KR20230124812A - Smart control monitoring standalone multi-point heat exchange ventilation system - Google Patents
Smart control monitoring standalone multi-point heat exchange ventilation system Download PDFInfo
- Publication number
- KR20230124812A KR20230124812A KR1020220021663A KR20220021663A KR20230124812A KR 20230124812 A KR20230124812 A KR 20230124812A KR 1020220021663 A KR1020220021663 A KR 1020220021663A KR 20220021663 A KR20220021663 A KR 20220021663A KR 20230124812 A KR20230124812 A KR 20230124812A
- Authority
- KR
- South Korea
- Prior art keywords
- filter
- air
- heat exchange
- ventilation
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000009423 ventilation Methods 0.000 title claims abstract description 42
- 238000012544 monitoring process Methods 0.000 title claims abstract description 16
- 239000000428 dust Substances 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 230000001954 sterilising effect Effects 0.000 claims abstract description 10
- 238000004659 sterilization and disinfection Methods 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 5
- 238000011045 prefiltration Methods 0.000 claims abstract description 5
- 230000004044 response Effects 0.000 claims abstract description 5
- 241000700605 Viruses Species 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 238000011109 contamination Methods 0.000 claims abstract description 4
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 4
- 150000004032 porphyrins Chemical class 0.000 claims abstract description 4
- 244000052616 bacterial pathogen Species 0.000 claims abstract description 3
- 238000007710 freezing Methods 0.000 claims abstract description 3
- 230000008014 freezing Effects 0.000 claims abstract description 3
- -1 pollen Substances 0.000 claims abstract description 3
- 238000009833 condensation Methods 0.000 claims abstract 2
- 230000005494 condensation Effects 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 13
- 238000013461 design Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 3
- 241000894006 Bacteria Species 0.000 claims description 2
- 238000013480 data collection Methods 0.000 claims description 2
- 238000009529 body temperature measurement Methods 0.000 claims 2
- 239000000126 substance Substances 0.000 abstract description 5
- 230000001580 bacterial effect Effects 0.000 abstract description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 21
- 229910002092 carbon dioxide Inorganic materials 0.000 description 11
- 238000004378 air conditioning Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 230000007613 environmental effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000003749 cleanliness Effects 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 231100000049 endocrine disruptor Toxicity 0.000 description 1
- 239000000598 endocrine disruptor Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005399 mechanical ventilation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000000447 pesticide residue Substances 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/007—Ventilation with forced flow
- F24F7/013—Ventilation with forced flow using wall or window fans, displacing air through the wall or window
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/0001—Control or safety arrangements for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/39—Monitoring filter performance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/28—Arrangement or mounting of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/147—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/20—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
- F24F8/22—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
- F24F2013/221—Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
- F24F2110/12—Temperature of the outside air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/50—Air quality properties
- F24F2110/65—Concentration of specific substances or contaminants
- F24F2110/70—Carbon dioxide
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
Abstract
본 발명은 스마트 제어 모니터링 단독형 멀티포인트 열교환 환기 시스템에 관한 것으로 온습도 동시조절 가능한 펄프 열교환소자를 이용한 전열교환시스템은 오염된 실내공기를 강제 배출, 신선한 외부 공기를 공급하고, 실내의 미세먼지, 유해가스, 세균 등을 제거하며, 외부공기 중의 황사, 미세먼지, 꽃가루, 분진 등을 제거한다. 일반 공조장치를 통한 환기에 비해 냉난방 비용이 30% 이상 절감하게 되며, 환기시(60~80%) 정도의 열교환 효율로 온도차를 줄일 수 있다. CO2와 공기센서에 의한 환기량(공기흐름량) 제어하며, Cloud 기반 분산제어로 빅데이터 수집과 AI에 필요한 알고리즘 탑제하고, 센서 동작상태 현재 값 스마트폰으로 확인 및 제어기능하게 할 수 있다.
본 발명으로 UV LED살균기능으로 필터에 살균과 필터 청결상태로 유지기능을 가지고 있으며, 헤파필터 프리필터 항균필터 전열소자를 세균 바이러스 오염방지 가능하며, 405nm에서 일어나는 살균은 '포피린반응분해'라는 원리를 이용하며, 사계절 대응하여 영하의 날씨에도 필터 손상을 방지한 히터 관리 기능이 있으며, 영하의 날씨로 결빙에 의한 전열소자와 공기필터보호나 지속적인 환기가 가능하고, 외부 공기 온도 측정 내부온도 측정 편차 관리로 결로 시점까지 관리 할 수 있다The present invention relates to a smart control monitoring stand-alone multi-point heat exchange ventilation system, wherein the total heat exchange system using a pulp heat exchange element capable of simultaneously adjusting temperature and humidity forcibly discharges polluted indoor air, supplies fresh outside air, and removes fine dust and harmful substances from the room. It removes gas, germs, etc., and removes yellow dust, fine dust, pollen, and dust in the outside air. Compared to ventilation through general air conditioners, cooling and heating costs are reduced by more than 30%, and the temperature difference can be reduced with heat exchange efficiency of about 60 to 80% during ventilation. It controls the amount of ventilation (air flow) by CO2 and air sensors, collects big data through cloud-based distributed control, and integrates algorithms required for AI.
