KR20210123466A - Metal Carbon Fiber Composite Materials and Their Manufacturing Methods - Google Patents
Metal Carbon Fiber Composite Materials and Their Manufacturing Methods Download PDFInfo
- Publication number
- KR20210123466A KR20210123466A KR1020200040607A KR20200040607A KR20210123466A KR 20210123466 A KR20210123466 A KR 20210123466A KR 1020200040607 A KR1020200040607 A KR 1020200040607A KR 20200040607 A KR20200040607 A KR 20200040607A KR 20210123466 A KR20210123466 A KR 20210123466A
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- carbon fiber
- fiber composite
- composite material
- based carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
상기 도포혼합물의 부착이 스프레이 드라이법에 의해 실시되는 것을 특징으로 하는 금속기
탄소섬유 복합재료의 제조방법.Metal group, characterized in that adhesion of the coating mixture is carried out by a spray-drying method
A method of manufacturing a carbon fiber composite material.
Description
본 발명은 금속기 탄소섬유 복합재료 및 그 제조방법에 관한 것이다. 구체적으로는, 상온에서부터 수백℃에서 작동하는 장치의 방열에 적합한 높은 열전도율을 가지는 금속기 탄소섬유 복합재료 및 그 제조방법에 관한 것이며, 더욱 구체적으로는 금속층과 탄소섬유를 함유하는 금속층이 서로 번갈아 쌓여 겹쳐진 구조를 가지는 금속기 탄소섬유 복합재료 및 그 제조방법에 관한 것이다.The present invention relates to a metal-based carbon fiber composite material and a method for manufacturing the same. Specifically, it relates to a metal-based carbon fiber composite material having high thermal conductivity suitable for heat dissipation of devices operating from room temperature to several hundreds of °C, and a method for manufacturing the same, and more specifically, a metal layer and a metal layer containing carbon fibers are alternately stacked and overlapped with each other. It relates to a metal-based carbon fiber composite material having a structure and a method for manufacturing the same.
종래, 반도체를 사용한 전자장치 혹은 파워모듈의 방열부재(기판, 히트싱크, 열 방출장치(heat spreader) 등) 혹은 기계장치의 발열부 주변부재로서, 알루미늄, 구리 또는 이들의 합금이, 그 뛰어난 가공성 및 비교적 높은 열전도율 때문에 주로이용되고 있다. 또한, 더욱 뛰어난 열전도성 및/또는 절연성이 요구되는 경우에는, 그래파이트(graphite) 혹은 베릴리아(beryllia), 질화규소, 질화알루미늄, 탄화규소 등의 고열전도 재료가 사용되고 있는데, 이 재료들은 비용이 비싸기 때문에 많이 사용되지는 못하였다. 하지만, 상술한 장치의 고성능화에 따라, 이 장치들의 발열량이 증대되는 경향이 현저하다. 더구나, 이 장치들의 소형 경량화에 따라, 방열부재의 소형 경량화가 요구되고, 또한 고성능이며 저가인 방열부재가 요구되고 있다.Conventionally, as a heat dissipation member (substrate, heat sink, heat spreader, etc.) of an electronic device or power module using a semiconductor or a member surrounding a heat generating part of a mechanical device, aluminum, copper, or an alloy thereof has excellent workability. and relatively high thermal conductivity. In addition, when higher thermal conductivity and/or insulation properties are required, high thermal conductivity materials such as graphite or beryllia, silicon nitride, aluminum nitride, and silicon carbide are used, but these materials are expensive because they are expensive. It was not used much. However, as the performance of the above-described devices increases, there is a remarkable tendency for the calorific value of these devices to increase. Moreover, in accordance with the miniaturization and weight reduction of these devices, a reduction in the size and weight of the heat dissipation member is required, and also a high performance and low cost heat dissipation member is required.
이 문제에 관하여, 알루미늄, 구리 등의 금속 또는 합금보다 높은 열전도율을 가지는 그래파이트가 사용되고는 있는데, 그래파이트로부터 발생하여 비산하는 탄소가루가 주변의 전자회로에 지장을 준다는 문제를 가지고 있다. 또한, 질화규소 등의 고열전도성 세라믹스도 하이브리드카(hybrid car) 제어부의 LSI용 히트싱트 등에 사용되고는 있지만, 더욱 뛰어난 열전도성과 대폭적인 가격인하를 사용자가 요구하고 있어, 세라믹스계 재료로는 그와 같은 요청에 따를 수 없는 상황이다.In relation to this problem, graphite having a higher thermal conductivity than metals or alloys such as aluminum and copper is used, but there is a problem that carbon powder generated from the graphite and scattered interferes with the surrounding electronic circuit. In addition, high thermal conductivity ceramics such as silicon nitride are also used for heat sinks for LSIs in hybrid car control units, but users are demanding more excellent thermal conductivity and significant price reduction. situation that cannot be followed.
이와 같은 현재의 상황에 감안하여, 뛰어난 열전도성을 가지고, 또한 경량인 탄소섬유를 사용한 금속기 탄소섬유 복합재료가 주목받고 있다. 이와 같은 금속기 탄소섬유 복합재료는, 탄소섬유를 배열, 정렬, 섞어짜기 등에 의해 굳힌 예비 성형체(프리폼)에 대하여, 알루미늄 등 금속의 용탕(溶湯)을 가압 또는 비가압으로 함침시키는 용탕함침법에 의해 형성되는 것이일반적이다(일본특허공개 2002-194515호 공보 참조).In view of the current situation, a metal-based carbon fiber composite material using carbon fibers having excellent thermal conductivity and being lightweight is attracting attention. Such a metal-based carbon fiber composite material is produced by a molten metal impregnation method in which a molten metal such as aluminum is impregnated with pressure or non-pressure with respect to a preform (preform) in which carbon fibers are hardened by arranging, aligning, mixing, etc. It is generally formed (refer to Japanese Patent Application Laid-Open No. 2002-194515).
용탕함침법에 의해 금속기 탄소섬유 복합재료를 형성할 때의 문제는, 금속용탕이 높은 온도를 가짐으로써 일어나는 탄소섬유와 용탕중 금속과의 화합반응에 의한 금속탄화물의 생성이다. 예를 들어, 알루미늄을 사용하는 경우, 알루미늄 용탕은 약 700℃라는 높은 온도를 가짐으로써, 용탕중의 알루미늄과 탄소섬유의 반응에 의해 Al4C3이 생성된다. 생성된 Al4C3 등의 탄화물은, 상온에서의 물 또는 수증기와 접촉함으로써 메탄 등의 탄화수소가스 및 금속수산화물로 변질되고, 탄소섬유와 모재(매트릭스) 금속과의 사이에 틈이 생겨, 복합재료의 강도 및 열전도율이 크게 떨어지는 것이 알려져 있다.용탕함침법에서의 탄화물의 형성을 억제하기 위한 방법으로서, 탄소섬유에 대하여 세라믹 코팅또는 불소 코팅(일본특허공개 평5-125562호 공보 참조)과 같은 표면처리를 하는 방법이 검토되고 있다. 혹은, 탄소를 주성분으로 하는 바인더(피치계 수지 등)를 사용하여, 탄소섬유의 프리폼을 형성하는 방법(일본특허공개 2000-303155호 공보), 또는 용탕으로서 사용하는 금속을 합금화하여, 용탕의 온도를 저하시켜 용탕함침시의 반응을 억제하는 것(일본특허공개 평11-256254호 공보 참조)이 검토되고 있다.A problem in forming a metal-based carbon fiber composite material by the molten metal impregnation method is the formation of metal carbides by the chemical reaction between carbon fibers and metal in the molten metal, which occurs when the molten metal has a high temperature. For example, when aluminum is used, the molten aluminum has a high temperature of about 700° C., so that Al4C3 is generated by the reaction of aluminum and carbon fibers in the molten metal. The produced carbide such as Al4C3 is transformed into a hydrocarbon gas such as methane and metal hydroxide when it comes into contact with water or steam at room temperature, and a gap is formed between the carbon fiber and the base metal (matrix), resulting in the strength and strength of the composite material. It is known that the thermal conductivity is greatly reduced. As a method for suppressing the formation of carbides in the molten metal impregnation method, a surface treatment such as ceramic coating or fluorine coating (see Japanese Patent Laid-Open No. 5-125562) is performed on carbon fibers. method is being considered. Alternatively, a method of forming a carbon fiber preform using a binder (pitch-based resin, etc.) containing carbon as a main component (Japanese Patent Application Laid-Open No. 2000-303155), or alloying a metal used as a molten metal to obtain the temperature of the molten metal Inhibiting the reaction during molten metal impregnation by reducing
하지만, 상술한 바와 같이 탄소섬유를 코팅하는 방법, 및 탄소를 주성분으로 하는 바인더에 의해 프리폼을 형성하는 방법은, 추가공정 및 재료 등을 필요로 하여 복합재료의 비용 증대를 초래할 가능성이 있다. 또한, 용탕으로서 합금을 사용하는 방법에서는, 이 합금을 준비하는 공정이 필요하게 된다. 더구나, 어느 방법이든 매트릭스로서 사용할 금속 내지 합금을 용탕으로 하기 위하여 고온이 필요하여, 많은 에너지를 필요로 한다.However, as described above, the method of coating the carbon fiber and the method of forming the preform by using a binder containing carbon as a main component require additional processes and materials, which may lead to an increase in the cost of the composite material. Moreover, in the method of using an alloy as a molten metal, the process of preparing this alloy is required. Moreover, either method requires a high temperature to make a molten metal or alloy to be used as a matrix, and thus requires a lot of energy.
이상의 종래기술에 감안하여 본 발명은, 일반적으로 사용되고 있는 저가의 재료를 사용하여, 용탕법에서 사용되는 것보다In view of the above prior art, the present invention uses a generally used inexpensive material, rather than that used in the molten metal method.
적은 에너지에 의해 제작할 수 있으며, 광범위한 치수 및 형상(특히, 큰 면적)을 가지고 열전도성이 뛰어나며 경량인 금속It can be produced with little energy, has a wide range of dimensions and shapes (especially large areas), has excellent thermal conductivity, and is a lightweight metal
기 탄소섬유 복합재료를 제공하는 것을 목적으로 한다. 이와 같은 금속기 탄소섬유 복합재료는, 방열대책에 고려되고 있는PC, 액정패널, 플라즈마 디스플레이 패널 등에 응용하는 것이 가능하다.An object of the present invention is to provide a base carbon fiber composite material. Such a metal-based carbon fiber composite material can be applied to PCs, liquid crystal panels, plasma display panels, etc., which are being considered for heat dissipation measures.
또한, 본 발명의 다른 과제는, 일반적으로 사용되고 있는 저가의 재료를 사용하여, 용탕법에서 문제시되고 있는 금속탄화물의 생성을 억제 또는 배제하고, 보다 적은 에너지로 실시할 수 있으며, 또한 광범위한 치수 및 형상(특히, 큰 면적)을 얻을 수 있는 금속기 탄소섬유 복합재료의 제조방법을 제공하는 것이다.In addition, another object of the present invention is to suppress or eliminate the generation of metal carbide, which is a problem in the molten metal method, by using a generally used inexpensive material, and it can be carried out with less energy, and has a wide range of dimensions and shapes. (In particular, to provide a method for producing a metal-based carbon fiber composite material that can obtain a large area).
본 발명의 제1 실시예인 금속기 탄소섬유 복합재료는, 금속과 탄소섬유를 가열압접시켜 얻어지며, 상기 금속층과 탄소섬유함유 금속층이 서로 번갈아 쌓아 겹쳐진 구조를 가지는 것을 특징으로 한다. 여기서, 상기 탄소섬유가 정렬되어 있는 것이 바람직하다. 또한, 상기 탄소섬유는, 피치계 탄소섬유, PAN계 탄소섬유, 카본나노화이버, 기상성장 탄소섬유, 단층벽카본나노튜브(single wall carbon nanotube), 다중벽 카본나노튜브(multi-wall carbon nanotube), 및 이들의 집합체 또는 연합 와이어로 이루어지는 군에서 선택되는 단독체 혹은 복합체로 형성할 수 있으며, 혹은 이들 탄소섬유에 대하여 재가열처리 등의 후가열 가공을 실시하여도 좋다. 상기 금속은, 구리, 알루미늄, 마그네슘 및 이들을 기로 하는 합금으로 이루어지는 군에서 선택할 수 있다.본 발명의 제2 실시예인 금속기 탄소섬유 복합재료의 제조방법의 하나의 형태는, 시트형상 또는 포일(foil)형상의 금속지지체 위에 탄소섬유를 부착시켜 프리폼을 형성하는 공정과, 상기 프리폼을 쌓아 겹쳐서 프리폼 적층체를 형성하는 공정과,상기 프리폼 적층체를 진공중 또는 비산화 분위기 중에서 가열압접하여, 상기 프리폼 끼리를 일체화시키는 공정을 구비한것을 특징으로 한다. 여기서, 상기 프리폼을 형성하는 공정은, 탄소섬유와 금속가루를 혼합한 혼합물을 상기 금속지지체위에 도포함으로써 실시되어도 좋다.본 발명의 금속기 탄소섬유 복합재료의 제조방법의 다른 형태는, 탄소섬유를 유기바인더 및 용제와 혼합하여 도포혼합물을 준비하는 공정과, 시트형상 또는 포일형상의 금속지지체 위에 상기 도포혼합물을 부착시켜, 금속지지체 위에 탄소섬유함유 피막이 형성된 프리폼을 형성하는 공정과, 상기 프리폼을 쌓아 겹쳐서 프리폼 적층체를 형성하는 공정과, 상기 프리폼 적층체를 진공중 또는 비산화 분위기 중에서 가열압접하여, 상기 프리폼 끼리를 일체화시키는 공정을 구비한 것을 특징으로 한다. 여기서, 상기 금속지지체 위에 도포된 탄소섬유함유피막이, 상기 금속지지체 전체를 덮어도 되고, 또는 1방향으로는 연속하고, 그것과 직교하는 방향으로는 불연속이어도 좋다. 또한, 상기 도포혼합물의 부착은, 예를 들어 노즐프린트법 등의 방법에 의해 상기 도포혼합물 중의 탄소섬유를 정렬시키면서 실시되어, 제조되는 금속기 탄소섬유 복합재료 중에서 탄소섬유가 정렬된 구조가 유지되어도 좋다. 혹은, 상기 도포혼합물의 부착을 스프레이 드라이법에 의해 실시하여도 된다The metal-based carbon fiber composite material according to the first embodiment of the present invention is obtained by heat-pressing a metal and carbon fiber, and has a structure in which the metal layer and the carbon fiber-containing metal layer are alternately stacked with each other. Here, it is preferable that the carbon fibers are aligned. In addition, the carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, carbon nanofiber, vapor-grown carbon fiber, single-wall carbon nanotube (single wall carbon nanotube), multi-wall carbon nanotube (multi-wall carbon nanotube) , and may be formed as a single body or composite selected from the group consisting of aggregates or bundled wires, or may be subjected to post-heating processing such as reheating treatment for these carbon fibers. The metal may be selected from the group consisting of copper, aluminum, magnesium, and alloys having these groups. One form of a method of manufacturing a metal-based carbon fiber composite material according to a second embodiment of the present invention is a sheet shape or a foil. A step of forming a preform by attaching carbon fibers to a metal support having a shape, a step of stacking the preforms to form a preform laminate, and heat-compressing the preform laminate in a vacuum or in a non-oxidizing atmosphere to form a preform between the preforms. It is characterized in that it is provided with a process for integrating. Here, the step of forming the preform may be carried out by applying a mixture of carbon fibers and metal powder on the metal support. Another aspect of the method for manufacturing a metal-based carbon fiber composite material of the present invention is to A step of preparing an application mixture by mixing with a binder and a solvent, a step of attaching the application mixture on a sheet- or foil-shaped metal support to form a preform having a carbon fiber-containing film on the metal support, and stacking the preforms It is characterized by comprising a step of forming a preform laminate and a step of integrating the preforms with each other by heat-pressing the preform laminate in a vacuum or in a non-oxidizing atmosphere. Here, the carbon fiber-containing film applied on the metal support may cover the entire metal support, or may be continuous in one direction and discontinuous in a direction orthogonal thereto. In addition, the adhesion of the coating mixture is carried out while aligning the carbon fibers in the coating mixture by a method such as a nozzle printing method, and the structure in which the carbon fibers are aligned in the produced metal-based carbon fiber composite material may be maintained. . Alternatively, the coating mixture may be applied by a spray drying method.
이상과 같은 구성을 가짐으로써, 반도체를 사용한 전자장치, 혹은 발열부를 가지는 기기, 장치의 방열부재로서 유용하고경량이며 높은 열전도율을 가지는 금속기 탄소섬유 복합재료를 얻을 수 있다. 본 발명의 제조방법은 특히 판형상의 높은열전도재료를 저가로 제공하는데 뛰어나며, 노트북 컴퓨터, 액정표시장치, 플라즈마 디스플레이, 유기EL표시장치 등의 방열기판의 제공에 유용하여, 본 발명의 가치는 매우 높다By having the above configuration, it is possible to obtain a metal-based carbon fiber composite material that is useful as a heat dissipation member for electronic devices using semiconductors, or devices and devices having a heat generating part, and is lightweight and has high thermal conductivity. The manufacturing method of the present invention is particularly excellent for providing a plate-shaped high heat-conducting material at a low cost, and is useful for providing heat dissipation substrates for notebook computers, liquid crystal displays, plasma displays, organic EL displays, etc., so the value of the present invention is very high.
본 발명의 제1 실시예는, 도 1a 내지 도 1c에 나타내는 바와 같은 금속과 탄소섬유로 구성되며, 금속층과 탄소섬유함유 금A first embodiment of the present invention is composed of a metal and carbon fibers as shown in FIGS. 1A to 1C, and includes a metal layer and carbon fiber-containing gold.
속층이 서로 번갈아 쌓여 겹쳐진 구조를 가지는 금속기 탄소섬유 복합재료(6)이다. 도 1a에서는 연속섬유인 탄소섬유(2)를 사용하여 형성되는 금속기 탄소섬유 복합재료(6a)의 모식도를 나타낸다. 또한, 도 1b 및 도 1c에서는 단섬유인 탄소섬유(2)를 사용하여 형성되는 금속기 탄소섬유 복합재료(6b, 6c)의 모식도를 나타낸다(여기서, 금속기 탄소섬유 복합재료(6b)는 탄소섬유(2)가 랜덤하게 배열된 재료이며, 금속기 탄소섬유 복합재료(6c)는 탄소섬유(2)가 한 방향으로 정렬된 재료이다). 본 발명의 금속기 탄소섬유 복합재료(6) 안에 사용되는 금속은, 열전도율과 가공성의 관점에서, 구리, 알루미늄,마그네슘 및 이것들을 기로 하는 합금으로 이루어지는 군에서 선택할 수 있다. 금속층은 자립성 시트(두께 50㎛~500㎛),또는 자립성 포일(두께 100nm~50㎛)로 형성할 수 있다. 이하 본 명세서에서, 금속시트 및 금속포일을 금속지지체라고 총칭하는 경우가 있다It is a metal-based carbon fiber composite material 6 having a structure in which inner layers are alternately stacked and overlapped with each other. 1A shows a schematic diagram of a metal-based carbon fiber composite material 6a formed using carbon fibers 2 as continuous fibers. In addition, in FIGS. 1B and 1C, schematic diagrams of the metal-based carbon fiber composite materials 6b and 6c formed using the carbon fiber 2, which are short fibers, are shown (here, the metal-based carbon fiber composite material 6b is a carbon fiber ( 2) is a randomly arranged material, and the metal-based carbon fiber composite material 6c is a material in which the carbon fibers 2 are aligned in one direction). The metal used in the metal-based carbon fiber composite material 6 of the present invention can be selected from the group consisting of copper, aluminum, magnesium and alloys based on these from the viewpoint of thermal conductivity and workability. The metal layer can be formed of a self-supporting sheet (thickness of 50 μm to 500 μm) or a self-supporting foil (thickness of 100 nm to 50 μm). Hereinafter, in this specification, the metal sheet and the metal foil may be collectively referred to as a metal support.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020200040607A KR20210123466A (en) | 2020-04-03 | 2020-04-03 | Metal Carbon Fiber Composite Materials and Their Manufacturing Methods |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020200040607A KR20210123466A (en) | 2020-04-03 | 2020-04-03 | Metal Carbon Fiber Composite Materials and Their Manufacturing Methods |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20210123466A true KR20210123466A (en) | 2021-10-14 |
Family
ID=78151486
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020200040607A Withdrawn KR20210123466A (en) | 2020-04-03 | 2020-04-03 | Metal Carbon Fiber Composite Materials and Their Manufacturing Methods |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR20210123466A (en) |
-
2020
- 2020-04-03 KR KR1020200040607A patent/KR20210123466A/en not_active Withdrawn
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100904043B1 (en) | Metal-based Carbon Fiber Composite Material and Producing Method Thereof | |
| US8206815B2 (en) | Metal-based composite material containing both micron-size carbon fiber and nano-size carbon fiber | |
| JP4046120B2 (en) | Insulating sheet manufacturing method and power module manufacturing method | |
| CA2767807C (en) | Anisotropic thermal conduction element and manufacturing method | |
| US20120118615A1 (en) | Metal clad laminate, method of manufacturing the same, and heat-radiating substrate | |
| JP2009522808A (en) | Microchannel heat sink made from graphite material | |
| KR100972753B1 (en) | Aluminum nitride coating composite for sinking heat, heat sink using the composite and manufacturing method of the heat sink | |
| KR20100025502A (en) | Insulated metal components and method of manufacturing the same | |
| JP2012253167A (en) | Thermally conductive insulation sheet, metal base substrate and circuit board | |
| JP2017007172A (en) | Composite of aluminum and carbon particle and method for producing the same | |
| KR102109800B1 (en) | Graphite sheet derived from coated heat-conductive carbon particles and method for preparing same | |
| KR20210123466A (en) | Metal Carbon Fiber Composite Materials and Their Manufacturing Methods | |
| JP5278737B2 (en) | Manufacturing method of heat dissipation material | |
| Silvain et al. | The role of controlled interfaces in the thermal management of copper–carbon composites | |
| JP2016222962A (en) | Composite body of aluminium and carbon particle, and method for manufacturing the same | |
| KR101063576B1 (en) | Diamond composite heat sink and its manufacturing method | |
| EP3532539B1 (en) | Composite material and method of forming same, and electrical component including composite material | |
| KR20180000354U (en) | Metal heat dissipating plate | |
| KR20100025459A (en) | Insulated metal components and method of manufacturing the same | |
| CN117923950B (en) | A ceramic-based composite material heat dissipation substrate and its preparation method and application | |
| US20230144651A1 (en) | Heat dissipation sheet using graphene-graphite composite and method of manufacturing the same | |
| JP2012059795A (en) | Heat dissipation material and manufacturing method thereof | |
| Choi et al. | Manufacturing of Carbon Nanotube Preform with High Porosity and Its Application in Metal Matrix Composites | |
| JP2024112627A (en) | Heat Transfer Structure | |
| JP3157809U6 (en) | Microchannel heat sink made from graphite material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| PC1203 | Withdrawal of no request for examination |
St.27 status event code: N-1-6-B10-B12-nap-PC1203 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |