 상기 배터리의 용량에 따라 상기 배터리의 SOC를 산출하는 단계
를 포함하는 지능형 배터리 센서 장치의 동작 방법.
Estimating an SOC of the battery in which a specific error is reflected in SOC and capacity of the battery mounted in the vehicle;
Calculating a current integrated value until charging of the battery is completed;
Comparing each of the predicted SOCs and the SOC of the battery based on the current integrated value calculated after completion of charging the battery, and comparing the SOC of the battery that reflects the specific error with the capacity; And
Determining a capacity of the battery based on the result of the comparison, and calculating an SOC of the battery according to the determined capacity of the battery
Gt; sensor device according to any one of the preceding claims.
제4항에 있어서, 상기 예측하는 단계는,
상기 배터리가 파워 온 리셋된 경우, 상기 배터리의 안정화 상태에서 상기 센서부의 Recalibration이후 상기 배터리의 OCV를 획득하는 단계; 및
획득된 상기 배터리의 OCV를 토대로 장착된 상기 배터리의 SOC 및 상기 용량에 특정 오차가 반영된 상기 배터리의 SOC를 예측하는 단계를 포함하는 것
인 지능형 배터리 센서 장치의 동작 방법.
5. The method of claim 4,
Acquiring an OCV of the battery after a recalibration of the sensor unit in a stabilized state of the battery when the battery is powered on reset; And
And estimating an SOC of the battery mounted on the basis of the obtained OCV of the battery and a SOC of the battery in which a specific error is reflected in the capacity
The method comprising:
제4항에 있어서, 상기 비교하는 단계는,
산출된 전류의 적산 값 및 상기 배터리의 용량 및 상기 용량에 특정 오차가 반영된 용량을 토대로 상기 배터리의 SOC 및 상기 용량에 특정 오차를 반영한 상기 배터리의 SOC를 산출하는 단계를 포함하는 것
인 지능형 배터리 센서 장치의 동작 방법.


5. The method of claim 4,
And calculating the SOC of the battery that reflects a specific error in the SOC of the battery and the capacity based on the integrated value of the calculated current, the capacity of the battery, and the capacity in which the specific error is reflected in the capacity
The method comprising:


KR1020130116455A 2013-09-30 2013-09-30 Intelligent Battery Sensor Apparatus and Method thereof Active KR102079038B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130116455A KR102079038B1 (en) 2013-09-30 2013-09-30 Intelligent Battery Sensor Apparatus and Method thereof
CN201410424325.2A CN104518247B (en) 2013-09-30 2014-08-26 Intelligent battery sensor apparatus and working method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130116455A KR102079038B1 (en) 2013-09-30 2013-09-30 Intelligent Battery Sensor Apparatus and Method thereof

Publications (2)

Publication Number Publication Date
KR20150037144A true KR20150037144A (en) 2015-04-08
KR102079038B1 KR102079038B1 (en) 2020-02-19

Family

ID=52793205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130116455A Active KR102079038B1 (en) 2013-09-30 2013-09-30 Intelligent Battery Sensor Apparatus and Method thereof

Country Status (2)

Country Link
KR (1) KR102079038B1 (en)
CN (1) CN104518247B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594560A (en) * 2020-04-30 2021-11-02 宁德时代新能源科技股份有限公司 Battery module, battery pack and device
KR20230100209A (en) * 2021-12-28 2023-07-05 주식회사 유라코퍼레이션 Battery management system and reconfiguration method for battery pack using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223154A1 (en) 2016-11-23 2018-05-24 Robert Bosch Gmbh battery unit
US20190308630A1 (en) * 2018-04-10 2019-10-10 GM Global Technology Operations LLC Battery state estimation based on open circuit voltage and calibrated data
DE102019219427A1 (en) * 2019-12-12 2021-06-17 Robert Bosch Gmbh Method for monitoring an energy store in a motor vehicle
CN112397798B (en) * 2020-11-13 2022-04-26 上汽大众汽车有限公司 Power battery management system and matching method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080000160A (en) * 2006-06-26 2008-01-02 삼성에스디아이 주식회사 Battery SOC estimation method, battery management system and driving method using same
JP2012058028A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Battery capacity calculation apparatus and battery capacity calculation method
KR20120138733A (en) * 2010-03-05 2012-12-26 파나소닉 주식회사 Full charge capacity value correction circuit, battery pack, and charging system
KR20130105123A (en) * 2012-03-16 2013-09-25 주식회사 엘지화학 Apparatus and method for estimating battery state

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805116B1 (en) * 2006-09-08 2008-02-21 삼성에스디아이 주식회사 Battery management system and its driving method
CN102246385B (en) * 2008-10-10 2015-07-29 艾默吉电力系统股份有限公司 Method and apparatus for determining the state of charge of a battery
KR20130017740A (en) * 2011-08-11 2013-02-20 현대자동차주식회사 Method for estimating state of charge in battery
KR101863036B1 (en) * 2011-11-30 2018-06-01 주식회사 실리콘웍스 Method for estimating the state of charge of battery and battery management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080000160A (en) * 2006-06-26 2008-01-02 삼성에스디아이 주식회사 Battery SOC estimation method, battery management system and driving method using same
KR20120138733A (en) * 2010-03-05 2012-12-26 파나소닉 주식회사 Full charge capacity value correction circuit, battery pack, and charging system
JP2012058028A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Battery capacity calculation apparatus and battery capacity calculation method
KR20130105123A (en) * 2012-03-16 2013-09-25 주식회사 엘지화학 Apparatus and method for estimating battery state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594560A (en) * 2020-04-30 2021-11-02 宁德时代新能源科技股份有限公司 Battery module, battery pack and device
CN113594560B (en) * 2020-04-30 2024-03-19 宁德时代新能源科技股份有限公司 Battery modules, battery packs and devices
KR20230100209A (en) * 2021-12-28 2023-07-05 주식회사 유라코퍼레이션 Battery management system and reconfiguration method for battery pack using the same

Also Published As

Publication number Publication date
KR102079038B1 (en) 2020-02-19
CN104518247A (en) 2015-04-15
CN104518247B (en) 2017-04-12

Similar Documents

Publication Publication Date Title
US8175826B2 (en) Apparatus for estimating open circuit voltage of battery, apparatus for estimating state of charge of battery, and method for controlling the same
US10386420B2 (en) Secondary battery degradation determination method and secondary battery degradation determination device
US9759779B2 (en) State of charge estimation device and method of estimating state of charge
JP6460860B2 (en) Method for estimating the health of battery cells
EP3663780B1 (en) Deterioration state computation method and deterioration state computation device
JP6234946B2 (en) Battery state estimation device
KR102080632B1 (en) Battery management system and its operating method
US8046181B2 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
CN103176135B (en) battery aging evaluation method
EP3106892B1 (en) State estimation device and state estimation method
US9081068B2 (en) Method and apparatus for determining a capacity of a battery
WO2017000912A2 (en) Battery state of health detection device and method
US20120293131A1 (en) Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery
KR20150037144A (en) Intelligent Battery Sensor Apparatus and Method thereof
JP5535968B2 (en) CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM
EP3166174A1 (en) Battery degradation level estimation device and battery degradation level estimation method
KR20150121526A (en) Method and device to estimate battery lifetime during driving of electrical vehicle
JP2009257784A (en) Method for detecting charged state of battery
US20140100803A1 (en) Power estimation device for estimating chargeable/dischargeable power of electric storage device, electric storage apparatus, and method of estimating chargeable/dischargeable power
CA2931084A1 (en) Power storage system and charging method for secondary battery
US20170227607A1 (en) Schemes capable of efficiently and accurately estimating and/or predicting available battery capacity and battery aging factor
CN103823184B (en) The battery nominal capacity presumption method that intelligent battery sensor and utilization are calculated repeatedly
CN101443949A (en) Method and apparatus for controlling battery
KR101946877B1 (en) Apparatus and method thereof for presuming state of charge of battery
KR20180082020A (en) device for detecting the state of charge of a battery

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20130930

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20180927

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20130930

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20190718

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20191224

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200213

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200214

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20250124

Start annual number: 6

End annual number: 6