KR20240166818A - Catalyst for hydrocarbon synthesis through carbon dioxide hydrogenation, method for preparing the same, and method for synthesizing hydrocarbon using the catalyst - Google Patents
Catalyst for hydrocarbon synthesis through carbon dioxide hydrogenation, method for preparing the same, and method for synthesizing hydrocarbon using the catalyst Download PDFInfo
- Publication number
- KR20240166818A KR20240166818A KR1020230064528A KR20230064528A KR20240166818A KR 20240166818 A KR20240166818 A KR 20240166818A KR 1020230064528 A KR1020230064528 A KR 1020230064528A KR 20230064528 A KR20230064528 A KR 20230064528A KR 20240166818 A KR20240166818 A KR 20240166818A
- Authority
- KR
- South Korea
- Prior art keywords
- carbon dioxide
- catalyst
- producing
- reduction catalyst
- selectivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 168
- 239000003054 catalyst Substances 0.000 title claims abstract description 85
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 84
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 59
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 54
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 43
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 10
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 19
- 238000003786 synthesis reaction Methods 0.000 title description 8
- 230000015572 biosynthetic process Effects 0.000 title description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 32
- 239000010941 cobalt Substances 0.000 claims abstract description 21
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 21
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 16
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 14
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims description 59
- 239000002243 precursor Substances 0.000 claims description 41
- 230000009467 reduction Effects 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 239000000243 solution Substances 0.000 claims description 26
- 150000004706 metal oxides Chemical class 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 23
- 229910044991 metal oxide Inorganic materials 0.000 claims description 22
- 229910002521 CoMn Inorganic materials 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 18
- 239000011148 porous material Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 239000011572 manganese Substances 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 13
- 239000003929 acidic solution Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000003637 basic solution Substances 0.000 claims description 12
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 12
- 230000002378 acidificating effect Effects 0.000 claims description 11
- 239000012495 reaction gas Substances 0.000 claims description 10
- 239000011701 zinc Substances 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 239000012494 Quartz wool Substances 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 3
- 238000001308 synthesis method Methods 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 42
- 238000006722 reduction reaction Methods 0.000 description 25
- 239000000377 silicon dioxide Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000012153 distilled water Substances 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 10
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 9
- YMKHJSXMVZVZNU-UHFFFAOYSA-N manganese(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YMKHJSXMVZVZNU-UHFFFAOYSA-N 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000001027 hydrothermal synthesis Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920002415 Pluronic P-123 Polymers 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N hydrofluoric acid Substances F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 1
- 229910002515 CoAl Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BXCQGSQPWPGFIV-UHFFFAOYSA-N carbon monoxide;cobalt;cobalt(2+);methanone Chemical compound [Co].[Co+2].O=[CH-].O=[CH-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] BXCQGSQPWPGFIV-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0213—Preparation of the impregnating solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/12—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
본 발명은 이산화탄소의 수소화를 통한 탄화수소 화합물 합성용 촉매 제조 방법 및 탄화수소 합성방법에 관한 것이다. 보다 구체적으로는 코발트계 촉매에 다양한 증진제(Mn,Al,Zn)을 추가하여 탄화수소의 선택도를 조절하는 합성방법이다.The present invention relates to a method for producing a catalyst for synthesizing hydrocarbon compounds through hydrogenation of carbon dioxide and a method for synthesizing hydrocarbons. More specifically, it is a synthesis method for controlling the selectivity of hydrocarbons by adding various promoters (Mn, Al, Zn) to a cobalt-based catalyst.
Description
본 발명은 이산화탄소 수소화를 통한 탄화수소 합성용 촉매 및 그 제조 방법과 상기 촉매를 이용한 탄화수소 제조 방법에 관한 것으로서, 보다 상세하게는 역수성가스전환 반응과 피셔-트롭쉬 합성 반응에 활성인 촉매를 사용하여 이산화탄소를 탄화수소로 용이하게 전환할 수 있도록 하는 이산화탄소 수소화를 통한 탄화수소 합성용 촉매 및 그 제조 방법과 상기 촉매를 이용한 탄화수소 제조 방법에 대한 것이다.The present invention relates to a catalyst for hydrocarbon synthesis through carbon dioxide hydrogenation, a method for producing the same, and a method for producing hydrocarbons using the catalyst. More specifically, the present invention relates to a catalyst for hydrocarbon synthesis through carbon dioxide hydrogenation, a method for producing the same, and a method for producing hydrocarbons using the catalyst, which enables easy conversion of carbon dioxide into hydrocarbons using a catalyst active in the reverse water gas shift reaction and the Fischer-Tropsch synthesis reaction.
이산화탄소는 대표적인 지구 온난화 기체로서 온난화 기여도의 55%를 차지한다. 이산화탄소를 줄이기 위한 노력으로 이산화탄소의 포집, 활용 그리고 저장(Carbon Capture, Utilization and Storage, CCUS)을 위한 연구가 활발히 진행되고 있다. 이들 중 촉매를 이용하여 이산화탄소를 수소화시킨 후 고부가가치의 화학원료로 전환시키는 기술들이 주목받고 있다. 이산화탄소로부터 탄화수소를 합성하는 반응은 이산화탄소를 일산화탄소로 수소화하는 역수성가스전환 반응(Reverse Water Gas Shift)과 일산화탄소를 탄화수소로 수소화하는 피셔-트롭쉬 반응(Fischer-Tropsch synthesis, FTS)의 두 단계로 진행된다. 탄소 사슬의 중합반응으로 생성된 탄화수소는 석유가스(C2-4), 가솔린(C5-11), 디젤(C12-2), 왁스(C21+)와 같이 운송 연료에 사용될 수 있으며(Journal of Catalysis 288 (2012) 104-114), 메탄에 비해 더 많은 에너지를 저장할 수 있고 기체상태의 에너지보다 쉽게 수송이 가능하여 주목받고 있는 청정연료이다. Carbon dioxide is a representative global warming gas, accounting for 55% of global warming contributions. In an effort to reduce carbon dioxide, research on carbon capture, utilization, and storage (CCUS) is actively being conducted. Among these, technologies that hydrogenate carbon dioxide using a catalyst and then convert it into a high value-added chemical raw material are attracting attention. The reaction for synthesizing hydrocarbons from carbon dioxide proceeds in two stages: the reverse water gas shift reaction that hydrogenates carbon dioxide to carbon monoxide, and the Fischer-Tropsch synthesis (FTS) reaction that hydrogenates carbon monoxide to hydrocarbons. Hydrocarbons produced by the polymerization of carbon chains can be used as transportation fuels such as petroleum gas (C 2-4 ), gasoline (C 5-11 ), diesel (C 12-2 ), and wax (C 21 +) (Journal of Catalysis 288 (2012) 104-114). They are a clean fuel that is attracting attention because they can store more energy than methane and are easier to transport than gaseous energy.
상기와 같은 피셔-트롭쉬 반응에서 촉매는 중요한 요소로서 루테늄(Ru), 철(Fe), 코발트(Co) 등이 촉매로서 알려져 있다. 촉매로서 루테늄이 활성이 가장 좋지만 가격문제로 인해 상대적으로 저렴한 철 및 코발트가 주로 사용된다.In the above Fischer-Tropsch reaction, a catalyst is an important element, and ruthenium (Ru), iron (Fe), and cobalt (Co) are known as catalysts. Ruthenium is the most active catalyst, but iron and cobalt, which are relatively inexpensive, are mainly used due to price issues.
철은 300℃ 이상의 높은 온도에서 활성을 보이는 단점이 있지만 코발트보다는 높은 올레핀 선택도를 보인다. 반면 코발트계 촉매는 철에 비하여 고가인 단점이 있지만 약 250℃의 저온에서 활성을 보이는 장점이 있으며 높은 활성과 긴 수명 그리고 이산화탄소의 생성이 낮으면서 액체 파라핀계 탄화수소의 생성 수율이 높은 장점이 있다. 그러나 이산화탄소가 다량 포함된 합성가스에서는 활성이 낮아지는 문제가 있고 고온에서는 메탄을 다량 생산하는 문제가 있어 저온 촉매로만 사용이 가능하다는 문제점이 있다. Iron has the disadvantage of being active at high temperatures above 300℃, but it shows higher olefin selectivity than cobalt. On the other hand, cobalt-based catalysts have the disadvantage of being expensive compared to iron, but they have the advantage of being active at low temperatures of about 250℃, and they have the advantages of high activity, long life, low carbon dioxide production, and high production yield of liquid paraffin hydrocarbons. However, there is a problem that the activity is low in synthesis gas containing a large amount of carbon dioxide, and there is a problem that a large amount of methane is produced at high temperatures, so there is a problem that it can only be used as a low-temperature catalyst.
이산화탄소 수소화를 통한 탄화수소 합성 반응은 저온에서 운전 가능하지만 여전히 낮은 이산화탄소 전환율과 높은 일산화탄소 및 메탄 선택도 문제를 극복하는 것이 요구된다. 따라서 적절한 반응 조건 및 증진제 도입을 통한 촉매 표면 특성 조절 등의 연구가 필요하다.Hydrocarbon synthesis reaction through carbon dioxide hydrogenation can be operated at low temperatures, but it still requires overcoming the problems of low carbon dioxide conversion and high carbon monoxide and methane selectivity. Therefore, research is required to control the catalyst surface properties through appropriate reaction conditions and introduction of promoters.
본 발명은 코발트계 촉매의 문제점인 낮은 이산화탄소 전환율과 높은 메탄 선택도를 해결하는 것을 목적으로 한다.The present invention aims to solve the problems of cobalt-based catalysts, which are low carbon dioxide conversion rate and high methane selectivity.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 이산화탄소 환원촉매를 제공한다.In order to achieve the above-mentioned purpose, the present invention provides a carbon dioxide reduction catalyst represented by the following chemical formula 1.
[화학식 1][Chemical Formula 1]
CoMnxAlyZnz (,, ,)CoMn x Al y Zn z ( , , , )
바람직한 실시예에 있어서, 상기 촉매는 메조포러스 구조 물질에 활성금속이 담지된 것을 특징으로 할 수 있다.In a preferred embodiment, the catalyst may be characterized in that an active metal is supported on a mesoporous structural material.
바람직한 실시예에 있어서, 상기 촉매는 CoMnxAl0.5 (0.1≤x≤0.5) 또는 CoMn0.2Zn0.5일 수 있다. In a preferred embodiment, the catalyst can be CoMn x Al 0.5 (0.1≤x≤0.5) or CoMn 0.2 Zn 0.5 .
바람직한 실시예에 있어서, 상기 촉매는 평균 비표면적이 50 내지 200 m2/g 일 수 있다.In a preferred embodiment, the catalyst may have an average surface area of 50 to 200 m 2 /g.
바람직한 실시예에 있어서,상기 담체는 평균 기공 크기가 2 내지 20 nm일 수 있다.In a preferred embodiment, the carrier may have an average pore size of 2 to 20 nm.
또한, 본 발명은 메조포러스 구조의 이산화탄소 환원촉매의 제조방법에 있어서 금속전구체를 용매에 분산시켜 금속전구체 혼합용액을 제조하는 단계; 메조포러스 구조 물질에 상기 금속전구체 혼합용액을 주입하는 단계; 상기 금속전구체는 코발트 전구체 외에, 망가니즈 전구체, 알루미늄 전구체 또는 징크 전구체를 더 포함하며,상기 메조포러스 구조의 물질을 건조시킨 후 소성처리하여 복합 금속 산화물을 얻는 단계; 상기 복합 금속 산화물을 산성 또는 염기성 용액에 넣어 교반하는 단계; 상기 산성 또는 염기성 용액을 세척 및 여과시킨 후 건조하는 단계;를 포함하는 이산화탄소의 수소화반응시 촉매로 작용하는 것을 특징으로 하는 이산화탄소 환원촉매 제조방법을 제공한다.In addition, the present invention provides a method for producing a carbon dioxide reduction catalyst having a mesoporous structure, the method comprising: a step of producing a metal precursor mixture solution by dispersing a metal precursor in a solvent; a step of injecting the metal precursor mixture solution into a mesoporous structure material; a step of drying the mesoporous structure material and then calcining it, wherein the metal precursor further includes a manganese precursor, an aluminum precursor, or a zinc precursor in addition to a cobalt precursor; a step of stirring the composite metal oxide in an acidic or basic solution; a step of washing and filtering the acidic or basic solution, and then drying it; The present invention provides a method for producing a carbon dioxide reduction catalyst characterized in that it acts as a catalyst in the hydrogenation reaction of carbon dioxide.
바람직한 실시예에 있어서, 상기 소성처리는 450 내지 650℃ 까지 속도로 승온시켜 처리할 수 있다.In a preferred embodiment, the sintering treatment can be performed at a temperature of 450 to 650°C.
바람직한 실시예에 있어서, 상기 복합 금속 산화물을 산성 또는 염기성 용액에 넣어 교반하는 단계에서, 상기 산성 용액은 HF수용액일 수 있다.In a preferred embodiment, in the step of stirring the composite metal oxide in an acidic or basic solution, the acidic solution may be an HF aqueous solution.
바람직한 실시예에 있어서, 상기 복합 금속 산화물을 산성 또는 염기성 용액에 넣어 교반하는 단계에서, 상기 염기성 용액은 NaOH수용액일 수 있다.In a preferred embodiment, in the step of putting the composite metal oxide into an acidic or basic solution and stirring, the basic solution may be a NaOH aqueous solution.
바람직한 실시예에 있어서, 상기 산성 및 염기성 용액은 상온 내지 60℃에서 교반할 수 있다.In a preferred embodiment, the acidic and basic solutions can be stirred at room temperature to 60°C.
또한, 본 발명은 반응기 내부에 상술된 어느 하나의 이산화탄소 환원촉매 또는 상술된 어느 하나의 제조방법으로 제조된 이산화탄소 환원촉매를 배치하는 단계; 상기 반응기 내부에 수소가스 및 질소가스를 포함하는 환원가스를 공급하여 환원하는 단계; 상기 반응기 내부에 반응가스를 공급하여 이산화탄소의 수소화를 통해 탄화수소를 합성하는 단계;를 포함하는 탄화수소화합물 제조방법을 제공한다.In addition, the present invention provides a method for producing a hydrocarbon compound, comprising: a step of arranging any one of the carbon dioxide reduction catalysts described above or a carbon dioxide reduction catalyst produced by any one of the production methods described above inside a reactor; a step of supplying a reducing gas containing hydrogen gas and nitrogen gas into the reactor to perform reduction; and a step of supplying a reaction gas into the reactor to synthesize a hydrocarbon through hydrogenation of carbon dioxide.
바람직한 실시예에 있어서, 상기 반응기는 피셔-트롭쉬 고정층 반응기이며 상기 반응기 내부에 쿼츠울이 배치될 수 있다.In a preferred embodiment, the reactor is a Fischer-Tropsch fixed bed reactor and quartz wool may be placed inside the reactor.
바람직한 실시예에 있어서, 상기 환원가스는 5%의 수소가스와 95%는 질소가스로 이루어질 수 있다.In a preferred embodiment, the reducing gas may be composed of 5% hydrogen gas and 95% nitrogen gas.
바람직한 실시예에 있어서, 상기 반응기 내부에 수소가스 및 질소가스를 포함하는 환원가스를 공급하여 환원하는 단계에서 온도는 350℃ 내지 450℃이고, 압력은 상압 내지 40bar에서 6시간 내지 24시간동안 환원할 수 있다.In a preferred embodiment, in the step of supplying a reducing gas containing hydrogen gas and nitrogen gas into the reactor to perform reduction, the temperature is 350°C to 450°C, and the pressure is normal pressure to 40 bar, and reduction can be performed for 6 to 24 hours.
바람직한 실시예에 있어서, 상기 반응가스는 72%의 수소가스, 24%의 이산화탄소가스 및 4% 질소가스로 이루어질 수 있다.In a preferred embodiment, the reaction gas may be composed of 72% hydrogen gas, 24% carbon dioxide gas, and 4% nitrogen gas.
바람직한 실시예에 있어서, 상기 반응기 내부에 반응가스를 공급하여 이산화탄소의 수소화를 통해 탄화수소를 합성하는 단계에서 반응온도는 230℃내지 300℃이며 반응압력은 10bar 내지 40bar일 수 있다.In a preferred embodiment, in the step of supplying a reaction gas into the reactor to synthesize hydrocarbons through hydrogenation of carbon dioxide, the reaction temperature may be 230°C to 300°C and the reaction pressure may be 10 bar to 40 bar.
바람직한 실시예에 있어서, 상기 반응기 내부에 반응가스를 공급하여 이산화탄소의 수소화를 통해 탄화수소를 합성하는 단계에서 공간속도는 2000 ml/gcat./h 내지 10000 ml/gcat./h 일 수 있다.In a preferred embodiment, in the step of synthesizing hydrocarbons through hydrogenation of carbon dioxide by supplying reaction gas into the reactor, the space velocity may be 2000 ml/gcat./h to 10000 ml/gcat./h.
바람직한 실시예에 있어서, 상기 탄화수소화합물은 탄소 수가 1 ~ 20개인 화합물을 포함한다.In a preferred embodiment, the hydrocarbon compound comprises a compound having 1 to 20 carbon atoms.
본 발명에 따른 이산화탄소 환원촉매 및 상기 환원촉매를 이용한 탄화수소화합물 제조방법에 의하면 탄소 개수 두 개 이상의 산업적으로 활용가치가 높은 탄화수소화합물을 높은 선택성으로 생산할 수 있다.According to the carbon dioxide reduction catalyst according to the present invention and the method for producing a hydrocarbon compound using the reduction catalyst, a hydrocarbon compound having two or more carbon atoms and having high industrial utility can be produced with high selectivity.
도 1은 약 60시간 반응 하는 동안 약 1시간 간격으로 측정된 CO2 전환율, C1 선택도, C2-4 선택도, C5+ 선택도 그래프이다.
도 2는 약 60시간 반응 하는 동안 약 1시간 간격으로 측정된 CO2 전환율, C1 선택도, C2-4 선택도, C5+ 선택도 그래프이다.
도 3은 약 60시간 반응 하는 동안 약 1시간 간격으로 측정된 CO2 전환율, C1 선택도, C2-4 선택도, C5+ 선택도 그래프이다.
도 4는 실시예 1 내지 6, 비교예 1 내지 3의 XRD(X-ray Diffraction) 분석 결과이다.
도 5는 실시예 2에서 제조된 촉매의 환원 후 촉매(위), 비교예 3에서 제조된 촉매의 환원 전 촉매(아래)의 TEM(Transmission Electron Microscopy) 분석 실험 결과이다.Figure 1 is a graph of CO2 conversion, C1 selectivity, C2-4 selectivity, and C5 + selectivity measured at approximately 1-hour intervals during a reaction period of approximately 60 hours.
Figure 2 is a graph of CO2 conversion, C1 selectivity, C2-4 selectivity, and C5 + selectivity measured at approximately 1-hour intervals during a reaction period of approximately 60 hours.
Figure 3 is a graph of CO2 conversion, C1 selectivity, C2-4 selectivity, and C5 + selectivity measured at approximately 1-hour intervals during a reaction period of approximately 60 hours.
Figure 4 shows the XRD (X-ray Diffraction) analysis results of Examples 1 to 6 and Comparative Examples 1 to 3.
Figure 5 shows the results of a TEM (Transmission Electron Microscopy) analysis experiment of the catalyst after reduction of the catalyst manufactured in Example 2 (top) and the catalyst before reduction of the catalyst manufactured in Comparative Example 3 (bottom).
이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다. 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 의도는 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 해석되어야 한다. The present invention may have various modifications and embodiments, and specific embodiments are illustrated in the drawings and specifically described in the detailed description. This is not intended to limit the present invention to specific embodiments, but should be interpreted to include all modifications, equivalents, or substitutes included in the spirit and technical scope of the present invention.
"및/또는"이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함할 수 있다. The term "and/or" may include any combination of multiple related listed items or any one of multiple related listed items.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. The terminology used in this application is only used to describe specific embodiments and is not intended to limit the invention. Singular expressions may include plural expressions unless the context clearly indicates otherwise.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석될 수 있으며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않을 수 있다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms defined in commonly used dictionaries, such as those defined in common dictionaries, may be interpreted as having a meaning consistent with the meaning they have in the context of the relevant art, and may not be interpreted in an idealized or overly formal sense, unless explicitly defined in this application.
본 발명의 기술적 특징은 이산화탄소의 수소화반응시 촉매로 작용할 수 있어 이산화탄소의 수소화반응에서 전환율을 높임은 물론 탄소 개수 두 개 이상의 산업적으로 활용가치가 높은 탄화수소화합물을 높은 선택성으로 생산할 수 있는 이산화탄소 환원촉매, 그 제조방법 및 상기환원촉매를 이용한 탄화수소화합물 제조방법에 있다.The technical features of the present invention lie in a carbon dioxide reduction catalyst which can act as a catalyst in the hydrogenation reaction of carbon dioxide, thereby increasing the conversion rate in the hydrogenation reaction of carbon dioxide and producing a hydrocarbon compound having two or more carbon atoms with high industrial utility with high selectivity, a method for producing the same, and a method for producing a hydrocarbon compound using the reduction catalyst.
본 발명에서는 메조포러스 실리카 지지체를 제조하는 단계; 메조포러스 실리카 주형의 기공에 메탈을 주입하는 단계; 실리카 주형을 제거하여 메조포러스 구조를 갖는 복합 금속 산화물구조체를 형성하는 단계;를 포함할 수 있다.The present invention may include a step of manufacturing a mesoporous silica support; a step of injecting metal into pores of a mesoporous silica template; and a step of removing the silica template to form a composite metal oxide structure having a mesoporous structure.
메조포러스 구조 촉매 합성을 위한 지지체를 제조하는 단계에서는, 증류수에 플루로닉 P123 공중합체(EO20PO70E20), 염산(HCl), n-부탄올, 실리카 소스를 첨가하여 혼합 용액을 제조하여 수열합성을 진행할 수 있다. 수열합성 후 필터링과 건조 후 소성시켜 수행할 수 있다. In the step of preparing a support for mesoporous structure catalyst synthesis, a mixed solution may be prepared by adding Pluronic P123 copolymer (EO20PO70E20), hydrochloric acid (HCl), n-butanol, and silica source to distilled water, and hydrothermal synthesis may be performed. After hydrothermal synthesis, filtering, drying, and calcination may be performed.
P123을 상온에서 증류수에 완전히 용해시킨 후 염산 수용액에 첨가할 수 있다. 상기 용액에 n-부탄올을 첨가한 후 1시간 후 실리카 소스를 첨가할 수 있다. 실리카 소스는 에틸실리카(tetraethoxysilane, TEOS) 또는 규산나트륨(Sodium silicate, Na2SiO3)을 사용할 수 있다. 상기 혼합물을 약 35℃ 내지 38℃에서 약 24시간 교반될 수 있다. After P123 is completely dissolved in distilled water at room temperature, it can be added to a hydrochloric acid solution. After adding n-butanol to the solution, a silica source can be added 1 hour later. The silica source can be tetraethoxysilane (TEOS) or sodium silicate (Na2SiO3). The mixture can be stirred at about 35°C to 38°C for about 24 hours.
상기 혼합용액을 Teflon 용기에 옮겨담아 약 100℃ 내지 110℃ 오븐에서 약 24시간 내지 25시간 동안 수열합성을 진행할 수 있다. 수열합성된 용액을 충분히 식힌 후 세척 없이 또는 증류수 세척으로 필터링할 수 있다. 필터링 후 약 100℃ 내지 110℃에서 약 30분 내지 40분 동안 건조될 수 있다. 건조된 분말은 약 550℃에서 약 5시간 내지 10시간 동안 소성하여 염산 등의 부산물을 제거할 수 있다.The above mixed solution can be transferred to a Teflon container and hydrothermal synthesis can be performed in an oven at about 100°C to 110°C for about 24 to 25 hours. After the hydrothermally synthesized solution has been sufficiently cooled, it can be filtered without washing or by washing with distilled water. After filtering, it can be dried at about 100°C to 110°C for about 30 to 40 minutes. The dried powder can be calcined at about 550°C for about 5 to 10 hours to remove byproducts such as hydrochloric acid.
상기 단계에서 제조된 메조포러스 실리카에 금속 전구체를 채워 소성한 후 실리카 주형을 제거하여 메조포러스 구조 금속 촉매를 합성하는 단계이다.This is a step of synthesizing a mesoporous structure metal catalyst by filling a metal precursor into the mesoporous silica manufactured in the above step, calcining it, and then removing the silica template.
상기 메조포러스 실리카 주형의 기공 내부에 금속 전구체를 채우기 위해 기공 내부의 수분을 제거할 수 있다. 건조된 실리카 주형에 금속 전구체 혼합용액을 주입할 수 있다. 이때 금속 전구체 혼합용액는 코발트 전구체, 망가니즈 전구제, 알루미늄 전구체가 포함될 수 있다. 금속 혼합용액의 증류수 부피는 실리카 주형의 평균 기공 부피와 동일하거나 적을 수 있다. 상기 촉매는 평균 비표면적이 50 내지 200m2/g, 평균 기공 크기가 2 내지 20 nm 일 수 있다.In order to fill the pores of the mesoporous silica template with a metal precursor, moisture inside the pores can be removed. A metal precursor mixture solution can be injected into the dried silica template. At this time, the metal precursor mixture solution can include a cobalt precursor, a manganese precursor, and an aluminum precursor. The volume of distilled water in the metal mixture solution can be equal to or less than the average pore volume of the silica template. The catalyst can have an average specific surface area of 50 to 200 m 2 /g and an average pore size of 2 to 20 nm.
코발트 전구체로 코발트 나이트레이트(Co(NO3)2·6H2O) 또는 코발트 카보닐(Co2(CO)8)이 사용될 수 있고, 망가니즈 전구체로 망가니즈 나이트레이트(Mn(NO3)2·4H2O), 알루미늄 전구체로 알루미늄 나이트레이트(Al(CO3)3·9H2O)가 사용될 수 있다. Cobalt nitrate (Co( NO3 ) 2 · 6H2O ) or cobalt carbonyl ( Co2 (CO) 8 ) can be used as a cobalt precursor, manganese nitrate (Mn( NO3 ) 2 · 4H2O ) can be used as a manganese precursor, and aluminum nitrate (Al( CO3 ) 3 · 9H2O ) can be used as an aluminum precursor.
상기 전구체 용액이 혼합된 실리카 주형을 약 80℃에서 약 12시간동안 충분히 건조될 수 있다. 용매인 증류수 끓는점보다 낮은 온도에서 서서히 건조시켜 실리카 주형의 기공 내부에 침투한 금속 물질의 형태 구조에 영향을 주지 않고 증류수가 증발될 수 있다. The silica mold mixed with the above precursor solution can be sufficiently dried at about 80°C for about 12 hours. By slowly drying at a temperature lower than the boiling point of distilled water, which is a solvent, the distilled water can be evaporated without affecting the morphological structure of the metal material that has penetrated into the pores of the silica mold.
상기 건조된 메조포러스 실리카 주형을 고온에서 소성하여, 코발트 산화물 전구체, 망가니즈 산화물 전구체 및 알루미늄 산화물 전구체를 코발트, 망가니즈 및 알루미늄을 포함하는 복합 금속의 산화물로 변화시킬 수 있다. 550℃ 까지 1℃/min의 속도로 승온시킨 후 3시간동안 소성할 수 있다.The above dried mesoporous silica mold can be fired at high temperature to change the cobalt oxide precursor, the manganese oxide precursor and the aluminum oxide precursor into oxides of a composite metal including cobalt, manganese and aluminum. The temperature can be increased at a rate of 1°C/min up to 550°C and then fired for 3 hours.
상기 금속 산화 복합물에서 메조포러스 실리카 주형을 제거하여 메조포러스 구조를 갖는 복합 금속 산화물구조체를 형성하는 단계이다.This is a step of forming a composite metal oxide structure having a mesoporous structure by removing the mesoporous silica template from the above metal oxide complex.
상기 금속 산화 복합물에서 메조포러스 실리카 주형은 산성 또는 염기성 용액을 이용하여 제거될 수 있다. 실리카 주형은 NaOH 수용액 또는 불산(HF) 수용액을 사용하여 제거될 수 있다. 상기 메조포러스 실리카 주형은 약 1M 내지 2M 농도의 NaOH 수용액을 사용하여 약 상온 내지 60℃에서 제거될 수 있다. 상기 실리카 주형이 제거된 용액은 증류수 세척으로 여과될 수 있다. 여과된 용액은 약 110℃ 오븐에서 30분 내지 40분 동안 건조될 수 있다. 건조된 복합물은 상기 필터링 단계를 한차례 더 수행될 수 있다. 필터링이 완료된 복합물은 약 110℃ 오븐에서 약 12시간 건조될 수 있다.In the above metal oxide composite, the mesoporous silica template can be removed using an acidic or basic solution. The silica template can be removed using a NaOH aqueous solution or a hydrofluoric acid (HF) aqueous solution. The mesoporous silica template can be removed using a NaOH aqueous solution having a concentration of about 1 M to 2 M at about room temperature to 60° C. The solution from which the silica template has been removed can be filtered by washing with distilled water. The filtered solution can be dried in an oven at about 110° C. for 30 to 40 minutes. The dried composite can be subjected to the filtering step once more. The composite after the filtering can be dried in an oven at about 110° C. for about 12 hours.
또한 본 발명은 이산화탄소 수소화로부터 탄화수소 제조방법까지 상기 제조된 촉매를 이용하는 방법을 포함할 수 있다.The present invention may also include a method of using the manufactured catalyst from carbon dioxide hydrogenation to a method of producing hydrocarbons.
상기의 이산화탄소 수소화로부터 탄화수소 제조방법은 촉매를 반응기 내부에 배치하는 단계, 상기 반응기 내부에 환원가스를 공급하여 촉매의 활성점을 증진하는 단계, 반응가스를 공급하여 탄화수소를 제조하는 단계를 포함할 수 있다.The above method for producing hydrocarbons from carbon dioxide hydrogenation may include a step of arranging a catalyst inside a reactor, a step of supplying a reducing gas inside the reactor to promote an active site of the catalyst, and a step of supplying a reaction gas to produce hydrocarbons.
상기 반응에서 반응기는 피셔-트롭쉬 고정층 반응기일 수 있다. 반응기 내부에 쿼츠울(Quartz Wool) 배치 후 촉매를 배치할 수 있다. In the above reaction, the reactor may be a Fischer-Tropsch fixed bed reactor. After quartz wool is placed inside the reactor, a catalyst may be placed.
상기 환원가스는 수소가스 및 질소가스를 포함할 수 있으며 약 5%의 수소가스 및 잔여 질소가스를 포함할 수 있다. The above reducing gas may include hydrogen gas and nitrogen gas, and may include about 5% hydrogen gas and residual nitrogen gas.
환원과정은 약 350℃ 내지 450℃의 온도 및 상압 내지 40bar에서 약 6시간 내지 24시간동안 진행될 수 있다. The reduction process can be carried out at a temperature of about 350°C to 450°C and a pressure of about 40 bar for about 6 to 24 hours.
상기 이산화탄소 수소화 반응을 위한 반응가스는 수소가스, 이산화탄소가스 및 잔여 질소가스를 포함할 수 있다. 수소와 이산화탄소의 비율은 약 3:1일 수 있으며 72%의 수소가스, 24%의 이산화탄소가스 및 잔여 질소가스를 포함할 수 있다.The reaction gas for the above carbon dioxide hydrogenation reaction may include hydrogen gas, carbon dioxide gas, and residual nitrogen gas. The ratio of hydrogen and carbon dioxide may be about 3:1, and may include 72% hydrogen gas, 24% carbon dioxide gas, and residual nitrogen gas.
이산화탄소 수소화를 통해 탄화수소를 제조하는 반응 단계에서 반응온도는 약 230℃내지 300℃일 수 있으며 반응압력은 약 10bar 내지 40bar일 수 있다. 저온반응에서 약 250℃일 수 있다. 공간속도는 약 2000 ml/gcat./h 내지 10000 ml/gcat./h일 수 있으나 이에 한정되는 것은 아니다.In the reaction step of producing hydrocarbons through carbon dioxide hydrogenation, the reaction temperature may be about 230°C to 300°C and the reaction pressure may be about 10 bar to 40 bar. In a low temperature reaction, it may be about 250°C. The space velocity may be about 2000 ml/gcat./h to 10000 ml/gcat./h, but is not limited thereto.
이하, 본 발명에 따른 이산화탄소의 환원반응용 촉매에 대한 실시예를 통하여 상세히 설명한다. 본 발명의 바람직한 실시예에 대한 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, a detailed description will be given of a catalyst for the reduction reaction of carbon dioxide according to the present invention through examples. In explaining the principles of preferred examples of the present invention in detail, if it is judged that a specific description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.
제조예 1 : 메조포러스 실리카 지지체Manufacturing Example 1: Mesoporous silica support
증류수 150ml와 플루로닉 P123 공중합체 18.0g을 상온에서 완전히 용해될 때까지 교반하였다. 삼구 플라스크에서 염산 32ml와 500ml 증류수를 약 35℃에서 교반하였다. 완전히 용해된 상기 플루로닉 P123 공중합체 용액을 교반중인 염산 용액에 부어 약 35℃에서 약 10분간 교반한다. 이어서 약 18.0g의 n-부탄올을 추가하여 약 35℃에서 교반하였다. 약 1시간 후 약 38.7g의 에틸실리케이트를 상기 혼합 용액에 추가하여 약 35℃에서 약 24시간동안 교반하였다. 약 24시간동안 교반시킨 상기 불투명한 상기 용액에 흰색의 침전이 생긴 것을 확인하였다. 상기 용액 및 침전물을 테프론(Teflon) 용기에 옮겨 담는다. 상기 테프론(Teflon)을 오토클레이브(autoclave)에 넣어 약 110℃ 오븐에서 약 25시간동안 수열합성 반응을 진행하였다. 수열합성 후, 약 12시간동안 식혀주었다. 상기 반응 용액을 세척 과정 없이 하얀 거품이 나오지 않을 때까지 여과하였다. 여과된 용액을 약 110℃의 오븐에서 약 40분동안 건조하였다. 건조된 흰색 분말을 550℃에서 6시간동안 standard 조건에서 소성하였다. 소성 후 약 10g의 고운 흰색 분말 형태의 KIT-6 메조포러스 실리카가 제조되었다. 150 ml of distilled water and 18.0 g of Pluronic P123 copolymer were stirred at room temperature until completely dissolved. 32 ml of hydrochloric acid and 500 ml of distilled water were stirred in a three-necked flask at about 35°C. The completely dissolved Pluronic P123 copolymer solution was poured into the stirring hydrochloric acid solution and stirred at about 35°C for about 10 minutes. Then, about 18.0 g of n-butanol was added and stirred at about 35°C. After about 1 hour, about 38.7 g of ethyl silicate was added to the mixed solution and stirred at about 35°C for about 24 hours. It was confirmed that a white precipitate was formed in the opaque solution stirred for about 24 hours. The solution and the precipitate were transferred to a Teflon container. The above Teflon was placed in an autoclave and a hydrothermal synthesis reaction was performed in an oven at about 110°C for about 25 hours. After the hydrothermal synthesis, it was cooled for about 12 hours. The reaction solution was filtered without a washing process until no white foam appeared. The filtered solution was dried in an oven at about 110°C for about 40 minutes. The dried white powder was calcined at 550°C for 6 hours under standard conditions. After the calcination, about 10 g of KIT-6 mesoporous silica in the form of a fine white powder was manufactured.
실시예 1 : m-CoMnExample 1: m-CoMn 0.10.1 AlAl 0.50.5
상기 제조예 1에서 제조된 KIT-6 지지체에 IWI 방법(Incipient wetness impregnation)으로 금속을 담지시켰다. 코발트, 망가니즈, 알루미늄을 각각 1 : 0.1 : 0.5의 몰 비율로 제조하였다. 준비된 KIT-6 10g을 약 110℃ 오븐에서 약 1시간동안 건조시켰다. The metal was supported on the KIT-6 support manufactured in the above Manufacturing Example 1 by the IWI method (Incipient Wetness Imregnation). Cobalt, manganese, and aluminum were manufactured in a molar ratio of 1:0.1:0.5, respectively. 10 g of the prepared KIT-6 was dried in an oven at about 110°C for about 1 hour.
(a)금속전구체 혼합용액을 제조하는 단계:(a) Step for preparing a metal precursor mixture solution:
코발트 전구체로 코발트 나이트레이트 헥사하이드레이트(Cobalt nitrate hexahydrate) 약 18.189g, 망가니즈 나이트레이트 헥사하이드레이트(Manganese nitrate hexahydrate) 약 1.794g, 알루미늄 나이트레이트 노나하이드레이트(Aluminum nitrate nonahydrate) 약 11.723g 을 9ml의 증류수에 넣고 완전히 용해시켰다. Approximately 18.189 g of cobalt nitrate hexahydrate, approximately 1.794 g of manganese nitrate hexahydrate, and approximately 11.723 g of aluminum nitrate nonahydrate as cobalt precursors were added to 9 ml of distilled water and completely dissolved.
(b)메조포러스 구조의 물질에 상기 금속전구체 혼합용액을 주입하는 단계:(b) A step of injecting the metal precursor mixture solution into a material having a mesoporous structure:
상기 건조된 KIT-6에 상기 금속 전구체가 용해된 용액을 한번에 부은 후 뭉침없이 색이 균일해질 때까지 충분히 혼합하였다. The solution containing the metal precursor was poured all at once into the dried KIT-6 and mixed thoroughly until the color became uniform without any lumps.
(c)상기 메조포러스 구조의 물질을 건조시킨 후 소성처리하여 복합 금속 산화물을 얻는 단계:(c) A step of drying the material having the above mesoporous structure and then calcining it to obtain a composite metal oxide:
상기 혼합된 분말을 약 80℃ 오븐에서 약 12시간동안 건조하여 증류수를 증발시켰다. 건조된 분말을 1℃/min 속도로 550℃까지 승온 후 550℃에서 3시간동안 소성하였다. The above mixed powder was dried in an oven at about 80°C for about 12 hours to evaporate the distilled water. The dried powder was heated to 550°C at a rate of 1°C/min and then calcined at 550°C for 3 hours.
(d)상기 복합 금속 산화물을 산성 또는 염기성 용액에 넣어 교반하는 단계:(d) A step of adding the above complex metal oxide to an acidic or basic solution and stirring:
소성된 복합 금속 산화물에서 KIT-6 제거를 위해 약 2M 농도의 NaOH 수용액에 소성된 복합 금속 산화물을 넣고 약 60℃에서 약 1시간 30분 동안 교반하였다. To remove KIT-6 from the calcined composite metal oxide, the calcined composite metal oxide was placed in an aqueous NaOH solution having a concentration of about 2 M and stirred at about 60°C for about 1 hour and 30 minutes.
(e)상기 산성 또는 염기성 용액을 세척 및 여과시킨 후 건조하는 단계:(e) A step of washing and filtering the acidic or alkaline solution and then drying it:
교반 후 증류수로 세척 및 여과하며 동시에 용액 표면에 떠오르는 불순물을 제거해주었다. 여과된 용액에 에탄올을 소량 추가한 후 110℃ 오븐에서 약 40분 동안 건조되었다. 건조된 복합 금속 산화물을 상기 KIT-6 제거 과정과 동일한 방법으로 2차 추출을 진행한다. 2차 추출 후 여과된 용액에 소량의 에탄올을 추가하여 약 110℃ 오븐에서 약 12시간동안 건조하였다. After stirring, it was washed with distilled water and filtered, and at the same time, impurities floating on the surface of the solution were removed. A small amount of ethanol was added to the filtered solution, and it was dried in an oven at 110°C for about 40 minutes. The dried complex metal oxide was subjected to secondary extraction in the same manner as the KIT-6 removal process. After the secondary extraction, a small amount of ethanol was added to the filtered solution, and it was dried in an oven at about 110°C for about 12 hours.
최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매는 m-CoMn0.1Al0.5로 표기하였다. 평균 비표면적은 100.8 m2/g이고 평균 기공 크기는 9.9 nm 이다.Finally, a powder-type porous composite metal oxide catalyst was manufactured, and the manufactured catalyst was denoted as m-CoMn 0.1 Al 0.5 . The average surface area was 100.8 m 2 /g and the average pore size was 9.9 nm.
상기 제조된 촉매로 다음과 같이 CO2 수소화 반응을 수행하였다. The CO2 hydrogenation reaction was performed as follows using the catalyst manufactured above.
(a)반응기 내부에 이산화탄소 환원촉매를 배치하는 단계:(a) Step of placing a carbon dioxide reduction catalyst inside the reactor:
상기 제조된 촉매 m-CoMn0.1Al0.5로 CO2 수소화 반응을 수행하였다. 고정층 반응기에 쿼츠울 약 0.3g을 배치 후 촉매 약 0.1g을 배치했다. CO2 hydrogenation reaction was performed using the above-mentioned manufactured catalyst m-CoMn 0.1 Al 0.5 . After placing about 0.3 g of quartz wool in a fixed bed reactor, about 0.1 g of the catalyst was placed.
(b)상기 반응기 내부에 수소가스 및 질소가스를 포함하는 환원가스를 공급하여 환원하는 단계:(b) A step of reducing by supplying a reducing gas containing hydrogen gas and nitrogen gas into the reactor:
반응에 앞서 약 5%의 H2 가스 및 잔여 N2를 포함한 환원가스를 상압에서 약 12시간동안 약 400℃에서 환원하였다. Prior to the reaction, a reducing gas containing about 5% H 2 gas and residual N 2 was reduced at about 400°C for about 12 hours at atmospheric pressure.
(c)상기 반응기 내부에 반응가스를 공급하여 이산화탄소의 수소화를 통해 탄화수소를 합성하는 단계:(c) A step of synthesizing hydrocarbons through hydrogenation of carbon dioxide by supplying reaction gas into the reactor:
환원 후 H2(약 72%)/CO2(약 24%)/N2(약 4%)의 반응가스(H2/CO2=3)를 흘려주어 반응을 수행하였다. 반응 압력은 약 40bar, 반응 온도 약 250℃, 공간속도 약 8000 ml/gcat./h 의 반응 조건에서 약 60시간 동안 수행하였다. 가스 크로마토그래피를 이용해 CO2 전환율, CO 선택도, 탄화수소 선택도 및 올레핀/파라핀 선택도 비율 분석을 실시하였다. 평균 CO2 전환율은 약 51.3%로 안정적인 활성을 나타내었으며 CO 선택도는 약 0.4% 로 부산물 배출을 최소화 하였다. 또한 C2-4 선택도 약 19.7%, C5+ 선택도 약 5.8%의 탄화수소를 합성하였다After reduction, the reaction was performed by flowing the reaction gas (H 2 /CO 2 = 3) of H 2 (approximately 72%)/CO 2 (approximately 24%)/N 2 (approximately 4%). The reaction was performed for approximately 60 hours under the reaction conditions of approximately 40 bar of reaction pressure, approximately 250°C of reaction temperature, and approximately 8000 ml/gcat./h of space velocity. The CO 2 conversion, CO selectivity, hydrocarbon selectivity, and olefin/paraffin selectivity ratio were analyzed using gas chromatography. The average CO 2 conversion was approximately 51.3%, showing stable activity, and the CO selectivity was approximately 0.4%, minimizing by-product emission. In addition, hydrocarbons with a C 2-4 selectivity of approximately 19.7% and a C 5+ selectivity of approximately 5.8% were synthesized.
실시예 2 : m-CoMnExample 2: m-CoMn 0.20.2 AlAl 0.50.5
상기 실시예 1과 동일하게 IWI 방법으로 촉매를 제조하되, 망가니즈의 조성을 증가시켰다. 코발트, 망가니즈, 알루미늄을 각각 1 : 0.2 : 0.5의 몰 비율로 제조하였다. 메탈 전구체로 코발트 나이트레이트 헥사하이드레이트 약 17.12g, 망가니즈 나이트레이트 헥사하이드레이트 약 3.38g, 알루미늄 나이트레이트 노나하이드레이트 약 11.03g을 사용하였다. 최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매는 m-CoMn0.2Al0.5로 표기하였다. 평균 비표면적은 107.9 m2/g이고 평균 기공 크기는 8.6 nm 이다. 상기 실시예 1과 동일한 조건에서 CO2 수소화 반응을 진행하였다. 평균 CO2 전환율은 약 52.0%로 안정적인 활성을 나타내었으며 CO 선택도는 약 0.4% 로 부산물 배출을 최소화 하였다. 또한 C2-4 선택도 약 17.5%, C5+ 선택도 약 4.3%의 탄화수소를 합성하였다. A catalyst was prepared by the IWI method in the same manner as in Example 1, but the composition of manganese was increased. Cobalt, manganese, and aluminum were prepared in a molar ratio of 1:0.2:0.5, respectively. About 17.12 g of cobalt nitrate hexahydrate, about 3.38 g of manganese nitrate hexahydrate, and about 11.03 g of aluminum nitrate nonahydrate were used as metal precursors. Finally, a powder-type porous composite metal oxide was prepared, and the prepared catalyst was expressed as m-CoMn 0.2 Al 0.5 . The average specific surface area was 107.9 m 2 /g and the average pore size was 8.6 nm. CO 2 hydrogenation reaction was performed under the same conditions as in Example 1. The average CO 2 conversion rate was about 52.0%, showing stable activity, and the CO selectivity was about 0.4%, minimizing by-product emission. Additionally, hydrocarbons with C 2-4 selectivity of approximately 17.5% and C 5+ selectivity of approximately 4.3% were synthesized.
실시예 3 : m-CoMnExample 3: m-CoMn 0.40.4 AlAl 0.50.5
상기 실시예 1과 동일하게 IWI 방법으로 촉매를 제조하되, 망가니즈의 조성을 증가시켰다. 코발트, 망가니즈, 알루미늄을 각각 1 : 0.4 : 0.5의 몰 비율로 제조하였다. 메탈 전구체로 코발트 나이트레이트 헥사하이드레이트 약 16g, 망가니즈 나이트레이트 헥사하이드레이트 약 6.312g, 알루미늄 나이트레이트 노나하이드레이트 약 10.311g을 사용하였다. 최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매는 m-CoMn0.4Al0.5로 표기하였다. 평균 비표면적은 125.2 m2/g이고 평균 기공 크기는 9.5 nm 이다. 상기 실시예 1과 동일한 조건에서 CO2 수소화 반응을 진행하였다. 평균 CO2 전환율은 약 57.7%로 안정적인 활성을 나타내었으며 CO 선택도는 약 0.4% 로 부산물 배출을 최소화 하였다. C2-4 선택도 약 12.8%, C5+ 선택도 약 1.4%의 탄화수소를 합성하였다.A catalyst was prepared by the IWI method in the same manner as in Example 1, but the composition of manganese was increased. Cobalt, manganese, and aluminum were prepared in a molar ratio of 1:0.4:0.5, respectively. About 16 g of cobalt nitrate hexahydrate, about 6.312 g of manganese nitrate hexahydrate, and about 10.311 g of aluminum nitrate nonahydrate were used as metal precursors. Finally, a powder-type porous composite metal oxide was prepared, and the prepared catalyst was expressed as m-CoMn 0.4 Al 0.5 . The average specific surface area was 125.2 m 2 /g and the average pore size was 9.5 nm. CO2 hydrogenation reaction was performed under the same conditions as in Example 1. The average CO2 conversion rate was about 57.7%, showing stable activity, and the CO selectivity was about 0.4%, minimizing by-product emission. A hydrocarbon was synthesized with a C 2-4 selectivity of approximately 12.8% and a C 5+ selectivity of approximately 1.4%.
실시예 4 : m-CoMnExample 4: m-CoMn 0.50.5 AlAl 0.50.5
상기 실시예 1과 동일하게 IWI 방법으로 촉매를 제조하되, 망가니즈 조성을 증가시켰다. 코발트, 망가니즈, 알루미늄을 각각 1 : 0.5 : 0.5의 몰 비율로 제조하였다. 메탈 전구체로 코발트 나이트레이트 헥사하이드레이트 약 16g, 망가니즈 나이트레이트 헥사하이드레이트 약 7.89g, 알루미늄 나이트레이트 노나하이드레이트 약 10.31g, 증류수 약 9ml를 사용하였다. 최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매의 평균 비표면적은 180.6 m2/g이고 평균 기공 크기는 8.9 nm 이다. 상기 실시예 1과 동일한 조건에서 CO2 수소화 반응을 진행하였다. 평균 CO2 전환율은 약 12.2%를 나타내었으며 CO 선택도는 약 10.7%를 나타내었다. C2-4 선택도는 약 19.0%, C5+ 선택도 약 11.4%의 탄화수소를 합성하였다.A catalyst was prepared by the IWI method in the same manner as in Example 1, but the manganese composition was increased. Cobalt, manganese, and aluminum were prepared in a molar ratio of 1:0.5:0.5, respectively. About 16 g of cobalt nitrate hexahydrate, about 7.89 g of manganese nitrate hexahydrate, about 10.31 g of aluminum nitrate nonahydrate, and about 9 ml of distilled water were used as metal precursors. Finally, a powder-type porous structure composite metal oxide was prepared, and the average specific surface area of the prepared catalyst was 180.6 m2 /g and the average pore size was 8.9 nm. CO2 hydrogenation reaction was performed under the same conditions as in Example 1. The average CO2 conversion was about 12.2% and the CO selectivity was about 10.7%. A hydrocarbon was synthesized with a C 2-4 selectivity of approximately 19.0% and a C 5+ selectivity of approximately 11.4%.
실시예 5Example 5
상기 실시예 2과 동일한 방법으로 진행하되, 230℃ 온도 조건에서 CO2 수소화 반응을 진행하였다. 평균 CO2 전환율은 약 56.1%를 나타내었으며 CO 선택도는 약 0.4%를 나타내었다. C2-4 선택도는 약 17.4%, C5+ 선택도 약 4.6%의 탄화수소를 합성하였다.The CO 2 hydrogenation reaction was performed in the same manner as in Example 2 above, but at a temperature of 230°C. The average CO 2 conversion rate was approximately 56.1% and the CO selectivity was approximately 0.4%. A hydrocarbon was synthesized with a C 2-4 selectivity of approximately 17.4% and a C5 + selectivity of approximately 4.6%.
실시예 6 : m-CoMnExample 6: m-CoMn 0.20.2
상기 실시예 2과 동일하게 IWI 방법을 사용하되 알루미늄을 제외하였다. 코발트, 망가니즈를 각각 1 : 0.2의 몰 비율로 제조하였다. 메탈 전구체로 코발트 나이트레이트 헥사하이드레이트 약 24.25g, 망가니즈 나이트레이트 헥사하이드레이트 약 4.78g을 사용하였다. 최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매는 m-CoMn0.2로 표기하였다. 평균 비표면적은 100.0 m2/g 이고 평균 기공 크기는 4.9 nm 이다. 상기 실시예 2와 동일한 조건에서 CO2 수소화 반응을 진행하되 약 325℃에서 약 12시간 동안 환원하였으며 반응 공간속도는 약 4000 ml/gcat./h으로 수행하였다. 평균 CO2 전환율은 약 54.4%를 나타내었으며 CO 선택도는 약 0.2%를 나타내었다. C2-4 선택도 약 20.6%, C5+ 선택도 약 12.6%의 탄화수소를 합성하였다.The IWI method was used the same as in Example 2, except that aluminum was excluded. Cobalt and manganese were each prepared in a molar ratio of 1:0.2. About 24.25 g of cobalt nitrate hexahydrate and about 4.78 g of manganese nitrate hexahydrate were used as metal precursors. Finally, a powder-type porous composite metal oxide was prepared, and the prepared catalyst was expressed as m-CoMn 0.2 . The average specific surface area was 100.0 m 2 /g and the average pore size was 4.9 nm. CO 2 hydrogenation reaction was carried out under the same conditions as in Example 2, except that the reduction was performed at about 325°C for about 12 hours, and the reaction space velocity was about 4000 ml/gcat./h. The average CO 2 conversion rate was about 54.4%, and the CO selectivity was about 0.2%. A hydrocarbon was synthesized with a C 2-4 selectivity of approximately 20.6% and a C 5+ selectivity of approximately 12.6%.
실시예7Example 7
상기 실시예 6과 동일한 조건에서 CO2 수소화 반응을 진행하되 약 350℃에서 약 12시간 동안 환원하였다. 평균 CO2 전환율은 약 32.3%를 나타내었으며 CO 선택도는 약 1.6%를 나타내었다. C2-4선택도 약 21.4%, C5+ 선택도 약 15.3%의 탄화수소를 합성하였다. CO2 hydrogenation reaction was performed under the same conditions as in Example 6, but reduction was performed at about 350°C for about 12 hours. The average CO2 conversion rate was about 32.3% and the CO selectivity was about 1.6%. Hydrocarbons with a C2-4 selectivity of about 21.4% and a C5 + selectivity of about 15.3% were synthesized.
실시예8Example 8
상기 실시예 6과 동일한 조건에서 CO2 수소화 반응을 진행하되 약 425℃에서 약 12시간 동안 환원하였다. 평균 CO2 전환율은 약 40.2%를 나타내었으며 CO 선택도는 약 0.7%를 나타내었다. C2-4선택도 약 20.9%, C5+ 선택도 약 12.3%의 탄화수소를 합성하였다. CO2 hydrogenation reaction was performed under the same conditions as in Example 6, but reduction was performed at about 425°C for about 12 hours. The average CO2 conversion rate was about 40.2% and the CO selectivity was about 0.7%. Hydrocarbons with a C2-4 selectivity of about 20.9% and a C5 + selectivity of about 12.3% were synthesized.
실시예9Example 9
상기 실시예 6과 동일한 조건에서 CO2 수소화 반응을 진행하되 약 450℃에서 약 12시간 동안 환원하였다. 평균 CO2 전환율은 약 32.1%를 나타내었으며 CO 선택도는 약 2.0%를 나타내었다. C2-4선택도 약 23.3%, C5+ 선택도 약 12.9%의 탄화수소를 합성하였다. CO2 hydrogenation reaction was performed under the same conditions as in Example 6, but reduction was performed at about 450°C for about 12 hours. The average CO2 conversion rate was about 32.1% and the CO selectivity was about 2.0%. Hydrocarbons with a C2-4 selectivity of about 23.3% and a C5 + selectivity of about 12.9% were synthesized.
실시예 10Example 10
상기 실시예 6과 동일한 조건에서 CO2 수소화 반응을 진행하되 약 350℃에서 약 6시간 동안 환원하였다. 평균 CO2 전환율은 약 31.3%를 나타내었으며 CO 선택도는 약 1.5%를 나타내었다. C2-4선택도 약 19.4%, C5+ 선택도 약 12.8%의 탄화수소를 합성하였다. CO2 hydrogenation reaction was performed under the same conditions as in Example 6, but reduction was performed at about 350°C for about 6 hours. The average CO2 conversion rate was about 31.3% and the CO selectivity was about 1.5%. Hydrocarbons with a C2-4 selectivity of about 19.4% and a C5 + selectivity of about 12.8% were synthesized.
실시예 11Example 11
상기 실시예 6과 동일한 조건에서 CO2 수소화 반응을 진행하되 약 450℃에서 약 6시간 동안 환원하였다. 평균 CO2 전환율은 약 39.5%를 나타내었으며 CO 선택도는 약 1.7%를 나타내었다. C2-4선택도 약 20.5%, C5+ 선택도 약 11.9%의 탄화수소를 합성하였다. CO2 hydrogenation reaction was performed under the same conditions as in Example 6, but reduction was performed at about 450°C for about 6 hours. The average CO2 conversion rate was about 39.5% and the CO selectivity was about 1.7%. Hydrocarbons with a C2-4 selectivity of about 20.5% and a C5 + selectivity of about 11.9% were synthesized.
실시예 12 : m-CoMnExample 12: m-CoMn 0.20.2 ZnZn 0.50.5
상기 실시예 2와 동일하게 IWI 방법으로 촉매를 제조하되, 알루미늄 대신 징크를 사용하였다. 코발트, 망가니즈, 징크를 각각 1 : 0.2 : 0.5의 몰 비율로 제조하였다. KIT-6 약 3g을 사용하였으며 메탈 전구체로 코발트 나이트레이트 헥사하이드레이트 약 5g, 망가니즈 나이트레이트 헥사하이드레이트 약 0.986g, 징크 나이트레이트 헥사하이드레이트 약 2.555g, 증류수 약 3ml를 사용하였다. 최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매의 평균 비표면적은 115.2 m2/g이고 평균 기공 크기는 5.3 nm 이다. 상기 실시예 1과 동일한 조건에서 CO2 수소화 반응을 진행하였다. 평균 CO2 전환율은 약 29.4%를 나타내었으며 CO 선택도는 약 10.7%를 나타내었다. C2-4 선택도는 약 19.0%, C5+ 선택도 약 11.4%의 탄화수소를 합성하였다. A catalyst was prepared by the IWI method in the same manner as in Example 2, except that zinc was used instead of aluminum. Cobalt, manganese, and zinc were prepared in a molar ratio of 1:0.2:0.5, respectively. About 3 g of KIT-6 was used, and about 5 g of cobalt nitrate hexahydrate, about 0.986 g of manganese nitrate hexahydrate, about 2.555 g of zinc nitrate hexahydrate, and about 3 ml of distilled water were used as metal precursors. Finally, a powder-type porous structure composite metal oxide was prepared, and the average specific surface area of the prepared catalyst was 115.2 m2 /g and the average pore size was 5.3 nm. CO2 hydrogenation reaction was performed under the same conditions as in Example 1. The average CO2 conversion was about 29.4% and the CO selectivity was about 10.7%. A hydrocarbon was synthesized with a C 2-4 selectivity of approximately 19.0% and a C 5+ selectivity of approximately 11.4%.
비교예 1 : m-CoAlComparative Example 1: m-CoAl 0.50.5
상기 실시예 1과 동일하게 IWI 방법을 사용하되 망가니즈를 제외하였다. 코발트, 알루미늄을 각각1 : 0.5의 몰 비율로 제조하였다. 메탈 전구체로 코발트 나이트레이트 헥사하이드레이트 약 16g, 알루미늄 나이트레이트 노나하이드레이트 약 10.31g을 사용하였다. 최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매의 평균 비표면적은 113.7 m2/g이고 평균 기공 크기는 4.3 nm 이다. 상기 실시예 1과 동일한 조건에서 CO2 수소화 반응을 진행하였다. 평균 CO2 전환율은 약 57.5%로 안정적인 활성을 보였지만 C1 선택도가 92.4%로 대부분이 메탄화 반응으로 진행하였다. The IWI method was used the same as in Example 1, except that manganese was excluded. Cobalt and aluminum were prepared in a molar ratio of 1:0.5, respectively. About 16 g of cobalt nitrate hexahydrate and about 10.31 g of aluminum nitrate nonahydrate were used as metal precursors. Finally, a powder-type porous structure composite metal oxide was prepared, and the average specific surface area of the prepared catalyst was 113.7 m2 /g and the average pore size was 4.3 nm. CO2 hydrogenation reaction was performed under the same conditions as in Example 1. The average CO2 conversion rate showed stable activity at about 57.5%, but the C1 selectivity was 92.4%, so most of the reaction proceeded as methanation.
비교예 2 : m-CoMnComparative Example 2: m-CoMn 0.050.05 AlAl 0.50.5
상기 실시예 1과 동일하게 IWI 방법으로 촉매를 제조하되, 망가니즈의 조성을 감소시켰다. 코발트, 망가니즈, 알루미늄을 각각 1 : 0.05 : 0.5의 몰 비율로 제조하였다. 메탈 전구체로 코발트 나이트레이트 헥사하이드레이트 약 16g, 망가니즈 나이트레이트 헥사하이드레이트 약 0.789g, 알루미늄 나이트레이트 노나하이드레이트 약 10.311g, 증류수 약 10ml를 사용하였다. 최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매의 평균 비표면적은 111.5 m2/g이고 평균 기공 크기는 5.9 nm 이다. 상기 실시예 1과 동일한 조건에서 CO2 수소화 반응을 진행하였다. 50.7%의 높은 CO2 전환율과 0.6%의 낮은 CO 선택도를 보였으나 5.6%의 C2-4선택도와 0.34%의 낮은 C5+ 선택도를 보였다. A catalyst was prepared by the IWI method in the same manner as in Example 1, except that the manganese composition was reduced. Cobalt, manganese, and aluminum were prepared in a molar ratio of 1:0.05:0.5, respectively. About 16 g of cobalt nitrate hexahydrate, about 0.789 g of manganese nitrate hexahydrate, about 10.311 g of aluminum nitrate nonahydrate, and about 10 ml of distilled water were used as metal precursors. Finally, a powder-type porous structure composite metal oxide was prepared, and the average specific surface area of the prepared catalyst was 111.5 m2 /g and the average pore size was 5.9 nm. CO2 hydrogenation reaction was performed under the same conditions as in Example 1. It showed a high CO2 conversion of 50.7% and a low CO selectivity of 0.6%, but a C2-4 selectivity of 5.6% and a low C5 + selectivity of 0.34%.
비교예 3 : m-CoMnAlComparative Example 3: m-CoMnAl 0.50.5
상기 실시예 1과 동일하게 IWI 방법으로 촉매를 제조하되, 망가니즈의 조성을 증가시켰다. 코발트, 망가니즈, 알루미늄을 각각 1 : 1 : 0.5의 몰 비율로 제조하였다. 메탈 전구체로 코발트 나이트레이트 헥사하이드레이트 약 14g, 망가니즈 나이트레이트 헥사하이드레이트 약 13.80g, 알루미늄 나이트레이트 노나하이드레이트 약 9.02g을 사용하였다. 최종적으로 분말형태의 기공구조 복합 금속 산화물을 제조하였으며 제조된 촉매의 평균 비표면적은 104.2 m2/g이고 평균 기공 크기는 5.4 nm 이다. 상기 실시예 1과 동일한 조건에서 CO2 수소화 반응을 진행하였다. 10.1%의 낮은 CO2 전환율과 13.3%의 높은 CO 선택도를 보였으며 82.6%의 높은 C1 선택도를 보였다. A catalyst was prepared by the IWI method in the same manner as in Example 1, but the composition of manganese was increased. Cobalt, manganese, and aluminum were prepared in a molar ratio of 1:1:0.5, respectively. About 14 g of cobalt nitrate hexahydrate, about 13.80 g of manganese nitrate hexahydrate, and about 9.02 g of aluminum nitrate nonahydrate were used as metal precursors. Finally, a powder-type porous structure composite metal oxide was prepared, and the average specific surface area of the prepared catalyst was 104.2 m 2 /g and the average pore size was 5.4 nm. CO 2 hydrogenation reaction was performed under the same conditions as in Example 1. It exhibited a low CO 2 conversion of 10.1%, a high CO selectivity of 13.3%, and a high C 1 selectivity of 82.6%.
비교예 4Comparative Example 4
상기 실시예 2과 동일한 방법으로 진행하되, 270℃ 온도 조건에서 CO2 수소화 반응을 진행하였다. 평균 CO2 전환율은 약 58.0%를 나타내었으며 CO 선택도는 약 0.3%를 나타내었다. C2-4 선택도는 약 8.1%, C5+ 선택도 약 0.5%의 낮은 탄화수소 선택도를 보였다. The CO 2 hydrogenation reaction was performed in the same manner as in Example 2, but at a temperature of 270°C. The average CO 2 conversion rate was approximately 58.0% and the CO selectivity was approximately 0.3%. The C 2-4 selectivity was approximately 8.1% and the C 5+ selectivity was approximately 0.5%, showing low hydrocarbon selectivity.
비교예 5Comparative Example 5
상기 실시예 6과 동일한 조건에서 CO2 수소화 반응을 진행하되 약 400℃에서 약 12시간 동안 환원하였다. 평균 CO2 전환율은 약 56.0%를 나타내었으며 CO 선택도는 약 0.1%를 나타내었다. 약 11.3%의 C2-4선택도 및 약 3.7%의 C5+선택도를 보였다. CO2 hydrogenation reaction was carried out under the same conditions as in Example 6, but reduction was performed at about 400°C for about 12 hours. The average CO2 conversion rate was about 56.0% and the CO selectivity was about 0.1%. It showed a C2-4 selectivity of about 11.3% and a C5 + selectivity of about 3.7%.
촉매 메탈의 종류 및 조성에 따른 반응 결과를 표 1에 나타냈다. The reaction results according to the type and composition of the catalyst metal are shown in Table 1.
<표1><Table 1>
상기 표 1에 나타난 바와 같이 망가니즈를 첨가하지 않은 촉매를 사용한 비교예 1에 비해 망가니즈를 첨가한 촉매인 실시예 1 내지 4의 실험결과에서 C2-4 및 C5+의 탄화수소 선택도가 증가했음을 확인하였다. 특히, 실시예 1 내지 실시예 3에서 높은 CO2 전환율을 나타냈으며 실시예 4에서 높은 탄화수소 선택도를 나타내었다. 망가니즈의 양이 매우 소량인 비교예 2와 망가니즈의 양이 가장 많은 비교예 3은 촉매 성능이 감소했음을 확인하였다. 비교예2와 비교예3의 실험데이터를 반영하여 청구항 제 1항의 화학식1의 x의 범위를 0.05보다는 크며 1보다는 작은 범위로 한정하게 되었다. 또한 실시예 2에서 알루미늄 대신 징크로 바꾼 실시예 12에서 탄화수소 선택도가 증가했다.As shown in Table 1 above, it was confirmed in the experimental results of Examples 1 to 4, which are catalysts adding manganese, that the hydrocarbon selectivity of C 2-4 and C 5+ increased compared to Comparative Example 1, which used a catalyst without adding manganese. In particular, Examples 1 to 3 exhibited high CO 2 conversion and Example 4 exhibited high hydrocarbon selectivity. It was confirmed that Comparative Example 2, which had a very small amount of manganese, and Comparative Example 3, which had the largest amount of manganese, had decreased catalytic performance. Reflecting the experimental data of Comparative Examples 2 and 3, the range of x in Chemical Formula 1 of Claim 1 was limited to a range greater than 0.05 and less than 1. In addition, in Example 12, where zinc was replaced with aluminum in Example 2, the hydrocarbon selectivity increased.
실시예 2에서 합성한 촉매를 반응 온도를 변경하여 CO2 수소화를 진행한 결과를 표2에 나타내었다.The results of CO2 hydrogenation performed by changing the reaction temperature using the catalyst synthesized in Example 2 are shown in Table 2.
<표2><Table 2>
실시예 2 및 실시예 3은 유사한 결과를 보였다. 온도가 높은 270℃에서는 가장 높은 CO2 전환율을 보였지만 대부분 메탄화 반응으로 진행하였다.Examples 2 and 3 showed similar results. At a high temperature of 270°C, the highest CO2 conversion rate was observed, but most of the reaction proceeded as methanation.
실시예 6에서 합성된 촉매를 환원 온도 및 시간 조건을 변경하여 CO2 수소화를 진행하였으며 결과 비교는 표 3에 나타냈다. CO2 hydrogenation was performed by changing the reduction temperature and time conditions using the catalyst synthesized in Example 6, and the comparison of results is shown in Table 3.
<표3><Table 3>
실시예 6 내지 실시예 11은 유사한 탄화수소 선택도를 보였으며 350℃에서 12시간 환원한 실시예 7에서 가장 높은 C5+ 선택도를 보였다. 반면 400℃에서 12시간 환원한 비교예 5는 대부분 메탄화 반응으로 진행하였다.Examples 6 to 11 showed similar hydrocarbon selectivity, and Example 7, which was reduced at 350°C for 12 hours, showed the highest C 5+ selectivity. On the other hand, Comparative Example 5, which was reduced at 400°C for 12 hours, proceeded mostly through methanation reaction.
상기 전체 결과를 표 4에 정리했다. 실시예 7에서 가장 높은 C5+ 선택도를 보였으며 실시예 9에서 가장 높은 C2-4 선택도를 보였다. 실시예 7 및 실시예 9에서 가장 낮은 선택도를 보였다.The overall results are summarized in Table 4. Example 7 showed the highest C 5+ selectivity, and Example 9 showed the highest C 2-4 selectivity. Examples 7 and 9 showed the lowest selectivity.
<표4><Table 4>
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명은 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다.Although the present invention has been described in detail through specific examples, this is only for the purpose of specifically explaining the present invention, and the present invention is not limited thereto, and it is obvious that the present invention can be modified or improved by a person having ordinary knowledge in the relevant field within the technical spirit of the present invention.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications or changes of the present invention fall within the scope of the present invention, and the specific protection scope of the present invention will be made clear by the appended claims.
Claims (18)
[화학식 1]
CoMnxAlyZnz (,, ,)
A carbon dioxide reduction catalyst represented by the following chemical formula 1.
[Chemical Formula 1]
CoMn x Al y Zn z ( , , , )
상기 촉매는 메조포러스 구조의 물질에 활성금속이 담지된 것을 특징으로 하는 이산화탄소 환원촉매.
In paragraph 1,
The above catalyst is a carbon dioxide reduction catalyst characterized in that an active metal is supported on a material having a mesoporous structure.
상기 촉매는 CoMnxAl0.5 (0.1≤x≤0.5) 또는 CoMn0.2Zn0.5인 것을 특징으로 하는 이산화탄소 환원촉매.
In paragraph 1,
The above catalyst is a carbon dioxide reduction catalyst characterized by being CoMn x Al 0.5 (0.1≤x≤0.5) or CoMn 0.2 Zn 0.5 .
상기 촉매는 평균 비표면적이 50 내지 200m2/g인 것을 특징으로 하는 이산화탄소 환원촉매.
In the second paragraph,
The above catalyst is a carbon dioxide reduction catalyst characterized by having an average specific surface area of 50 to 200 m 2 /g.
상기 촉매는 평균 기공 크기가 2 내지 20 nm인 것을 특징으로 하는 이산화탄소 환원촉매.
In the second paragraph,
The above catalyst is a carbon dioxide reduction catalyst characterized by an average pore size of 2 to 20 nm.
코발트 전구체 외에, 망가니즈 전구체, 알루미늄 전구체 또는 징크 전구체를 더 포함하는 금속전구체를 용매에 분산시켜 금속전구체 혼합용액을 제조하는 단계;
메조포러스 구조의 물질에 상기 금속전구체 혼합용액을 주입하는 단계;
상기 메조포러스 구조의 물질을 건조시킨 후 소성처리하여 복합 금속 산화물을 얻는 단계;
상기 복합 금속 산화물을 산성 또는 염기성 용액에 넣어 교반하는 단계; 및
상기 산성 또는 염기성 용액을 세척 및 여과시킨 후 건조하는 단계;를 포함하는 이산화탄소의 수소화반응시 촉매로 작용하는 것을 특징으로 하는 이산화탄소 환원촉매 제조방법.
In a method for producing a carbon dioxide reduction catalyst represented by chemical formula 1 according to Article 1,
A step of preparing a metal precursor mixture solution by dispersing a metal precursor further including a manganese precursor, an aluminum precursor or a zinc precursor in addition to a cobalt precursor in a solvent;
A step of injecting the metal precursor mixture solution into a material having a mesoporous structure;
A step of drying and then calcining the material having the above mesoporous structure to obtain a composite metal oxide;
A step of adding the above complex metal oxide to an acidic or basic solution and stirring; and
A method for producing a carbon dioxide reduction catalyst, characterized in that it acts as a catalyst in the hydrogenation reaction of carbon dioxide, comprising the steps of washing and filtering the acidic or basic solution and then drying it.
상기 소성처리는 450℃ 내지 650℃ 까지 승온시켜 소성 처리하는 구성인 이산화탄소 환원촉매 제조방법.
In paragraph 6,
The above-mentioned calcination treatment is a method for manufacturing a carbon dioxide reduction catalyst, which comprises calcination treatment by raising the temperature to 450°C to 650°C.
상기 산성 용액은 HF수용액인 것을 특징으로 하는 이산화탄소 환원촉매 제조방법.
In paragraph 6,
A method for producing a carbon dioxide reduction catalyst, characterized in that the acidic solution is an HF aqueous solution.
상기 염기성 용액은 NaOH 수용액인 것을 특징으로 하는 이산화탄소 환원촉매 제조방법.
In paragraph 6,
A method for producing a carbon dioxide reduction catalyst, characterized in that the above basic solution is a NaOH aqueous solution.
상기 복합 금속 산화물은 상온 내지 60℃에서 산성 또는 염기성 용액에 넣어 교반하는 것을 특징으로 하는 이산화탄소 환원촉매 제조방법.
In paragraph 6,
A method for producing a carbon dioxide reduction catalyst, characterized in that the above composite metal oxide is stirred in an acidic or basic solution at room temperature to 60°C.
상기 반응기 내부에 수소가스 및 질소가스를 포함하는 환원가스를 공급하여 환원하는 단계; 및
상기 반응기 내부에 반응가스를 공급하여 이산화탄소의 수소화를 통해 탄화수소를 합성하는 단계;
를 포함하는 탄화수소화합물 제조방법.
A step of arranging a carbon dioxide reduction catalyst of any one of claims 1 to 5 inside a reactor;
A step of reducing by supplying a reducing gas containing hydrogen gas and nitrogen gas into the reactor; and
A step of synthesizing hydrocarbons through hydrogenation of carbon dioxide by supplying reaction gas into the reactor;
A method for producing a hydrocarbon compound comprising:
상기 반응기는 피셔-트롭쉬 고정층 반응기이며 상기 반응기 내부에 쿼츠울이 배치되있는 것을 특징으로 하는 탄화수소화합물 제조방법.
In Article 11,
A method for producing a hydrocarbon compound, characterized in that the above reactor is a Fischer-Tropsch fixed bed reactor and quartz wool is placed inside the reactor.
상기 환원가스는 5%의 수소가스와 95%는 질소가스로 이루어진 것을 특징으로 하는 탄화수소화합물 제조방법.
In Article 11,
A method for producing a hydrocarbon compound, characterized in that the reducing gas is composed of 5% hydrogen gas and 95% nitrogen gas.
상기 환원하는 단계에서, 반응기의 내부 온도가 350℃ 내지 450℃이고, 내부 압력이 상압 내지 40bar에서 6시간 내지 24시간동안 이루어지는 것을 특징으로 하는 탄화수소화합물 제조방법.
In Article 11,
A method for producing a hydrocarbon compound, characterized in that, in the reducing step, the internal temperature of the reactor is 350°C to 450°C and the internal pressure is normal pressure to 40 bar for 6 to 24 hours.
상기 반응가스는 72%의 수소가스, 24%의 이산화탄소가스 및 4% 질소가스로 이루어진 것을 특징으로 하는 탄화수소화합물 제조방법.
In Article 11,
A method for producing a hydrocarbon compound, characterized in that the above reaction gas is composed of 72% hydrogen gas, 24% carbon dioxide gas, and 4% nitrogen gas.
상기 탄화수소를 합성하는 단계의 반응온도는 230℃ 내지 270℃미만이며, 반응압력은 10bar 내지 40bar인 것을 특징으로 하는 탄화수소화합물 제조방법.
In Article 11,
A method for producing a hydrocarbon compound, characterized in that the reaction temperature in the step of synthesizing the hydrocarbon is 230°C to less than 270°C and the reaction pressure is 10 bar to 40 bar.
상기 탄화수소를 합성하는 단계의 공간속도는 2000 내지 10000 ml/gcat./h 인 것을 특징으로 하는 탄화수소화합물 제조방법.
In Article 11,
A method for producing a hydrocarbon compound, characterized in that the space velocity of the step of synthesizing the hydrocarbon is 2000 to 10000 ml/gcat./h.
상기 탄화수소화합물은 탄소 수가 1 ~ 20개인 것을 특징으로 하는 탄화수소화합물 제조방법.In Article 11,
A method for producing a hydrocarbon compound, characterized in that the hydrocarbon compound has 1 to 20 carbon atoms.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020230064528A KR20240166818A (en) | 2023-05-18 | 2023-05-18 | Catalyst for hydrocarbon synthesis through carbon dioxide hydrogenation, method for preparing the same, and method for synthesizing hydrocarbon using the catalyst |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020230064528A KR20240166818A (en) | 2023-05-18 | 2023-05-18 | Catalyst for hydrocarbon synthesis through carbon dioxide hydrogenation, method for preparing the same, and method for synthesizing hydrocarbon using the catalyst |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20240166818A true KR20240166818A (en) | 2024-11-26 |
Family
ID=93704249
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020230064528A Pending KR20240166818A (en) | 2023-05-18 | 2023-05-18 | Catalyst for hydrocarbon synthesis through carbon dioxide hydrogenation, method for preparing the same, and method for synthesizing hydrocarbon using the catalyst |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR20240166818A (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200091656A (en) | 2019-01-23 | 2020-07-31 | 한국화학연구원 | Bi-functional Catalyst for Carbon dioxide Hydrogenation and Method of Producing Hydrocarbon Using the same |
-
2023
- 2023-05-18 KR KR1020230064528A patent/KR20240166818A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200091656A (en) | 2019-01-23 | 2020-07-31 | 한국화학연구원 | Bi-functional Catalyst for Carbon dioxide Hydrogenation and Method of Producing Hydrocarbon Using the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101026536B1 (en) | Fischer-Tropsch synthesis catalyst for iron-based reaction and preparation method thereof | |
| KR101829917B1 (en) | Mesoporous main framework of cobalt based catalyst for Fischer-Tropsch synthesis and a preparation method thereof | |
| KR20140087264A (en) | Mesoporous Ni-X-Al2O3 xerogel catalyst, preparation method thereof, and method for preparing methane using said catalyst | |
| US20240375947A1 (en) | Method for preparing catalyst for ammonia decomposition using cation-anion double hydrolysis | |
| CN104549411A (en) | Preparation method of nickel-based catalyst based on SBA-15 and application of nickel-based catalyst in SNG preparation | |
| KR101988370B1 (en) | Catalysts for methanation of carbon dioxide and the manufacturing method of the same | |
| KR101236636B1 (en) | Ni-M-Al2O3 xerogel catalyst, preparation method thereof, and method for preparing methane using said catalyst | |
| WO2022247717A1 (en) | Method for synthesizing higher alcohol by means of catalytic conversion of ethanol | |
| KR20210058578A (en) | Catalyst for CO2 hydrogenation to produce hydrocarbon compounds and preparation method thereof | |
| KR102186058B1 (en) | Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same | |
| Lysne et al. | Noble metal (Pt, Pd and Rh) promoted Ni-Co/Mg (Al) O catalysts for steam reforming of tar impurities from biomass gasification | |
| US12134085B2 (en) | Steam reforming catalysts for sustainable hydrogen production from biobased materials | |
| CN111450834B (en) | Ceria-supported cobalt-based catalyst for autothermal reforming of acetic acid for hydrogen production | |
| KR100925663B1 (en) | Nickel catalyst supported on a medium-sized pore alumina carrier prepared by hydrothermal synthesis using a cationic surfactant as a template material, a manufacturing method thereof, and a hydrogen production method by steam reforming of liquefied natural gas using the catalyst. | |
| KR100885637B1 (en) | Nickel-alumina controlled gel catalyst for steam reforming of liquefied natural gas and its manufacturing method | |
| KR101628695B1 (en) | A mesoporous nickel-iron-alumina xerogel catalyst, preparation method thereof and production method of hydrogen gas by steam reforming of liquefied natural gas using said catalyst | |
| KR20240166818A (en) | Catalyst for hydrocarbon synthesis through carbon dioxide hydrogenation, method for preparing the same, and method for synthesizing hydrocarbon using the catalyst | |
| KR101281228B1 (en) | Mesoporous xerogel nickel-alumina catalyst and method for amnufacturing the same, and method for manufacturing methane using said catalyst | |
| KR101570943B1 (en) | A perovskite-like catalyst supported on alumina having a bimodal pore structure for combined steam and co_2 reforming reaction with methane and a preparation method thereof | |
| KR101426528B1 (en) | Modified Perovskite Catalyst for Aqueous phase reforming of glycerol and the Preparation Method | |
| KR101392996B1 (en) | Preparation of Hydrogen Gas by Steam Reforming Reaction of Ethanol with Gel Catalyst with Medium Porous Nickel-Alumina-Zirconia Control | |
| KR102073959B1 (en) | Catalyst for synthesizing synthetic natural gas and manufacturing method for high calorific synthetic natural gas using the same | |
| CN116440961B (en) | La and Al modified Co/TiO2 catalyst, preparation method and application in synthesis of low-carbon alcohols from synthesis gas | |
| KR101460348B1 (en) | A mesoporous nickel-phosphorus-alumina aerogel catalyst, preparation method thereof and production method of hydrogen gas by steam reforming of liquefied natural gas using said catalyst | |
| KR101412518B1 (en) | Catalysts for synthesis of liquid hydrocarbons using syngas and preparation methods thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20230518 |
|
| PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20230518 Comment text: Patent Application |
|
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20250425 Patent event code: PE09021S01D |