With the present invention, the UV LED sterilization function has the function of sterilizing the filter and keeping the filter clean, and it is possible to prevent bacterial virus contamination of the HEPA filter pre-filter antibacterial filter heating element, and the sterilization that occurs at 405 nm is the principle of 'porphyrin reaction decomposition' It has a heater management function that prevents filter damage even in sub-zero weather in response to four seasons, and it is possible to protect the heating element and air filter from freezing in sub-zero weather or to continuously ventilate, measure the outside air temperature and measure the internal temperature. It can be managed until the point of condensation through management
Description
발명은 스마트 제어 모니터링 단독형 멀티포인트 열교환 환기 시스템에 관한 것으로 21세기 들어 실외의 미세먼지의 농도가 치솟으면서 이에 대한 우려로 환기를 해야 할지 말아야 할지에 대한 염려가 늘어났으나, 전문가들은 우선은 환기를 하고 공기청정기를 터보 모드 등으로 조절하여 실내의 탁한 공기는 순환시키는 것이 중요하다고 말한다. 문을 꽁꽁 닫아놓는 실내의 공기질도 미세먼지에 뒤지지 않을 만큼 나쁘기 때문에 미세먼지가 그나마 없을 때 환기를 시켜주는 것이 현재로썬 최선일 수밖에 없다.The invention relates to a smart control monitoring stand-alone multi-point heat exchange ventilation system. As the concentration of outdoor fine dust soared in the 21st century, concerns about whether to ventilate or not have increased due to concerns about this, but experts say ventilation is a priority. It is important to circulate the turbid air in the room by adjusting the air purifier to turbo mode, etc. Since the air quality in a room where the door is tightly closed is not inferior to fine dust, the best thing for now is to ventilate the room when there is no fine dust.
기계 환기가 가능한 중앙집중식 공조방식(HVAC 방식)이 아닌 건축물의 대부분은 창문을 이용한 자연환기시스템으로 외부 환경영향에 취약하고 이를 차단하기 위하여 이중창 등으로 창문을 밀폐하여 건물의 단열재, 실내 내장재 등에 의한 유해물질이 방출되며 하절기와 동절기에는 냉난방에 의한 실내 기온을 유지하기 위하여 환기량이 줄어듦으로 인해 미세먼지, 이산화탄소 등에 의해 실내 공기질이 열악해질 수 밖에 없다Most buildings that do not have a centralized air conditioning system (HVAC system) with mechanical ventilation are vulnerable to external environmental influences with natural ventilation systems using windows. Harmful substances are emitted, and in summer and winter, the amount of ventilation is reduced to maintain the indoor temperature by cooling and heating, so the indoor air quality can only deteriorate due to fine dust and carbon dioxide.
실내에서 발생되는 오염원과 오염물질은 건축물의 단열재, 실내의 내장재 등에 의한 유해물질 방출이 있으며, 외부로부터의 오염물질 유입 등 여러 경로로부터 오염된 실내의 공기를 깨끗하게 유지하기 위해서는 환기가 필요하다.Pollutants and pollutants generated indoors include the emission of harmful substances by insulation materials of buildings and interior materials, and ventilation is required to keep the indoor air contaminated from various routes such as inflow of pollutants from the outside clean.
현재 대부분의 건축물에서 사용되고 있는 창문을 이용한 자연환기시스템은 외부 환기 영향에 취약하며 냉난방 시 에너지 손실이 크다는 단점이 있으므로 이를 보완하기 위한 기술 도입이 시급하다.The natural ventilation system using windows currently used in most buildings is vulnerable to the influence of external ventilation and has the disadvantage of high energy loss during heating and cooling, so it is urgent to introduce technology to compensate for this.
국내 전열교환 환기시스템의 관련 기술은 환기 설비 의무화 등으로 비교적 짧은 시간에 널리 보급되고 있으며, 이에 맞춰 기술수준은 높아가고 있다The technology related to the total heat exchange ventilation system in Korea is widely spread in a relatively short time due to mandatory ventilation facilities, and the level of technology is increasing accordingly.
환기량의 기준 : 재실자의 활동 (흡연, 조리, 청소작업 등), 업무 (일반건물에서의 복사기의 사용 등), 건축물 자체의 발생원 (건축재료와 가구류 등의 오염물질 방출정도)에 따라 다르게 설정될 수 있다.Ventilation standard: Depending on occupant activity (smoking, cooking, cleaning work, etc.), work (use of a copy machine in a general building, etc.) can
건축물이 목적하는 환경기능 : 건축물의 주거기능으로서 공조, 위생, 전기, 정보 및 방재 등의 설비시스템이 필요로 한다. 각 시스템은 외부조건, 내부조건에 의한 부하요소와 목적으로 하는 기능과의 상관관계에 따라 여러 가지로 달라지고, 시스템화의 정도가 건물의 기능을 좌우한다. 공기조화의 목적은 대상 건축물의 기능성과 일체화시켜 임의의 주어진 공간에 온도, 습도, 기류, 청정도 등을 만족시키도록 공기의 질과 양을 조정하는 것을 의미하고 주어진 공간의 환경을 목적한 조건으로 맞추기 위해서는 시스템적인 해결을 모색하여 설계 프로세스를 진행한다. Environmental function that a building aims for: As a residential function of a building, facility systems such as air conditioning, sanitation, electricity, information, and disaster prevention are required. Each system differs in many ways depending on the correlation between the external and internal load factors and the target function, and the degree of systemization determines the function of the building. The purpose of air conditioning means to adjust the quality and quantity of air to satisfy the temperature, humidity, airflow, cleanliness, etc. in a given space by integrating with the functionality of the target building, and to adjust the environment of the given space to the target condition. In order to fit, a systematic solution is sought and the design process proceeds.
