[go: up one dir, main page]

KR20250076198A - Ruthenium-supported alumina catalyst, method of manufacturing the same and continuous tetrahydrofuran dimethanol(thfdm) manufacturing apparatus using the same - Google Patents

Ruthenium-supported alumina catalyst, method of manufacturing the same and continuous tetrahydrofuran dimethanol(thfdm) manufacturing apparatus using the same Download PDF

Info

Publication number
KR20250076198A
KR20250076198A KR1020230163615A KR20230163615A KR20250076198A KR 20250076198 A KR20250076198 A KR 20250076198A KR 1020230163615 A KR1020230163615 A KR 1020230163615A KR 20230163615 A KR20230163615 A KR 20230163615A KR 20250076198 A KR20250076198 A KR 20250076198A
Authority
KR
South Korea
Prior art keywords
catalyst
hmf
thfdm
tetrahydrofuran dimethanol
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
KR1020230163615A
Other languages
Korean (ko)
Inventor
김용진
백자연
이혜진
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020230163615A priority Critical patent/KR20250076198A/en
Priority to PCT/KR2024/017454 priority patent/WO2025110577A1/en
Publication of KR20250076198A publication Critical patent/KR20250076198A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • C07D307/44Furfuryl alcohol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Furan Compounds (AREA)

Abstract

루테늄 담지 알루미나 촉매, 그의 제조방법 및 그를 이용한 연속식 테트라하이드로퓨란 다이메탄올(THFDM) 제조장치가 개시된다. 본 발명의 촉매는 알루미나(Al2O3)를 포함하는 지지체; 및 상기 지지체 상에 담지된 루테늄(Ru);을 포함하고, 고농도의 5-하이드록시메틸푸르푸랄(HMF) 용액을 사용하여 5-하이드록시메틸푸르푸랄(HMF)의 수소화 반응에 의해 테트라하이드로퓨란 다이메탄올(THFDM)을 고수율로 얻을 수 있다.A ruthenium-supported alumina catalyst, a method for producing the same, and a continuous tetrahydrofuran dimethanol (THFDM) producing apparatus using the same are disclosed. The catalyst of the present invention comprises a support comprising alumina (Al 2 O 3 ); and ruthenium (Ru) supported on the support; and can obtain tetrahydrofuran dimethanol (THFDM) in high yield by hydrogenation of 5-hydroxymethylfurfural (HMF) using a high-concentration 5-hydroxymethylfurfural (HMF) solution.

Description

루테늄 담지 알루미나 촉매, 그의 제조방법 및 그를 이용한 연속식 테트라하이드로퓨란 다이메탄올(THFDM) 제조장치{RUTHENIUM-SUPPORTED ALUMINA CATALYST, METHOD OF MANUFACTURING THE SAME AND CONTINUOUS TETRAHYDROFURAN DIMETHANOL(THFDM) MANUFACTURING APPARATUS USING THE SAME}{RUTHENIUM-SUPPORTED ALUMINA CATALYST, METHOD OF MANUFACTURING THE SAME AND CONTINUOUS TETRAHYDROFURAN DIMETHANOL(THFDM) MANUFACTURING APPARATUS USING THE SAME}

본 발명은 루테늄 담지 알루미나 촉매, 그의 제조방법 및 그를 이용한 연속식 테트라하이드로퓨란 다이메탄올(THFDM) 제조장치에 관한 것이다.The present invention relates to a ruthenium-supported alumina catalyst, a method for producing the same, and a continuous tetrahydrofuran dimethanol (THFDM) production device using the same.

제2차 세계대전을 기점으로 공업적 생산 체계를 갖추게 되면서 다양한 수지를 기초로 하는 플라스틱들이 소비재로 대량 생산되기 시작하였다. 특히 1970년대 후반부터는 철강의 생산량을 넘어서서 최근에는 3억톤이 넘는 플라스틱이 전세계에서 생산되고 소비되고 있다. 그러나, 플라스틱은 석유 정제과정에서 나온 나프타를 이용하여 생산되는 것이므로 석유자원의 고갈, 이산화탄소 배출이 문제되고 있으며, 일회용품의 주 재료로 사용되어 제품 사용 후 곧바로 폐기됨에 따라 다량의 플라스틱이 폐기되는데 오랜 기간 썩지 않아 매립이 어렵고 소각하는 경우 다이옥신을 비롯한 발암물질이 대기 상에 배출되어 환경 문제를 초래하고 있어 이에 대한 대체소재에 관한 연구가 지속적으로 진행되고 있다.Starting with the establishment of an industrial production system after World War II, plastics based on various resins began to be mass-produced as consumer goods. In particular, since the late 1970s, plastics have surpassed the production of steel, and recently, over 300 million tons of plastics have been produced and consumed worldwide. However, since plastics are produced using naphtha from the petroleum refining process, the depletion of petroleum resources and carbon dioxide emissions have become a problem. In addition, since they are used as the main material for disposable products and are discarded immediately after use, a large amount of plastics are discarded. Since they do not decompose for a long time, landfilling is difficult, and when incinerated, carcinogens such as dioxins are emitted into the atmosphere, causing environmental problems. Therefore, research on alternative materials is continuously being conducted.

플라스틱의 대체제로서 과학자들은 식물 속 전분이나 셀룰로오스를 이용하는 바이오 플라스틱 소재 개발에 전력을 다하고 있다. 일례로, 5-하이드록시메틸푸르푸랄(5-hydroxymethylfurfural, 이하 HMF)은 산 촉매의 존재 하에 탄수화물 또는 셀룰로오스로부터 생산되었으며, 상기 5-하이드록시메틸푸르푸랄(HMF)은 상당한 산업 응용성을 가지는 바이오매스 기반의 화합물 10종 중 하나로 분류되고 있다.As a substitute for plastics, scientists are working hard to develop bioplastic materials using starch or cellulose in plants. For example, 5-hydroxymethylfurfural (HMF) is produced from carbohydrates or cellulose in the presence of an acid catalyst, and 5-hydroxymethylfurfural (HMF) is classified as one of 10 biomass-based compounds with significant industrial applications.

HMF의 촉매 수소화 반응을 통하여 2,5-퓨란디메탄올(2,5-furandimethanol, FDM), 2,5-테트라하이드로퓨란 다이메탄올(2,5-Tetrahydrofuran dimetanol, THF-DM), 및 2,5-디메틸퓨란(2,5-dimethylfuran) 등이 제조될 수 있다. 상기 2,5-퓨란디메탄올 및 2,5-테트라하이드로퓨란 다이메탄올은 수지, 고분자 및 다양한 특성을 가지는 화학섬유의 제조 등 다양한 방면에서 사용될 수 있어 잠재성이 뛰어나다. 따라서, 다양한 환경에서 금속 복합체 및 금속 담지촉매를 사용하여 HMF으로부터 2,5-퓨란디메탄올 및 2,5-테트라하이드로퓨란 다이메탄올을 선택적으로 제조할 수 있는 HMF의 수소화 방법이 활발히 연구되어 왔다.2,5-Furandimethanol (FDM), 2,5-Tetrahydrofuran dimethanol (THF-DM), and 2,5-dimethylfuran can be produced through the catalytic hydrogenation of HMF. The 2,5-FDM and 2,5-Tetrahydrofuran dimethanol have excellent potential as they can be used in various fields such as the production of resins, polymers, and chemical fibers with various properties. Therefore, a method for hydrogenating HMF using a metal complex and a metal-supported catalyst to selectively produce 2,5-FDM and 2,5-Tetrahydrofuran dimethanol from HMF in various environments has been actively studied.

HMF를 수소첨가반응시 2,5-퓨란디메탄올(2,5-furandimethanol, FDM), 2,5- 테트라하이드로퓨란 다이메탄올(2,5-Tetrahydrofuran dimetanol, THF-DM), 및 2,5-디메틸퓨란(2,5-dimethylfuran)의 혼합물이 얻어지며 어느 하나를 얻기 위해서는 에너지가 많이 소요되는 정제공정이 추가로 필요한 문제점이 있다. 따라서 HMF를 수소화 반응시 타겟 생성물을 고수율로 선택적으로 제조하기 위한 연구가 필요하다.When HMF is hydrogenated, a mixture of 2,5-furandimethanol (FDM), 2,5-tetrahydrofuran dimethanol (THF-DM), and 2,5-dimethylfuran is obtained, but there is a problem that an energy-intensive purification process is additionally required to obtain any one of them. Therefore, research is needed to selectively produce the target product in high yield during the hydrogenation reaction of HMF.

본 발명의 목적은 HMF를 수소첨가반응시 고순도의 테트라하이드로퓨란 다이메탄올(THFDM)을 선택적으로 고수율로 제조할 수 있는 촉매를 제공하는 것이다.The purpose of the present invention is to provide a catalyst capable of selectively producing high-purity tetrahydrofuran dimethanol (THFDM) with a high yield during the hydrogenation reaction of HMF.

본 발명의 다른 목적은 기질인 HMF를 고농도로 포함하는 반응용액을 사용하여 고순도의 테트라하이드로퓨란 다이메탄올(THFDM)을 선택적으로 제조할 수 있는 연속적 반응장치 및 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a continuous reaction device and production method capable of selectively producing high-purity tetrahydrofuran dimethanol (THFDM) using a reaction solution containing a high concentration of HMF as a substrate.

본 발명의 일 측면에 따르면, 알루미나(Al2O3)를 포함하는 지지체; 및 상기 지지체 상에 담지된 루테늄(Ru);을 포함하는 촉매를 제공한다.According to one aspect of the present invention, a catalyst is provided, which comprises a support comprising alumina (Al 2 O 3 ); and ruthenium (Ru) supported on the support.

또한, 상기 촉매가 5-하이드록시메틸푸르푸랄(HMF)을 수소첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하는 것에 사용하기 위한 것일 수 있다.Additionally, the catalyst may be used for producing tetrahydrofuran dimethanol (THFDM) by hydrogenating 5-hydroxymethylfurfural (HMF).

또한, 상기 알루미나가 γ-Al2O3를 포함할 수 있다.Additionally, the alumina may include γ-Al 2 O 3 .

본 발명의 다른 측면에 따르면, 5-하이드록시메틸푸르푸랄(HMF) 및 용매를 하기의 반응부에 연속적으로 공급하는 5-하이드록시메틸푸르푸랄 공급부(100); 수소를 하기의 반응부(300)에 연속적으로 공급하는 수소 공급부(200); 및 5-하이드록시메틸푸르푸랄을 촉매를 사용하여 수소첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하고 외부로 연속적으로 배출하는 반응부(300);를 포함하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치(10)를 제공한다.According to another aspect of the present invention, a continuous tetrahydrofuran dimethanol production device (10) is provided, which includes: a 5-hydroxymethylfurfural supply unit (100) that continuously supplies 5-hydroxymethylfurfural (HMF) and a solvent to a reaction unit; a hydrogen supply unit (200) that continuously supplies hydrogen to a reaction unit (300); and a reaction unit (300) that hydrogenates 5-hydroxymethylfurfural using a catalyst to produce tetrahydrofuran dimethanol (THFDM) and continuously discharges the same to the outside.

또한, 상기 반응부(300)에서, 상기 용매와 5-하이드록시메틸푸르푸랄(HMF)의 중량비가 99:1 내지 85:15일 수 있다.Additionally, in the reaction section (300), the weight ratio of the solvent and 5-hydroxymethylfurfural (HMF) may be 99:1 to 85:15.

또한, 상기 반응부(300)에서, 상기 용매와 5-하이드록시메틸푸르푸랄(HMF)의 중량비가 92:8 내지 88:12 일 수 있다.Additionally, in the reaction section (300), the weight ratio of the solvent and 5-hydroxymethylfurfural (HMF) may be 92:8 to 88:12.

또한, 상기 용매가 메탄올, 2-프로판올, 2-메톡시에탄올, 에탄올, n-프로판올, n-부탄올, 다이메톡시에탄 및 1,2-다이메톡시프로판으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Additionally, the solvent may include at least one selected from the group consisting of methanol, 2-propanol, 2-methoxyethanol, ethanol, n-propanol, n-butanol, dimethoxyethane, and 1,2-dimethoxypropane.

또한, 상기 용매가 2-메톡시에탄올을 포함할 수 있다.Additionally, the solvent may include 2-methoxyethanol.

또한, 상기 반응부의 온도가 90 내지 180 ℃, 바람직하게는 90 내지 110 ℃일 수 있다.Additionally, the temperature of the reaction section may be 90 to 180°C, preferably 90 to 110°C.

또한, 상기 반응부의 압력이 30 내지 100 bar, 바람직하게는 80 내지 100 bar일 수 있다.Additionally, the pressure of the reaction section may be 30 to 100 bar, preferably 80 to 100 bar.

본 발명의 다른 측면에 따르면, (a) 루테늄 전구체, 알루미나 및 용매를 혼합하고 교반하여 제1 혼합물을 준비하는 단계; 및 (b) 상기 제1 혼합물에 환원제를 투입하고 반응시켜 루테늄 담지 알루미나 촉매를 포함하는 제2 혼합물을 제조하는 단계;를 포함하는 촉매의 제조방법을 제공한다.According to another aspect of the present invention, a method for producing a catalyst is provided, comprising: (a) preparing a first mixture by mixing and stirring a ruthenium precursor, alumina, and a solvent; and (b) introducing a reducing agent into the first mixture and reacting the mixture to prepare a second mixture including a ruthenium-supported alumina catalyst.

또한, 상기 촉매가 5-하이드록시메틸푸르푸랄(HMF)을 수소첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하는 것에 사용하기 위한 것일 수 있다.Additionally, the catalyst may be used for producing tetrahydrofuran dimethanol (THFDM) by hydrogenating 5-hydroxymethylfurfural (HMF).

또한, 상기 알루미나가 γ-Al2O3를 포함할 수 있다.Additionally, the alumina may include γ-Al 2 O 3 .

또한, 단계 (a)의 용매가 물을 포함할 수 있다.Additionally, the solvent of step (a) may include water.

또한, 단계 (b)의 환원제가 NaBH4를 포함할 수 있다.Additionally, the reducing agent of step (b) may include NaBH 4 .

또한, 상기 촉매의 제조방법이 단계 (b) 이후, (c) 상기 제2 혼합물에서 상기 촉매를 분리하고 세척하고 건조하는 단계; 및 (d) 건조된 촉매를 180 내지 280 μm 크기의 펠렛으로 제조하는 단계;를 포함할 수 있다.In addition, the method for producing the catalyst may include, after step (b), (c) a step of separating, washing, and drying the catalyst from the second mixture; and (d) a step of producing the dried catalyst into pellets having a size of 180 to 280 μm.

또한, 단계 (c)의 세척이 물 및 C1 내지 C4의 알코올로 이루어진 군으로부터 선택된 1종 이상을 사용하여 수행될 수 있다.Additionally, the washing in step (c) can be performed using at least one selected from the group consisting of water and C1 to C4 alcohols.

본 발명은 HMF를 수소첨가반응시 고순도의 테트라하이드로퓨란 다이메탄올(THFDM)을 선택적으로 고수율로 제조할 수 있는 촉매를 제공할 수 있다.The present invention can provide a catalyst capable of selectively producing high-purity tetrahydrofuran dimethanol (THFDM) with a high yield during the hydrogenation reaction of HMF.

또한 본 발명은 기질인 HMF를 고농도로 포함하는 반응용액을 사용하여 고순도의 테트라하이드로퓨란 다이메탄올(THFDM)을 선택적으로 제조할 수 있는 연속적 반응장치 및 제조 방법을 제공할 수 있다.In addition, the present invention can provide a continuous reaction device and a production method capable of selectively producing high-purity tetrahydrofuran dimethanol (THFDM) using a reaction solution containing a high concentration of HMF as a substrate.

이 도면들은 본 발명의 예시적인 실시예를 설명하는데 참조하기 위함이므로, 본 발명의 기술적 사상을 첨부한 도면에 한정해서 해석하여서는 아니 된다.
도 1은 본 발명의 실시예 1에 따른 루테늄이 담지된 알루미나 촉매를 제조하는 방법을 나타낸 순서도이다.
도 2는 본 발명의 실시예 2 내지 6에 따른 2,5-테트라하이드로퓨란 다이메탄올(THFDM)을 제조하기 위한 연속식 테트라하이드로퓨란 다이메탄올(THFDM) 제조장치를 나타낸 개략도이다.
도 3은 본 발명의 하나의 실시예에 따른 테트라하이드로퓨란 다이메탄올(THFDM)의 NMR 분석 그래프이다.
도 4a는 본 발명의 실시예 6-1의 시간에 따른 THFDM의 수율을 나타낸 그래프이고, 도 4b는 본 발명의 실시예 6-2의 시간에 따른 THFDM의 수율을 나타낸 그래프이고, 도 4c는 본 발명의 실시예 6-3의 시간에 따른 THFDM의 수율을 나타낸 그래프이다.
Since these drawings are for reference in explaining exemplary embodiments of the present invention, the technical ideas of the present invention should not be interpreted as limited to the attached drawings.
FIG. 1 is a flow chart showing a method for producing an alumina catalyst loaded with ruthenium according to Example 1 of the present invention.
FIG. 2 is a schematic diagram showing a continuous tetrahydrofuran dimethanol (THFDM) production device for producing 2,5-tetrahydrofuran dimethanol (THFDM) according to Examples 2 to 6 of the present invention.
FIG. 3 is an NMR analysis graph of tetrahydrofuran dimethanol (THFDM) according to one embodiment of the present invention.
FIG. 4a is a graph showing the yield of THFDM over time in Example 6-1 of the present invention, FIG. 4b is a graph showing the yield of THFDM over time in Example 6-2 of the present invention, and FIG. 4c is a graph showing the yield of THFDM over time in Example 6-3 of the present invention.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings so that those skilled in the art can easily implement the present invention.

그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following description is not intended to limit the present invention to specific embodiments, and if it is determined that a detailed description of a related known technology may obscure the gist of the present invention when explaining the present invention, the detailed description is omitted.

본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly indicates otherwise. In this application, it should be understood that the terms "comprises" or "has" and the like are intended to specify the presence of a feature, number, step, operation, component or combination thereof described in the specification, but do not exclude in advance the possibility of the presence or addition of one or more other features, numbers, steps, operations, components or combinations thereof.

또한, 이하에서 사용될 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Also, terms including ordinal numbers such as first, second, etc., which will be used hereinafter, may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.

또한, 어떤 구성요소가 다른 구성요소 상에 "형성되어" 있다거나 "적층되어" 있다고 언급된 때에는, 그 다른 구성요소의 표면 상의 전면 또는 일면에 직접 부착되어 형성되어 있거나 적층되어 있을 수도 있지만, 중간에 다른 구성요소가 더 존재할 수도 있다고 이해되어야 할 것이다.Additionally, when it is said that a component is "formed on" or "laminated on" another component, it should be understood that it may be formed or laminated directly on the entire surface or one side of the other component, but there may also be other components present in between.

이하, 전도성 스캐폴드 및 전기자극을 이용한 세포의 고속 배양방법에 대하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.Hereinafter, a method for high-speed cell culture using a conductive scaffold and electrical stimulation will be described in detail. However, this is presented as an example, and the present invention is not limited thereby, and the present invention is defined only by the scope of the claims described below.

본 발명의 일 측면에 따르면, 알루미나(Al2O3)를 포함하는 지지체; 및 상기 지지체 상에 담지된 루테늄(Ru);을 포함하는 촉매를 제공한다.According to one aspect of the present invention, a catalyst is provided, which comprises a support comprising alumina (Al 2 O 3 ); and ruthenium (Ru) supported on the support.

또한, 상기 촉매가 5-하이드록시메틸푸르푸랄(HMF)을 수소첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하는 것에 사용하기 위한 것일 수 있다.Additionally, the catalyst may be used for producing tetrahydrofuran dimethanol (THFDM) by hydrogenating 5-hydroxymethylfurfural (HMF).

또한, 상기 알루미나가 γ-Al2O3를 포함할 수 있다.Additionally, the alumina may include γ-Al 2 O 3 .

본 발명의 다른 측면에 따르면, 5-하이드록시메틸푸르푸랄(HMF) 및 용매를 하기의 반응부에 연속적으로 공급하는 5-하이드록시메틸푸르푸랄 공급부(100); 수소를 하기의 반응부(300)에 연속적으로 공급하는 수소 공급부(200); 및 5-하이드록시메틸푸르푸랄을 촉매를 사용하여 수소첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하고 외부로 연속적으로 배출하는 반응부(300);를 포함하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치(10)를 제공한다.According to another aspect of the present invention, a continuous tetrahydrofuran dimethanol production device (10) is provided, which includes: a 5-hydroxymethylfurfural supply unit (100) that continuously supplies 5-hydroxymethylfurfural (HMF) and a solvent to a reaction unit; a hydrogen supply unit (200) that continuously supplies hydrogen to a reaction unit (300); and a reaction unit (300) that hydrogenates 5-hydroxymethylfurfural using a catalyst to produce tetrahydrofuran dimethanol (THFDM) and continuously discharges the same to the outside.

또한, 상기 반응부(300)에서, 상기 용매와 5-하이드록시메틸푸르푸랄(HMF)의 중량비가 99:1 내지 85:15일 수 있다.Additionally, in the reaction section (300), the weight ratio of the solvent and 5-hydroxymethylfurfural (HMF) may be 99:1 to 85:15.

또한, 상기 반응부(300)에서, 상기 용매와 5-하이드록시메틸푸르푸랄(HMF)의 중량비가 92:8 내지 88:12 일 수 있다.Additionally, in the reaction section (300), the weight ratio of the solvent and 5-hydroxymethylfurfural (HMF) may be 92:8 to 88:12.

또한, 상기 용매가 메탄올, 2-프로판올, 2-메톡시에탄올, 에탄올, n-프로판올, n-부탄올, 다이메톡시에탄 및 1,2-다이메톡시프로판으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Additionally, the solvent may include at least one selected from the group consisting of methanol, 2-propanol, 2-methoxyethanol, ethanol, n-propanol, n-butanol, dimethoxyethane, and 1,2-dimethoxypropane.

또한, 상기 용매가 2-메톡시에탄올을 포함할 수 있다.Additionally, the solvent may include 2-methoxyethanol.

또한, 상기 반응부의 온도가 90 내지 180 ℃, 바람직하게는 90 내지 110 ℃일 수 있다. 여기서 상기 반응부의 온도가 90 ℃ 미만이면 중간 물질인 퓨란디메탄올(FDM)이 생성되어 바람직하지 않고, 180 ℃ 초과하면 휴민 물질이 발생하여 바람직하지 않다.In addition, the temperature of the reaction section may be 90 to 180°C, preferably 90 to 110°C. Here, if the temperature of the reaction section is less than 90°C, an intermediate substance, furandimethanol (FDM), is generated, which is undesirable, and if it exceeds 180°C, a humic substance is generated, which is undesirable.

또한, 상기 반응부의 압력이 30 내지 100 bar, 바람직하게는 80 내지 100 bar일 수 있다. 여기서 상기 반응부의 압력이 30 bar 미만이면 중간 물질인 퓨란디메탄올(FDM)이 생성되어 바람직하지 않고, 100 bar 초과하면 수첨탈산소 반응이 일어나 부반응물이 생기므로 바람직하지 않다.In addition, the pressure of the reaction section may be 30 to 100 bar, preferably 80 to 100 bar. Here, if the pressure of the reaction section is less than 30 bar, furandimethanol (FDM), which is an intermediate substance, is generated, which is undesirable, and if it exceeds 100 bar, a hydrodeoxygenation reaction occurs, which is undesirable, which is undesirable, since a side reaction product is generated.

본 발명의 다른 측면에 따르면, (a) 루테늄 전구체, 알루미나 및 용매를 혼합하고 교반하여 제1 혼합물을 준비하는 단계; 및 (b) 상기 제1 혼합물에 환원제를 투입하고 반응시켜 루테늄 담지 알루미나 촉매를 포함하는 제2 혼합물을 제조하는 단계;를 포함하는 촉매의 제조방법을 제공한다.According to another aspect of the present invention, a method for producing a catalyst is provided, comprising: (a) preparing a first mixture by mixing and stirring a ruthenium precursor, alumina, and a solvent; and (b) introducing a reducing agent into the first mixture and reacting the mixture to prepare a second mixture including a ruthenium-supported alumina catalyst.

또한, 상기 촉매가 5-하이드록시메틸푸르푸랄(HMF)을 수소 첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하는 것에 사용하기 위한 것일 수 있다.Additionally, the catalyst may be used for producing tetrahydrofuran dimethanol (THFDM) by hydrogenating 5-hydroxymethylfurfural (HMF).

또한, 상기 알루미나가 γ-Al2O3를 포함할 수 있다.Additionally, the alumina may include γ-Al 2 O 3 .

또한, 단계 (a)의 용매가 물을 포함할 수 있다.Additionally, the solvent of step (a) may include water.

또한, 단계 (b)의 환원제가 NaBH4를 포함할 수 있다.Additionally, the reducing agent of step (b) may include NaBH 4 .

또한, 상기 촉매의 제조방법이 단계 (b) 이후, (c) 상기 제2 혼합물에서 상기 촉매를 분리하고 세척하고 건조하는 단계; 및 (d) 건조된 촉매를 180 내지 280 μm 크기의 펠렛으로 제조하는 단계;를 포함할 수 있다.In addition, the method for producing the catalyst may include, after step (b), (c) a step of separating, washing, and drying the catalyst from the second mixture; and (d) a step of producing the dried catalyst into pellets having a size of 180 to 280 μm.

또한, 단계 (c)의 세척이 물 및 C1 내지 C4의 알코올로 이루어진 군으로부터 선택된 1종 이상을 사용하여 수행될 수 있다.Additionally, the washing in step (c) can be performed using at least one selected from the group consisting of water and C1 to C4 alcohols.

[실시예] [Example]

이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described. However, these are provided for illustrative purposes only and the scope of the present invention is not limited thereby.

실시예 1: 3 wt% Ru/γ-AlExample 1: 3 wt% Ru/γ-Al 22 OO 33 촉매 제조Catalyst manufacturing

도 1은 본 발명의 실시예 1에 따른 루테늄이 담지된 알루미나 촉매를 제조하는 방법을 나타낸 순서도이다. 도 1을 참조하면, 250 ml의 둥근바닥 플라스크에 루테늄 전구체인 RuCl3.xH2O 0.4275 g, γ-Al2O3 5 g 및 용매인 초순수 100 ml를 넣고, 상온에서 하룻동안 교반시켜 제1 혼합물을 준비하였다. 상기 제1 혼합물에 질소라인을 넣고 bubbling을 1시간동안 진행하여 상기 제1 혼합물 안의 산소를 제거하고 상기 둥근바닥 플라스크 안을 질소로 채웠다. 이후, NaBH4 0.775 g을 소량의 초순수에 녹여 제2 용매를 준비하고, 상기 제2 용매를 질소로 채워진 상기 둥근바닥 플라스크에 주입한 뒤, 다시 하룻동안 교반시켜 제2 혼합물을 제조하였다. 이후, glass filter를 이용하여 상기 제2 혼합물에 형성된 침전물(촉매)과 상층액을 분리하고, 분리된 침전물(촉매)을 물과 메탄올로 3회 이상 세척하여 불순물을 제거하여 불순물이 제거된 촉매를 제조하였다. 세척된 상기 촉매를 60 ℃에서 건조한 뒤, 질소 분위기 하에 보관하여 루테늄이 담지된 알루미나 촉매인 3 wt% Ru의 Ru/γ-Al2O3를 제조하고, 상기 Ru/γ-Al2O3를 pelletizer로 압축 후, sieve를 이용하여 180 내지 280 μm 크기로 선별하였다.FIG. 1 is a flow chart showing a method for preparing a ruthenium-supported alumina catalyst according to Example 1 of the present invention. Referring to FIG. 1, 0.4275 g of RuCl 3 .xH 2 O, which is a ruthenium precursor, 5 g of γ-Al 2 O 3 and 100 ml of ultrapure water, which is a solvent, were placed in a 250 ml round-bottom flask and stirred at room temperature for one day to prepare a first mixture. A nitrogen line was inserted into the first mixture, and bubbling was performed for 1 hour to remove oxygen in the first mixture and the round-bottom flask was filled with nitrogen. Thereafter, 0.775 g of NaBH 4 was dissolved in a small amount of ultrapure water to prepare a second solvent, and the second solvent was injected into the round-bottom flask filled with nitrogen, followed by stirring for another day to prepare a second mixture. Thereafter, the precipitate (catalyst) and the supernatant formed in the second mixture were separated using a glass filter, and the separated precipitate (catalyst) was washed with water and methanol three or more times to remove impurities, thereby producing a catalyst from which impurities were removed. The washed catalyst was dried at 60° C. and then stored under a nitrogen atmosphere to produce a 3 wt% Ru/γ-Al 2 O 3 , which is an alumina catalyst supporting ruthenium. The Ru/γ-Al 2 O 3 was compressed using a pelletizer, and then screened to a size of 180 to 280 μm using a sieve.

실시예 2: 용매에 따른 2,5-테트라하이드로퓨란다이메탄올(THFDM) 제조Example 2: Preparation of 2,5-tetrahydrofuran dimethanol (THFDM) according to solvent

실시예 2-1: 메탄올(MeOH)Example 2-1: Methanol (MeOH)

도 2는 본 발명의 실시예 2 내지 6에 따른 2,5-테트라하이드로퓨란 다이메탄올(THFDM)을 제조하기 위한 연속식 테트라하이드로퓨란 다이메탄올(THFDM) 제조장치를 나타낸 개략도이다. 도 2를 참조하면, 반응부의 외경은 1/2 인치이고, 길이는 5 cm이다. 원료인 HMF를 용매인 2-메톡시에탄올과 혼합한 1 wt% HMF 용액을 0.1 ml/min으로 원료 공급부에서 상기 반응부로 보내고, 수소를 30 ml/min으로 수소 공급부에서 상기 반응부로 보내고, 상기 반응부에서 상기 1 wt% HMF 용액, 수소 및 실시예 1에 따른 촉매인 3 wt% Ru의 Ru/γ-Al2O3 1 g을 혼합하여 혼합액을 제조하였다. 이때 반응부의 압력은 85 bar로 일정하게 유지하고, WHSV(weight hourly space velocity)는 2 h-1이고, 반응온도 170 ℃에서 36 시간 동안 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.FIG. 2 is a schematic diagram showing a continuous tetrahydrofuran dimethanol (THFDM) production apparatus for producing 2,5-tetrahydrofuran dimethanol (THFDM) according to Examples 2 to 6 of the present invention. Referring to FIG. 2, the outer diameter of the reaction section is 1/2 inch, and the length is 5 cm. A 1 wt% HMF solution, in which HMF as a raw material is mixed with 2-methoxyethanol as a solvent, is sent from the raw material supply section to the reaction section at 0.1 ml/min, and hydrogen is sent from the hydrogen supply section to the reaction section at 30 ml/min, and in the reaction section, the 1 wt% HMF solution, hydrogen, and 1 g of Ru/γ-Al 2 O 3 having 3 wt% Ru as a catalyst according to Example 1 are mixed to produce a mixed solution. At this time, the pressure of the reaction section was maintained constant at 85 bar, the weight hourly space velocity (WHSV) was 2 h -1 , and the reaction was conducted at a reaction temperature of 170 ℃ for 36 hours to produce tetrahydrofuran dimethanol (THFDM).

실시예 2-2: 2-프로판올(IPA)Example 2-2: 2-Propanol (IPA)

용매로서 메탄올을 사용하고 36시간 동안 반응시키는 것 대신에, 용매로서 2-프로판올을 사용하고 24 시간 동안 반응시키는 것을 제외하고는 실시예 2-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 2-1, except that 2-propanol was used as a solvent and the reaction was carried out for 24 hours instead of using methanol as a solvent and reacting for 36 hours.

실시예 2-3: 2-메톡시에탄올(MEG)Example 2-3: 2-Methoxyethanol (MEG)

용매로서 메탄올을 사용하고 36시간 동안 반응시키는 것 대신에, 용매로서 2-메톡시에탄올을 사용하고 72 시간 동안 반응시키는 것을 제외하고는 실시예 2-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 2-1, except that 2-methoxyethanol was used as a solvent and the reaction was carried out for 72 hours instead of using methanol as a solvent and reacting for 36 hours.

실시예 3: 반응 온도에 따른 2,5-테트라하이드로퓨란다이메탄올(THFDM) 제조Example 3: Preparation of 2,5-tetrahydrofuran dimethanol (THFDM) according to reaction temperature

실시예 3-1: 반응 온도 170 ℃Example 3-1: Reaction temperature 170 ℃

반응부의 외경은 1/2 인치이고, 길이는 5 cm이다. 원료인 HMF를 용매인 2-메톡시에탄올과 혼합한 1 wt% HMF 용액을 0.1 ml/min으로 원료 공급부에서 상기 반응부로 보내고, 수소를 10 ml/min으로 수소 공급부에서 상기 반응부로 보내고, 상기 반응부에서 상기 1 wt% HMF 용액, 수소 및 실시예 1에 따른 촉매인 3 wt% Ru의 Ru/γ-Al2O3 1.35 g을 혼합하여 혼합액을 제조하였다. 이때 반응부의 압력은 85 bar로 일정하게 유지하고, WHSV(weight hourly space velocity)는 1.5 h-1이고, 반응온도 170 ℃에서 20 시간 동안 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.The outer diameter of the reaction section is 1/2 inch, and the length is 5 cm. A 1 wt% HMF solution, in which HMF as a raw material is mixed with 2-methoxyethanol as a solvent, was supplied from the raw material supply section to the reaction section at a rate of 0.1 ml/min, and hydrogen was supplied from the hydrogen supply section to the reaction section at a rate of 10 ml/min. In the reaction section, the 1 wt% HMF solution, hydrogen, and 1.35 g of Ru/γ-Al 2 O 3 with 3 wt% Ru as a catalyst according to Example 1 were mixed to prepare a mixed solution. At this time, the pressure of the reaction section was maintained constant at 85 bar, the WHSV (weight hourly space velocity) was 1.5 h -1 , and the reaction was conducted at a reaction temperature of 170 °C for 20 hours to produce tetrahydrofuran dimethanol (THFDM).

실시예 3-2: 반응 온도 160 ℃Example 3-2: Reaction temperature 160 ℃

반응 온도가 170 ℃에서 수행되는 것 대신에, 160 ℃에서 수행되는 것을 제외하고는 실시예 3-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 3-1, except that the reaction temperature was 160°C instead of 170°C.

실시예 3-3: 반응 온도 140 ℃Example 3-3: Reaction temperature 140 ℃

반응 온도가 170 ℃에서 수행되는 것 대신에, 140 ℃에서 수행되는 것을 제외하고는 실시예 3-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 3-1, except that the reaction temperature was 140°C instead of 170°C.

실시예 3-4: 반응 온도 120 ℃Example 3-4: Reaction temperature 120 ℃

반응 온도가 170 ℃에서 수행되는 것 대신에, 120 ℃에서 수행되는 것을 제외하고는 실시예 3-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 3-1, except that the reaction temperature was 120°C instead of 170°C.

실시예 3-5: 반응 온도 100 ℃Example 3-5: Reaction temperature 100 ℃

반응 온도가 170 ℃에서 수행되는 것 대신에, 100 ℃에서 수행되는 것을 제외하고는 실시예 3-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 3-1, except that the reaction temperature was 100 ℃ instead of 170 ℃.

실시예 4: 압력에 따른 2,5-테트라하이드로퓨란다이메탄올(THFDM) 제조Example 4: Preparation of 2,5-tetrahydrofuran dimethanol (THFDM) under pressure

실시예 4-1: 압력 85 barExample 4-1: Pressure 85 bar

반응부의 외경은 1/2 인치이고, 길이는 5 cm이다. 원료인 HMF를 용매인 2-메톡시에탄올과 혼합한 1 wt% HMF 용액을 0.1 ml/min으로 원료 공급부에서 상기 반응부로 보내고, 수소를 10 ml/min으로 수소 공급부에서 상기 반응부로 보내고, 상기 반응부에서 상기 1 wt% HMF 용액, 수소 및 실시예 1에 따른 촉매인 3 wt% Ru의 Ru/γ-Al2O3 1.35 g을 혼합하여 혼합액을 제조하였다. 이때 반응부의 압력은 85 bar로 일정하게 유지하고, WHSV(weight hourly space velocity)는 1.5 h-1이고, 반응온도 100 ℃에서 20 시간 동안 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.The outer diameter of the reaction section is 1/2 inch, and the length is 5 cm. A 1 wt% HMF solution, in which HMF as a raw material is mixed with 2-methoxyethanol as a solvent, was supplied from the raw material supply section to the reaction section at a rate of 0.1 ml/min, and hydrogen was supplied from the hydrogen supply section to the reaction section at a rate of 10 ml/min. In the reaction section, the 1 wt% HMF solution, hydrogen, and 1.35 g of Ru/γ-Al 2 O 3 having 3 wt% Ru as a catalyst according to Example 1 were mixed to prepare a mixed solution. At this time, the pressure of the reaction section was maintained constant at 85 bar, the WHSV (weight hourly space velocity) was 1.5 h -1 , and the reaction was conducted at a reaction temperature of 100 °C for 20 hours to produce tetrahydrofuran dimethanol (THFDM).

실시예 4-2: 압력 70 barExample 4-2: Pressure 70 bar

압력이 85 bar에서 수행되는 것 대신에, 70 bar에서 수행되는 것을 제외하고는 실시예 4-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 4-1, except that the process was performed at 70 bar instead of 85 bar.

실시예 4-3: 압력 55 barExample 4-3: Pressure 55 bar

압력이 85 bar에서 수행되는 것 대신에, 55 bar에서 수행되는 것을 제외하고는 실시예 4-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 4-1, except that the process was performed at 55 bar instead of 85 bar.

실시예 4-4: 압력 40 barExample 4-4: Pressure 40 bar

압력이 85 bar에서 수행되는 것 대신에, 40 bar에서 수행되는 것을 제외하고는 실시예 4-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 4-1, except that the process was performed at 40 bar instead of 85 bar.

실시예 5: WHSV(weight hourly space velocity)에 따른 테트라하이드로퓨란 다이메탄올(THFDM) 제조Example 5: Preparation of tetrahydrofuran dimethanol (THFDM) according to weight hourly space velocity (WHSV)

실시예 5-1: WHSV = 1 hExample 5-1: WHSV = 1 h -1-1

반응부의 외경은 1/2 인치이고, 길이는 5 cm이다. 원료인 HMF를 용매인 2-메톡시에탄올과 혼합한 1 wt% HMF 용액을 0.1 ml/min으로 원료 공급부에서 상기 반응부로 보내고, 수소를 10 ml/min으로 수소 공급부에서 상기 반응부로 보내고, 상기 반응부에서 상기 1 wt% HMF 용액, 수소 및 실시예 1에 따른 촉매인 3 wt% Ru의 Ru/γ-Al2O3 2 g을 혼합하여 혼합액을 제조하였다. 이때 반응부의 압력은 85 bar로 일정하게 유지하고, WHSV(weight hourly space velocity)는 1 h-1이고, 반응온도 100 ℃에서 82 시간 동안 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.The outer diameter of the reaction section is 1/2 inch and the length is 5 cm. A 1 wt% HMF solution, in which HMF as a raw material is mixed with 2-methoxyethanol as a solvent, was sent from the raw material supply section to the reaction section at 0.1 ml/min, and hydrogen was sent from the hydrogen supply section to the reaction section at 10 ml/min. In the reaction section, the 1 wt% HMF solution, hydrogen, and 2 g of Ru/γ-Al 2 O 3 with 3 wt% Ru as a catalyst according to Example 1 were mixed to prepare a mixed solution. At this time, the pressure of the reaction section was maintained constant at 85 bar, the WHSV (weight hourly space velocity) was 1 h -1 , and the reaction was conducted at a reaction temperature of 100 ℃ for 82 hours to produce tetrahydrofuran dimethanol (THFDM).

실시예 5-2: WHSV = 2 hExample 5-2: WHSV = 2 h -1-1

1 wt% HMF 용액을 사용하고 WHSV가 1 h-1이고 82시간 동안 반응시키는 것 대신에, 2 wt% HMF 용액을 사용하고 WHSV가 2 h-1이고 20시간 동안 반응시키는 것을 제외하고는 실시예 5-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol ( THFDM) was prepared in the same manner as in Example 5-1, except that instead of using a 1 wt% HMF solution and reacting for 82 hours at a WHSV of 1 h -1 , a 2 wt% HMF solution was used and reacted for 20 hours at a WHSV of 2 h -1 .

실시예 5-3: WHSV = 3 hExample 5-3: WHSV = 3 h -1-1

1 wt% HMF 용액을 사용하고 WHSV가 1 h-1이고 82시간 동안 반응시키는 것 대신에, 3 wt% HMF 용액을 사용하고 WHSV가 3 h-1이고 20시간 동안 반응시키는 것을 제외하고는 실시예 5-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol ( THFDM) was prepared in the same manner as in Example 5-1, except that instead of using a 1 wt% HMF solution and reacting for 82 hours at a WHSV of 1 h -1 , a 3 wt% HMF solution was used and reacted for 20 hours at a WHSV of 3 h -1 .

실시예 6: HMF 농도에 따른 2,5-테트라하이드로퓨란다이메탄올(THFDM) 제조Example 6: Preparation of 2,5-tetrahydrofuran dimethanol (THFDM) according to HMF concentration

실시예 6-1: HMF 농도 2 wt%Example 6-1: HMF concentration 2 wt%

반응부의 외경은 1/2 인치이고, 길이는 5 cm이다. 원료인 HMF를 용매인 2-메톡시에탄올과 혼합한 2 wt% HMF 용액을 0.1 ml/min으로 원료 공급부에서 상기 반응부로 보내고, 수소를 10 ml/min으로 수소 공급부에서 상기 반응부로 보내고, 상기 반응부에서 상기 2 wt% HMF 용액, 수소 및 실시예 1에 따른 촉매인 3 wt% Ru의 Ru/γ-Al2O3 2 g을 혼합하여 혼합액을 제조하였다. 이때 반응부의 압력은 85 bar로 일정하게 유지하고, WHSV(weight hourly space velocity)는 2 h-1이고, 반응온도 100 ℃에서 20시간 동안 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.The outer diameter of the reaction section is 1/2 inch, and the length is 5 cm. A 2 wt% HMF solution, in which HMF as a raw material is mixed with 2-methoxyethanol as a solvent, was sent from the raw material supply section to the reaction section at a rate of 0.1 ml/min, and hydrogen was sent from the hydrogen supply section to the reaction section at a rate of 10 ml/min. In the reaction section, the 2 wt% HMF solution, hydrogen, and 2 g of Ru/γ-Al 2 O 3 with 3 wt% Ru as a catalyst according to Example 1 were mixed to prepare a mixed solution. At this time, the pressure of the reaction section was maintained constant at 85 bar, the WHSV (weight hourly space velocity) was 2 h -1 , and the reaction was conducted at a reaction temperature of 100 ℃ for 20 hours to produce tetrahydrofuran dimethanol (THFDM).

실시예 6-2: HMF 농도 5 wt%Example 6-2: HMF concentration 5 wt%

2 wt% HMF 용액을 사용하고 HMF 용액의 유속이 0.1 ml/min이고 20시간 동안 반응시키는 것 대신에, 5 wt% HMF 용액을 사용하고 HMF 용액의 유속이 0.04 ml/min이고 54시간 동안 반응시키는 것을 제외하고는 실시예 6-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was prepared in the same manner as in Example 6-1, except that instead of using a 2 wt% HMF solution, the flow rate of the HMF solution was 0.1 ml/min, and the reaction was carried out for 20 hours, a 5 wt% HMF solution was used, the flow rate of the HMF solution was 0.04 ml/min, and the reaction was carried out for 54 hours.

실시예 6-3: HMF 농도 10 wt%Example 6-3: HMF concentration 10 wt%

반응기 길이가 5 cm인 반응기를 사용하고 2 wt% HMF 용액을 사용하고 HMF 용액의 유속이 0.1 ml/min이고 촉매를 2 g 사용하고 압력을 20 bar로 일정하게 유지하고 20시간 동안 반응시키고 WHSV가 2 h-1인 것 대신에, 반응기 길이가 20 cm인 반응기를 사용하고 10 wt% HMF 용액을 사용하고 HMF 용액의 유속이 0.03 ml/min이고 촉매를 10 g 사용하고 압력을 95 bar로 일정하게 유지하고 18시간 동안 반응시키고 WHSV가 0.6 h-1인 것을 제외하고는 실시예 6-1과 동일한 방법으로 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하였다.Tetrahydrofuran dimethanol (THFDM) was produced in the same manner as in Example 6-1, except that instead of using a reactor having a reactor length of 5 cm, using a 2 wt% HMF solution, using a HMF solution flow rate of 0.1 ml/min, using 2 g of a catalyst, keeping the pressure constant at 20 bar, reacting for 20 hours with a WHSV of 2 h -1 , a reactor having a reactor length of 20 cm, using a 10 wt% HMF solution, using a HMF solution flow rate of 0.03 ml/min, using 10 g of a catalyst, keeping the pressure constant at 95 bar, reacting for 18 hours with a WHSV of 0.6 h -1 .

하기 표 1은 실시예 2 내지 6에 따른 2,5-테트라하이드로퓨란다이메탄올(THFDM) 제조의 반응 조건을 정리하여 나타낸 것이다.Table 1 below summarizes the reaction conditions for producing 2,5-tetrahydrofuran dimethanol (THFDM) according to Examples 2 to 6.

구분division HMF 농도
(wt%)
HMF concentration
(wt%)
HMF 유속
(ml/min)
HMF flow rate
(ml/min)
수소 유속
(ml/min)
Hydrogen flow rate
(ml/min)
Ru 담지농도(wt%)Ru loading concentration (wt%) 촉매 양
(g)
Catalyst amount
(g)
용매 종류Solvent type 반응온도
(℃)
Reaction temperature
(℃)
반응 압력
(bar)
Reaction pressure
(bar)
반응 시간
(h)
Reaction time
(h)
WHSV
(h-1)
WHSV
(h -1 )
실시예 2-1Example 2-1 11 0.10.1 3030 33 11 MeOHMeOH 170170 8585 3636 22 실시예 2-2Example 2-2 11 0.10.1 3030 33 11 IPAIPA 170170 8585 2424 22 실시예 2-3Example 2-3 11 0.10.1 3030 33 11 MEGMEG 170170 8585 7272 22 실시예 3-1Example 3-1 11 0.10.1 1010 33 1.351.35 MEGMEG 170170 8585 2020 1.51.5 실시예 3-2Example 3-2 11 0.10.1 1010 33 1.351.35 MEGMEG 160160 8585 2020 1.51.5 실시예 3-3Example 3-3 11 0.10.1 1010 33 1.351.35 MEGMEG 140140 8585 2020 1.51.5 실시예 3-4Example 3-4 11 0.10.1 1010 33 1.351.35 MEGMEG 120120 8585 2020 1.51.5 실시예 3-5Example 3-5 11 0.10.1 1010 33 1.351.35 MEGMEG 100100 8585 2020 1.51.5 실시예 4-1Example 4-1 11 0.10.1 1010 33 1.351.35 MEGMEG 100100 8585 2020 1.51.5 실시예 4-2Example 4-2 11 0.10.1 1010 33 1.351.35 MEGMEG 100100 7070 2020 1.51.5 실시예 4-3Example 4-3 11 0.10.1 1010 33 1.351.35 MEGMEG 100100 5555 2020 1.51.5 실시예 4-4Example 4-4 11 0.10.1 1010 33 1.351.35 MEGMEG 100100 4040 2020 1.51.5 실시예 5-1Example 5-1 11 0.10.1 1010 33 22 MEGMEG 100100 8585 8282 11 실시예 5-2Example 5-2 22 0.10.1 1010 33 22 MEGMEG 100100 8585 2020 22 실시예 5-3Example 5-3 33 0.10.1 1010 33 22 MEGMEG 100100 8585 2020 33 실시예 6-1Example 6-1 22 0.10.1 1010 33 22 MEGMEG 100100 8585 2020 22 실시예 6-2Example 6-2 55 0.040.04 1010 33 22 MEGMEG 100100 8585 5454 22 실시예 6-3Example 6-3 1010 0.030.03 1010 33 1010 MEGMEG 100100 9595 1818 0.60.6

상기 표 1에서, MeOH는 메탄올, IPA는 2-프로판올, MEG는 2-메톡시에탄올, HMF는 5-하이드록시메틸푸르푸랄, WHSV는 weight hourly space velocity를 의미한다.In Table 1 above, MeOH stands for methanol, IPA stands for 2-propanol, MEG stands for 2-methoxyethanol, HMF stands for 5-hydroxymethylfurfural, and WHSV stands for weight hourly space velocity.

[시험예][Example]

전환율, 수율 및 선택율 분석: 고성능 액체 크로마토그래피(HPLC)Conversion, Yield and Selectivity Analysis: High Performance Liquid Chromatography (HPLC)

실시예 2 내지 6의 반응이 종결된 후 상온이 될 때까지 기다리고, 생성된 혼합물을 바이알로 옮겨 고성능 액체 크로마토그래피(HPLC)를 이용하여 정량 분석하였다. 고성능 액체 크로마토그래피(HPLC) 장비(Agilent Technologies 1200 series, Bio-Rad Aminex HPX-87 H pre-packed column, and UV-detector)를 사용하여 분석하였으며, 5-하이드록시메틸푸르푸랄(HMF)의 전환율, 2,5-퓨란디메탄올(FDM)의 수율 및 테트라하이드로퓨란 다이메탄올(THFDM)의 수율은 상기 HPLC 장비를 사용하여 측정하였으며, 하기 식 1 내지 3을 사용하여 계산하였다.After the reactions of Examples 2 to 6 were completed and the mixture was cooled to room temperature, the resulting mixture was transferred to a vial and quantitatively analyzed using high-performance liquid chromatography (HPLC). The analysis was performed using high-performance liquid chromatography (HPLC) equipment (Agilent Technologies 1200 series, Bio-Rad Aminex HPX-87 H pre-packed column, and UV-detector), and the conversion of 5-hydroxymethylfurfural (HMF), the yield of 2,5-furandimethanol (FDM), and the yield of tetrahydrofuran dimethanol (THFDM) were measured using the HPLC equipment, and calculated using the following equations 1 to 3.

또한, 연속 반응에서 기질인 HMF와 촉매의 접촉시간은 WHSV(weight hourly space velocity)를 변경하여 조절하고, 상기 WHSV는 하기 식 4를 이용하여 계산하였다.In addition, the contact time between the substrate HMF and the catalyst in the continuous reaction was controlled by changing the weight hourly space velocity (WHSV), and the WHSV was calculated using the following equation 4.

[식 1][Formula 1]

[식 2][Formula 2]

[식 3][Formula 3]

[식 4][Formula 4]

시험예 1: NMR(nuclear magnetic resonance) 분석Test Example 1: NMR (nuclear magnetic resonance) analysis

도 3은 본 발명의 실시예 5-2에 따른 테트라하이드로퓨란 다이메탄올(THFDM)의 NMR 분석 그래프이다. 도 3을 참조하면, HMF의 수소화 반응 후, HPLC 분석에서 부산물이 없이 용매와 THFDM만 나타난 생성물을 모았다. 상기 생성물을 vacuum distillation 장치를 이용하여 150 ℃, 450 mbar에서 용매를 모두 제거하여 고점도 액체를 얻었다. 상기 고점도 액체는 NMR 분석 및 하기 식 5를 통해 고순도(97.8 %)의 THFDM가 제조된 것을 확인할 수 있었다.FIG. 3 is an NMR analysis graph of tetrahydrofuran dimethanol (THFDM) according to Example 5-2 of the present invention. Referring to FIG. 3, after the hydrogenation reaction of HMF, the product that showed only the solvent and THFDM without any byproducts in the HPLC analysis was collected. The solvent was completely removed from the product using a vacuum distillation device at 150°C and 450 mbar to obtain a high-viscosity liquid. It was confirmed that the high-viscosity liquid produced high-purity (97.8%) THFDM through NMR analysis and the following equation 5.

[식 5][Formula 5]

시험예 2: 용매의 종류에 따른 테트라하이드로퓨란 다이메탄올(THFDM) 수율 비교Test Example 2: Comparison of tetrahydrofuran dimethanol (THFDM) yields according to solvent types

하기 표 2는 본 발명의 실시예 2-1 내지 2-3에 따른 5-하이드록시메틸푸르푸랄(HMF)의 전환율, 테트라하이드로퓨란 다이메탄올(THFDM)의 수율 및 2,5-퓨란디메탄올(FDM)의 수율 데이터를 나타낸 표이다. 표 2를 참조하면, 용매에 따른 HMF 전환율, THFDM 수율 및 FDM 수율을 알 수 있었다.Table 2 below is a table showing the conversion rate of 5-hydroxymethylfurfural (HMF), the yield of tetrahydrofuran dimethanol (THFDM), and the yield of 2,5-furandimethanol (FDM) according to Examples 2-1 to 2-3 of the present invention. Referring to Table 2, the HMF conversion rate, THFDM yield, and FDM yield according to the solvent could be known.

구분division 용매menstruum HMF 전환율(%)HMF Conversion Rate (%) THFDM 수율(%)THFDM yield (%) FDM 수율(%)FDM Yield (%) 반응시간(h)Reaction time (h) 실시예 2-1Example 2-1 메탄올(MeOH)Methanol (MeOH) 90 ~ 10090 ~ 100 20 ~ 3020 ~ 30 1.5 ~ 61.5 ~ 6 3636 실시예 2-2Example 2-2 2-프로판올(IPA)2-Propanol (IPA) 98 초과Over 98 20 ~ 4020 ~ 40 0 ~ 30 ~ 3 2424 실시예 2-3Example 2-3 2-메톡시에탄올(MEG)2-Methoxyethanol (MEG) 100100 60 ~ 7660 ~ 76 2 미만less than 2 7272

시험예 3: 반응온도에 따른 테트라하이드로퓨란 다이메탄올(THFDM) 수율 비교Experimental Example 3: Comparison of tetrahydrofuran dimethanol (THFDM) yield according to reaction temperature

하기 표 3은 본 발명의 실시예 3-1 내지 3-5에 따른 5-하이드록시메틸푸르푸랄(HMF)의 전환율, 테트라하이드로퓨란 다이메탄올(THFDM)의 수율 및 2,5-퓨란디메탄올(FDM)의 수율 데이터를 나타낸 표이다. 표 3을 참조하면, 반응온도에 따른 HMF 전환율, THFDM 수율 및 FDM 수율을 알 수 있었다.Table 3 below shows the conversion rate of 5-hydroxymethylfurfural (HMF), the yield of tetrahydrofuran dimethanol (THFDM), and the yield of 2,5-furandimethanol (FDM) according to Examples 3-1 to 3-5 of the present invention. Referring to Table 3, the HMF conversion rate, THFDM yield, and FDM yield according to the reaction temperature could be known.

구분division 반응온도(℃)Reaction temperature (℃) HMF 전환율(%)HMF Conversion Rate (%) THFDM 수율(%)THFDM yield (%) FDM 수율(%)FDM Yield (%) 반응시간(h)Reaction time (h) 실시예 3-1Example 3-1 170170 100100 64 ~ 7864 ~ 78 1 미만less than 1 2020 실시예 3-2Example 3-2 160160 100100 66 ~ 7566 ~ 75 1 미만less than 1 2020 실시예 3-3Example 3-3 140140 100100 66 ~ 7566 ~ 75 1 미만less than 1 2020 실시예 3-4Example 3-4 120120 100100 80 ~ 8580 ~ 85 1 미만less than 1 2020 실시예 3-5Example 3-5 100100 100100 88 ~ 9688 ~ 96 00 2020

시험예 4: 반응압력에 따른 테트라하이드로퓨란 다이메탄올(THFDM) 수율 비교Experimental Example 4: Comparison of tetrahydrofuran dimethanol (THFDM) yield according to reaction pressure

하기 표 4는 본 발명의 실시예 4-1 내지 4-4에 따른 5-하이드록시메틸푸르푸랄(HMF)의 전환율, 테트라하이드로퓨란 다이메탄올(THFDM)의 수율 및 2,5-퓨란디메탄올(FDM)의 수율 데이터를 나타낸 표이다. 표 4를 참조하면, 반응압력에 따른 HMF 전환율, THFDM 수율 및 FDM 수율을 알 수 있었다.Table 4 below shows the conversion rate of 5-hydroxymethylfurfural (HMF), the yield of tetrahydrofuran dimethanol (THFDM), and the yield of 2,5-furandimethanol (FDM) according to Examples 4-1 to 4-4 of the present invention. Referring to Table 4, the HMF conversion rate, THFDM yield, and FDM yield according to the reaction pressure could be known.

구분division 반응압력(bar)Reaction pressure (bar) HMF 전환율(%)HMF Conversion Rate (%) THFDM 수율(%)THFDM yield (%) FDM 수율(%)FDM Yield (%) 반응시간(h)Reaction time (h) 실시예 4-1Example 4-1 8585 100100 88 ~ 9688 ~ 96 00 2020 실시예 4-2Example 4-2 7070 100100 66 ~ 7566 ~ 75 15 ~ 2015 ~ 20 2020 실시예 4-3Example 4-3 5555 91 ~ 9591 ~ 95 54 ~ 6154 ~ 61 18 ~ 2418 ~ 24 2020 실시예 4-4Example 4-4 4040 80 ~ 8580 ~ 85 48~ 5648~56 30 ~ 3830 ~ 38 2020

시험예 5: WHSV에 따른 테트라하이드로퓨란 다이메탄올(THFDM) 수율 비교Test Example 5: Comparison of tetrahydrofuran dimethanol (THFDM) yields according to WHSV

하기 표 5는 본 발명의 실시예 5-1 내지 5-3에 따른 5-하이드록시메틸푸르푸랄(HMF)의 전환율, 테트라하이드로퓨란 다이메탄올(THFDM)의 수율 및 2,5-퓨란디메탄올(FDM)의 수율 데이터를 나타낸 표이다. 표 5를 참조하면, WHSV에 따른 HMF 전환율, THFDM 수율 및 FDM 수율을 알 수 있었다.Table 5 below shows the conversion rate of 5-hydroxymethylfurfural (HMF), the yield of tetrahydrofuran dimethanol (THFDM), and the yield of 2,5-furandimethanol (FDM) according to Examples 5-1 to 5-3 of the present invention. Referring to Table 5, the HMF conversion rate, THFDM yield, and FDM yield according to WHSV were known.

구분division HMF 농도(wt%)HMF concentration (wt%) WHSV(h-1)WHSV(h -1 ) HMF 전환율(%)HMF Conversion Rate (%) THFDM 수율(%)THFDM yield (%) FDM 수율(%)FDM Yield (%) 반응시간(h)Reaction time (h) 실시예 5-1Example 5-1 11 11 100100 86 ~ 10086 ~ 100 00 8282 실시예 5-2Example 5-2 22 22 100100 88 ~ 9688 ~ 96 00 2020 실시예 5-3Example 5-3 33 33 100100 87 ~ 9087 ~ 90 0.1 ~ 20.1 ~ 2 2020

시험예 6: HMF 농도에 따른 테트라하이드로퓨란 다이메탄올(THFDM) 수율 비교Experimental Example 6: Comparison of tetrahydrofuran dimethanol (THFDM) yield according to HMF concentration

하기 표 6은 본 발명의 실시예 6-1 내지 6-3에 따른 5-하이드록시메틸푸르푸랄(HMF)의 전환율, 테트라하이드로퓨란 다이메탄올(THFDM)의 수율 및 2,5-퓨란디메탄올(FDM)의 수율 데이터를 나타낸 표이다. 표 6를 참조하면, HMF 농도에 따른 HMF 전환율, THFDM 수율 및 FDM 수율을 알 수 있었다.Table 6 below is a table showing the conversion rate of 5-hydroxymethylfurfural (HMF), the yield of tetrahydrofuran dimethanol (THFDM), and the yield of 2,5-furandimethanol (FDM) according to Examples 6-1 to 6-3 of the present invention. Referring to Table 6, the HMF conversion rate, THFDM yield, and FDM yield according to the HMF concentration could be known.

구분division HMF 농도(wt%)HMF concentration (wt%) WHSV(h-1)WHSV(h -1 ) HMF 전환율(%)HMF Conversion Rate (%) THFDM 수율(%)THFDM yield (%) FDM 수율(%)FDM Yield (%) 반응시간(h)Reaction time (h) 실시예 6-1Example 6-1 22 22 100100 88 ~ 9688 ~ 96 00 2020 실시예 6-2Example 6-2 55 22 100100 85 ~ 9585 ~ 95 0 ~ 0.10 ~ 0.1 5454 실시예 6-3Example 6-3 1010 0.60.6 100100 86 ~ 9786 ~ 97 0 ~ 0.30 ~ 0.3 1818

시험예 7: HMF 농도 및 시간에 따른 THFDM의 수율 비교Experimental Example 7: Comparison of THFDM yields according to HMF concentration and time

시험예 7-1: HMF 농도 2 wt% 및 시간에 따른 THFDM의 수율 비교Test Example 7-1: Comparison of THFDM yields with HMF concentration of 2 wt% and time

도 4a는 본 발명의 실시예 6-1의 시간에 따른 THFDM의 수율을 나타낸 그래프이다. 도 4a를 참조하면, 2 내지 20 시간동안 87.5 내지 96.2%의 수율을 일정하게 나타내는 것을 알 수 있었다.Fig. 4a is a graph showing the yield of THFDM over time in Example 6-1 of the present invention. Referring to Fig. 4a, it was found that the yield was consistently 87.5 to 96.2% for 2 to 20 hours.

시험예 7-2: HMF 농도 5 wt% 및 시간에 따른 THFDM의 수율 비교Test Example 7-2: Comparison of yields of THFDM with HMF concentration of 5 wt% and time

도 4b는 본 발명의 실시예 6-2의 시간에 따른 THFDM의 수율을 나타낸 그래프이다. 도 4b를 참조하면, 2 내지 54 시간동안 84.6 내지 96.2%의 수율을 일정하게 나타내는 것을 알 수 있었다.Fig. 4b is a graph showing the yield of THFDM over time in Example 6-2 of the present invention. Referring to Fig. 4b, it was found that the yield was consistently 84.6 to 96.2% for 2 to 54 hours.

시험예 7-3: HMF 농도 10 wt% 및 시간에 따른 THFDM의 수율 비교Test Example 7-3: Comparison of THFDM yields with HMF concentration of 10 wt% and time

도 4c는 본 발명의 실시예 6-3의 시간에 따른 THFDM의 수율을 나타낸 그래프이다. 도 4c를 참조하면, 2 내지 18 시간동안 86.1 내지 97.1%의 수율을 일정하게 나타내는 것을 알 수 있었다.Fig. 4c is a graph showing the yield of THFDM over time in Example 6-3 of the present invention. Referring to Fig. 4c, it was found that the yield was consistently 86.1 to 97.1% for 2 to 18 hours.

본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention.

10: 연속식 테트라하이드로퓨란 다이메탄올 제조장치
100: 5-하이드록시메틸푸르푸랄 공급부
200: 수소 공급부
300: 반응부
10: Continuous tetrahydrofuran dimethanol production device
100: 5-Hydroxymethylfurfural supply unit
200: Hydrogen supply unit
300: Reaction section

Claims (17)

알루미나(Al2O3)를 포함하는 지지체; 및
상기 지지체 상에 담지된 루테늄(Ru);을
포함하는 촉매.
A support comprising alumina (Al 2 O 3 ); and
Ruthenium (Ru) supported on the above support;
A catalyst containing:
제1항에 있어서,
상기 촉매가 5-하이드록시메틸푸르푸랄(HMF)을 수소첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하는 것에 사용하기 위한 것인, 촉매.
In the first paragraph,
A catalyst for use in the hydrogenation reaction of 5-hydroxymethylfurfural (HMF) to produce tetrahydrofuran dimethanol (THFDM).
제1항에 있어서,
상기 알루미나가 γ-Al2O3를 포함하는 것을 특징으로 하는 촉매.
In the first paragraph,
A catalyst characterized in that the alumina comprises γ-Al 2 O 3 .
5-하이드록시메틸푸르푸랄(HMF) 및 용매를 하기의 반응부에 연속적으로 공급하는 5-하이드록시메틸푸르푸랄 공급부(100);
수소를 하기의 반응부(300)에 연속적으로 공급하는 수소 공급부(200); 및
5-하이드록시메틸푸르푸랄을 제1항에 따른 촉매를 사용하여 수소첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하고 외부로 연속적으로 배출하는 반응부(300);를
포함하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치(10).
A 5-hydroxymethylfurfural supply unit (100) that continuously supplies 5-hydroxymethylfurfural (HMF) and a solvent to the reaction unit below;
A hydrogen supply unit (200) that continuously supplies hydrogen to the reaction unit (300); and
A reaction unit (300) for producing tetrahydrofuran dimethanol (THFDM) by hydrogenating 5-hydroxymethylfurfural using a catalyst according to claim 1 and continuously discharging it to the outside;
A continuous tetrahydrofuran dimethanol manufacturing device (10).
제4항에 있어서,
상기 반응부(300)에서, 상기 용매와 5-하이드록시메틸푸르푸랄(HMF)의 중량비가 99:1 내지 85:15인 것을 특징으로 하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치.
In paragraph 4,
A continuous tetrahydrofuran dimethanol production device, characterized in that the weight ratio of the solvent and 5-hydroxymethylfurfural (HMF) in the above reaction section (300) is 99:1 to 85:15.
제5항에 있어서,
상기 반응부(300)에서, 상기 용매와 5-하이드록시메틸푸르푸랄(HMF)의 중량비가 92:8 내지 88:12인 것을 특징으로 하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치.
In paragraph 5,
A continuous tetrahydrofuran dimethanol production device, characterized in that the weight ratio of the solvent and 5-hydroxymethylfurfural (HMF) in the above reaction section (300) is 92:8 to 88:12.
제4항에 있어서,
상기 용매가 메탄올, 2-프로판올, 2-메톡시에탄올, 에탄올, n-프로판올, n-부탄올, 다이메톡시에탄 및 1,2-다이메톡시프로판으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치.
In paragraph 4,
A continuous tetrahydrofuran dimethanol production device, characterized in that the solvent comprises at least one selected from the group consisting of methanol, 2-propanol, 2-methoxyethanol, ethanol, n-propanol, n-butanol, dimethoxyethane, and 1,2-dimethoxypropane.
제7항에 있어서,
상기 용매가 2-메톡시에탄올을 포함하는 것을 특징으로 하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치.
In Article 7,
A continuous tetrahydrofuran dimethanol production device, characterized in that the solvent contains 2-methoxyethanol.
제4항에 있어서,
상기 반응부의 온도가 90 내지 180 ℃인 것을 특징으로 하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치.
In paragraph 4,
A continuous tetrahydrofuran dimethanol production device, characterized in that the temperature of the above reaction section is 90 to 180°C.
제4항에 있어서,
상기 반응부의 압력이 30 내지 100 bar인 것을 특징으로 하는 연속식 테트라하이드로퓨란 다이메탄올 제조장치.
In paragraph 4,
A continuous tetrahydrofuran dimethanol production device, characterized in that the pressure of the above reaction section is 30 to 100 bar.
(a) 루테늄 전구체, 알루미나 및 용매를 혼합하고 교반하여 제1 혼합물을 준비하는 단계; 및
(b) 상기 제1 혼합물에 환원제를 투입하고 반응시켜 루테늄 담지 알루미나 촉매를 포함하는 제2 혼합물을 제조하는 단계;를
포함하는 촉매의 제조방법.
(a) preparing a first mixture by mixing and stirring a ruthenium precursor, alumina, and a solvent; and
(b) a step of adding a reducing agent to the first mixture and reacting the mixture to produce a second mixture containing a ruthenium-supported alumina catalyst;
A method for producing a catalyst comprising:
제11항에 있어서,
상기 촉매가 5-하이드록시메틸푸르푸랄(HMF)을 수소첨가 반응시켜 테트라하이드로퓨란 다이메탄올(THFDM)을 제조하는 것에 사용하기 위한 것인, 촉매의 제조방법.
In Article 11,
A method for producing a catalyst, wherein the catalyst is used for producing tetrahydrofuran dimethanol (THFDM) by hydrogenating 5-hydroxymethylfurfural (HMF).
제11항에 있어서,
상기 알루미나가 γ-Al2O3를 포함하는 것을 특징으로 하는 촉매의 제조방법.
In Article 11,
A method for producing a catalyst, characterized in that the alumina comprises γ-Al 2 O 3 .
제11항에 있어서,
단계 (a)의 용매가 물을 포함하는 것을 특징으로 하는 촉매의 제조방법.
In Article 11,
A method for producing a catalyst, characterized in that the solvent in step (a) contains water.
제11항에 있어서,
단계 (b)의 환원제가 NaBH4를 포함하는 것을 특징으로 하는 촉매의 제조방법.
In Article 11,
A method for producing a catalyst, characterized in that the reducing agent of step (b) comprises NaBH 4 .
제11항에 있어서,
상기 촉매의 제조방법이 단계 (b) 이후,
(c) 상기 제2 혼합물에서 상기 촉매를 분리하고 세척하고 건조하는 단계; 및
(d) 건조된 촉매를 180 내지 280 μm 크기의 펠렛으로 제조하는 단계;를 포함하는 것을 특징으로 하는 촉매의 제조방법.
In Article 11,
The method for manufacturing the above catalyst comprises the steps (b) and thereafter:
(c) a step of separating, washing and drying the catalyst from the second mixture; and
(d) A method for producing a catalyst, characterized by comprising the step of producing a dried catalyst into pellets having a size of 180 to 280 μm.
제16항에 있어서,
단계 (c)의 세척이 물 및 C1 내지 C4의 알코올로 이루어진 군으로부터 선택된 1종 이상을 사용하여 수행되는 것을 특징으로 하는 촉매의 제조방법.
In Article 16,
A method for producing a catalyst, characterized in that the washing in step (c) is performed using at least one selected from the group consisting of water and C1 to C4 alcohols.
KR1020230163615A 2023-11-22 2023-11-22 Ruthenium-supported alumina catalyst, method of manufacturing the same and continuous tetrahydrofuran dimethanol(thfdm) manufacturing apparatus using the same Pending KR20250076198A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020230163615A KR20250076198A (en) 2023-11-22 2023-11-22 Ruthenium-supported alumina catalyst, method of manufacturing the same and continuous tetrahydrofuran dimethanol(thfdm) manufacturing apparatus using the same
PCT/KR2024/017454 WO2025110577A1 (en) 2023-11-22 2024-11-07 Ruthenium-supported alumina catalyst, producing method therefor, and continuous tetrahydrofuran dimethanol (thfdm) producing apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230163615A KR20250076198A (en) 2023-11-22 2023-11-22 Ruthenium-supported alumina catalyst, method of manufacturing the same and continuous tetrahydrofuran dimethanol(thfdm) manufacturing apparatus using the same

Publications (1)

Publication Number Publication Date
KR20250076198A true KR20250076198A (en) 2025-05-29

Family

ID=95827185

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230163615A Pending KR20250076198A (en) 2023-11-22 2023-11-22 Ruthenium-supported alumina catalyst, method of manufacturing the same and continuous tetrahydrofuran dimethanol(thfdm) manufacturing apparatus using the same

Country Status (2)

Country Link
KR (1) KR20250076198A (en)
WO (1) WO2025110577A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390247A1 (en) * 2010-05-26 2011-11-30 Netherlands Organisation for Scientific Research (Advanced Chemical Technologies for Sustainability) Preparation of caprolactone, caprolactam, 2,5-tetrahydrofuran dimethanol, 1,6-hexanediol or 1,2,6-hexanetriol from 5-hydroxymethyl-2-furfuraldehyde
JP6037209B2 (en) * 2012-08-30 2016-12-07 国立大学法人東北大学 Method for producing tetrahydrofuran compound, hydrogenation catalyst and method for producing the same
KR101799932B1 (en) * 2015-09-10 2017-11-22 한국화학연구원 Process for selective hydrogenation of hydroxymethylfurfural using Ru nanoparticles supported catalysts
JP6939141B2 (en) * 2016-06-27 2021-09-22 国立大学法人北海道大学 Alcohol manufacturing method
KR102697807B1 (en) * 2021-11-16 2024-08-21 아주대학교산학협력단 Ruthenium catalyst for decomposition reaction of ammonia, method of manufacturing the ruthenium catalyst, and method of producing hydrogen from ammonia using the ruthenium catalyst

Also Published As

Publication number Publication date
WO2025110577A1 (en) 2025-05-30

Similar Documents

Publication Publication Date Title
EP3039001B1 (en) Process for the preparation of glycols
CN102381977B (en) Preparation of hydrogenated pyromellitic acid ester
US5196602A (en) Two-stage maleic anhydride hydrogenation process for 1,4-butanediol synthesis
CN101583583A (en) Method for producing 1,2-ethylene glycol and 1,2-propylene glycol by means of the heterogeneously catalysed hydrogenolysis of a polyol
KR101556340B1 (en) Method for hydrogenation of phthalate compound
KR102133304B1 (en) Method of preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural
EP3118181A1 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
KR101619399B1 (en) Preparation method of 1,4-cyclohexanedimethanol
JP4916038B2 (en) Method for producing tetrahydrofuran derivative by hydrogenation of furans
US3370067A (en) Hydrogenolysis of butyrolactone and gamma-valerolactone to the corresponding cyclic ethers
CN110563554B (en) Method for producing adiponitrile
KR101577362B1 (en) Preparation method of 1,4-cyclohexanedimethanol
CN104888755B (en) A kind of application of Mo loaded catalysts in catalysis picoline vapor demethylating reaction
KR20250076198A (en) Ruthenium-supported alumina catalyst, method of manufacturing the same and continuous tetrahydrofuran dimethanol(thfdm) manufacturing apparatus using the same
KR100344962B1 (en) Preparation method of gamma butyrolactone using maleic anhydride
EP2951165B1 (en) Single step process for conversion of furfural to tetrahydrofuran
CN113666891A (en) Preparation method of 2, 5-tetrahydrofuran dimethanol
CA1060461A (en) Continuous process for producing gammabutyrolactone by catalytic hydrogenation of maleic anhydride
Li et al. Hydrogenation of dimethyl 2, 5-furandicarboxylate to dimethyl tetrahydrofuran-2, 5-dicarboxylate over Ru/HY
CN116813574A (en) A kind of preparation method of 2,5-tetrahydrofurandimethanol
CN106748645B (en) Method for improving purity of 1, 6-hexanediol
CN115057834A (en) Method for preparing 2, 5-tetrahydrofuran dimethanol through two-step hydrogenation
KR102658334B1 (en) Continuous production method of 2,3-butanediol
CN102256957A (en) Vapor phase decarbonylation process
KR100645665B1 (en) Continuous production method of (S) -beta-hydroxy-gamma-butyrolactone

Legal Events

Date Code Title Description
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

P22-X000 Classification modified

St.27 status event code: A-2-2-P10-P22-nap-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902