KR20230099283A - Method of manufacturing a hydrogen storage material used chloride catalisyst - Google Patents
Method of manufacturing a hydrogen storage material used chloride catalisyst Download PDFInfo
- Publication number
- KR20230099283A KR20230099283A KR1020210188520A KR20210188520A KR20230099283A KR 20230099283 A KR20230099283 A KR 20230099283A KR 1020210188520 A KR1020210188520 A KR 1020210188520A KR 20210188520 A KR20210188520 A KR 20210188520A KR 20230099283 A KR20230099283 A KR 20230099283A
- Authority
- KR
- South Korea
- Prior art keywords
- hydrogen
- hydrogen storage
- storage material
- manufacturing
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/08—Halides
- B01J27/10—Chlorides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0031—Intermetallic compounds; Metal alloys; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/24—Hydrides containing at least two metals; Addition complexes thereof
- C01B6/243—Hydrides containing at least two metals; Addition complexes thereof containing only hydrogen, aluminium and alkali metals, e.g. Li(AlH4)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
본 발명은 수소저장재료 및 그 제조방법에 관한 것으로, 수소저장재료는 금속착수소화물 복합체를 포함한다. 본 발명의 수소저장재료의 제조방법은 수소저장물질과 촉매를 혼성하여 높은 수소방출 특성을 가지는 수소가스저장용 복합체를 제공할 수 있으며, 이는 연료전지 자동차 등에 적용될 수 있다. 또한 수소저장합금에 비하여 수소무게저장밀도와 수소흡방출 온도 특성이 향상된 수소저장재료를 제공할 수 있다.The present invention relates to a hydrogen storage material and a manufacturing method thereof, wherein the hydrogen storage material includes a metal complex hydride complex. The manufacturing method of the hydrogen storage material of the present invention can provide a hydrogen storage composite having high hydrogen release characteristics by mixing the hydrogen storage material and the catalyst, which can be applied to fuel cell vehicles and the like. In addition, it is possible to provide a hydrogen storage material having improved hydrogen weight storage density and hydrogen absorption/release temperature characteristics compared to hydrogen storage alloys.
Description
본 발명의 구현예들은 수소가스를 저장하는 수소저장재료의 제조방법에 대한 것이다.Embodiments of the present invention relate to a method for manufacturing a hydrogen storage material for storing hydrogen gas.
수소는 연소 시 이산화탄소가 발생하지 않고 산소와 반응하여 물이 생성되는 청정 에너지원이며 태양광 및 풍력과 같은 재생에너지에 융합할 수 있어 차세대 에너지원으로 주목 받고 있다. 그러나 수소는 상온에서는 기체이므로 다양한 산업의 에너지원으로 활용하기 위해서는 효율적인 수소의 수송과 저장 기술 개발이 필요하다.Hydrogen is a clean energy source that generates water by reacting with oxygen without generating carbon dioxide during combustion, and is attracting attention as a next-generation energy source because it can be fused with renewable energy such as solar and wind power. However, since hydrogen is a gas at room temperature, it is necessary to develop efficient hydrogen transportation and storage technologies in order to utilize it as an energy source for various industries.
수소를 저장하는 방법에는 고압기체저장, 저온액화저장, 고체 수소저장이 있으며, 고체수소저장 기술은 수소를 소재의 표면 또는 내부에 저장하는 기술로서, 다른 저장기술에 비해 높은 밀도로 수소를 저장할 수 있고 낮은 가격과 높은 안정성을 확보할 수 있다.Methods for storing hydrogen include high-pressure gas storage, low-temperature liquefied storage, and solid hydrogen storage. Solid hydrogen storage technology is a technology that stores hydrogen on the surface or inside of a material, and can store hydrogen at a higher density than other storage technologies. It has low price and high stability.