건축물에 있어서 공조설비는 건축비, 에너지 소비량, 최대부하시의 에너지량, 시스템의 공간구성, 소음과 진동의 허용치와 대책, 열원의 공급시스템 및 자동제어, 정보관리를 수반하는 관제방식 등이 건물의 제반조건 (위치, 규모, 구조, 용도, 사용시간)에 적합하도록 균형이 이루어져야 한다. 공기의 온도, 습도, 기류, 청정도를 공기조화의 4 요소이며 일정한 공간의 요구에 알맞은 온도, 습도, 청정도, 기류 분포 등을 동시에 조절하기 위한 공기취급 과정으로 넓은 의미의 환기까지 포함하여 HVAC(Heating, Ventilation, Air Conditioning)이라고 한다. In buildings, air-conditioning facilities include construction cost, energy consumption, energy amount at maximum load, system space composition, noise and vibration tolerance and countermeasures, heat source supply system, automatic control, and control method accompanying information management. A balance must be made to suit all conditions (location, scale, structure, use, use time). Air temperature, humidity, airflow, and cleanliness are the four elements of air conditioning, and it is an air handling process that simultaneously controls temperature, humidity, cleanliness, and airflow distribution suitable for the needs of a certain space. HVAC (including ventilation in a broad sense) Heating, Ventilation, Air Conditioning).
열회수 기술 : 열회수 기술의 핵심은 특수열전달매개체(Heat Exchange Core)를 사용하고 이러한 전달매개체는 실내에서 배출되는 공기에서 에너지(열기또는냉기)를 잠시 보관하였다가 실내로 유입되는 공기에 그 에너지를 90%이상 전달한다. Flow Chart는 겨울울철(난방)과 여름철(냉방)냉난방으로 인한 에너지 손실감소와 냉난방을 하지 않는 봄/가을에는 열교환이 없는 일반환기(By-Pass)로 에너지관리효율성 확보하여 4계절용으로 활용한다. 응용분야는 사람이 거주하는 실내환경 뿐만 아니라 농가에도 적용 가능하여 온/습도에대해 민감한 반응을 보이는 버섯재배사, 양돈, 양계농가등적용, 농가의 경제적 이익과 국가적 차원의 저탄소녹색성장의 에너지절감 효과가 있다. Heat recovery technology: The core of heat recovery technology uses a special heat transfer medium (Heat Exchange Core). deliver more than 1% The Flow Chart reduces energy loss due to cooling and heating in winter (heating) and summer (cooling), and secures energy management efficiency with general ventilation (by-pass) without heat exchange in spring/autumn when air conditioning is not performed, and is used for four seasons. . Applications include not only the indoor environment where people live, but also farmhouses, which are sensitive to temperature and humidity, such as mushroom growers, pig farming, and poultry farms. there is
열교환기기의 활용기술 : 열전달이란 온도가 높은 곳에서 온도가 낮은 곳으로 열이 전달되는 현상이며 하나의 유체흐름에서 또 다른 흐름으로의 열전달을 이루는 장치로 뜨거운 유체에서 찬 유체로 열을 전달하여 뜨거운 유체의 에너지를 감소시키고 찬 유체의 에너지를 증가시키는 장치를 의미한다. 열교환기는 여러 다른 형태로 제작되며 화력발전소, 핵발전소, 가스터빈, 가열장치, 공기조절기, 냉동장치 그리고 화학산업 등다방면의 기술에 광범위하게 사용된다. Utilization technology of heat exchanger: Heat transfer is a phenomenon in which heat is transferred from a place with a high temperature to a place with a low temperature. It is a device that transfers heat from one fluid flow to another. A device that reduces the energy of a fluid and increases the energy of a cold fluid. Heat exchangers are manufactured in different types and are widely used in various technologies such as thermal power plants, nuclear power plants, gas turbines, heating devices, air conditioners, refrigeration devices, and the chemical industry.
특별한 형태의 열교환기가 인공위성과 우주선을 위해 개발되었는데, 이들 열교환기는 특별한 목적을 위해 쓰일 때는 다른 이름들로 불린다. 열전달 현상은 그 특성에 따라 전도 열전달(Conductive Heat Transfer), 대류 열전달(Convective Heat Transfer), 복사 열전달(Radiative Heat Transfer)의 세 가지로 분류한다. 실제에서는 이러한 제 현상들이 혼합되어 나타나고, 열 에너지의 전달에 따라 상변화(Phase Change)가 일어나거나 물진 전달(Mass Transfer)을 동반하는 등 해석하기에 어려움이 있다.Special types of heat exchangers have been developed for satellites and spacecraft, but these heat exchangers are called by different names when used for special purposes. Heat transfer phenomena are classified into three types according to their characteristics: conductive heat transfer, convective heat transfer, and radiative heat transfer. In practice, these phenomena are mixed, and it is difficult to interpret, such as a phase change or mass transfer accompanying the transfer of thermal energy.
본 발명은 열교환 소자를 이용한 실내온도 손실에 따른 에너지 비용 절감 열 교환 시스템으로 열교환 소자에 의해 실내외 공기와 온도손실과 차를 줄이고,오염된 실내공기를 강제 배출하여 신선한 외부 공기를 공급하며, 실내의 미세먼지, 유해가스, 세균 등을 제거하고 외부공기 중의 황사, 미세먼지, 꽃가루, 분진 등을 제거하여 반 공조장치를 통한 환기에 비해 냉난방 비용 절감함을 목적으로 한다The present invention is a heat exchange system that reduces energy costs due to indoor temperature loss using a heat exchange element, which reduces the temperature loss and difference between indoor and outdoor air by means of a heat exchange element, supplies fresh outside air by forcibly discharging polluted indoor air, and It aims to reduce air-conditioning and heating costs compared to ventilation through semi-air conditioning units by removing fine dust, harmful gases, germs, etc., and removing yellow dust, fine dust, pollen, and dust from the outside air.
