RU2496093C1 - Target contact-type laser transducer - Google Patents
Target contact-type laser transducer Download PDFInfo
- Publication number
- RU2496093C1 RU2496093C1 RU2012109764/03A RU2012109764A RU2496093C1 RU 2496093 C1 RU2496093 C1 RU 2496093C1 RU 2012109764/03 A RU2012109764/03 A RU 2012109764/03A RU 2012109764 A RU2012109764 A RU 2012109764A RU 2496093 C1 RU2496093 C1 RU 2496093C1
- Authority
- RU
- Russia
- Prior art keywords
- target
- channels
- photodetector
- optical
- distance
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 35
- 230000005855 radiation Effects 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 241000208202 Linaceae Species 0.000 claims 1
- 235000004431 Linum usitatissimum Nutrition 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 102220005306 rs33926796 Human genes 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000009414 blockwork Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях реактивных боеприпасов для определения оптимального момента подрыва боеприпаса.The invention relates to the field of armaments and can be used in non-contact fuses of jet ammunition to determine the optimal moment of detonation of ammunition.
Известно бортовое устройство с лазерным блоком для обнаружения целей (патент США №5138947, МПК: F42C 13/02, опубл. 18.08.1992), состоящее из источника оптического излучения, коллимирующей линзы, двух зеркал и фотоприемника. Зеркала установлены на подвижную панель, которая фиксируется в двух положениях. Одно из зеркал плоское и выполнено в форме уголкового отражателя. Второе зеркало выполнено фокусирующим. В первом положении панели оба зеркала находятся внутри корпуса устройства и лазерное излучение не выходит наружу. Во втором положении панели излучение источника, установленного в фокальной плоскости коллимирующей линзы, отражается от первого зеркала и выводится наружу в направлении "вперед и вбок," относительно направления движения боеприпаса. Оптическое излучение от поверхности цели отражается вторым зеркалом на фотоприемник, установленный в фокусе этого зеркала. Фотоприемник преобразует оптический сигнал в электрический и производит его дальнейшую обработку.Known on-board device with a laser unit for detecting targets (US patent No. 5138947, IPC: F42C 13/02, publ. 08/18/1992), consisting of an optical radiation source, a collimating lens, two mirrors and a photodetector. Mirrors are mounted on a movable panel, which is fixed in two positions. One of the mirrors is flat and made in the form of an angular reflector. The second mirror is made focusing. In the first position of the panel, both mirrors are located inside the device and the laser radiation does not come out. In the second position of the panel, the radiation of a source mounted in the focal plane of the collimating lens is reflected from the first mirror and is output outward in the direction "forward and sideways" relative to the direction of movement of the ammunition. Optical radiation from the target surface is reflected by the second mirror to a photodetector mounted at the focus of this mirror. The photodetector converts the optical signal into an electrical one and performs its further processing.
Недостатком данного устройства является низкая вероятность обнаружения малогабаритных целей и, следовательно, низкая надежность срабатывания по целям такого типа, а также недостаточная защищенность от оптических помех. К недостаткам следует отнести и невысокую точность установки заданной дальности срабатывания, поскольку пересечение осей диаграммы направленности источника оптического излучения и диаграммы чувствительности фотоприемника на определенном расстоянии от боеприпаса обеспечивается только технологически, и значительное ухудшение аэродинамических параметров боеприпаса при включении данного устройства и, в результате, невозможность его использования при высоких скоростях движения боеприпаса.The disadvantage of this device is the low probability of detecting small targets and, therefore, low reliability of operation for targets of this type, as well as insufficient protection from optical interference. The disadvantages include the low accuracy of setting the given operating range, since the intersection of the axes of the radiation pattern of the optical radiation source and the sensitivity diagram of the photodetector at a certain distance from the munition is provided only technologically, and a significant deterioration in the aerodynamic parameters of the munition when this device is turned on and, as a result, its impossibility use at high speeds of the movement of ammunition.
Известен оптический блок (патент РФ №2151372, МПК: F42C 13/02, опубл. 27.03.2005), состоящий из источника оптического излучения, установленного в фокальной плоскости коллимирующей линзы, системы светоделения, установленной между коллимирующей линзой и защитным стеклом, фокусирующей линзы, фотоприемниками и светофильтра, установленного между фокусирующей линзой и фотоприемниками.Known optical unit (RF patent No. 2151372, IPC: F42C 13/02, publ. 03/27/2005), consisting of an optical radiation source mounted in the focal plane of a collimating lens, a beam splitting system installed between the collimating lens and a protective glass, a focusing lens, photodetectors and a light filter mounted between the focusing lens and photodetectors.
Указанный блок работает следующим образом.The specified block works as follows.
Оптическое излучение источника, сколлимированное линзой, делится системой светоделения на два одинаковых пучка и через защитное стекло выводится наружу боеприпаса. При наличии цели на дистанции срабатывания датчика излучение отражается от ее поверхности и через фокусирующую линзу и светофильтр попадает на фотоприемник, который преобразует оптический сигнал в электрический и производит его дальнейшую обработку. Формируемые два пучка оптического излучения зондируют каждый свой сектор пространства вокруг боеприпаса, а фокусирующая линза и фотоприемники формируют две приемные диаграммы чувствительности оптического блока.The optical radiation of the source, collimated by the lens, is divided by the beam-splitting system into two identical beams and, through the protective glass, the ammunition is brought out. If there is a target at the sensor response distance, the radiation is reflected from its surface and, through a focusing lens and a filter, enters the photodetector, which converts the optical signal into an electric one and performs its further processing. The formed two beams of optical radiation probe each of its sector of space around the ammunition, and the focusing lens and photodetectors form two receiving sensitivity diagrams of the optical unit.
Недостатками указанного блока является значительные габаритные размеры из-за необходимости обеспечения базы, расстояния между приемником и излучателем. Уменьшение базы снижает точность определения дистанции. Система светоделения указанного блока требует юстировки: технологического процесса установки пересечения оси диаграммы направленности зондирующих пучков источника и оси соответствующих диаграмм чувствительности фотоприемников на требуемом расстоянии от боеприпаса, в результате чего оптический блок обнаруживает только те цели, которые находятся на заданном расстоянии от боеприпаса, что снижает его универсальность.The disadvantages of this unit is the significant overall dimensions due to the need to provide a base, the distance between the receiver and the emitter. Reducing the base reduces the accuracy of determining the distance. The beam splitting system of the indicated block requires adjustment: the technological process of setting the intersection of the axis of the radiation pattern of the probing source beams and the axis of the corresponding sensitivity diagrams of photodetectors at the required distance from the munition, as a result of which the optical unit detects only those targets that are at a given distance from the munition, which reduces it universality.
Известен оптический дистанционный взрыватель (патент ФРГ PS №2949521, МПК: F42C 13/02, опубл. 21.10.82), состоящий из источника оптического излучения, работающего в пульсирующем режиме, коллимирующей и фокусирующей линз, и фотоприемника.Known optical remote fuse (German patent PS No. 2949521, IPC: F42C 13/02, publ. 21.10.82), consisting of an optical radiation source operating in a pulsed mode, collimating and focusing lenses, and a photodetector.
Фотоприемник установлен таким образом, что ось диаграммы направленности источника оптического излучения пересекает ось диаграммы чувствительности фотоприемника на определенном расстоянии от боеприпаса, в результате чего дистанционный взрыватель срабатывает только при наличии цели на заданном расстоянии. Излучение от источника проходит через коллимирующую линзу, отражается от поверхности цели и, если она находится на заданном расстоянии от боеприпаса, через фокусирующую линзу попадает на фотоприемник, который преобразует оптический сигнал в электрический и производит его дальнейшую обработку.The photodetector is installed in such a way that the axis of the radiation pattern of the optical radiation source intersects the axis of the sensitivity diagram of the photodetector at a certain distance from the munition, as a result of which the remote fuse fires only when there is a target at a given distance. The radiation from the source passes through the collimating lens, is reflected from the target’s surface and, if it is located at a predetermined distance from the ammunition, it passes through the focusing lens to a photodetector, which converts the optical signal into an electric one and performs its further processing.
Недостатком этого устройства являются низкая вероятность обнаружения малогабаритных целей и, в результате, низкая надежность срабатывания по целям такого типа, а также невысокая точность установки заданной дальности срабатывания, поскольку пересечение осей диаграммы направленности источника оптического излучения и диаграммы чувствительности фотоприемника на определенном расстоянии от боеприпаса обеспечивается только технологически. Кроме этого, данное устройство имеет недостаточную защищенность от оптических помех.The disadvantage of this device is the low probability of detecting small targets and, as a result, the low reliability of operation on targets of this type, as well as the low accuracy of setting a given operating range, since the intersection of the axes of the radiation pattern of the optical radiation source and the sensitivity diagram of the photodetector at a certain distance from the munition is only possible technologically. In addition, this device has insufficient protection from optical interference.
Задачей изобретения является создание компактного, надежного и универсального датчика цели, имеющего требуемую степень надежности по защищенности от оптических помех.The objective of the invention is to provide a compact, reliable and versatile target sensor having the required degree of reliability for protection from optical interference.
Решение указанной задачи достигается тем, что предложенный лазерный датчик цели согласно изобретению содержит два и более приемоизлучающих канала, каждый из которых содержит электронный блок, импульсный источник оптического излучения, и фотоприемник, соединенные с электронным блоком, при этом оптические оси импульсного источника излучения и фотоприемника, образующих приемоизлучающий канал, направлены под углом ≤90° к продольной оси боеприпаса по направлению движения и расположены со смешением друг относительно друга, преимущественно параллельно или практически параллельно, причем расстояние между оптическими осями излучателя и фотоприемника выбрано из условия l≥(du+dn)/2, где du и dn - наибольшие диаметры излучателя и фотоприемника соответственно, при этом приемоизлучающие каналы размещены вокруг продольной оси боеприпаса, причем угол в радиальном направлении между осями излучателей смежных приемоизлучающих каналов выбран таким образом, что световые пучки излучателей не пересекаются между собой, при этом расстояние между лучами от соседних излучающих каналов на требуемой дистанции детектирования цели равно/примерно равно минимальному размеру цели.The solution to this problem is achieved by the fact that the proposed laser target sensor according to the invention contains two or more transceiver channels, each of which contains an electronic unit, a pulsed optical radiation source, and a photodetector connected to the electronic unit, while the optical axis of the pulsed radiation source and photodetector, forming a receiving-emitting channel, directed at an angle of ≤90 ° to the longitudinal axis of the munition in the direction of movement and are located with mixing relative to each other, mainly o parallel or almost parallel, and the distance between the optical axes of the emitter and the photodetector is selected from the condition l≥ (d u + d n ) / 2, where d u and d n are the largest diameters of the emitter and photodetector, respectively, while the receiving-emitting channels are placed around the longitudinal axis of the munition, and the angle in the radial direction between the axes of the emitters of adjacent receiving emitting channels is selected so that the light beams of the emitters do not intersect each other, while the distance between the rays from adjacent emitting channels at rebuemoy distance detection target is equal to / is approximately equal to the minimum size of the target.
В варианте исполнения необходимое количество излучателей в лазерном датчике цели определено из соотношения: n≥2π/(α+b/R), где: n - количество излучателей, α - угол расхождения пучка излучения, b - минимальный размер цели, R - требуемая дистанция детектирования цели.In an embodiment, the required number of emitters in the laser target sensor is determined from the relation: n≥2π / (α + b / R), where: n is the number of emitters, α is the angle of divergence of the radiation beam, b is the minimum target size, R is the required distance target detection.
Техническим результатом, достигаемым заявляемым изобретением, является создание лазерного датчика цели, который повышает вероятность обнаружения малогабаритных целей, обеспечивает высокую точность установки заданной дистанции срабатывания, имеет повышенную защищенность от оптических помех, уменьшенные габаритно-весовые характеристики и энергопотребление.The technical result achieved by the claimed invention is the creation of a laser target sensor, which increases the likelihood of detecting small targets, provides high accuracy of setting a given response distance, has increased immunity to optical interference, reduced overall weight and weight characteristics and power consumption.
Технический результат достигается тем, что в лазерном датчике цели, включающем электронный блок, источник оптического излучения и фотоприемник, в качестве источника оптического излучения применен импульсный лазерный диод, а в электронном блоке для обработки отраженного сигнала применен алгоритм реализующий время - импульсный метод анализа дистанции до цели. Излученные световые импульсы отражаются от поверхности цели и регистрируются фотоприемником с последующим анализом электронным блоком. Регистрацию отраженного сигнала осуществляют через временной интервал, определяющий дистанцию идентификации цели: с момента излучения светового импульса до открытия временного окна, продолжительностью которого задают погрешность определения дистанции.The technical result is achieved by the fact that in the laser target sensor, which includes an electronic unit, an optical radiation source and a photodetector, a pulsed laser diode is used as an optical radiation source, and an algorithm that implements the reflected signal uses a time-implementing algorithm - a pulse method of analyzing the distance to the target . The emitted light pulses are reflected from the target surface and recorded by a photodetector, followed by analysis by the electronic unit. The registration of the reflected signal is carried out through a time interval that determines the distance of identification of the target: from the moment of emission of the light pulse to the opening of the time window, the duration of which sets the error in determining the distance.
Заявляемое устройство не требует настройки в процессе производства, позволяет менять дистанцию идентификации цели непосредственно перед боевым применением боеприпаса.The inventive device does not require adjustment during production, allows you to change the distance of identification of the target immediately before the combat use of ammunition.
Изменение дистанции обнаружения цели осуществляется изменением установок в электронном блоке, что делает предлагаемое устройство более универсальным по сравнению с прототипом.Changing the distance of detection of the target is carried out by changing the settings in the electronic unit, which makes the proposed device more versatile in comparison with the prototype.
Сущность изобретения иллюстрируется чертежами, где на фиг.1 представлено схематическое изображение поперечного сечения лазерного датчика цели.The invention is illustrated by drawings, where Fig. 1 is a schematic cross-sectional view of a laser target sensor.
Лазерный датчик цели включает как минимум два приемоизлучающих канала, состоящих из источника излучения 1 и фотоприемника 2, соединенных с электронным блоком 3, установленных в корпусе 4.The laser target sensor includes at least two receiving-emitting channels, consisting of a
Лазерный датчик цели работает следующим образом.The laser target sensor operates as follows.
Световые импульсы от источника излучения 1 выводятся наружу корпуса 4 в сторону возможной цели. При наличии цели излучение отражается от ее поверхности и регистрируется фотоприемником 2. Далее электронный блок 3 анализирует принятый сигнал на соответствие величины t - временного интервала, отсчитываемого с момента излучения импульса до момента регистрации сигнала, заданной временной установке Т. Величина временной установки Т вводится перед боевым применением боеприпаса в электронный блок 3 и равна времени прохождения светового импульса от боеприпаса до цели и обратно в момент соответствия расстояния между боеприпасом и целью требуемой дистанции детектирования, т.е. T=2R/c, где с - скорость света, R - требуемая дистанция детектирования цели.Light pulses from the
При выполнении условия t=Т, с заданной точностью, электронный блок определяет принятый сигнал как «рабочий» и выдает сигнал идентификации цели.When the condition t = T is fulfilled, with a given accuracy, the electronic unit determines the received signal as “working” and issues a target identification signal.
Необходимое количество зондирующих оптических пучков в лазерном датчике цели определяется характерным размером предполагаемых целей и дистанцией идентификации цели из соотношения: n≥2π/(α+b/R), где: n - количество зондирующих оптических пучков, α - угол расхождения светового пучка, b - минимальный размер цели, R - требуемая дистанция детектирования цели.The required number of probe optical beams in the laser target sensor is determined by the characteristic size of the intended targets and the target identification distance from the ratio: n≥2π / (α + b / R), where: n is the number of probe optical beams, α is the angle of divergence of the light beam, b is the minimum target size, R is the required target detection distance.
Использование предложенного технического решения позволит повысить поражающие характеристики боеприпаса путем увеличения массы взрывчатого вещества за счет уменьшения габаритных параметров датчика цели, увеличить количество зондирующих оптических пучков, и, следовательно, повысить эффективность и надежность устройства при увеличении дистанции обнаружения цели. Лазерный датчик цели с реализованным предложенным техническим решением не требует настройки в процессе производства, что позволяет упростить его устройство и снизить стоимость изготовления.Using the proposed technical solution will increase the striking characteristics of the ammunition by increasing the mass of the explosive by reducing the overall parameters of the target sensor, increase the number of probe optical beams, and, therefore, increase the efficiency and reliability of the device with increasing target detection distance. The laser target sensor with the proposed technical solution implemented does not require adjustment during the production process, which allows to simplify its design and reduce the manufacturing cost.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2012109764/03A RU2496093C1 (en) | 2012-03-15 | 2012-03-15 | Target contact-type laser transducer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2012109764/03A RU2496093C1 (en) | 2012-03-15 | 2012-03-15 | Target contact-type laser transducer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| RU2012109764A RU2012109764A (en) | 2013-09-20 |
| RU2496093C1 true RU2496093C1 (en) | 2013-10-20 |
Family
ID=49182981
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2012109764/03A RU2496093C1 (en) | 2012-03-15 | 2012-03-15 | Target contact-type laser transducer |
Country Status (1)
| Country | Link |
|---|---|
| RU (1) | RU2496093C1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2837482C1 (en) * | 2024-09-16 | 2025-03-31 | Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей" | Laser article target detection sensor |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5138947A (en) * | 1990-05-30 | 1992-08-18 | Rheinmetall Gmbh | Flying body including a target detection device |
| GB2301420A (en) * | 1984-03-17 | 1996-12-04 | British Aerospace | Projectiles |
| RU2251069C1 (en) * | 2003-10-14 | 2005-04-27 | ФГУП "ГосНИИМаш" | Tandem type warhead |
| RU2301958C1 (en) * | 2006-01-10 | 2007-06-27 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт машиностроения" | High-explosive non-isotropic warhead |
| RU2362969C2 (en) * | 2007-04-12 | 2009-07-27 | Новосибирский государственный технический университет | Detonator |
-
2012
- 2012-03-15 RU RU2012109764/03A patent/RU2496093C1/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2301420A (en) * | 1984-03-17 | 1996-12-04 | British Aerospace | Projectiles |
| US5138947A (en) * | 1990-05-30 | 1992-08-18 | Rheinmetall Gmbh | Flying body including a target detection device |
| RU2251069C1 (en) * | 2003-10-14 | 2005-04-27 | ФГУП "ГосНИИМаш" | Tandem type warhead |
| RU2301958C1 (en) * | 2006-01-10 | 2007-06-27 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт машиностроения" | High-explosive non-isotropic warhead |
| RU2362969C2 (en) * | 2007-04-12 | 2009-07-27 | Новосибирский государственный технический университет | Detonator |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2837482C1 (en) * | 2024-09-16 | 2025-03-31 | Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей" | Laser article target detection sensor |
Also Published As
| Publication number | Publication date |
|---|---|
| RU2012109764A (en) | 2013-09-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11860374B2 (en) | Lens assembly for a LIDAR system | |
| CN102540195B (en) | Five-path laser radar for vehicle and control method thereof | |
| RU2496096C1 (en) | Target contact-type laser transducer | |
| RU2335728C1 (en) | Optical-electronic search and tracking system | |
| RU2498208C1 (en) | Optic unit of non-contact detonating fuse for ammunition | |
| RU2500979C2 (en) | Jet projectile fuse optical unit | |
| RU2484423C1 (en) | Ammunition of contactless action with remote laser fuse | |
| RU2497072C1 (en) | Jet missile target sensor | |
| RU2496093C1 (en) | Target contact-type laser transducer | |
| RU2497069C1 (en) | Target detection optical unit | |
| RU2496094C1 (en) | Laser range finder | |
| RU2497073C1 (en) | Optical unit | |
| US8368873B2 (en) | Proximity to target detection system and method | |
| RU2497071C1 (en) | Optical range finder | |
| RU2496095C1 (en) | Range finder | |
| RU2511620C2 (en) | Device of measurement of given distance between objects | |
| RU2498206C1 (en) | Device for determining optimum moment of ammunition blasting | |
| RU2498205C1 (en) | Optic target sensor | |
| RU2498207C1 (en) | Device for blasting ammunition at specified distance from target | |
| RU2497070C1 (en) | Jet missile range finder | |
| US5018447A (en) | Device and method for monitoring the presence of an object in space | |
| RU2516376C2 (en) | Device of laser finding of specified space area | |
| RU2503921C2 (en) | Rocket missile | |
| RU2781592C1 (en) | Non-contact ammunition target sensor | |
| RU2655705C1 (en) | Ammunition of non-contact action with remote laser fuse |