현재 수송기기 및 고정식 연료전지용 고용량 고체수소저장재료 연구개발을 활발히 추진하고 있는 나라는 미국, 일본, 유럽 등이다. 일본, 미국 및 유럽에서는 1980년대 이후 2차전지의 전극재료로 이용되고 있는 수소저장합금에 대한 연구가 활발히 이루어졌으며, 개발된 합금은 작동 온도가 상온 근처이고 수소 저장·방출 사이클 수명이 길며 수소에 대한 부피저장밀도가 높은 장점이 있으나 무게저장밀도가 2wt% 이하로 낮은 단점을 극복하지 못하고 있다.Currently, countries such as the United States, Japan, and Europe are actively promoting research and development of high-capacity solid hydrogen storage materials for transportation devices and stationary fuel cells. Since the 1980s in Japan, the United States and Europe, research on hydrogen storage alloys, which have been used as electrode materials for secondary batteries, has been actively conducted. Although it has the advantage of having a high volume storage density, it cannot overcome the disadvantage of having a low weight storage density of 2 wt% or less.
수소 저장용 금속착수소화물에 관한 연구는 1997년 Bogdanovic 등에 의하여 나트륨알루미늄수소화물(NaAlH4)에 티타늄계 촉매를 소량 첨가하면 탈수소화반응 온도가 낮아지고 가역성도 향상된다는 사실이 알려진 이후 진행되어 왔다. 그러나 현재까지 개발된 수소 저장용 물질들은 상용화하기에 특성 개선이 필요하여 다양한 연구가 진행되고 있다.Research on metal complex hydrides for hydrogen storage has been conducted since it was known by Bogdanovic et al. in 1997 that adding a small amount of a titanium-based catalyst to sodium aluminum hydride (NaAlH 4 ) lowers the dehydrogenation reaction temperature and improves reversibility. However, materials for hydrogen storage that have been developed so far need to be improved in order to be commercialized, so various studies are being conducted.
본 발명의 구현예들이 해결하고자 하는 과제는 수소저장재료의 제조방법을 제공하는 것이다.The problem to be solved by the embodiments of the present invention is to provide a method for manufacturing a hydrogen storage material.
본 발명의 하나의 구현예에 따르면, 수소저장재료는 알라네이트(alanate)계 금속착수소화물 복합체를 포함한다. 상기 수소저장재료는 알라네이트계 금속착수소화물과 CeCl3, TiCl3, NdCl3 및 SmCl3로 이루어진 군에서 선택되는 1종 이상의 촉매가 혼합되어 복합화된 것이다. 상기 수소저장재료는 수소 가압 분위기 하에서 활성화될 수 있다. 본 발명에 따른 수소저장재료에서 NaH과 Al 및 촉매는 1:1:1 몰% 비율로 혼합되는 것일 수 있다.According to one embodiment of the present invention, the hydrogen storage material includes an alanate-based metal complex hydride composite. The hydrogen storage material is a composite obtained by mixing an alanate-based metal complex hydride with at least one catalyst selected from the group consisting of CeCl 3 , TiCl 3 , NdCl 3 and SmCl 3 . The hydrogen storage material may be activated under a hydrogen pressurized atmosphere. In the hydrogen storage material according to the present invention, NaH, Al, and the catalyst may be mixed in a 1:1:1 mol% ratio.
본 발명의 다른 구현예는 수소저장재료의 제조방법에 관한 것으로, (a) NaH와 알루미늄(Al)을 혼합하여 합성하는 단계; 및 (b) 상기 (a) 단계의 합성물에 CeCl3, TiCl3, NdCl3 및 SmCl3로 이루어진 군에서 선택되는 1종 이상의 촉매를 혼합하여 수소저장용 복합체를 생성하는 단계를 포함한다. 상기 수소저장재료의 제조방법은 (c) 상기 (b) 단계에서 생성된 수소저장용 복합체를 활성화하는 단계를 추가로 포함할 수 있다.Another embodiment of the present invention relates to a method for manufacturing a hydrogen storage material, comprising: (a) synthesizing by mixing NaH and aluminum (Al); and (b) generating a composite for hydrogen storage by mixing at least one catalyst selected from the group consisting of CeCl 3 , TiCl 3 , NdCl 3 and SmCl 3 with the compound of step (a). The manufacturing method of the hydrogen storage material may further include (c) activating the hydrogen storage complex produced in step (b).
상기 (a) 단계에서는 NaH와 알루미늄은 1:1의 몰% 비율로 투입될 수 있다. 상기 (b) 단계에서는 상기 (a) 단계의 합성물과 CeCl3, TiCl3, NdCl3 및 SmCl3로 이루어진 군에서 선택되는 1종 이상의 촉매가 1:1의 몰% 비율로 투입될 수 있다. 상기 (c) 단계의 수소저장용 복합체를 활성화하는 단계는 수소 가압 된 분위기에서 수행될 수 있다.In the step (a), NaH and aluminum may be added at a mol% ratio of 1:1. In step (b), the compound of step (a) and one or more catalysts selected from the group consisting of CeCl 3 , TiCl 3 , NdCl 3 and SmCl 3 may be added at a mol% ratio of 1:1. The activating the hydrogen storage complex of step (c) may be performed in a hydrogen pressurized atmosphere.
본 발명의 구현예들에 따르면, 수소저장물질과 촉매를 혼성하여 높은 수소방출 특성을 가지는 수소가스저장용 복합체를 제공할 수 있으며, 이는 연료전지 자동차 등에 적용될 수 있다. 또한 수소저장합금에 비하여 수소무게저장밀도와 수소흡방출 온도 특성이 향상된 수소저장재료를 제공할 수 있다.According to embodiments of the present invention, a hydrogen storage material and a catalyst may be mixed to provide a hydrogen gas storage composite having high hydrogen release characteristics, which may be applied to a fuel cell vehicle or the like. In addition, it is possible to provide a hydrogen storage material having improved hydrogen weight storage density and hydrogen absorption/release temperature characteristics compared to hydrogen storage alloys.
도 1은 본 발명의 일 실시예에 따라 제조한 수소저장재료의 X선 회절 그래프이다.
도 2 및 도3은 본 발명의 일 실시예에 따라 제조한 수소저장재료의 등온 수소 방출 곡선 및 최대 수소 방출 곡선을 나타낸 데이터이다.1 is an X-ray diffraction graph of a hydrogen storage material prepared according to an embodiment of the present invention.
2 and 3 are data showing an isothermal hydrogen release curve and a maximum hydrogen release curve of a hydrogen storage material prepared according to an embodiment of the present invention.
이하에서 본 발명의 구현예들을 보다 구체적으로 설명하기로 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지의 범용적인 구성 또는 기능에 대한 상세한 설명은 생략한다.Hereinafter, embodiments of the present invention will be described in more detail. In addition, in describing the present invention, a detailed description of a related general-purpose configuration or function will be omitted.
본 발명의 일 구현예에 따른 수소저장재료는 알라네이트(alanate)계 금속착수소화물 복합체를 포함한다. 상기 수소저장재료는 알라네이트계 금속착수소화물과 CeCl3, TiCl3, NdCl3 및 SmCl3로 이루어진 군에서 선택되는 1종 이상의 촉매가 혼합되어 복합화된 것이다. 상기 수소저장재료는 수소 가압 분위기 하에서 활성화될 수 있다.A hydrogen storage material according to an embodiment of the present invention includes an alanate-based metal complex hydride composite. The hydrogen storage material is a composite obtained by mixing an alanate-based metal complex hydride with at least one catalyst selected from the group consisting of CeCl 3 , TiCl 3 , NdCl 3 and SmCl 3 . The hydrogen storage material may be activated under a hydrogen pressurized atmosphere.
금속착수소화물계 고체수소저장소재는 알라네이트(alanate)계, 아미드(amide)계, 이미드(imide)계, borohydride계로 크게 구분되는데, 알라네이트(alanate)계의 NaAlH4는 Ti을 함유한 촉매를 사용할 경우 150℃ 부근에서 무게저장밀도 4wt% 내외로 가역적인 수소흡방출이 가능하다고 알려져 있다. 알라네이트(alanate)는 테트라-하이드로-알루미늄 이온(tetra-hydro-aluminium ion, AlH4-)을 함유하는 염의 총칭이다. NaAlH4는 7.5질량%의 많은 수소를 함유하고 있다.Metal complex hydride-based solid hydrogen storage materials are largely classified into alanate-based, amide-based, imide-based, and borohydride-based materials. The alanate-based NaAlH 4 is a Ti-containing catalyst It is known that reversible hydrogen uptake and release is possible with a weight storage density of around 4wt% at around 150 ° C. Alanate is a generic term for salts containing tetra-hydro-aluminium ion (AlH4-). NaAlH 4 contains as much hydrogen as 7.5% by mass.
금속착수소화물의 경우, 물질 자체적으로 수소저장소재 특성이 나타나지 않으며, 금속착수소화물에 촉매를 균일하게 분산시킬 때 비로소 특성이 나타나게 되어 수소저장재료라고 할 수 있다.In the case of a metal complex hydride, the material itself does not exhibit the properties of a hydrogen storage material, and when a catalyst is uniformly dispersed in the metal complex hydride, the properties appear only and can be called a hydrogen storage material.
본 발명의 구현예들에서 수소저장재료의 주재가 되는 NaAlH4의 경우 건식법과 습식법으로 합성할 수 있다. 본 발명의 일 구현예에서는 건식법으로 NaAlH4를 합성할 수 있다. 건식법에 의해 제조할 경우, 습식법으로 제조한 경우에 비하여 순도가 높으며, 제조 후 필터링, 건조와 같은 2차 처리과정을 진행해야 하는 습식법에 비하여 제조 과정이 복잡하지 않은 장점이 있다. 고상에서 촉매를 나노스케일로 균일하게 분산시키는 방법은 고에너지 볼밀링 이외에도 공지된 다양한 방법을 사용할 수 있으며, 고에너지볼밀링이 효과적일 수 있다.In embodiments of the present invention, NaAlH 4 , which is the main hydrogen storage material, can be synthesized by a dry method or a wet method. In one embodiment of the present invention, NaAlH 4 may be synthesized by a dry method. When produced by the dry method, the purity is higher than when produced by the wet method, and the manufacturing process is not complicated compared to the wet method, which requires secondary processing such as filtering and drying after production. As a method of uniformly dispersing the catalyst on a nanoscale in the solid phase, various known methods other than high-energy ball milling may be used, and high-energy ball milling may be effective.
본 발명의 구현예들에 따른 수소저장재료의 제조방법은 (a) NaH와 알루미늄(Al)을 혼합하여 NaAlH4를 합성하는 단계; 및 (b) 상기 (a) 단계의 합성물에 CeCl3, TiCl3, NdCl3 및 SmCl3로 이루어진 군에서 선택되는 1종 이상의 촉매를 혼합하여 수소저장용 복합체를 생성하는 단계를 포함한다.A method for manufacturing a hydrogen storage material according to embodiments of the present invention includes (a) synthesizing NaAlH 4 by mixing NaH and aluminum (Al); and (b) generating a composite for hydrogen storage by mixing at least one catalyst selected from the group consisting of CeCl 3 , TiCl 3 , NdCl 3 and SmCl 3 with the compound of step (a).
상기 (a) 단계는 금속착수소화물을 합성하는 단계로 원재료를 혼합 및 합성하는 단계이다. 예를 들면, NaH와 알루미늄(Al)을 1:1의 몰% 비율로 합성용기에 투입하고, 수소 분위기 하에서 볼밀링하여 혼합 및 합성할 수 있다. 볼밀링은 쉐이커밀(shaker mill), 진동밀(vibratory mill), 유성밀(planetary mill) 또는 어트리터밀(attritor mill) 등을 이용하여 수행될 수 있다.Step (a) is a step of synthesizing a metal complex hydride, which is a step of mixing and synthesizing raw materials. For example, NaH and aluminum (Al) may be mixed and synthesized by adding NaH and aluminum (Al) at a mole % ratio of 1:1 to a synthesis vessel and ball milling under a hydrogen atmosphere. Ball milling may be performed using a shaker mill, a vibratory mill, a planetary mill, or an attritor mill.
본 발명의 구현예들에 따르면, 볼밀링을 위해서 우선 NaH와 알루미늄(Al) 및 볼을 반응 용기에 투입한다. 그 후, 반응 용기를 수소(H2) 가스로 충진시킨다. 예를 들어, 수소(H2) 가스를 100 cc/min의 속도로 3 bar 까지 가압할 수 있다. 이어서 볼 및 반응 용기를 사용하여 원재료를 밀링하여 볼밀링을 수행할 수 있다.According to embodiments of the present invention, NaH, aluminum (Al), and balls are first introduced into a reaction vessel for ball milling. After that, the reaction vessel is filled with hydrogen (H 2 ) gas. For example, hydrogen (H 2 ) gas may be pressurized up to 3 bar at a rate of 100 cc/min. Ball milling can then be performed by milling the raw material using a ball and reaction vessel.
여기서 볼 및 반응 용기의 재질은 공구강, 스테인레스강, 초경합금(WC-Co), 질화규소(Si3N4), 알루미나(alumina) 또는 지르코니아(zirconia)일 수 있다. 이들은 단독 또는 혼합으로 사용될 수 있다. 볼의 직경은 약 5 mm 내지 약 30 mm일 수 있다.Here, the material of the ball and the reaction vessel may be tool steel, stainless steel, cemented carbide (WC-Co), silicon nitride (Si 3 N 4 ), alumina, or zirconia. These may be used alone or in combination. The ball may have a diameter of about 5 mm to about 30 mm.
상기 (a) 단계는 일례로 200rpm 내지 800rpm 속도로 3시간 내지 6시간 동안 수행될 수 있다. (a) 단계의 시간이 상기 범위보다 짧을 경우 원재료가 고르게 분산되지 않으며 결정립의 크기가 줄지 않아 고상 반응의 속도를 높일 수 없다. 반면에 시간이 길어질 경우 생산 수율이 저하될 수 있다.Step (a) may be performed for 3 hours to 6 hours at a speed of 200 rpm to 800 rpm, for example. If the time of step (a) is shorter than the above range, the raw material is not evenly dispersed and the size of crystal grains is not reduced, so that the solid phase reaction rate cannot be increased. On the other hand, if the time is prolonged, the production yield may decrease.
상기 (b) 단계는 상기 (a) 단계에서 합성된 금속착수소화물에 촉매를 균일하게 분산시켜 수소저장용 복합체를 형성하는 단계로서, 상기 (b) 단계에서는 상기 (a) 단계의 합성물인 금속착수소화물과 CeCl3, TiCl3, NdCl3 및 SmCl3로 이루어진 군에서 선택되는 1종 이상의 촉매가 1:1의 몰% 비율로 투입될 수 있다. 예를 들면, 상기 (a) 단계의 합성물인 금속착수소화물 NaAlH4과 CeCl3 촉매를 1:1의 몰% 비율로 합성 용기에 투입하고, 수소 분위기 하에서 볼밀링하여 복합화하여 NaAlH4-CeCl3 복합체를 형성할 수 있다. 예를 들어, 수소(H2) 가스를 100 cc/min의 속도로 3 bar까지 가압할 수 있다. 볼밀링은 쉐이커밀(shaker mill), 진동밀(vibratory mill), 유성밀(planetary mill) 또는 어트리터밀(attritor mill) 등을 이용하여 수행될 수 있다. 상기 (b) 단계는 일례로 200 rpm 내지 800 rpm 속도로 3시간 내지 6시간 동안 수행될 수 있다.Step (b) is a step of uniformly dispersing a catalyst in the metal complex hydride synthesized in step (a) to form a complex for storing hydrogen. Digested product and one or more catalysts selected from the group consisting of CeCl 3 , TiCl 3 , NdCl 3 and SmCl 3 may be added at a mol% ratio of 1:1. For example, the metal complex hydride NaAlH 4 and CeCl 3 catalyst, which are the compounds of the step (a), were put into a synthesis vessel at a mole % ratio of 1:1 and ball-milled under a hydrogen atmosphere to form a complex to obtain a NaAlH 4 -CeCl 3 complex. can form For example, hydrogen (H 2 ) gas may be pressurized up to 3 bar at a rate of 100 cc/min. Ball milling may be performed using a shaker mill, a vibratory mill, a planetary mill, or an attritor mill. The step (b) may be performed for 3 hours to 6 hours at a speed of 200 rpm to 800 rpm, for example.
상기 (b) 단계에서 제조된 수소저장재료인 금속착수소화물 복합체는 추가로 활성화하는 (c) 단계를 거쳐 활성화될 수 있다. 상기 (c) 단계의 수소저장용 복합체를 활성화하는 단계는 추가로 수소 가압 된 분위기에서 수행될 수 있다. 예를 들면, 상기 (c) 단계는 상기 (b) 단계에서 합성된 금속착수소화물 복합체를 수소 가압된 분위기에서 300 내지 600℃의 온도 범위에서 10분 내지 100분 동안 수행될 수 있다. 수소 압력은 100 bar 일 수 있으며, 예를 들어 상기 (b) 단계에서 제조된 수소저장재료인 금속착수소화물 복합체 100 g을 고압용기에 넣고 수소(H2) 가스를 100 cc/min의 속도로 100 bar 까지 가압한 후, 10℃의 승온 속도로 300℃까지 승온하여 100분 동안 활성화할 수 있으나, 이에 제한되는 것은 아니다.The metal complex hydride complex, which is the hydrogen storage material prepared in step (b), may be activated through step (c) of additional activation. The step of activating the hydrogen storage complex of step (c) may be further performed in a hydrogen pressurized atmosphere. For example, step (c) may be performed for 10 minutes to 100 minutes at a temperature range of 300 to 600 ° C. in an atmosphere where the metal complex hydride synthesized in step (b) is pressurized with hydrogen. The hydrogen pressure may be 100 bar. For example, 100 g of the metal complex hydride complex, which is the hydrogen storage material prepared in step (b), is placed in a high-pressure container, and hydrogen (H 2 ) gas is introduced at a rate of 100 cc/min to 100 g. After pressurization to bar, the temperature may be raised to 300 ° C. at a heating rate of 10 ° C. and activated for 100 minutes, but is not limited thereto.
본 발명의 구현예들에 따라 제조된 수소저장재료는 작동온도가 저감되고, 수소 흡방출 속도가 증가되며, 사이클 특성이 향상될 수 있다. 상기 (a) 단계에서 제조된 순수한 NaAlH4는 수소방출온도가 약 170 내지 180℃이나, (b) 단계에서 CeCl3 촉매를 첨가하면 수소방출온도가 약 120 내지 130℃로 상대적으로 낮아지게 된다. 다른 촉매로는 TiCl3 촉매를 첨가하면 수소방출온도가 120℃ NdCl3 촉매를 첨가하면 수소방출온도가 130℃ SmCl3 촉매를 첨가하면 수소방출온도가 140℃ 등으로 낮아지게 된다.In the hydrogen storage material manufactured according to the embodiments of the present invention, the operating temperature is reduced, the hydrogen intake and release rate is increased, and cycle characteristics can be improved. The pure NaAlH 4 prepared in step (a) has a hydrogen evolution temperature of about 170 to 180 °C, but the hydrogen evolution temperature is relatively lowered to about 120 to 130 °C when the CeCl 3 catalyst is added in step (b). As for other catalysts, the hydrogen evolution temperature is lowered to 120°C when the TiCl 3 catalyst is added, 130°C when the NdCl 3 catalyst is added, and 140°C when the SmCl 3 catalyst is added.
수소저장재료의 제조 또는 보관에 있어, NaAlH4는 하기 반응식과 같이 반응 중에 알루미늄 분자를 발생시키므로, 저장 용기와의 반응을 방지할 수 있도록 금속표면 코팅 또는 증착된 용기를 사용할 수도 있다.In manufacturing or storing the hydrogen storage material, since NaAlH 4 generates aluminum molecules during the reaction as shown in the following reaction formula, a metal surface coating or deposited container may be used to prevent the reaction with the storage container.
(반응식) NaAlH4 →1/3 Na3AlH6 + 2/3 Al + H2(3.7질량%)(Reaction Formula) NaAlH 4 → 1/3 Na 3 AlH 6 + 2/3 Al + H 2 (3.7% by mass)
1/3 Na3AlH6 →NaH + 1/3 Al + 1/2 H2 (1.9질량%)1/3 Na 3 AlH 6 → NaH + 1/3 Al + 1/2 H 2 (1.9% by mass)
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples according to the present invention and comparative examples not according to the present invention, but the scope of the present invention is not limited by the examples presented below.
실시예 1: 수소저장재료의 제조Example 1: Preparation of hydrogen storage material
우선 1:1 몰% 비율로 NaH와 알루미늄(Al) 및 볼을 반응 용기에 투입하고, 반응 용기에 수소(H2) 가스를 100 cc/min의 속도로 3 bar 까지 가압한 후, 이를 유성밀에 장착하여 400 rpm의 속도로 3시간 동안 혼합하여 고체수소저장재료(NaAlH4)를 합성한다. 그 다음 합성된 고체수소저장재료에 CeCl3 촉매를 1:1 몰% 비율로 합성용기에 투입하고, 합성용기에 수소(H2) 가스를 100 cc/min의 속도로 3 bar 까지 가압한 후, 유성밀에 장착 후 400 rpm의 속도로 3시간 동안 혼합하여 고체수소저장용 복합체(NaAlH4-CeCl3)를 합성한다. 마지막으로 합성된 고체수소저장용 복합체 100 g을 고압용기에 넣고 H2 가스를 100 cc/min의 속도로 100 bar 까지 가압한 후, 10℃/min의 승온 속도로 300℃까지 승온하여 100분 동안 활성화하여 수소저장재료를 제조하였다.First, NaH, aluminum (Al), and balls are introduced into a reaction vessel at a 1:1 mol% ratio, and hydrogen (H 2 ) gas is pressurized to 3 bar at a rate of 100 cc/min in the reaction vessel. , and mixed at a speed of 400 rpm for 3 hours to synthesize a solid hydrogen storage material (NaAlH 4 ). Then, CeCl 3 catalyst was added to the synthesized solid hydrogen storage material in a ratio of 1:1 mol% to a synthesis vessel, and hydrogen (H 2 ) gas was pressurized to 3 bar at a rate of 100 cc/min in the synthesis vessel, After mounting on a planetary mill, mixing at a speed of 400 rpm for 3 hours to synthesize a solid hydrogen storage composite (NaAlH 4 -CeCl 3 ). Finally, put 100 g of the synthesized solid hydrogen storage complex in a high-pressure container, pressurize the H 2 gas to 100 bar at a rate of 100 cc/min, and then raise the temperature to 300° C. at a temperature increase rate of 10° C./min for 100 minutes. Activated to prepare a hydrogen storage material.
수소저장재료의 성분 분석 실험Component analysis experiment of hydrogen storage material
도 1은 각 염화물계 촉매별로 합성된 고체수소저장용 복합체의 합성여부를 확인하기 위하여 분석한 X-선회절 분석법(X-ray Diffraction Spectroscopy : XRD) 데이터로, 성공적으로 NaAlH4가 합성되었음을 확인 할 수 있다.1 is X-ray diffraction spectroscopy (XRD) data analyzed to confirm the synthesis of solid hydrogen storage composites synthesized for each chloride-based catalyst, confirming that NaAlH 4 was successfully synthesized. can
수소 방출 속도 측정 실험Hydrogen release rate measurement experiment
도 2는 120℃의 방출온도에서, 도 3은 150℃의 방출온도에서 Sievert 장비로 측정한 등온 수소 방출 곡선 및 최대 수소 방출곡선을 나타낸 데이터로, TiCl3 촉매로 합성된 고체수소저장용 복합체의 최대 수소 방출량인 것을 확인할 수 있다.2 is data showing isothermal hydrogen release curves and maximum hydrogen release curves measured with Sievert equipment at a release temperature of 120 ° C and FIG. 3 is a release temperature of 150 ° C. It can be confirmed that this is the maximum hydrogen emission amount.
이상, 본 발명의 실시예들을 설명하였지만 상술한 실시예들은 하기의 특허청구범위에 기재된 본 발명의 보호범위를 전달할 수 있는 '예'들 중 일부이다. 따라서 본 발명의 보호범위는 상술한 실시예들에 한정되지 않는다.Above, the embodiments of the present invention have been described, but the above-described embodiments are some of the 'examples' that can deliver the scope of protection of the present invention described in the following claims. Therefore, the protection scope of the present invention is not limited to the above-described embodiments.
또한, 본 발명의 보호범위는 특허청구범위와 기술적으로 균등한 범위까지 확대될 수 있다.In addition, the protection scope of the present invention can be extended to the scope technically equivalent to the scope of the claims.
Claims (5)
(b) 상기 (a) 단계의 합성물에 CeCl3, TiCl3, NdCl3 및 SmCl3로 이루어진 군에서 선택되는 1종 이상의 촉매를 혼합하여 수소저장용 복합체를 생성하는 단계를 포함하는 수소저장재료의 제조방법.
(a) synthesizing by mixing NaH and aluminum (Al); and
(b) mixing at least one catalyst selected from the group consisting of CeCl 3 , TiCl 3 , NdCl 3 and SmCl 3 with the compound of step (a) to create a hydrogen storage material; manufacturing method.
The method of claim 1, wherein the method of manufacturing a hydrogen storage material further comprises the step of (c) activating the hydrogen storage composite produced in step (b).
The method of claim 1, wherein in step (a), NaH and aluminum are added in a mole % ratio of 1:1.
The hydrogen according to claim 1, wherein in step (b), the compound of step (a) and a catalyst such as CeCl 3 , TiCl 3 , NdCl 3 and SmCl 3 are added at a mole% ratio of 1:1. Manufacturing method of storage material.
The method of claim 2, wherein the step of activating the hydrogen storage complex in step (c) is performed in a hydrogen pressurized atmosphere.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020210188520A KR20230099283A (en) | 2021-12-27 | 2021-12-27 | Method of manufacturing a hydrogen storage material used chloride catalisyst |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020210188520A KR20230099283A (en) | 2021-12-27 | 2021-12-27 | Method of manufacturing a hydrogen storage material used chloride catalisyst |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20230099283A true KR20230099283A (en) | 2023-07-04 |
Family
ID=87156429
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020210188520A Ceased KR20230099283A (en) | 2021-12-27 | 2021-12-27 | Method of manufacturing a hydrogen storage material used chloride catalisyst |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR20230099283A (en) |
-
2021
- 2021-12-27 KR KR1020210188520A patent/KR20230099283A/en not_active Ceased
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Aguey-Zinsou et al. | Hydrogen in magnesium: new perspectives toward functional stores | |
| EP1558520B1 (en) | Complex hydrides for hydrogen storage | |
| Liu et al. | Hydrogen desorption properties of the MgH2–AlH3 composites | |
| JP2006504616A5 (en) | ||
| CN101264863A (en) | Method for direct synthesis of metal complex hydride hydrogen storage materials by reaction ball milling | |
| Cao et al. | Reversible hydrogen storage in yttrium aluminum hydride | |
| US7790133B2 (en) | Multi-component hydrogen storage material | |
| Mao et al. | Enhanced hydrogen storage properties of NaAlH4 co-catalysed with niobium fluoride and single-walled carbon nanotubes | |
| US7608233B1 (en) | Direct synthesis of calcium borohydride | |
| US20110180753A1 (en) | Destabilized and catalyzed borohydride for reversible hydrogen storage | |
| Congwen et al. | Mechanochemical synthesis of the α-AlH3/LiCl nano-composites by reaction of LiH and AlCl3: Kinetics modeling and reaction mechanism | |
| Wang et al. | On the reversibility of hydrogen storage in novel complex hydrides | |
| CN101565168B (en) | Preparation method of multi-light metal coordination aluminum hydride hydrogen storage material | |
| US8105974B2 (en) | Destabilized and catalyzed borohydride for reversible hydrogen storage | |
| KR20230099283A (en) | Method of manufacturing a hydrogen storage material used chloride catalisyst | |
| WO2007106513A2 (en) | Hydrogen storage in a combined mxaih6/m'y(nh2)z system and a methods of making and using the same | |
| CA2640453C (en) | Adjusting the stability of complex metal hydrides | |
| POTTMAIER VICENTE et al. | Materials for hydrogen storage and the Na-Mg-BH system | |
| US8124559B2 (en) | Destabilized and catalyzed borohydride for reversible hydrogen storage | |
| KR20170131038A (en) | Method of manufacturing a hydrogen storage material | |
| KR20230099285A (en) | Method of manufacturing a hydrogen storage material of magnesium imade | |
| Chen et al. | Influence of TiC catalyst on absorption/desorption behaviors and microstructures of sodium aluminum hydride | |
| KR20170131037A (en) | Method of manufacturing a hydrogen storage material | |
| Xiao et al. | Synthesis and hydriding/dehydriding properties of nanosized sodium alanates prepared by reactive ball-milling | |
| JP2007320815A (en) | Hydrogen storage material and hydrogen generation method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| PE0601 | Decision on rejection of patent |
St.27 status event code: N-2-6-B10-B15-exm-PE0601 |