본 발명은 Cloud기반 IOT제어 공기 온습도 필터 상태 모니터링 환기시스템을 개발하여 Cloud 기반 분산제어로 빅데이터 수집과 AI에 필요한 데이터 처리하고,CO2와 공기센서에 의한 환기량(공기흐름량) 제어하며,센서 동작상태 현재 값 스마트폰으로 확인 및 제어기능하도록 설계한다. The present invention develops a cloud-based IOT-controlled air temperature and humidity filter condition monitoring ventilation system to collect big data and process data necessary for AI through cloud-based distributed control, control ventilation (air flow) by CO2 and air sensors, and sensor operation status It is designed to check and control the current value with a smartphone.
본 발명은 UV LED살균기능으로 필터에 살균과 필터 청결상태를 최적으로 유지할 수 있는 기능으로 설계하여 헤파필터 프리필터 항균필터 전열소자를 세균 바이러스 오염방지 기능과 405nm에서 일어나는 살균은 '포피린반응분해'라는 원리를 이용한다 The present invention is designed with a function that can sterilize the filter and maintain filter cleanliness optimally with UV LED sterilization function, so that the HEPA filter pre-filter antibacterial filter has the function of preventing bacterial virus contamination and the sterilization that occurs at 405 nm is 'porphyrin reaction decomposition' use the principle
본 발명은 스마트폰 활용하여 순환방법 설정 및 동작상태 모니터링과 온도습도 먼지 CO2 모니터링 기능을 갖추고,Wifi 나 인터넷 활용 공간 언제 어디서나 제어가 가능 기능과 실내 공기 먼지나 CO2 농도 상태에 따라 공기량 가동시간 조절 가능하도록 설계한다. The present invention utilizes a smartphone to set the circulation method, monitor the operation status, and monitor temperature, humidity, dust, CO2, and control anytime, anywhere in the Wi-Fi or Internet space. It is designed to do.
본 발명은 사계절 날씨에 대응하여 영하의 날씨에도 필터 손상을 방지하기 위한 히터 관리 기능을 설계함을 목적으로 한다 An object of the present invention is to design a heater management function to prevent filter damage even in sub-zero weather in response to weather in all four seasons.
본 발명은 스마트폰 활용하여 순환방법 설정 및 동작상태 모니터링과 온도습도 먼지 CO2 모니터링 기능을 갖추어 Wifi 나 인터넷 활용 공간 언제 어디서나 제어가 가능하고 실내 공기 먼지나 CO2 농도 상태에 따라 공기량 가동시간 조절 기능을 갖춘 제품으로 설계한다 The present invention is equipped with functions to set circulation method and monitor operation status and temperature, humidity, dust and CO2 monitoring by using a smartphone, so that it can be controlled anytime and anywhere in the space where Wi-Fi or Internet is used, and it is equipped with a function to adjust air volume operation time according to indoor air dust or CO2 concentration conditions. design as a product
본 발명으로 인하여 실내외 온도와 열교환소자온도 반영에 의한 공급시간과 배출시간 조절 기능하며,단독형 설치 구조사용 시 배출 시간과 공급시간을 반복 간격 설정이 가능하게 설계한다. Due to the present invention, the supply time and discharge time are adjusted by reflecting the indoor and outdoor temperatures and the temperature of the heat exchanger element, and the discharge time and supply time are designed to enable repetition interval setting when using a single installation structure.
[단독형 구조 설치 방법][Independent structure installation method]
[순환 공기 이중 흐름을 위한 멀티포인트 설치 방법] [Multi-point installation method for double circulation air flow]
온습도 동시조절 가능한 펄프 열교환소자를 이용한 전열교환시스템 은 오염된 실내공기를 강제 배출, 신선한 외부 공기를 공급하고, 실내의 미세먼지, 유해가스, 세균 등을 제거하며, 외부공기 중의 황사, 미세먼지, 꽃가루, 분진 등을 제거한다. 일반 공조장치를 통한 환기에 비해 냉난방 비용이 30% 이상 절감하게 되며, 환기시(60~80%) 정도의 열교환 효율로 온도차를 줄일 수 있다.The total heat exchange system using a pulp heat exchange element capable of controlling temperature and humidity at the same time forcibly discharges polluted indoor air, supplies fresh outside air, removes indoor fine dust, harmful gases, bacteria, etc. Remove pollen, dust, etc. Compared to ventilation through general air conditioners, cooling and heating costs are reduced by more than 30%, and the temperature difference can be reduced with heat exchange efficiency of about 60 to 80% during ventilation.
Cloud 기반 IOT제어 모니터링 전열교환기 시스템은 CO2와 공기센서에 의한 환기량(공기흐름량) 제어하며, Cloud 기반 분산제어로 빅데이터 수집과 AI에 필요한 알고리즘 탑제하고, 센서 동작상태 현재 값 스마트폰으로 확인 및 제어기능하게 할 수 있다. The cloud-based IOT control monitoring total heat exchanger system controls the amount of ventilation (air flow) by CO2 and air sensors, collects big data through cloud-based distributed control, and is equipped with algorithms required for AI. can make it functional.
UV LED살균기능으로 필터에 살균과 필터 청결상태로 유지기능을 가지고 있으며, 헤파필터 프리필터 항균필터 전열소자를 세균 바이러스 오염방지 가능하며, 405nm에서 일어나는 살균은 '포피린반응분해'라는 원리를 이용한다. It has the function of sterilizing the filter and keeping the filter clean with the UV LED sterilization function, and it is possible to prevent bacterial virus contamination of the HEPA filter pre-filter antibacterial filter and the heating element, and the sterilization that occurs at 405 nm uses the principle of 'porphyrin reaction decomposition'.
