[go: up one dir, main page]

KR20190053071A - Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same - Google Patents

Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same Download PDF

Info

Publication number
KR20190053071A
KR20190053071A KR1020180040997A KR20180040997A KR20190053071A KR 20190053071 A KR20190053071 A KR 20190053071A KR 1020180040997 A KR1020180040997 A KR 1020180040997A KR 20180040997 A KR20180040997 A KR 20180040997A KR 20190053071 A KR20190053071 A KR 20190053071A
Authority
KR
South Korea
Prior art keywords
weight
reaction
parts
coating agent
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020180040997A
Other languages
Korean (ko)
Other versions
KR101996331B1 (en
Inventor
최종화
김영삼
Original Assignee
주식회사 제이에이치켐텍
최종화
김영삼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이에이치켐텍, 최종화, 김영삼 filed Critical 주식회사 제이에이치켐텍
Priority to KR1020180040997A priority Critical patent/KR101996331B1/en
Publication of KR20190053071A publication Critical patent/KR20190053071A/en
Application granted granted Critical
Publication of KR101996331B1 publication Critical patent/KR101996331B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to an organic-inorganic hybrid coating agent, capable of generally exhibiting excellent physical properties, a preparing method thereof, and a coating agent composition including the same. The organic-inorganic hybrid coating agent of the present invention comprises: a glycidyl group-containing ether-based compound in the presence of an acid catalyst; a carboxyl group-containing compound; a silane compound; and a primary reactant.

Description

고인화점/고내후성 유-무기 하이브리드 코팅제, 이의 제조방법 및 이를 포함하는 코팅제 조성물{ORGANIC-INORGANIC HYBRID MATERIAL COATING AGENT, METHOD FOR MANUFACTURING THE SAME AND COATING AGENT COMPOSITION COMPRISING THE SAME}TECHNICAL FIELD The present invention relates to a high-flash point / high weather-resistant organic-inorganic hybrid coating agent, a method for producing the same, and a coating composition containing the same. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 유기물과 무기물이 결합된 고인화점/고내후성을 가진 유-무기 하이브리드 코팅제, 상기 코팅제의 제조방법 및 상기 코팅제를 포함하는 코팅제 조성물에 관한 것이다.The present invention relates to an organic-inorganic hybrid coating material having a high flash point / high weather resistance combined with an organic material and an inorganic material, a process for producing the coating material, and a coating composition comprising the coating material.

일반적으로 유기계 코팅제로는 에폭시계 코팅제, 우레탄계 코팅제, 아크릴계 코팅제 등을 들 수 있다. 그런데 상기 유기계 코팅제는 표면경도, 내마모성, 내화학성, 내오염성, 내열성 등의 물성을 요구되는 수준 이상으로 얻는데 한계를 나타내고 있다.In general, organic coating agents include epoxy-based coating agents, urethane-based coating agents, and acrylic-based coating agents. However, the organic coating agent has a limitation in obtaining physical properties such as surface hardness, abrasion resistance, chemical resistance, stain resistance, and heat resistance beyond a required level.

이에 따라 상기 유기계 코팅제보다 우수한 물성을 나타내는 유-무기 하이브리드 코팅제가 개발된 바 있다(하기 특허문헌 참조). 상기 유-무기 하이브리드 코팅제는 상기 유기계 코팅제에 비해 우수한 물성을 나타냄에도 불구하고 원료자체와 제조공정 상의 한계로 인해 내후성이 떨어지고 인화성이 높은 문제점이 있다. 또한 스프레이 작업 시 비산 등으로 인해 작업성이 떨어지며 빠른 경화 속도로 인해 이색발생, 층간 부착 저하 등이 유발되는 문제점도 있다.As a result, an organic-inorganic hybrid coating agent exhibiting superior physical properties than the organic coating agent has been developed (see Patent Literature). Although the organic-inorganic hybrid coating exhibits excellent physical properties as compared with the organic coating, there is a problem that the weatherability is low and the flammability is high due to limitations of the raw material itself and the manufacturing process. In addition, the workability is lowered due to scattering during spraying, and there is a problem that generation of unusual color due to fast curing speed and deterioration of adhesion between layers are caused.

상기 문제점들로 인해 상기 유-무기 하이브리드 코팅제는 우수한 물성을 가지고 있음에도 불구하고 국내외 시장 확대에 어려움을 겪고 있다. 따라서 전반적으로 물성이 우수한 유-무기 하이브리드 코팅제의 개발이 요구되고 있는 실정이다.Due to the above problems, the oil-and-inorganic hybrid coatings have difficulty in expanding the domestic and overseas market even though they have excellent physical properties. Therefore, development of an organic-inorganic hybrid coating material having excellent physical properties is required.

대한민국 등록특허 제10-0956752호Korean Patent No. 10-0956752

본 발명은 표면경도, 내마모성, 내화학성, 내열성, 내오염성과 더불어 내후성이 우수하고 인화성이 낮은 유-무기 하이브리드 코팅제를 제공한다.The present invention provides an organic-inorganic hybrid coating material having excellent weather resistance and low flammability in addition to surface hardness, abrasion resistance, chemical resistance, heat resistance, and contamination resistance.

또한 본 발명은 상기 유-무기 하이브리드 코팅제의 제조방법을 제공한다.The present invention also provides a process for preparing the above-mentioned organic-inorganic hybrid coating agent.

또 본 발명은 상기 유-무기 하이브리드 코팅제를 포함하는 코팅제 조성물을 제공한다.The present invention also provides a coating composition comprising the oil-inorganic hybrid coating.

상기 과제를 해결하기 위해 본 발명은, 산 촉매 존재 하에 글리시딜기 함유 에테르계 화합물; 카르복실기 함유 화합물; 실란 화합물; 및 무기계 전구체의 가수분해반응 및 결합반응에 의해 얻어진 1차 반응물을 포함하는 유-무기 하이브리드 코팅제를 제공한다.In order to solve the above-mentioned problems, the present invention provides a process for producing a glycidyl group-containing ether compound, A carboxyl group-containing compound; Silane compounds; And a primary reaction product obtained by a hydrolysis reaction and a coupling reaction of an inorganic precursor.

또한 본 발명은, a) 산 촉매 존재 하에 글리시딜기 함유 에테르계 화합물, 실란 화합물 및 카르복실기 함유 화합물의 가수분해반응 및 결합반응을 진행하여 제1 생성물을 얻는 단계; b) 산 촉매 존재 하에 무기계 전구체 및 실란 화합물의 가수분해반응 및 결합반응을 진행하여 제2 생성물을 얻는 단계; 및 c) 상기 제1 생성물과 상기 제2 생성물을 반응시켜 1차 반응물을 얻는 단계를 포함하는 유-무기 하이브리드 코팅제의 제조방법을 제공한다.The present invention also relates to a method for producing a glycidyl group-containing compound, which comprises the steps of: a) conducting a hydrolysis reaction and a coupling reaction of a glycidyl group-containing ether compound, a silane compound and a carboxyl group-containing compound in the presence of an acid catalyst to obtain a first product; b) subjecting the inorganic precursor and the silane compound to a hydrolysis reaction and a coupling reaction in the presence of an acid catalyst to obtain a second product; And c) reacting the first product with the second product to obtain a first reaction product.

또 본 발명은, 상기 유-무기 하이브리드 코팅제를 포함하는 주제부; 및 아민계 경화제를 포함하는 경화제부를 포함하는 코팅제 조성물을 제공한다.The present invention also relates to a method of manufacturing an organic electroluminescent device, comprising: a main portion including the organic-inorganic hybrid coating; And a curing agent portion comprising an amine curing agent.

본 발명의 유-무기 하이브리드 코팅제는 플렉시블(flexible)한 도막을 형성하면서 도막의 내후성을 높일 수 있는 유기물과 도막의 표면경도, 내마모성, 내화학성, 내열성, 내오염성을 높일 수 있는 무기물이 결합되어 있다. 따라서 본 발명은 종래의 유-무기 하이브리드 코팅제에 비해 전반적으로 우수한 물성을 나타낼 수 있는 유-무기 하이브리드 코팅제를 제공할 수 있다.The organic-inorganic hybrid coating of the present invention is combined with an inorganic material capable of enhancing the weatherability of a coating film while forming a flexible coating film and capable of enhancing the surface hardness, abrasion resistance, chemical resistance, heat resistance and stain resistance of the coating film . Accordingly, the present invention can provide an organic-inorganic hybrid coating agent which can exhibit overall excellent physical properties over conventional organic-inorganic hybrid coating agents.

또한 본 발명의 유-무기 하이브리드 코팅제는 인화점이 높아 안전성이 우수하기 때문에 취급 및 이동에 소비되는 비용이 최소화되어 경제성을 확보할 수 있다.In addition, since the organic-inorganic hybrid coating agent of the present invention has a high flash point and is excellent in safety, the cost for handling and transportation can be minimized, and economical efficiency can be secured.

도 1은 본 발명의 유-무기 하이브리드 코팅제를 설명하기 위한 참고도이다.
도 2는 본 발명의 유-무기 하이브리드 코팅제의 제조방법을 설명하기 위한 참고도이다.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a reference diagram for explaining the organic-inorganic hybrid coating agent of the present invention. Fig.
2 is a reference diagram for explaining a method for producing the organic-inorganic hybrid coating agent of the present invention.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 플렉시블(flexible)한 도막을 형성하면서 도막의 내후성을 높일 수 있는 유기물과 도막의 표면경도, 내마모성, 내화학성, 내열성, 내오염성을 높일 수 있는 무기물이 결합된 유-무기 하이브리드 코팅제(이하, '코팅제'라 함), 이의 제조방법 및 이를 포함하는 코팅제 조성물에 관한 것으로, 이에 대해 구체적으로 설명하면 다음과 같다.The present invention relates to an organic-inorganic hybrid coating agent (hereinafter referred to as " inorganic coating composition ") having an inorganic substance capable of enhancing the weatherability of a coating film while forming a flexible coating film and capable of enhancing the surface hardness, abrasion resistance, chemical resistance, , 'Coating agent'), a process for producing the same, and a coating composition containing the same, which will be described in detail as follows.

1. 코팅제1. Coating

본 발명의 코팅제는 산 촉매 존재 하에 글리시딜기 함유 에테르계 화합물, 카르복실기 함유 화합물, 실란 화합물, 및 무기계 전구체의 가수분해반응 및 결합반응에 의해 얻어진 1차 반응물을 포함한다.The coating agent of the present invention includes a primary reaction product obtained by hydrolysis and coupling reaction of a glycidyl group-containing ether compound, a carboxyl group-containing compound, a silane compound, and an inorganic precursor in the presence of an acid catalyst.

더불어, 본 발명의 코팅제는 산 촉매 존재 하에 금속 알콕사이드 및 상기 1차 반응물의 가수분해반응 및 결합반응에 의해 얻어진 2차 반응물을 포함할 수 있다.In addition, the coating agent of the present invention may include a metal alkoxide in the presence of an acid catalyst and a secondary reaction product obtained by a hydrolysis reaction and a coupling reaction of the primary reaction product.

또한, 본 발명의 코팅제는 킬레이트제 및 상기 2차 반응물의 결합반응에 의해 얻어진 3차 반응물을 포함할 수 있다.In addition, the coating agent of the present invention may include a chelating agent and a tertiary reaction product obtained by a coupling reaction of the secondary reaction product.

구체적으로 상기 1차 반응물은 산 촉매(제1 산 촉매)(a1) 존재 하에 글리시딜기 함유 에테르계 화합물(a2), 카르복실기 함유 화합물(a4) 및 실란 화합물(제2 실란 화합물)(a3)의 가수분해반응 및 결합반응에 의해 얻어진 제1 생성물(a)과,Specifically, the first reactant is an acid catalyst (first acid catalyst) (a 1) a glycidyl group-containing ether compound (a 2), the carboxyl group-containing compound (a 4) and the silane compound (a second silane compound) in the presence ( a first product (a) as obtained by the hydrolysis reaction and the coupling reaction of a 3),

산 촉매(제2 산 촉매)(b1) 존재 하에 무기계 전구체(b2) 및 실란 화합물(제2 실란 화합물)(b3)의 가수분해반응 및 결합반응에 의해 얻어진 제2 생성물(b)이 반응된 것일 수 있다.The acid catalyst (second acid catalyst) (b 1) in the presence inorganic precursor (b 2) and silane compound (second silane compound) (b 3) the second product obtained by the hydrolysis reaction and binding reactions (b) is It may be reacted.

상기 글리시딜기 함유 에테르계 화합물은 특별히 한정되지 않으나, 1,4-부탄디올 디글리시딜 에테르(1,4-Butanediol diglycidyl ether), 1,6-헥산디올 디글리시딜 에테르(1,6-Hexanediol diglycidyl ether), 네오펜틸 글리콜 디글리시딜 에테르(Neopentyl glycol diglycidyl ether), 1,4-시클로헥산 디메탄올 디글리시딜 에테르(1,4-Cyclohexane dimethanol diglycidyl ether), 폴리프로필렌 글리콜 디글리시딜 에테르(Polypropylene glycol diglycidyl ether) 및 에틸렌 글리콜 디글리시딜 에테르(Ethylene glycol diglycidyl ether)로 이루어진 군에서 선택될 수 있다.Examples of the glycidyl group-containing ether compound include, but are not limited to, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether (1,6- Hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,4-cyclohexane dimethanol diglycidyl ether, polypropylene glycol diglycidyl ether, A polypropylene glycol diglycidyl ether and an ethylene glycol diglycidyl ether.

상기 글리시딜기 함유 에테르계 화합물 중 네오펜틸 글리콜 디글리시딜 에테르(Neopentyl glycol diglycidyl ether)는 하기 화학식 1로 표시되는 화합물이고,Among the glycidyl group-containing ether compounds, neopentyl glycol diglycidyl ether is a compound represented by the following formula (1)

Figure pat00001
Figure pat00001

1,4-시클로헥산 디메탄올 디글리시딜 에테르는 하기 화학식 2로 표시되는 화합물이고,1,4-cyclohexanedimethanol diglycidyl ether is a compound represented by the following formula (2)

Figure pat00002
Figure pat00002

폴리프로필렌 글리콜 디글리시딜 에테르는 하기 화학식 3으로 표시되는 화합물이다. The polypropylene glycol diglycidyl ether is a compound represented by the following formula (3).

Figure pat00003
Figure pat00003

상기 카르복실기 함유 화합물은 특별히 한정되지 않으나, 1,4-시클로헥산 디카르복시산(1,4-Cyclohexane dicarboxylic Acid)일 수 있다. 상기 1,4-시클로헥산 디카르복시산은 하기 화학식 4로 표시되는 화합물이다. The carboxyl group-containing compound is not particularly limited, but may be 1,4-cyclohexane dicarboxylic acid. The 1,4-cyclohexanedicarboxylic acid is a compound represented by the following formula (4).

Figure pat00004
Figure pat00004

여기서 상기 글리시딜기 함유 에테르계 화합물과 상기 카르복실기 함유 화합물은 본 발명의 코팅제에 유기물을 부여하는 전구체 역할을 하는 것으로, 이들 화합물에 의해 본 발명의 코팅제는 clouding point를 갖지 않아 저온(예를 들어, 동절기)에서 보관하더라도 석출이 발생하는 것을 방지할 수 있다. 또한 이들 화합물에 의해 본 발명의 코팅제의 점도를 상승시킬 수 있고, 상기 코팅제를 포함하는 코팅제 조성물로 도막을 형성할 경우, 플렉시블(Flexible)하면서 내후성, 내알카리성 등이 우수한 도막을 형성할 수 있다. Here, the glycidyl group-containing ether compound and the carboxyl group-containing compound serve as precursors for imparting an organic substance to the coating agent of the present invention. The coating agent of the present invention does not have a clouding point and can be used at a low temperature (for example, Precipitation can be prevented even if stored in the winter season. Further, the viscosity of the coating agent of the present invention can be increased by these compounds, and when a coating film is formed using the coating composition containing the coating agent, a coating film which is flexible and has excellent weather resistance and alkali resistance can be formed.

상기 무기계 전구체는 특별히 한정되지 않으나, 알루미늄으로 말단화된 콜로이달 실리카(Aluminium terminated colloidal silica)일 수 있다. 상기 알루미늄으로 말단화된 콜로이달 실리카는 도 1에 도시된 바와 같이 표면에 OH기를 갖는 구조로 이루어져 있다. 이러한 알루미늄으로 말단화된 콜로이달 실리카는 pH가 1 내지 3으로 산성이며, 30 중량부의 실라카가 함유된 무기계 전구체로, 가수분해반응에서 인화성 물질인 알코올류가 발생하지 않아 본 발명의 코팅제의 인화성을 낮추는데 기여할 수 있다. 또한 원료 자체에 물이 함유되어 있어 가수분해반응에 필요한 물을 제공하는 역할을 할 수 있다.The inorganic precursor is not particularly limited, but may be aluminum terminated colloidal silica. The aluminum-terminated colloidal silica has a structure having an OH group on its surface as shown in Fig. The aluminum-terminated colloidal silica is an inorganic precursor having an acidity of pH 1 to 3 and containing 30 parts by weight of silacar. Since the alcohol as a flammable substance is not generated in the hydrolysis reaction, the flammability of the coating material of the present invention Can contribute to lowering. In addition, since the raw material itself contains water, it can serve to provide water required for the hydrolysis reaction.

상기 실란 화합물(제1 실란 화합물 및 제2 실란 화합물)은 특별히 한정되지 않으나, 3-메타크릴옥시프로필트리메톡시 실란(3-methacryloxypropyltrimethoxy silane), 3-비닐트리메톡시 실란(3-vinyltrimethoxy silane), 3-이소시아나토프로필트리메톡시 실란(3-isocyanatopropyltrimethoxy silane), 3-이소시아나토프로필트리에톡시 실란(3-isocyanatopropyltriethoxy silane), 3-글리시독시프로필트리메톡시 실란(3-glycidoxypropyltrimethoxy silane) 및 3-글리시독시프로필트리에톡시 실란(3-glycidoxypropyltriethoxy silane)으로 이루어진 군에서 선택된 1종 이상일 수 있다.The silane compound (the first silane compound and the second silane compound) is not particularly limited, but 3-methacryloxypropyltrimethoxy silane, 3-vinyltrimethoxy silane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxy silane, 3-glycidoxypropyltrimethoxy silane, 3-isocyanatopropyltrimethoxysilane, ) And 3-glycidoxypropyltriethoxy silane. [0034] The term " a "

상기 2차 반응물은 산 촉매(제3 산 촉매)(c1) 존재 하에 상기 1차 반응물(c2)과 금속 알콕사이드(c3)의 가수분해반응 및 결합반응에 의해 얻어진 것으로, 이때, 상기 금속 알콕사이드는 테트라메틸오르토 실리케이트(Tetramethylortho silicate), 또는 테트라에틸오르토 실리케이트(Tetraethylortho silicate)일 수 있다.The second reactant is obtained by a hydrolysis reaction and a coupling reaction of the first reactant (c 2 ) and the metal alkoxide (c 3 ) in the presence of an acid catalyst (a third acid catalyst) c 1 , The alkoxide may be tetramethylortho silicate, or tetraethylortho silicate.

구체적으로 상기 금속 알콕사이드 중 테트라메틸오르토 실리케이트는 하기 화학식 5로 표시되는 화합물이고, Specifically, tetramethyl orthosilicate among the metal alkoxides is a compound represented by the following formula (5)

Figure pat00005
Figure pat00005

테트라에틸오르토 실리케이트는 하기 화학식 6으로 표시되는 화합물이다.Tetraethylorthosilicate is a compound represented by the following formula (6).

Figure pat00006
Figure pat00006

여기서 상기 무기계 전구체와 상기 실란 화합물과 상기 금속 알콕사이드는 본 발명의 코팅제에 무기물을 부여하는 전구체 역할을 하는 것으로, 이들 화합물에 의해 본 발명의 코팅제를 포함하는 코팅제 조성물로 도막을 형성할 경우, 표면경도가 높고 내마모성, 내화학성, 내열성, 내오염성 등이 우수한 도막을 형성할 수 있다.The inorganic precursor, the silane compound and the metal alkoxide serve as precursors for imparting an inorganic substance to the coating agent of the present invention. When a coating film is formed from the coating composition containing the coating agent of the present invention by these compounds, And a coating film excellent in abrasion resistance, chemical resistance, heat resistance, stain resistance and the like can be formed.

상기 3차 반응물은 상기 2차 반응물(d1)과 킬레이트제(d2)의 결합반응에 의해 얻어진 것으로, 이때, 상기 킬레이트제는 옥살산, 붕산, 이미노디아세트산, 말론산, 숙신산 및 말산으로 이루어진 군에서 선택된 1종 이상일 수 있다.The third reactant is obtained by a reaction between the second reactant (d 1 ) and a chelating agent (d 2 ), wherein the chelating agent is selected from oxalic acid, boric acid, iminodiacetic acid, malonic acid, succinic acid and malic acid Lt; / RTI >

이러한 3차 반응물은 일례로 하기 화학식 7과 같은 구조로 표시될 수 있다.Such a tertiary reactant may be represented by the following formula (7), for example.

Figure pat00007
Figure pat00007

이와 같은 본 발명의 코팅제를 얻기 위해 사용(가수분해반응에 사용) 되는 상기 산 촉매(제1 산 촉매, 제2 산 촉매 및 제3 산 촉매)는 특별히 한정되지 않으나, 인산, 염산, 질산, 황산 및 아세트산으로 이루어진 군에서 선택된 1종 이상일 수 있다.The acid catalyst (the first acid catalyst, the second acid catalyst, and the third acid catalyst) to be used for obtaining the coating agent of the present invention (used in the hydrolysis reaction) is not particularly limited, but phosphoric acid, hydrochloric acid, And acetic acid.

또한 본 발명의 코팅제를 얻기 위한 상기 가수분해반응 및 상기 결합반응에는 용제가 첨가될 수 있다. 이때, 용제는 특별히 한정되지 않으나, 인화점이 높고 저독성인 용제를 사용할 수 있다. 구체적으로 상기 용제는 디에틸렌 글리콜(Diethylene Glycol), 디에틸렌 글리콜 모노메틸에테르(Diethylene Glycol Monomethyl Ether), 디에틸렌 글리콜 모노에틸 에테르(Dietylene Glycol Monoethyl Ether), 디에틸렌 글리콜 모노에틸 에테르 아세테이트(Diethylene Glycol Monoethyl Ether Acetate), 디에틸렌 글리콜 모노부틸 에테르(Diethylene Glycol Monobutyl Ether), 디프로필렌 글리콜 모노에틸 에테르(Dipropylene Glycol Monomethyl Ether), 트리에틸렌 글리콜 모노부틸 에테르(Triethylene Glycol Monobutyl Ether) 및 2,2-Dimethyl-1,3-propanediol(2,2-디메틸-1,3-프로판디올)로 이루어진 군에서 선택된 1종 이상일 수 있다.A solvent may be added to the hydrolysis reaction and the coupling reaction to obtain the coating agent of the present invention. At this time, the solvent is not particularly limited, but a solvent having a high flash point and low toxicity can be used. Specifically, the solvent may be selected from the group consisting of diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether Ether Acetate, Diethylene Glycol Monobutyl Ether, Dipropylene Glycol Monomethyl Ether, Triethylene Glycol Monobutyl Ether and 2,2-Dimethyl-1 , 3-propanediol (2,2-dimethyl-1,3-propanediol).

이상에 따른 본 발명의 코팅제는 가수분해율이 80% 이하일 수 있다. 상기 가수분해율이 80%를 초과할 경우, 투명하지 않고 혼탁한 코팅제가 얻어질 수 있다. 또한 가수분해율이 80%를 초과하는 코팅제를 포함하는 코팅제 조성물로 도막을 형성할 경우, 표면경도, 내마모성, 내구성 등이 떨어지는 도막이 형성될 수 있다. 구체적으로 본 발명의 코팅제는 가수분해율이 40 내지 70%일 수 있고, 더 구체적으로는 55 내지 65%일 수 있다.The coating agent of the present invention may have a hydrolysis rate of 80% or less. When the hydrolysis ratio exceeds 80%, a transparent, turbid coating agent can be obtained. Further, when a coating film is formed with a coating composition containing a coating agent having a hydrolysis ratio exceeding 80%, a coating film having poor surface hardness, abrasion resistance, durability, and the like can be formed. Specifically, the coating of the present invention may have a hydrolysis rate of 40 to 70%, more specifically 55 to 65%.

여기서 상기 가수분해율은 하기 수학식에 의해 얻어진 값으로 정의될 수 있다.Here, the hydrolysis rate can be defined as a value obtained by the following equation.

Figure pat00008
Figure pat00008

구체적으로 상기 실란 화합물과 상기 금속 알콕사이드에서 가수분해반응이 각각 일어나는데, 이때, 실란 화합물과 금속 알콕사이드 각각의 완전 가수분해반응에 필요한 물의 양 대비 가수분해반응에 투입된 물의 양의 비율을 백분율로 나타낸 값이 상기 가수분해율을 의미할 수 있다. 여기서 가수분해반응에 사용되는 물은 상기 산 촉매와 알루미늄으로 말단화된 콜로이달 실리카에서 유래된 것일 수 있다.Specifically, a hydrolysis reaction occurs between the silane compound and the metal alkoxide. In this case, the ratio of the amount of water introduced into the hydrolysis reaction to the amount of water required for the complete hydrolysis reaction of the silane compound and the metal alkoxide, It may mean the hydrolysis rate. Wherein the water used in the hydrolysis reaction may be derived from the acid catalyst and the colloidal silica terminated with aluminum.

2. 코팅제의 제조방법2. Manufacturing method of coating agent

본 발명은 상술한 코팅제의 제조방법을 제공하는데, 이에 대해 구체적으로 설명하면 다음과 같다.The present invention provides a method for producing the above-described coating agent, which will be described in detail as follows.

a) 제1 생성물 수득a) Obtaining the first product

산 촉매 존재 하에 글리시딜기 함유 에테르계 화합물, 실란 화합물(제1 실란 화합물) 및 카르복실기 함유 화합물의 가수분해반응 및 결합반응을 진행하여 제1 생성물을 얻는다.The first product is obtained by proceeding the hydrolysis reaction and the coupling reaction of the glycidyl group-containing ether compound, the silane compound (first silane compound) and the carboxyl group-containing compound in the presence of an acid catalyst.

구체적으로 상기 글리시딜기 함유 에테르계 화합물은 산 촉매에 의해 글리시딜기(glycidyl)의 ring open이 일어나 말단에 OH기를 갖게 된다. 일례로, 산 촉매에 의해 하기와 같이 네오펜틸 글리콜 디글리시딜 에테르(Neopentyl glycol diglycidyl ether)의 ring open이 일어난 것을 들 수 있다.Specifically, the glycidyl group-containing ether-based compound has an OH group at the terminal thereof due to the ring opening of the glycidyl group by the acid catalyst. For example, ring opening of neopentyl glycol diglycidyl ether occurred by acid catalyst as described below.

Figure pat00009
Figure pat00009

또한 상기 실란 화합물의 산 촉매에 함유된 물에 의해 가수분해반응이 일어나 말단에 OH기를 갖게 된다. 일례로, 가수분해반응(부분 가수분해반응)에 의해 하기와 같이 비닐트리메톡시 실란이 말단에 OH기를 갖는 것을 들 수 있다.Further, the hydrolysis reaction is caused by the water contained in the acid catalyst of the silane compound, so that the OH group is present at the terminal. For example, vinyltrimethoxysilane having an OH group at the terminal thereof may be mentioned as follows by a hydrolysis reaction (partial hydrolysis reaction).

Figure pat00010
Figure pat00010

여기서 상기 실란 화합물(제1 실란 화합물)의 가수분해율(실란 화합물의 완전 가수분해반응에 필요한 물의 양 대비 가수분해반응에 투입된 물의 양의 비율)은 10 내지 30%일 수 있다. 상기 실란 화합물의 가수분해율을 10 내지 30%로 조절함에 따라 실란 화합물이 결합된 부분은 저분자량을 갖게 되어 본 발명의 코팅제가 기재에 과도하게 침투되는 것을 방지할 수 있다.Here, the hydrolysis rate of the silane compound (first silane compound) (the ratio of the amount of water introduced into the hydrolysis reaction to the amount of water required for the complete hydrolysis reaction of the silane compound) may be 10 to 30%. As the hydrolysis rate of the silane compound is adjusted to 10 to 30%, the silane compound bonded portion has a low molecular weight, which prevents the coating agent of the present invention from being excessively infiltrated into the substrate.

상기 ring open된 글리시딜기 함유 에테르계 화합물과 가수분해반응이 일어난 실란 화합물은 하기와 같이 산소 결합반응을 하게 되며,The ring-opened ether compound having a glycidyl group and the silane compound having undergone the hydrolysis reaction undergo an oxygen bonding reaction as described below,

Figure pat00011
Figure pat00011

여기에 카르복실기 함유 화합물이 결합되어 제1 생성물을 생성하게 된다.And the carboxyl group-containing compound is bonded thereto to produce the first product.

b) 제2 생성물 수득b) Obtaining the second product

산 촉매 존재 하에 무기계 전구체 및 실란 화합물(제2 실란 화합물)의 가수분해반응 및 결합반응을 진행하여 제2 생성물을 얻는다. 구체적으로 가수분해반응(부분 가수분해반응)이 일어난 실란 화합물(제2 실란 화합물)과 무기계 전구체가 산소 결합을 하여 제2 생성물을 생성하게 된다. 여기서 상기 실란 화합물(제2 실란 화합물)의 가수분해율(실란 화합물의 완전 가수분해반응에 필요한 물의 양 대비 가수분해반응에 투입된 물의 양의 비율)은 40 내지 60%일 수 있다.The hydrolysis reaction and the coupling reaction of the inorganic precursor and the silane compound (second silane compound) proceed in the presence of an acid catalyst to obtain a second product. Specifically, the silane compound (second silane compound) in which the hydrolysis reaction (partial hydrolysis reaction) takes place and the inorganic precursor are oxygen-bonded to produce the second product. Here, the hydrolysis rate of the silane compound (second silane compound) (the ratio of the amount of water introduced into the hydrolysis reaction to the amount of water required for the complete hydrolysis reaction of the silane compound) may be 40 to 60%.

이와 같이 무기계 전구체를 실란 화합물(제2 실란 화합물)과 반응시킬 경우, 무기계 전구체가 안정화되어 상기 제1 생성물과의 반응 과정에서 제1 생성물과 충돌이 일어나는 것을 방지할 수 있다.When the inorganic precursor is reacted with the silane compound (the second silane compound), the inorganic precursor is stabilized and the collision with the first product during the reaction with the first product can be prevented.

c) 1차 반응물 수득c) Obtain the first reactant

상기 제1 생성물과 상기 제2 생성물을 반응시켜 1차 반응물을 얻는다. 상기 제1 생성물과 상기 제2 생성물을 반응시키는 반응 온도는 특별히 한정되지 않으나, 반응시 발생한 용제(일례로, 메탄올)가 제거될 수 있도록 70℃ 이상(구체적으로는 70 내지 90℃)으로 조절될 수 있다.The first product and the second product are reacted to obtain a first reactant. The reaction temperature for reacting the first product and the second product is not particularly limited, but may be adjusted to 70 ° C or higher (specifically, 70 to 90 ° C) so that the solvent (for example, methanol) .

d) 2차 반응물 수득d) Obtaining the second reactant

한편, 본 발명의 코팅제의 제조방법은 산 촉매 존재 하에 금속 알콕사이드 및 상기 1차 반응물을 반응시켜 2차 반응물을 얻는 과정을 더 포함할 수 있다. 구체적으로 상기 금속 알콕사이드는 산 촉매에 함유된 물에 의해 가수분해반응(부분 가수분해반응)이 일어나 말단에 OH기를 갖게 되며, 가수분해반응이 일어난 금속 알콕사이드는 상기 1차 반응물과 결합하여 2차 반응물을 생성하게 된다.Meanwhile, the method for preparing a coating agent of the present invention may further include a step of reacting the metal alkoxide and the first reactant in the presence of an acid catalyst to obtain a second reactant. Specifically, the metal alkoxide is hydrolyzed (partially hydrolyzed) by water contained in the acid catalyst to have an OH group at the end, and the metal alkoxide in which the hydrolysis reaction has occurred is combined with the first reactant to form a second reactant .

여기서 상기 금속 알콕사이드의 가수분해율(금속 알콕사이드의 완전 가수분해반응에 필요한 물의 양 대비 가수분해반응에 투입된 물의 양의 비율)은 40 내지 60%일 수 있다. 상기 금속 알콕사이드의 가수분해율을 40 내지 60%로 조절함에 따라 금속 알콕사이드가 결합된 부분은 고분자량을 갖게 되어 본 발명의 코팅제를 포함하는 코팅제 조성물로 형성된 도막이 brittle해지거나 부착성이 저하되는 것을 방지할 수 있다.Here, the hydrolysis rate of the metal alkoxide (the ratio of the amount of water introduced into the hydrolysis reaction to the amount of water required for the complete hydrolysis reaction of the metal alkoxide) may be 40 to 60%. As the hydrolysis rate of the metal alkoxide is adjusted to 40 to 60%, the metal alkoxide-bonded portion has a high molecular weight, thereby preventing the coating film formed from the coating composition containing the coating agent of the present invention from being brittle or deteriorating in adhesion .

또한 상기 금속 알콕사이드와 상기 1차 반응물을 반응시키는 반응 온도는 특별히 한정되지 않으나, 반응시 발생한 용제(일례로, 에탄올)가 제거될 수 있도록 80℃ 이상(구체적으로는 80 내지 90℃)으로 조절될 수 있다.The reaction temperature for reacting the metal alkoxide with the first reactant is not particularly limited, but may be adjusted to 80 ° C or higher (specifically, 80 to 90 ° C) so that the solvent (for example, ethanol) .

e) 3차 반응물 수득e) Obtain tertiary reactant

더불어, 본 발명의 코팅제의 제조방법은 킬레이트제 및 상기 2차 반응물을 반응시켜 3차 반응물을 얻는 과정을 더 포함할 수 있다.In addition, the method of the present invention may further include a step of reacting the chelating agent and the second reactant to obtain a third reactant.

상술한 본 발명의 코팅제의 제조방법을 보다 구체적으로 설명하면 도 2에 도시된 바와 같이 나타낼 수 있다.The method for producing the coating agent of the present invention described above can be more specifically described as shown in FIG.

이상과 같이 본 발명은 실란 화합물과 금속 알콕사이드의 가수분해율을 각각 조절하여 저분자량(저점도) 부분과 고분자량(고점도) 부분이 서로 결합된 구조의 코팅제를 제조할 수 있으며, 이러한 코팅제로 인해 본 발명은 단단한 도막을 형성하면서도 기재에 대한 침투성 및 부착성이 우수한 코팅제 조성물을 제공할 수 있다.As described above, the present invention can produce a coating agent having a structure in which a low molecular weight (low viscosity) part and a high molecular weight (high viscosity) part are bonded to each other by controlling the hydrolysis rates of the silane compound and the metal alkoxide. The invention can provide a coating composition which is excellent in permeability and adhesion to a substrate while forming a hard coating film.

3. 코팅제 조성물3. Coating composition

본 발명은 상술한 코팅제를 포함하는 주제부 및 경화제부를 포함하는 코팅제 조성물을 제공하는데, 이에 대해 구체적으로 설명하면 다음과 같다.The present invention provides a coating composition comprising a main part including a coating agent and a curing agent part, which will be described in detail as follows.

본 발명의 코팅제 조성물에 포함되는 주제부는 도막을 형성하는 주 성분으로 상술한 코팅제를 포함한다.The main part included in the coating composition of the present invention includes the above-mentioned coating material as a main component for forming a coating film.

본 발명의 코팅제 조성물에 포함되는 경화제부는 상술한 코팅제의 경화반응을 유도하는 성분으로 경화제를 포함한다. 상기 경화제는 특별히 한정되지 않으나, Amine Hydrogen Equivalent Weight(A.H.E.W)가 55 내지 90 g/eq인 아민계 경화제일 수 있다.The curing agent part included in the coating composition of the present invention includes a curing agent as a component that induces the curing reaction of the above-mentioned coating agent. The curing agent is not particularly limited, but may be an amine-based curing agent having an Amine Hydrogen Equivalent Weight (A.H.E.W) of 55 to 90 g / eq.

구체적으로 상기 아민계 경화제는 폴리에테르디아민(Polyetherdiamine), 폴리에테르트리아민(Polyethertriamine) 및 시클로알리파틱 모디파이드 아민(Cycloaliphatic modified amine)으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 아민계 경화제로 폴리에테르디아민, 폴리에테르트리아민 및 시클로알리파틱 모디파이드 아민이 혼합된 경화제가 사용될 경우, 이들의 혼합비율은 3:4:3의 당량비일 수 있다. 상기 혼합비율로 혼합된 경화제를 사용할 경우, 코팅제 조성물의 지촉건조시간을 적절히 확보하면서 우수한 물성을 가지는 도막을 형성할 수 있다.Specifically, the amine-based curing agent may be at least one selected from the group consisting of polyetherdiamine, polyethertriamine, and cycloaliphatic modified amine. When a curing agent mixed with polyether diamine, polyether triamine and cycloaliphatic modifier amine is used as the amine curing agent, the mixing ratio thereof may be an equivalent ratio of 3: 4: 3. When the curing agent mixed at the above mixing ratio is used, a coating film having excellent physical properties can be formed while appropriately securing the tacky drying time of the coating composition.

한편 상기 주제부(100 중량부)에 대한 경화제의 비율을 {(Amine Hydrogen Equivalent Weight×100)/Epoxy Equivalent Weight}×K(K: 반응상수)로 나타낼 때, 상기 반응상수 K는 0.88이 적절할 수 있다.Meanwhile, when the ratio of the curing agent to the main part (100 parts by weight) is represented by {(Amine Hydrogen Equivalent Weight) × 100 / Epoxy Equivalent Weight} × K (K: reaction constant), the reaction constant K may be 0.88 have.

이와 같은 본 발명의 코팅제 조성물은 우수한 물성을 갖는 도막을 형성할 수 있기 때문에 플라스틱, 금속, 목재, 시멘트, 콘트리트, 유리 등으로 이루어진 기재를 코팅하는데 유용하게 사용될 수 있다.The coating composition of the present invention can be used for coating a substrate made of plastic, metal, wood, cement, concrete, glass or the like because it can form a coating film having excellent physical properties.

이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

5리터 4구 둥근바닥플라스크에 Neopentyl glycol diglycidyl ether 1,743g과, 2,2-Dimethyl-1,3-propanediol(100 중량부)에 1,4-Cyclohexane dicarboxylic acid(30 중량부)을 용해시킨 혼합액 348g과, Vinyltrimethoxysilane 697g과, Diethylene glycol monoethyl ether acetate 349g을 투입하고 상온에서 30분 동안 교반한 후, 질산(농도 9%) 33.3g을 dropwise하여 상온에서 120분 동안 추가 교반 및 반응시켜 혼합물1을 얻었다.348 g of a mixed solution obtained by dissolving 1,743 g of neopentyl glycol diglycidyl ether and 100 parts by weight of 2,2-dimethyl-1,3-propanediol in 1,4-cyclohexane dicarboxylic acid (30 parts by weight) in a 5-liter four- , 697 g of vinyltrimethoxysilane and 349 g of diethylene glycol monoethyl ether acetate. The mixture was stirred at room temperature for 30 minutes. 33.3 g of nitric acid (concentration: 9%) was dropwise added and further stirred and reacted at room temperature for 120 minutes to obtain Mixture 1.

다음, Vinyltrimethoxysilane 523g에 Diethylene glycol monoethyl ether acetate 87g이 섞인 혼합액에 질산(농도 9%) 26.5g을 dropwise시키고 30분 동안 교반 및 반응시켜 혼합물2를 얻었다. Next, 26.5 g of nitric acid (concentration 9%) was dropwise added to 523 g of vinyltrimethoxysilane and 87 g of diethylene glycol monoethyl ether acetate, and the mixture 2 was obtained by stirring and reacting for 30 minutes.

그 다음, 상기 혼합물2에, 수분산 Aluminium terminated colloidal silica 192g에 인산 4.2g이 섞인 혼합물을 투입하고 상온에서 90분 동안 교반 및 반응시켜 혼합물3을 얻었다.Then, a mixture of 4.2 g of phosphoric acid and 192 g of water-dispersed aluminum terminated colloidal silica was added to the mixture 2, and the mixture 3 was obtained by stirring and reacting at room temperature for 90 minutes.

다음, 상기 혼합물1과 상기 혼합물3을 섞은 후, 70로 승온시키고 120분 동안 교반 및 반응시킨 후, 배출 및 상온에서 저장하는 과정을 거쳐 코팅제(가수분해율: 77%)를 제조하였다.Next, the mixture 1 and the mixture 3 were mixed, heated to 70, stirred and reacted for 120 minutes, and discharged and stored at room temperature to prepare a coating agent (hydrolysis ratio: 77%).

5리터 4구 둥근바닥플라스크에 Neopentyl glycol diglycidyl ether 1,204g과, 2,2-Dimethyl-1,3-propanediol(100 중량부)에 1,4-Cyclohexane dicarboxylic acid(30 중량부)을 용해시킨 혼합액 180g과, Vinyltrimethoxysilane 602g과, Diethylene glycol monoethyl ether 241g을 투입하고 30분 동안 교반한 후, 질산(농도 9%) 23g을 투입하고 상온에서 120분 동안 교반 및 반응시켜 혼합물1을 얻었다.180 g of Neopentyl glycol diglycidyl ether and 180 g of 1,2-dimethyl-1,3-propanediol (100 parts by weight) and 1,4-cyclohexane dicarboxylic acid (30 parts by weight) were dissolved in a 5-liter four- , Vinyltrimethoxysilane (602 g) and Diethylene glycol monoethyl ether (241 g). The mixture was stirred for 30 minutes. Then, 23 g of nitric acid (concentration: 9%) was added thereto and stirred at room temperature for 120 minutes.

다음, Vinyltrimethoxysilane 602g에 Diethylene glycol monoethyl ether Acetate 120.4g을 투입하여 30분 동안 교반한 후, 질산 (농도 9%) 13.72g을 투입하고 30분 동안 교반 및 반응시켜 혼합물2를 얻었다.Subsequently, 120.4 g of diethylene glycol monoethyl ether acetate was added to 602 g of vinyltrimethoxysilane, stirred for 30 minutes, 13.72 g of nitric acid (concentration 9%) was added, and stirred and reacted for 30 minutes to obtain mixture 2.

그 다음, 상기 혼합물2에, 수분산 Aluminium terminated colloidal silica 180.58g에 인산 4.32g이 섞인 혼합물을 투입하고 60분 동안 상온에서 교반 및 반응시켜 혼합물3을 얻었다.Then, a mixture of 4.32 g of phosphoric acid and 180.58 g of water-dispersed aluminum terminated colloidal silica was added to the mixture 2, and the mixture 3 was obtained by stirring and reacting at room temperature for 60 minutes.

다음, 상기 혼합물1과 혼합물3을 섞은 후, 70로 승온시키고 120분 동안 교반 및 반응시켜 혼합물4를 얻었다.Next, the mixture 1 and the mixture 3 were mixed, and the mixture was heated to 70, and stirred and reacted for 120 minutes to obtain a mixture 4.

그 다음, Tetraethylorthosilicate 301g과 Diethylene glycol monoethyl ether 361g이 섞인 혼합물에 염산(9%) 38.52g을 dropwise시키고 60분 동안 교반 및 반응시켜 혼합물5를 얻었다.Then, 38.52 g of hydrochloric acid (9%) was dropwise added to a mixture of 301 g of tetraethylorthosilicate and 361 g of diethylene glycol monoethyl ether, and the mixture was stirred and reacted for 60 minutes to obtain a mixture 5.

다음, 상기 혼합물4와 혼합물5를 섞은 후, 70에서 60분 동안 교반시켰다. 교반 후, 염산(농도 9%) 36.11g을 dropwise시키고 80로 승온하여 120분 동안 교반 및 반응시켰다. 이후, 옥살산 8g을 투입하고 80에서 120분 동안 교반 및 반응시킨 후, 배출 및 상온에서 저장하는 과정을 거쳐 코팅제(가수분해율: 61.5%)를 제조하였다.Then, Mixture 4 and Mixture 5 were mixed, followed by stirring at 70 to 60 minutes. After stirring, 36.11 g of hydrochloric acid (concentration 9%) was dropwise added, the temperature was raised to 80, and the mixture was stirred and reacted for 120 minutes. Then, 8 g of oxalic acid was added, stirred and reacted for 80 to 120 minutes, and discharged and stored at room temperature to prepare a coating agent (hydrolysis rate: 61.5%).

[비교예 1] [Comparative Example 1]

5리터 4구 둥근바닥플라스크에 Polypropylene glycol diglycidyl ether 1,590g와, 2,2-Dimethyl-1,3-propanediol(100 중량부)에 1,4-Cyclohexane dicarboxylic acid(30 중량부)을 용해시킨 혼합액 159g과, Vinyltrimethoxysilane 1,431g을 투입하고 상온에서 30분 동안 교반 및 반응시킨 후, Diethylene glycol monoethyl ether acetate 477g을 투입하여 상온에서 30분 동안 추가로 교반시켰다. 교반 후, 질산 31.81g을 dropwise시킨 후, 상온에서 60분 동안 교반 및 반응시켜 혼합물1을 얻었다.159 g of a mixed solution obtained by dissolving 1,590 g of polypropylene glycol diglycidyl ether and 100 parts by weight of 2,2-dimethyl-1,3-propanediol in 1,4-cyclohexane dicarboxylic acid (30 parts by weight) And 1,431 g of Vinyltrimethoxysilane. The mixture was stirred at room temperature for 30 minutes and reacted. Then, 477 g of diethylene glycol monoethyl ether acetate was added and further stirred at room temperature for 30 minutes. After stirring, 31.81 g of nitric acid was dropwise added, followed by stirring and reaction at room temperature for 60 minutes to obtain a mixture 1.

다음, 수분산 Aluminium terminated colloidal silica 270.38g에 인산 5g을 dropwise하고 60분 동안 교반 및 반응시켜 혼합물2를 얻었다.Then, 5 g of phosphoric acid was dropwise added to 270.38 g of water-dispersed aluminum terminated colloidal silica, and the mixture 2 was obtained by stirring and reacting for 60 minutes.

그 다음, 상기 혼합물1과 상기 혼합물2를 섞고 상온에서 60분 동안 교반시킨 후, 질산(농도9%) 39.76g을 dropwise하고 70 로 승온시켜 120분 동안 교반 및 반응시킨 후, 배출 및 상온에서 저장하는 과정을 거쳐 코팅제(가수분해율: 88.8%)를 제조하였다.Then, the mixture 1 and the mixture 2 were mixed and stirred at room temperature for 60 minutes. Then, 39.76 g of nitric acid (concentration 9%) was dropwise added to the mixture, and the mixture was heated to 70. After stirring and reacting for 120 minutes, (Hydrolysis ratio: 88.8%) was prepared.

[비교예 2] [Comparative Example 2]

5리터 4구 둥근바닥플라스크에 Vinyltrimethoxysilane 1,469g과 Diethylene glycol monoethyl ether acetate 378g을 투입하고 상온에서 30분 동안 교반시킨 후, 질산(농도 9%) 18.98g을 dropwise하고 상온에서 30분 동안 다시 교반 및 반응시켜 혼합물1을 얻었다.1,469 g of Vinyltrimethoxysilane and 378 g of diethylene glycol monoethyl ether acetate were added to a 5 liter round bottom flask and stirred for 30 minutes at room temperature. 18.98 g of nitric acid (concentration 9%) was dropwise added and stirred again at room temperature for 30 minutes. To give Mixture 1.

다음, 수분산 Aluminium terminated colloidal silica 303.8g에 인산 15g이 dropwise된 혼합물을 상기 혼합물1에 투입한 후, 70 로 승온하고 120분 동안 교반 및 반응시켜 혼합물2를 얻었다.Next, a mixture of 15.8 g of phosphoric acid dropwise added to 303.8 g of water-dispersed aluminum terminated colloidal silica was added to the mixture 1, and the mixture was heated to 70 and stirred and reacted for 120 minutes to obtain a mixture 2.

그 다음, Neopentyl glycol diglycidyl ether 1,373g과, 2,2-Dimethyl-1,3-propanediol(100 중량부)에 1,4-Cyclohexane dicarboxylic acid(30 중량부)을 용해시킨 혼합액 227g과, Diethylene glycol monoethyl ether 170g이 혼합된 혼합물3을 상기 혼합물2에 투입한 후, 70에서 60분 동안 교반 및 반응시켰다. 교반 후, 염산(농도 9%) 28.47g을 dropwise시킨 후 120분 동안 교반 및 반응시켰다. 이후. 옥살산 7.59g을 투입하고 120 분 동안 교반 및 반응시킨 후, 배출 및 상온에서 저장하는 과정을 거쳐 코팅제(가수분해율: 87%)를 제조하였다.Next, 227 g of a mixture of 1,373 g of neopentyl glycol diglycidyl ether and 2,2-dimethyl-1,3-propanediol (100 parts by weight) dissolved in 30 parts by weight of 1,4-cyclohexane dicarboxylic acid, ether 170 g was mixed into the mixture 2, and then stirred and reacted for 70 to 60 minutes. After stirring, 28.47 g of hydrochloric acid (concentration 9%) was dropwise added, followed by stirring and reacting for 120 minutes. after. 7.59 g of oxalic acid was added thereto, stirred and reacted for 120 minutes, and discharged and stored at room temperature to prepare a coating agent (hydrolysis ratio: 87%).

[실험예 1] [Experimental Example 1]

실시예 1 및 실시예 2에서 제조된 코팅제의 인화점을 통상적인 방법으로 측정하였으며, 그 결과를 하기 표 1에 나타내었다.The flash points of the coatings prepared in Examples 1 and 2 were measured by a conventional method, and the results are shown in Table 1 below.

물성Properties 실시예 1Example 1 실시예 2Example 2 인화점(℃)Flash point (℃) 7878 7373

상기 표 1을 참조하면, 본 발명에 따른 실시예 1 및 실시예 2의 코팅제는 인화점이 높아 안전성이 우수한 것을 확인할 수 있다. 즉, 통상적으로 인화점이 낮아 위험물로 분류되는 인화점 기준온도는 62℃ 이하인데, 본 발명에 따른 실시예 1 및 실시예 2의 코팅제의 인화점은 모두 62℃를 초과하여 인화점이 높음에 따라 안전한 것을 확인할 수 있다. [제조예 1]Referring to Table 1, it can be confirmed that the coating agents of Examples 1 and 2 according to the present invention have high flash point and excellent safety. That is, the flash point temperature of the coating agent of Examples 1 and 2 according to the present invention is higher than 62 ° C., and it is confirmed that the flash point is safe due to the high flash point . [Production Example 1]

실시예 1에서 제조된 코팅제를 포함하는 주제부 100 중량부를 기준으로, 경화제부(Polyetherdiamine, Polyethertriamine 및 Cycloaliphatic modified amine의 단독 사용)를 하기 표 2의 조성으로 각각 혼합하여 코팅제 조성물을 각각 제조하였다.The coating composition was prepared by mixing each of the components shown in Table 2 below with 100 parts by weight of the main part containing the coating agent prepared in Example 1, using a polyetherdiamine (polyethertriamine and cycloaliphatic modified amine alone).

경화제부Hardener part 주제부Topic section 실시예1의 코팅제 100 중량부100 parts by weight of the coating agent of Example 1 실시예1의 코팅제 100 중량부100 parts by weight of the coating agent of Example 1 실시예1의 코팅제 100 중량부100 parts by weight of the coating agent of Example 1 실시예1의 코팅제 100 중량부100 parts by weight of the coating agent of Example 1 PolyetherdiaminePolyetherdiamine 23.17 중량부23.17 parts by weight 25.03 중량부25.03 parts by weight 26.88 중량부26.88 parts by weight 28.73 중량부28.73 parts by weight PolyethertriaminePolyethertriamine 33.91 중량부33.91 parts by weight 36.62 중량부36.62 parts by weight 39.33 중량부39.33 parts by weight 42.04 중량부42.04 parts by weight Cycloaliphatic modified amineCycloaliphatic modified amine 36.54 중량부36.54 parts by weight 39.11 중량부39.11 parts by weight 42.01 중량부42.01 parts by weight 45.63 중량부45.63 parts by weight

[제조예 2]실시예 2에서 제조된 코팅제를 포함하는 주제부 100 중량부를 기준으로, 경화제부(Polyetherdiamine, Polyethertriamine 및 Cycloaliphatic modified amine의 단독 사용)를 하기 표 3의 조성으로 각각 혼합하여 코팅제 조성물을 각각 제조하였다. [Production Example 2] A coating composition was prepared by mixing the curing agent (polyether diamine, polyethertriamine and cycloaliphatic modified amine alone) according to the composition shown in Table 3 on the basis of 100 parts by weight of the main part containing the coating agent prepared in Example 2, Respectively.

경화제부Hardener part 주제부Topic section 실시예2의 코팅제 100 중량부100 parts by weight of the coating agent of Example 2 실시예2의 코팅제 100 중량부100 parts by weight of the coating agent of Example 2 실시예2의 코팅제 100 중량부100 parts by weight of the coating agent of Example 2 실시예2의 코팅제 100 중량부100 parts by weight of the coating agent of Example 2 PolyetherdiaminePolyetherdiamine 21.49 중량부21.49 parts by weight 23.21 중량부23.21 parts by weight 24.93 중량부24.93 parts by weight 26.65 중량부26.65 parts by weight PolyethertriaminePolyethertriamine 31.45 중량부31.45 parts by weight 33.97 중량부33.97 parts by weight 36.48 중량부36.48 parts by weight 39 중량부39 parts by weight Cycloaliphatic modified amineCycloaliphatic modified amine 34.23 중량부34.23 parts by weight 36.29 중량부36.29 parts by weight 38.97 중량부38.97 parts by weight 41.46 중량부41.46 parts by weight

[비교제조예 1]비교예 1에서 제조된 코팅제를 포함하는 주제부 100 중량부를 기준으로, 경화제부(Polyetherdiamine, Polyethertriamine 및 Cycloaliphatic modified amine의 단독 사용)를 하기 표 4의 조성으로 각각 혼합하여 코팅제 조성물을 각각 제조하였다. [Comparative Preparation Example 1] A coating composition composition was prepared by mixing 100 parts by weight of a main component comprising the coating agent prepared in Comparative Example 1, and a curing agent part (polyethertriamine and cycloaliphatic modified amine alone) Respectively.

경화제부Hardener part 주제부Topic section 비교예1의 코팅제 100 중량부100 parts by weight of the coating agent of Comparative Example 1 비교예1의 코팅제 100 중량부100 parts by weight of the coating agent of Comparative Example 1 비교예1의 코팅제 100 중량부100 parts by weight of the coating agent of Comparative Example 1 비교예1의 코팅제 100 중량부100 parts by weight of the coating agent of Comparative Example 1 PolyetherdiaminePolyetherdiamine 15.3 중량부15.3 parts by weight 19.07 중량부19.07 parts by weight 22.9 중량부22.9 parts by weight 26.7 중량부26.7 parts by weight PolyethertriaminePolyethertriamine 20.98 중량부20.98 parts by weight 26.23 중량부26.23 parts by weight 31.47 중량부31.47 parts by weight 36.72 중량부36.72 parts by weight Cycloaliphatic modified amineCycloaliphatic modified amine 22.41 중량부22.41 parts by weight 28.02 중량부28.02 parts by weight 33.62 중량부33.62 parts by weight 39.22 중량부39.22 parts by weight

[비교제조예 2]비교예 2에서 제조된 코팅제를 포함하는 주제부 100 중량부를 기준으로, 경화제부(Polyetherdiamine, Polyethertriamine 및 Cycloaliphatic modified amine의 단독 사용)를 하기 표 5의 조성으로 각각 혼합하여 코팅제 조성물을 각각 제조하였다. [Comparative Preparation Example 2] A curing agent part (polyethertriamine and cycloaliphatic modified amine alone) of 100 parts by weight of the main part containing the coating agent prepared in Comparative Example 2 was mixed with the composition shown in Table 5 below to prepare a coating composition Respectively.

경화제부Hardener part 주제부Topic section 비교예2의 코팅제 100 중량부100 parts by weight of the coating agent of Comparative Example 2 비교예2의 코팅제 100 중량부100 parts by weight of the coating agent of Comparative Example 2 비교예2의 코팅제 100 중량부100 parts by weight of the coating agent of Comparative Example 2 비교예2의 코팅제 100 중량부100 parts by weight of the coating agent of Comparative Example 2 PolyetherdiaminePolyetherdiamine 15.3 중량부15.3 parts by weight 19.07 중량부19.07 parts by weight 22.9 중량부22.9 parts by weight 26.7 중량부26.7 parts by weight PolyethertriaminePolyethertriamine 20.98 중량부20.98 parts by weight 26.23 중량부26.23 parts by weight 31.47 중량부31.47 parts by weight 36.72 중량부36.72 parts by weight Cycloaliphatic modified amineCycloaliphatic modified amine 22.41 중량부22.41 parts by weight 28.02 중량부28.02 parts by weight 33.62 중량부33.62 parts by weight 39.22 중량부39.22 parts by weight

[실험예 2]제조예 1,2 및 비교제조예 1,2에서 각각 제조된 코팅제 조성물로 도막을 형성한 후, 형성된 도막의 물성을 각각 평가하였으며, 그 결과를 하기 표 6 내지 표 9에 나타내었다. [Experimental Example 2] Physical properties of the coating film formed after the coating compositions prepared in Production Examples 1 and 2 and Comparative Production Examples 1 and 2 were respectively evaluated, and the results are shown in Tables 6 to 9 below. .

제조예 1Production Example 1 연필경도Pencil hardness PolyetherdiaminePolyetherdiamine 2H2H 3H3H 2H2H HH PolyethertriaminePolyethertriamine 2H2H 3H3H 2H2H HH Cycloaliphatic modified amineCycloaliphatic modified amine 3H3H 4H4H 3H3H 2H2H 마모량(H-22, 1,000g, 500Cycle)Wear amount (H-22, 1,000g, 500 Cycle) PolyetherdiaminePolyetherdiamine 0.190.19 0.170.17 0.200.20 0.240.24 PolyethertriaminePolyethertriamine 0.180.18 0.170.17 0.210.21 0.230.23 Cycloaliphatic modified amineCycloaliphatic modified amine 0.170.17 0.160.16 0.180.18 0.210.21 지촉건조(25℃, 시간)Touch dry (25 ℃, time) PolyetherdiaminePolyetherdiamine 5.45.4 5.55.5 5.85.8 6.46.4 PolyethertriaminePolyethertriamine 5.75.7 5.95.9 6.16.1 6.36.3 Cycloaliphatic modified amineCycloaliphatic modified amine 1.41.4 1.51.5 1.71.7 2.12.1

제조예 2Production Example 2 연필경도Pencil hardness PolyetherdiaminePolyetherdiamine 3H3H 3H3H 2H2H HH PolyethertriaminePolyethertriamine 3H3H 3H3H 2H2H HH Cycloaliphatic modified amineCycloaliphatic modified amine 4H4H 4H4H 3H3H 2H2H 마모량(H-22, 1,000g, 500Cycle)Wear amount (H-22, 1,000g, 500 Cycle) PolyetherdiaminePolyetherdiamine 0.240.24 0.190.19 0.210.21 0.250.25 PolyethertriaminePolyethertriamine 0.230.23 0.190.19 0.210.21 0.270.27 Cycloaliphatic modified amineCycloaliphatic modified amine 0.210.21 0.180.18 0.20.2 0.250.25 지촉건조(25℃, 시간)Touch dry (25 ℃, time) PolyetherdiaminePolyetherdiamine 4.74.7 4.94.9 5.15.1 5.45.4 PolyethertriaminePolyethertriamine 5.25.2 5.35.3 5.65.6 5.95.9 Cycloaliphatic modified amineCycloaliphatic modified amine 1.31.3 1.41.4 1.71.7 1.91.9

비교제조예 1Comparative Preparation Example 1 연필경도Pencil hardness PolyetherdiaminePolyetherdiamine BB HBHB BB 2B2B PolyethertriaminePolyethertriamine BB HBHB BB 2B2B Cycloaliphatic modified amineCycloaliphatic modified amine BB 1H1H HBHB BB 마모량(H-22, 1,000g, 500Cycle)Wear amount (H-22, 1,000g, 500 Cycle) PolyetherdiaminePolyetherdiamine 0.410.41 0.360.36 0.420.42 0.480.48 PolyethertriaminePolyethertriamine 0.420.42 0.380.38 0.430.43 0.490.49 Cycloaliphatic modified amineCycloaliphatic modified amine 0.340.34 0.290.29 0.360.36 0.430.43 지촉건조(25℃, 시간)Touch dry (25 ℃, time) PolyetherdiaminePolyetherdiamine 6.56.5 6.86.8 7.17.1 7.37.3 PolyethertriaminePolyethertriamine 7.47.4 7.67.6 7.87.8 8.18.1 Cycloaliphatic modified amineCycloaliphatic modified amine 1.51.5 1.61.6 1.81.8 2.12.1

비교제조예 2Comparative Production Example 2 연필경도Pencil hardness PolyetherdiaminePolyetherdiamine BB BB BB 2B2B PolyethertriaminePolyethertriamine BB BB BB 2B2B Cycloaliphatic modified amineCycloaliphatic modified amine BB HBHB BB 2B2B 마모량(H-22, 1,000g, 500Cycle)Wear amount (H-22, 1,000g, 500 Cycle) PolyetherdiaminePolyetherdiamine 0.360.36 0.320.32 0.330.33 0.390.39 PolyethertriaminePolyethertriamine 0.310.31 0.290.29 0.320.32 0.340.34 Cycloaliphatic modified amineCycloaliphatic modified amine 0.280.28 0.250.25 0.290.29 0.320.32 지촉건조(25℃, 시간)Touch dry (25 ℃, time) PolyetherdiaminePolyetherdiamine 6.76.7 6.96.9 7.37.3 7.57.5 PolyethertriaminePolyethertriamine 7.47.4 7.57.5 7.97.9 8.18.1 Cycloaliphatic modified amineCycloaliphatic modified amine 1.61.6 1.71.7 1.91.9 2.12.1

상기 표 6 내지 표 9을 참조하면, 가수분해율이 80% 이하인 실시예 1 및 2의 코팅제가 적용된 코팅제 조성물로 형성된 도막은 경도가 높아 단단하며 마모량이 낮은 것을 확인할 수 있다. 반면에, 가수분해율이 80%를 초과하는 비교예 1 및 2의 코팅제가 적용된 코팅제 조성물로 형성된 도막은 경도가 낮아 무르며 마모량이 현저히 높은 것을 확인할 수 있다. 이러한 결과는 본 발명의 코팅제를 코팅제 조성물에 적용함에 따라 표면경도가 높고 내마모성, 내구성 등의 물성이 우수한 도막이 형성된다는 점을 뒷받침하는 것이다.Referring to Tables 6 to 9, it can be seen that the coating film formed from the coating composition of Examples 1 and 2 having a hydrolysis ratio of 80% or less has a high hardness and a low wear amount. On the other hand, it can be seen that the coating film formed from the coating composition to which the coating agent of Comparative Examples 1 and 2 having a hydrolysis ratio exceeding 80% had a low hardness and a remarkably high wear amount. These results support the fact that application of the coating agent of the present invention to a coating composition results in formation of a coating film having high surface hardness and excellent physical properties such as abrasion resistance and durability.

[제조예 3] [Production Example 3]

실시예 2에서 제조된 코팅제를 포함하는 주제부 100 중량부를 기준으로, 경화제부(Polyetherdiamine, Polyethertriamine 및 Cycloaliphatic modified amine의 혼합 사용)를 하기 표 10의 조성으로 혼합하여 코팅제 조성물을 각각 제조하였다.A coating composition was prepared by mixing a curing agent (polyetherdiamine, a mixture of polyethertriamine and cycloaliphatic modified amine) based on 100 parts by weight of the main part containing the coating agent prepared in Example 2, in the composition shown in Table 10 below.

경화제부Hardener part 주제부Topic section 실시예 2의 코팅제 100 중량부100 parts by weight of the coating agent of Example 2 실시예 2의 코팅제 100 중량부100 parts by weight of the coating agent of Example 2 실시예 2의 코팅제 100 중량부100 parts by weight of the coating agent of Example 2 실시예 2의 코팅제 100 중량부100 parts by weight of the coating agent of Example 2 PolyetherdiaminePolyetherdiamine 10.75 중량부10.75 parts by weight 9.28 중량부9.28 parts by weight 7.48 중량부7.48 parts by weight 5.33 중량부5.33 parts by weight PolyethertriaminePolyethertriamine 9.44 중량부9.44 parts by weight 13.59 중량부13.59 parts by weight 14.59 중량부14.59 parts by weight 19.5 중량부19.5 parts by weight Cycloaliphatic modified amineCycloaliphatic modified amine 6.85 중량부6.85 parts by weight 7.26 중량부7.26 parts by weight 11.69 중량부11.69 parts by weight 12.44 중량부12.44 parts by weight

[실험예 3]제조예 3에서 각각 제조된 코팅제 조성물로 도막을 형성한 후, 형성된 도막의 물성을 각각 평가하였으며, 그 결과를 하기 표 11에 나타내었다. [Experimental Example 3] After coating films were formed from the coating compositions prepared in Preparation Example 3, physical properties of the coating films formed were evaluated. The results are shown in Table 11 below.

제조예 3Production Example 3 연필경도Pencil hardness Polyetherdiamine+ Polyethertriamine+ Cycloaliphatic modified aminePolyetherdiamine + Polyethertriamine + Cycloaliphatic modified amine 3H3H 4H4H 4H4H 4H4H 마모량(H-22, 1,000g, 500Cycle)Wear amount (H-22, 1,000g, 500 Cycle) Polyetherdiamine+ Polyethertriamine+ Cycloaliphatic modified aminePolyetherdiamine + Polyethertriamine + Cycloaliphatic modified amine 0.190.19 0.180.18 0.160.16 0.150.15 지촉건조(25℃, 시간)Touch dry (25 ℃, time) Polyetherdiamine+ Polyethertriamine+ Cycloaliphatic modified aminePolyetherdiamine + Polyethertriamine + Cycloaliphatic modified amine 4.44.4 4.24.2 3.83.8 4.34.3

상기 표 11을 참조하면, 전반적으로 우수한 물성을 나타내는 도막이 형성됨을 확인할 수 있다. 특히, Polyetherdiamine:Polyethertriamine: Cycloaliphatic modified amine이 3:4:3의 당량비로 혼합될 때 물성이 가장 우수함을 확인할 수 있다.Referring to Table 11, it can be seen that a coating film showing excellent physical properties is formed on the whole. In particular, when the polyetherdiamine: polyethertriamine: cycloaliphatic modified amine is mixed at an equivalent ratio of 3: 4: 3, it can be confirmed that the physical properties are the most excellent.

Claims (18)

산 촉매 존재 하에 글리시딜기 함유 에테르계 화합물; 카르복실기 함유 화합물; 실란 화합물; 및 무기계 전구체의 가수분해반응 및 결합반응에 의해 얻어진 1차 반응물을 포함하는 유-무기 하이브리드 코팅제.A glycidyl group-containing ether compound in the presence of an acid catalyst; A carboxyl group-containing compound; Silane compounds; And a primary reaction product obtained by a hydrolysis reaction and a coupling reaction of an inorganic precursor. 제1항에 있어서,
상기 글리시딜기 함유 에테르계 화합물이 1,4-부탄디올 디글리시딜 에테르(1,4-Butanediol diglycidyl ether), 1,6-헥산디올 디글리시딜 에테르(1,6-Hexanediol diglycidyl ether), 네오펜틸 글리콜 디글리시딜 에테르(Neopentyl glycol diglycidyl ether), 1,4-시클로헥산 디메탄올 디글리시딜 에테르(1,4-Cyclohexane dimethanol diglycidyl ether), 폴리프로필렌 글리콜 디글리시딜 에테르(Polypropylene glycol diglycidyl ether) 및 에틸렌 글리콜 디글리시딜 에테르(Ethylene glycol diglycidyl ether)로 이루어진 군에서 선택되는 것인 유-무기 하이브리드 코팅제.
The method according to claim 1,
Wherein the glycidyl group-containing ether compound is selected from the group consisting of 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, But are not limited to, neopentyl glycol diglycidyl ether, 1,4-cyclohexane dimethanol diglycidyl ether, polypropylene glycol diglycidyl ether, diglycidyl ether and ethylene glycol diglycidyl ether. < RTI ID = 0.0 > 11. < / RTI >
제1항에 있어서,
상기 카르복실기 함유 화합물이 1,4-시클로헥산 디카르복시산(1,4-Cyclohexane dicarboxylic Acid)인 것인 유-무기 하이브리드 코팅제.
The method according to claim 1,
Wherein the carboxyl group-containing compound is 1,4-cyclohexane dicarboxylic acid. 2. The organic-inorganic hybrid coating composition according to claim 1, wherein the carboxyl group-containing compound is 1,4-cyclohexane dicarboxylic acid.
제1항에 있어서,
상기 무기계 전구체가 pH 13인 알루미늄로 말단화된 콜로이달 실리카(Aluminium terminated colloidal silica)인 것인 유-무기 하이브리드 코팅제.
The method according to claim 1,
Wherein the inorganic precursor is aluminum terminated colloidal silica having a pH of 13. ≪ RTI ID = 0.0 > 11. < / RTI >
제1항에 있어서,
산 촉매 존재 하에 금속 알콕사이드; 및 상기 1 차 반응물의 가수분해반응 및 결합반응에 의해 얻어진 2차 반응물을 포함하는 것인 유-무기 하이브리드 코팅제.
The method according to claim 1,
A metal alkoxide in the presence of an acid catalyst; And a secondary reaction product obtained by a hydrolysis reaction and a coupling reaction of the primary reaction product.
제5항에 있어서,
상기 금속 알콕사이드가 테트라메틸오르토 실리케이트(Tetramethylortho silicate), 또는 테트라에틸오르토 실리케이트(Tetraethylortho silicate)인 것인 유-무기 하이브리드 코팅제.
6. The method of claim 5,
Wherein the metal alkoxide is tetramethylorthosilicate or tetraethylortho silicate. ≪ RTI ID = 0.0 > 11. < / RTI >
제5항에 있어서,
상기 가수분해반응 및 상기 결합반응에 용제가 첨가되며,
상기 용제가 디에틸렌 글리콜(Diethylene Glycol), 디에틸렌 글리콜 모노메틸에테르(Diethylene Glycol Monomethyl Ether), 디에틸렌 글리콜 모노에틸 에테르(Dietylene Glycol Monoethyl Ether), 디에틸렌 글리콜 모노에틸 에테르 아세테이트(Diethylene Glycol Monoethyl Ether Acetate), 디에틸렌 글리콜 모노부틸 에테르(Diethylene Glycol Monobutyl Ether), 디프로필렌 글리콜 모노에틸 에테르(Dipropylene Glycol Monomethyl Ether), 트리에틸렌 글리콜 모노부틸 에테르(Triethylene Glycol Monobutyl Ether) 및 2,2-Dimethyl-1,3-propanediol(2,2-디메틸-1,3-프로판디올)로 이루어진 군에서 선택된 1종 이상인 것인 유-무기 하이브리드 코팅제.
6. The method of claim 5,
A solvent is added to the hydrolysis reaction and the coupling reaction,
Wherein the solvent is selected from the group consisting of diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate ), Diethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, triethylene glycol monobutyl ether, and 2,2-dimethyl-1,3 -propanediol (2,2-dimethyl-1,3-propanediol).
제5항에 있어서,
킬레이트제; 및 상기 2차 반응물의 결합반응에 의해 얻어진 3차 반응물을 포함하는 것인 유-무기 하이브리드 코팅제.
6. The method of claim 5,
Chelating agents; And a tertiary reaction product obtained by the coupling reaction of the secondary reaction product.
제8항에 있어서,
상기 킬레이트제가 옥살산, 붕산, 이미노디아세트산, 말론산, 숙신산 및 말산으로 이루어진 군에서 선택된 1종 이상인 것인 유-무기 하이브리드 코팅제.
9. The method of claim 8,
Wherein the chelating agent is at least one selected from the group consisting of oxalic acid, boric acid, iminodiacetic acid, malonic acid, succinic acid and malic acid.
제1항에 있어서,
가수분해율이 80% 이하인 것인 유-무기 하이브리드코팅제.
The method according to claim 1,
Wherein the hydrolysis rate is 80% or less.
a) 산 촉매 존재 하에 글리시딜기 함유 에테르계 화합물, 실란 화합물 및 카르복실기 함유 화합물의 가수분해반응 및 결합반응을 진행하여 제1 생성물을 얻는 단계;
b) 산 촉매 존재 하에 무기계 전구체 및 실란 화합물의 가수분해반응 및 결합반응을 진행하여 제2 생성물을 얻는 단계; 및
c) 상기 제1 생성물과 상기 제2 생성물을 반응시켜 1차 반응물을 얻는 단계를 포함하는 유-무기 하이브리드 코팅제의 제조방법.
a) conducting a hydrolysis reaction and a coupling reaction of a glycidyl group-containing ether compound, a silane compound and a carboxyl group-containing compound in the presence of an acid catalyst to obtain a first product;
b) subjecting the inorganic precursor and the silane compound to a hydrolysis reaction and a coupling reaction in the presence of an acid catalyst to obtain a second product; And
c) reacting the first product with the second product to obtain a first reaction product.
제11항에 있어서,
상기 a) 단계에서의 실란 화합물의 가수분해율이 10 내지 30%인 것인 유-무기 하이브리드 코팅제의 제조방법.
12. The method of claim 11,
Wherein the hydrolysis rate of the silane compound in step a) is 10 to 30%.
제11항에 있어서,
d) 산 촉매의 존재 하에 금속 알콕사이드 및 상기 1 차 반응물을 반응시켜 2차 반응물을 얻는 단계를 더 포함하는 유-무기 하이브리드 코팅제의 제조방법.
12. The method of claim 11,
d) reacting the metal alkoxide and the first reactant in the presence of an acid catalyst to obtain a second reactant.
제13항에 있어서,
상기 d) 단계에서의 금속 알콕사이드의 가수분해율이 40 내지 60%인 것인 유-무기 하이브리드 코팅제의 제조방법.
14. The method of claim 13,
And the hydrolysis rate of the metal alkoxide in step d) is 40 to 60%.
제13항에 있어서,
상기 c) 단계에서 제1 생성물과 제2 생성물을 반응시키는 온도가 70℃ 이상이고,
상기 d) 단계에서 금속 알콕사이드와 1차 반응물을 반응시키는 온도가 80 ℃ 이상 유-무기 하이브리드 코팅제의 제조방법.
14. The method of claim 13,
In the step c), the reaction temperature of the first product and the second product is 70 ° C or higher,
Wherein the metal alkoxide and the first reactant are reacted at a temperature of 80 DEG C or higher in step d).
제13항에 있어서,
e) 킬레이트제 및 상기 2 차 반응물을 반응시켜 3차 반응물을 얻는 단계를 더 포함하는 유-무기 하이브리드 코팅제의 제조방법.
14. The method of claim 13,
e) reacting the chelating agent and the second reactant to obtain a tertiary reactant. < RTI ID = 0.0 > 11. < / RTI >
제1항 내지 제10항 중 어느 한 항에 따른 유-무기 하이브리드 코팅제를 포함하는 주제부; 및
아민계 경화제를 포함하는 경화제부를 포함하는 코팅제 조성물.
11. A coating composition comprising: a topical part comprising a oil-in-inorganic hybrid coating according to any one of claims 1 to 10; And
A coating composition comprising a curing agent portion comprising an amine-based curing agent.
제17항에 있어서,
상기 아민계 경화제가 폴리에테르디아민(Polyetherdiamine), 폴리에테르트리아민(Polyethertriamine) 및 시클로알리파틱 모디파이드 아민(Cycloaliphatic modified amine)으로 이루어진 군에서 선택된 1종 이상인 것인 코팅제 조성물.
18. The method of claim 17,
Wherein the amine curing agent is at least one selected from the group consisting of polyetherdiamine, polyethertriamine, and cycloaliphatic modified amine.
KR1020180040997A 2018-04-09 2018-04-09 Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same Active KR101996331B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180040997A KR101996331B1 (en) 2018-04-09 2018-04-09 Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180040997A KR101996331B1 (en) 2018-04-09 2018-04-09 Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170148993A Division KR101849598B1 (en) 2017-11-09 2017-11-09 Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same

Publications (2)

Publication Number Publication Date
KR20190053071A true KR20190053071A (en) 2019-05-17
KR101996331B1 KR101996331B1 (en) 2019-10-17

Family

ID=66678153

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180040997A Active KR101996331B1 (en) 2018-04-09 2018-04-09 Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same

Country Status (1)

Country Link
KR (1) KR101996331B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796274B1 (en) * 2005-04-18 2008-01-24 강순애 Edge painter for furniture panels
KR102440823B1 (en) 2022-06-09 2022-09-06 주식회사 솔센 Aqueous hybrid coating composition having high weatherability and durability, manufacturing method of the same and constructing method for protecting and finishing concrete surface using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371234A (en) * 2000-12-06 2002-12-26 Jsr Corp Coating composition, method for producing the same, cured product, and coating film
US20040097647A1 (en) * 1999-04-23 2004-05-20 Terry Karl W. Composition for providing an abrasion resistant coating on a substrate with a matched refractive index and controlled tintability
US20060251901A1 (en) * 2005-05-09 2006-11-09 Armstrong Sean E Curable composition and substrates possessing protective layer obtained therefrom
KR100956752B1 (en) 2010-02-09 2010-05-12 주식회사 케미콘 Room temperature curing organic-inorganic hybrid coating agents
US20130274381A1 (en) * 2011-10-04 2013-10-17 Carl Zeiss Vision International Gmbh Composition for the Production of a Coating with High Adhesive Strength and Scratch Resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040097647A1 (en) * 1999-04-23 2004-05-20 Terry Karl W. Composition for providing an abrasion resistant coating on a substrate with a matched refractive index and controlled tintability
JP2002371234A (en) * 2000-12-06 2002-12-26 Jsr Corp Coating composition, method for producing the same, cured product, and coating film
US20060251901A1 (en) * 2005-05-09 2006-11-09 Armstrong Sean E Curable composition and substrates possessing protective layer obtained therefrom
KR100956752B1 (en) 2010-02-09 2010-05-12 주식회사 케미콘 Room temperature curing organic-inorganic hybrid coating agents
US20130274381A1 (en) * 2011-10-04 2013-10-17 Carl Zeiss Vision International Gmbh Composition for the Production of a Coating with High Adhesive Strength and Scratch Resistance

Also Published As

Publication number Publication date
KR101996331B1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
TWI447183B (en) High solids epoxy coating composition
KR102017008B1 (en) Coating composition for blocking Radon and construction method using it
CN104558501A (en) Ultraviolet ray and moisture dual-cured modified polyurethane and preparation method thereof
JP2009114466A (en) Elastomer-modified epoxy siloxane composition
JP2010535916A (en) INORGANIC MODIFIED POLYESTER BINDING FORMULATION, PROCESS FOR PRODUCING THE SAME AND USE OF THE FORMATION
KR100982229B1 (en) High permeable amphiprotic agent for surface treatment of concrete and process for the preparation thereof
KR102088691B1 (en) Composition for coating a glass film and method for fabricating a glass coating film
KR102105309B1 (en) Manufacturing method of water-repellent coating composition based on non-fluoride and manufacturing method of water-repellent coating film using the coating composition
KR20190053071A (en) Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same
CN112876986A (en) Organic silicon transparent flexible hard coating material and preparation method thereof
CN101838154A (en) Organosilicon concrete protectant and preparation method thereof
KR101463860B1 (en) Two-component type organic-inorganic hybrid coating agent and method for manufacturing the same
JP4457783B2 (en) Curable resin composition
JP7401977B2 (en) Polyorganosiloxane and its manufacturing method, and coating composition
KR101552700B1 (en) Method for manufacturing ceramic paint composition and ceramic paint composition produced by the method
KR101849598B1 (en) Organic-inorganic hybrid material coating agent, method for manufacturing the same and coating agent composition comprising the same
KR101981127B1 (en) Screen printable anti-reflective coating composition and manufacturing method of anti-reflective coating film using the coating composition
CN118580759A (en) A weather-resistant polymer waterproof material for roofing
KR20210072294A (en) Method for manufacturing two-component protective composition for forming organic-inorganic hybrid protective layer having excellent flame retardancy and surface strength and protective composition p manufactured thereby
KR101811163B1 (en) A cycloaliphatic resin, method for obtaining the same and its application in a high resistance coating
JPH11343474A (en) Adhesive composition
KR20180009957A (en) Organic/inorganic hybridized anticorrosive coating composition and preparation method thereof
JP2004211000A (en) Silane-modified polyester resin, its preparation method and coating resin composition
KR102314461B1 (en) Pre-coated metal coating composition of ceramic organic resin composite and high hardness color steel sheet using the same
KR101710333B1 (en) Coating composition for organic / inorganic hybrid floor finish and method of construction using the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20180409

Patent event code: PA01071R01D

Filing date: 20171109

Application number text: 1020170148993

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20180411

Comment text: Request for Examination of Application

Patent event code: PA02011R04I

Patent event date: 20180409

Comment text: Divisional Application of Patent

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20190219

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20190618

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20190628

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20190628

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20220628

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20230628

Start annual number: 5

End annual number: 5