상품화 모델을 위한 시제품 제작과 편리한 필터교환 제품 설계하여, 공구가 필요 없는 간단한 체결의 방식으로 사용자가 쉽게 교환이 가능한 필터 구조를 가지고 있으며, 헤파필터, 프리필터, 항균필터와 전열소자 사용자선택이 기능하게 구성되어 있다. Prototype production and convenient filter replacement products are designed for commercialization models, and it has a filter structure that allows users to easily replace it by a simple fastening method that does not require tools. It is composed of
사계절 대응하여 영하의 날씨에도 필터 손상을 방지한 히터 관리 기능이 있으며, 영하의 날씨로 결빙에 의한 전열소자와 공기필터보호나 지속적인 환기가 가능하고, 외부 공기 온도 측정 내부온도 측정 편차 관리로 결로 시점까지 관리 할 수 있다.There is a heater management function that prevents filter damage even in sub-zero weather in response to four seasons, and it is possible to protect the heating element and air filter due to freezing in sub-zero weather or to continuously ventilate. can be managed up to
일정공간의 실내에 공기질 향상을 위해 환기를 실시함에 있어 센서와 타이머를 활용하여 고효율 환기시스템 설계한다. 일정공간 내부의 온도, 습도 이상 상태 모니터링 및 감시제어, 상태감시 기능 확보를 통한 어플리케이션의 다양화할 수 있다. 콤펙트 구조의 환기제어장치 관련 마이크로프로세서 H/W 설계를 통한 융합형 제품 개발로 의료시설 등의 고부가가치 산업에 기술보급 및 확대 운영이 가능하다.Design a high-efficiency ventilation system by utilizing sensors and timers when performing ventilation to improve air quality in a certain space. Applications can be diversified by monitoring and monitoring abnormal conditions of temperature and humidity inside a certain space, and securing status monitoring functions. It is possible to supply and expand operation of technology to high value-added industries such as medical facilities by developing convergence products through microprocessor H/W design related to compact ventilation control devices.
도 1은 오염된 실내공기를 강제배출 시키고, 신선한 외부 공기를 공급하는 온습도이동 펄프소재의 열교환소자
도 2는 완벽한 소음차단과 효과를 확립한 최적설계에 따른 열교환시스템 구성도
도 3은 Cloud 기반 분산제어로 빅데이터 수집과 AI에 필요한 데이터 처리하는 IOT 회로 구성 블록도
도 4는 스마트폰 활용하여 순환방법 설정 및 동작상태 모니터링과 온도습도 먼지 CO2 모니터링 기능1 is a heat exchange element made of a temperature and humidity moving pulp material that forcibly discharges polluted indoor air and supplies fresh outside air.
2 is a block diagram of a heat exchange system according to an optimal design that establishes perfect noise blocking and effects.
3 is a block diagram of an IOT circuit that processes data necessary for big data collection and AI with Cloud-based distributed control
4 is a function of setting a circulation method and monitoring operating conditions and monitoring temperature, humidity, dust, and CO2 using a smartphone.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.The terms used in the present invention have been selected from general terms that are currently widely used as much as possible, but in certain cases, there are terms arbitrarily selected by the applicant. Therefore, its meaning should be understood.
이하, 첨부한 도면에 도시된 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings.
그러나 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Like reference numbers indicate like elements throughout the specification.
폐열 회수 환기장치의 성능 : 전열교환기를 설명하는 용어에는 누설률, 온도교환효율, 습도교환효율, 전열교환효율, 에너지 계구 등이 있다. 누설률은 폐열회수 환기유닛의 환기측과 급기측 휀 사이에서 누설되는 공기량과 급기량의 비를 나타낸 덕이고, 온도 및 습도교환효율은 급기와 환기사이에서 교환된 온도 및 습도의 비를 나타낸다. 전열교환효율은 급기와 환기사이에서 교환된 열량의 비를 나타낸 것이고, 유효전열교환효율은 전열교환효율에서 누설률을 고려한 효율이며 에너지 계수는 소비전력에 대한 급기 측의 에너지 교환량을 나타낸다. 온도교환효율은 실내공기와 외부 공기간에 서로 현열 교환하여 실내공기가 외부 공기를 어느 정도 가열 또는 냉각하였는지를 나타내는 효율이다.Performance of waste heat recovery ventilator: Terms describing the total heat exchanger include leakage rate, temperature exchange efficiency, humidity exchange efficiency, total heat exchange efficiency, and energy meter. The leak rate is a virtue that represents the ratio of the amount of air leaked between the ventilation side and the air supply side fan of the waste heat recovery ventilation unit, and the temperature and humidity exchange efficiency represents the ratio of temperature and humidity exchanged between the air supply and ventilation. The total heat exchange efficiency represents the ratio of heat exchanged between the supply air and the ventilation, the effective total heat exchange efficiency is the efficiency considering the leakage rate in the total heat exchange efficiency, and the energy coefficient represents the energy exchange amount of the supply air side against the power consumption. The temperature exchange efficiency is an efficiency that indicates how much the indoor air heats or cools the outside air by exchanging sensible heat between the indoor air and the outdoor air.
이 효율은 유닛의 공기누설이 반열 되지 않아서 누설비율이 높을수록 효율이 높게 나오는 단점이 있으며 온도효율이 높다고 해서 반드시 우수한 제품이라 할 수 없다. 다만 누설율이 아주 낮으면서 온도 효율이 높은 제품이 우수한 제품이라 할 수 있다. 전열교환효율은 에너지 효율 측면에서 중요한 변수인 전열교환효율은 외기와 환기의 엔탈피 차이와 외기과 급기 엔탈피 차이의 상대적인 비율이다. This efficiency has the disadvantage that the higher the leakage rate, the higher the efficiency because the air leakage of the unit is not half-heated. However, a product with a very low leakage rate and high temperature efficiency can be said to be an excellent product. Total heat exchange efficiency, which is an important variable in terms of energy efficiency, is the relative ratio between the enthalpy difference between outdoor air and ventilation and the enthalpy difference between outdoor air and supply air.
전열교환기의 운전소음은 팬의 송풍량, 정압, 회전수에 따라 달라진다. 소음이 높은 제품은 공도주택에서 사용할 경우 민원의 소지가 많으므로 신중한 접근이 필요하다. The operating noise of the total heat exchanger varies depending on the fan's air flow rate, static pressure, and rotational speed. Products with high noise are likely to cause civil complaints when used in public housing, so a careful approach is required.
환경센서를 활용한 스마트 환기시스템 설계 및 방법 : 전기화학센서 주로 전류, 전위(electric potential), 하전과 화학인자의 관계를 전기량의 변화를 통해 측정 가능한 유용한 신호로 변환해주는 센서를 의미하며 전기화학 센싱 시스템은 고감도, 선택성, 넓은 직선성, 최소 공간과 저전력, 저가 등의 특성을 나타다. Design and method of smart ventilation system using environmental sensors: Electrochemical sensor refers to a sensor that converts the relationship between current, electric potential, charge and chemical factors into useful signals that can be measured through changes in electrical quantities. Electrochemical sensing The system exhibits characteristics such as high sensitivity, selectivity, wide linearity, minimal space, low power, and low cost.
요소기술은 기존의 의료용 랩온어칩(lab-on-a-chip) 개념에서 확대 발전된 개념으로 칩 상에서 환경오염물질을 모니터링하도록 하며 주요 요소기술로는 전처리기술, 마커기술, 유체제어기술, 측정기술, 복합다중 분석기술로 구분 가능하다. Element technology is a concept that has been expanded and developed from the existing medical lab-on-a-chip concept to monitor environmental pollutants on a chip. The main element technologies are preprocessing technology, marker technology, fluid control technology, and measurement technology. , it can be classified as a complex multiplex analysis technique.
고체전해질 타입 CO2 센서(The solid electrolyte type CO2 sensor)는 배터리와 같이 기전력(EMF)이 이산화탄소의 농도에 따라 감소하는 특성을 가지고 있으며, 이 기전력은 동작온도 또는 주위 온도에 매우 민감함으로, 소자에 온도센서를 내장 주위 온도변화에 따른 센서의 특성 변화 값을 보정하도록 하여 센서의 정밀도를 더욱 향상시키는 모듈을 제작한다.The solid electrolyte type CO2 sensor has a characteristic that the electromotive force (EMF) decreases according to the concentration of carbon dioxide like a battery, and this electromotive force is very sensitive to the operating temperature or ambient temperature. Produce a module that further improves the accuracy of the sensor by compensating the characteristic change value of the sensor according to the temperature change around the built-in sensor.
신호처리 시스템은 센서에서 얻어진 작은 아날로그 신호를 증폭하는 증폭회로(amplifier), 디지털 신호로 변환하는 ADC(Analog-to-Digital Converter), 처리된 디지털 신호를 사람이 인식할 수 있는 수치나 그래프 등으로 표시해 주는 신호처리(signal processing) 부분으로 구성된다. The signal processing system consists of an amplifier that amplifies the small analog signal obtained from the sensor, an ADC (Analog-to-Digital Converter) that converts it into a digital signal, and the processed digital signal into figures or graphs that can be recognized by humans. It consists of a signal processing part that displays.
전기화학식 이산화탄소 센서모듈 : 고체 전기화학식 이산화탄소 센서의 특성은 고체 전해질, 감지전극, 기준전극, 보호층 및 밀봉하여 재료를 변화시키거나 전체 센서 패키징의 구조 및 패키징 물질을 조정함에 따라 개선된다. 보다 정확한 출력 데이터를 나타내기 위하여 측정 데이터와 온도를 보상하는 기술, 센서의 초기 동작 단축 및 수명 연장을 위한 온도 자동제어 기술, 회로 기판 기술에 따라 그 성능이 결정된다. 전기화학식 센서의 출력 임피던스는 수 MΩ이상이며, 센서의 농도에 따라 가변적이기 때문에 전압 측정장치의 입력 임피던스는 수십 GΩ이상을 유지할 수 있는 계측기 전용 고성능 OPAMP를 사용한다. 입력 단의 ADC(Analog to Digital Converter)가 10Bit의 해상도를 가지고 있기 때문에 수십 마이크로볼트의 정밀도를 확보하고 고성능 OPAMP에서 입력된 전압을 디지털 신호로 변환하며 1개의 PWM 채널을 이용하고 센서의 온도 유지에 사용한다. Electrochemical carbon dioxide sensor module: The characteristics of the solid-state electrochemical carbon dioxide sensor are improved by changing the materials of the solid electrolyte, sensing electrode, reference electrode, protective layer and encapsulation, or adjusting the structure and packaging material of the entire sensor packaging. Its performance is determined by the technology of compensating the measured data and temperature to display more accurate output data, the technology of automatic temperature control to shorten the initial operation and extend the life of the sensor, and the technology of the circuit board. The output impedance of the electrochemical sensor is more than several MΩ, and since it is variable according to the concentration of the sensor, the input impedance of the voltage measuring device uses a high-performance OPAMP exclusively for measuring instruments that can maintain more than several tens of GΩ. As the ADC (Analog to Digital Converter) at the input stage has a resolution of 10 bits, it secures the precision of tens of microvolts, converts the voltage input from the high-performance OPAMP into a digital signal, uses one PWM channel, and maintains the temperature of the sensor. use.
환경센서 신호처리 : 환경센서에서 검출된 신호는 Wheatstone bridge 회로를 통해 전압값의 변화로 출력되고 이를 필터와 신호증폭을 통해 효용성 있는 신호로 변환시킨다. 1955년 MIT 링컨 연구소의 R.P. Sallen과 E.L. Key가 SKF(Sallen Key Low Pass Filter) 토폴로지 발표, Active Sallen-Key filter 를 적용하여 필터회로를 설계하였다. Environmental sensor signal processing: The signal detected by the environmental sensor is output as a change in voltage value through the Wheatstone bridge circuit, and it is converted into an effective signal through a filter and signal amplification. In 1955, R.P. of the MIT Lincoln Laboratory. Sallen and E.L. Key announced SKF (Sallen Key Low Pass Filter) topology, and designed a filter circuit by applying an active Sallen-Key filter.
1. 단위 이득을 지닌 연산 증폭기 1. Operational amplifier with unity gain
2. 동일한 R 또는 동일한 C 2. Same R or same C
단일 2차 단의 경우, 설계자는 단지 DC 이득, ω0 (2차 폴 쌍의 특징 주파수), Q (폴의 복잡성을 표시)의 3가지 성능 요소만을 가진다. 하지만 이 회로는 2개의 R, 2개의 C, 증폭기 이득의 5가지 요소를 가진다. For a single secondary stage, the designer has only three performance factors: DC gain, ω0 (characteristic frequency of the secondary pole pair), and Q (indicating the pole complexity). However, this circuit has 5 components: 2 R's, 2 C's, and the amplifier gain.
- Active Sallen-Key filter topology - Active Sallen-Key filter topology
* Advantages over LC-Larger bandwidth, parts, no magnetic emission * Advantages over LC-Larger bandwidth, parts, no magnetic emission
* Component values determine filter characteristic * Component values determine filter characteristic
* Capacitor codes fixed, resistance 'dialed-in' via trim potentiometers * Capacitor codes fixed, resistance 'dialed-in' via trim potentiometers
* -40dB/decade의 기울기를 가지는 2개의 저역통과 필터 * Two low-pass filters with a slope of -40dB/decade
* CA에 의해서 통과대역 모서리 근처에서 예리한 응답을 가짐 * Sharp response near passband edges by CA
최적화 설계를 통한 완벽한 소음차단 효과 확립 : 특수 가공된 열 교환막 사용으로 공기 진동에 의한 소음 차단하고 기계 내의 밀폐성을 최대한 확보하여 운전시 소음 최소화하며, 고효율 모터 작동 시에 저소음 송풍기가 자동으로 작동하여 운전소음 제거한다. Establishment of perfect noise blocking effect through optimized design: Blocks noise caused by air vibration by using a specially processed heat exchange membrane and minimizes noise during operation by securing maximum airtightness within the machine. Eliminate noise.
바이오센서 관련 시장에 적용하여 부품기술 활용 : Matsushita, Hitachi, Horiba Biotechnology 등 일본 기업들이 바이오센서시장을 주도하고 있으며 Matsushita(일본)는 의료용 외에도 환경 계측용 생체센서 측정과 관련한 제품들을 연구 및 개발해오고 있다. Hitachi(일본)는 환경 계측용 생체센서를 연구 개발해 오고 있으며, Horiba Biotechnology(일본)는 환경호르몬, 잔류농약, 다이옥신 등의 환경부하 화학 물질의 고감도 센서를 개발하여 제품화 및 시스템화 기술을 바이오 기술과 융합함으로써 의료기기 분야의 새로운 시장 개척을 목표로 하고 있으며 고감도 검출 및 계측기술 개발에 필요한 측정장치 개발의 기반기술 확립한다.Utilizing component technology by applying it to the biosensor-related market: Japanese companies such as Matsushita, Hitachi, and Horiba Biotechnology are leading the biosensor market, and Matsushita (Japan) has been researching and developing products related to biosensor measurement for environmental measurement in addition to medical use. . Hitachi (Japan) has been researching and developing biosensors for environmental measurement, and Horiba Biotechnology (Japan) has developed high-sensitivity sensors for environmentally hazardous chemicals such as endocrine disruptors, pesticide residues, and dioxins, commercializing and integrating systemization technology with biotechnology. By doing so, we aim to open up a new market in the field of medical devices, and establish the basic technology for the development of measurement devices necessary for the development of high-sensitivity detection and measurement technology.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.As described above, the present invention has been shown and described with preferred embodiments, but is not limited to the above embodiments, and to those skilled in the art within the scope of not departing from the spirit of the present invention Various changes and modifications will be possible.
Claims (4)
오염된 실내공기를 강제 배출하고, 신선한 외부 공기를 공급할 수있으며, 실내의 미세먼지, 유해가스, 세균 등을 제거하고 ;
외부공기 중의 황사, 미세먼지, 꽃가루, 분진 등을 제거할 수 있으며, 일반 공조장치를 통한 환기에 비해 냉난방 비용이 30% 이상 절감하며, 환기시(60~80%) 정도의 열교환 효율로 온도차를 줄일 있는 ; 스마트 제어 모니터링 단독형 멀티포인트 열교환 환기 시스템.Design of a total heat exchange system using a pulp heat exchange element capable of controlling temperature and humidity simultaneously;
It can forcibly discharge polluted indoor air, supply fresh outdoor air, and remove indoor fine dust, harmful gases, germs, etc.;
It can remove yellow dust, fine dust, pollen, dust, etc. from the outside air, and it can reduce heating and cooling costs by more than 30% compared to ventilation through general air conditioners, and the temperature difference is reduced with heat exchange efficiency equivalent to that of ventilation (60~80%). to reduce; Smart control monitoring stand-alone multi-point heat exchange ventilation system.
CO2와 공기센서에 의한 환기량(공기흐름량) 제어가 가능하고, Cloud 기반 분산제어로 빅데이터 수집과 AI에 필요한 알고리즘 탑제하며 ;
센서 동작상태에 따라 현재 값을 스마트폰으로 확인할 수 있으며, 스마트폰 제어가 가능한 ; 스마트 제어 모니터링 단독형 멀티포인트 열교환 환기 시스템.Development of cloud-based IOT control air temperature and humidity filter condition monitoring ventilation system;
It is possible to control the amount of ventilation (air flow) by CO2 and air sensors, and it is equipped with algorithms required for big data collection and AI with cloud-based distributed control;
Depending on the sensor operating state, the current value can be checked with a smartphone, and smartphone control is possible; Smart control monitoring stand-alone multi-point heat exchange ventilation system.
헤파필터, 프리필터, 항균필터, 전열소자를 세균 바이러스로부터 오염을 방지하는 기능으로 405nm에서 일어나는 살균은 '포피린반응분해'라는 원리 이용 ;
공구가 필요 없는 간단한 체결의 방식으로 사용자가 교환 가능한 필터 구조이며, 헤파필터 프리필터 항균필터와 전열소자 사용자선택 가능 ; 스마트 제어 모니터링 단독형 멀티포인트 열교환 환기 시스템.UV LED sterilization function designed to sterilize the filter and keep the filter clean;
It is a function to prevent contamination of the HEPA filter, pre-filter, antibacterial filter, and heating element from bacteria and viruses. The sterilization that occurs at 405 nm uses the principle of 'porphyrin reaction decomposition';
It is a filter structure that can be exchanged by the user with a simple fastening method that does not require tools, and the HEPA filter, pre-filter, antibacterial filter and heating element can be selected by the user; Smart control monitoring stand-alone multi-point heat exchange ventilation system.
영하의 날씨로 결빙에 의한 전열소자와 공기필터를 보호하고 지속적인 환기 가능하며, 외부 공기 온도 측정 내부온도 측정 편차 관리로 결로 시점 관리가 가능한 스마트 제어 모니터링 단독형 멀티포인트 열교환 환기 시스템.All-season response Heater management function design to prevent filter damage in sub-zero weather;
Smart control monitoring stand-alone multi-point heat exchange ventilation system that protects the heating element and air filter from freezing in sub-zero weather, enables continuous ventilation, and manages the condensation point by managing the deviation of the external air temperature measurement and internal temperature measurement.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020220021663A KR20230124812A (en) | 2022-02-18 | 2022-02-18 | Smart control monitoring standalone multi-point heat exchange ventilation system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020220021663A KR20230124812A (en) | 2022-02-18 | 2022-02-18 | Smart control monitoring standalone multi-point heat exchange ventilation system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20230124812A true KR20230124812A (en) | 2023-08-28 |
Family
ID=87806382
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020220021663A Ceased KR20230124812A (en) | 2022-02-18 | 2022-02-18 | Smart control monitoring standalone multi-point heat exchange ventilation system |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR20230124812A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025173556A1 (en) * | 2024-02-15 | 2025-08-21 | ブラザー工業株式会社 | Air purifier |
-
2022
- 2022-02-18 KR KR1020220021663A patent/KR20230124812A/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| 대한민국 공개특허 제10-0964137-0000호 : 다공성 전열교환기 소자 및 이의 제조방법(Porous Heat Exchanger Element and Production Method of Porous Heat Exchanger Element) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025173556A1 (en) * | 2024-02-15 | 2025-08-21 | ブラザー工業株式会社 | Air purifier |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6941193B2 (en) | Sensor system for measuring and monitoring indoor air quality | |
| CN101208563B (en) | Multipoint air sampling system having common sensors to provide blended air quality parameter information for monitoring and building control | |
| US7815719B2 (en) | Ionization detector for electrically enhanced air filtration systems | |
| US10704798B2 (en) | Environmental monitoring system | |
| US20120203461A1 (en) | Method and device for environmental monitoring | |
| US8430951B2 (en) | Low cost fluid flow sensor | |
| Asthana et al. | IoT enabled real time bolt based indoor air quality monitoring system | |
| KR20230124812A (en) | Smart control monitoring standalone multi-point heat exchange ventilation system | |
| Qiao et al. | Wind tunnel‐based testing of a photoelectrochemical oxidative filter‐based air purification unit in coronavirus and influenza aerosol removal and inactivation | |
| Madrid et al. | Remote monitoring of winery and creamery environments with a wireless sensor system | |
| KR20220157546A (en) | Environmental measurement sensor for smart livestock | |
| KR20220154271A (en) | Cloud-based IOT control monitoring total heat exchanger | |
| CN111766273A (en) | Atmospheric gridding monitoring system and method by utilizing gas sensor array | |
| Miyagawa et al. | Development of a low-cost gas sensor unit for wide area air pollution monitoring system (poster) | |
| Guyot et al. | Smart Ventilation Performance Durability Assessment: Preliminary Results from a Long-Term Residential Monitoring of Humidity-based Demand-Controlled Ventilation | |
| Ilić et al. | Microbiological air contamination in hospital | |
| US10746715B2 (en) | Air pollution monitoring | |
| Herath et al. | The design and implementation of an IOT-based real-time air purification system for outdoor environment | |
| El-Leathey et al. | Real-time IoT system for monitoring of indoor comfort and health in office buildings | |
| GR20190100129A (en) | A device measuring atmospheric air elements | |
| Saad et al. | Implementation of index for real-time monitoring indoor air quality system | |
| Mullassery | Sensors and analytics for smart buildings | |
| Walker | System effects of high efficiency filters in homes | |
| CN116660118A (en) | Air Filtration Consumables Detection System Method Based on Internet of Things Technology | |
| Siam et al. | Design and Implementation of IoT-based Indoor Air Purifier |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20220218 |
|
| PA0201 | Request for examination | ||
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230919 Patent event code: PE09021S01D |
|
| E601 | Decision to refuse application | ||
| PE0601 | Decision on rejection of patent |
Patent event date: 20240522 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20230919 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |