[go: up one dir, main page]

RU2430251C2 - Способ охлаждения ротора газотурбинной установки, осуществляемый путем непрерывного преобразования энергии за счет эндотермической реакции - Google Patents

Способ охлаждения ротора газотурбинной установки, осуществляемый путем непрерывного преобразования энергии за счет эндотермической реакции Download PDF

Info

Publication number
RU2430251C2
RU2430251C2 RU2009131397/06A RU2009131397A RU2430251C2 RU 2430251 C2 RU2430251 C2 RU 2430251C2 RU 2009131397/06 A RU2009131397/06 A RU 2009131397/06A RU 2009131397 A RU2009131397 A RU 2009131397A RU 2430251 C2 RU2430251 C2 RU 2430251C2
Authority
RU
Russia
Prior art keywords
turbine
fuel
gas
reaction
endothermic reaction
Prior art date
Application number
RU2009131397/06A
Other languages
English (en)
Other versions
RU2009131397A (ru
Inventor
Сергей Юрьевич Столярчук (RU)
Сергей Юрьевич Столярчук
Original Assignee
Сергей Юрьевич Столярчук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Юрьевич Столярчук filed Critical Сергей Юрьевич Столярчук
Priority to RU2009131397/06A priority Critical patent/RU2430251C2/ru
Publication of RU2009131397A publication Critical patent/RU2009131397A/ru
Application granted granted Critical
Publication of RU2430251C2 publication Critical patent/RU2430251C2/ru

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Способ охлаждения ротора газотурбинной установки осуществляется путем непрерывного преобразования энергии за счет эндотермической реакции. Воздух сжимают в компрессоре, затем подают его в камеру сгорания для сжигания топлива. Полученный при сжигании горячий газ подают для расширения на активную газовую силовую турбину, которую используют для привода компрессора. Осуществляют дожигание преобразованного топлива с повышенной абсолютной теплотворной способностью, которое получают за счет эндотермической реакции исходного топлива в реакторе парового реформинга. Проводят параллельный тепловой цикл, в котором нагретую в парогенераторе смесь паров воды с углеводородным топливом подают через полый вал газотурбинной установки в реакционный объем. Реакционный объем содержит пористый металлоуглеродный контейнер, расположенный во внутренней полости реактивной газовой турбины, которая находится в тепловом контакте с силовой или является ее частью. Реактор приводят во вращательное движение, за счет чего частично сжимают смесь в ходе эндотермической реакции. Смесь нагревают частично за счет охлаждения силовой турбины и за счет тепла отработанного газа, а затем выпускают через реактивные сопла, создавая дополнительный вращающий момент. Достигается повышение КПД и безопасности эксплуатации.

Description

Изобретение относится к области производства механической энергии в первичных тепловых двигателях роторного типа с газообразным рабочим телом, в которых повышение КПД осуществляется за счет регенерации тепла отработавших газов с использованием эндотермических процессов водно-парового преобразования углеводородного топлива.
Известен процесс Габера, предназначенный для получения аммиака (Нейтвиг И., Кройдер М., Моргенштерн К. Химический тренажер. T.I, стр.337. Издательство Мир, 1986), включавший получение смеси водорода с окисью углерода, называемой водяным газом, который являлся промежуточным продуктом процесса. Водяной газ получали, пропуская пары воды над раскаленным коксом без доступа кислорода, где с поглощением тепла проходила реакция восстановления водорода: С+Н2О→СО+Н2.
Для термической диссоциации водяного пара необходимы очень большие температуры. При температуре 1000°С разлагается только 0.03% сталкивающихся молекул. При столкновениях молекул воды и углерода, сопровождающихся поглощением кинетической энергии, восстановление водорода проходит через промежуточный уровень энергии столкновительных ассоциатов при меньших скоростях. Процесс носит пороговый характер, и участвовать в нем могут только молекулы, находящиеся на конце кривой распределения по скоростям Максвелла, перемещающиеся во встречном направлении. При этом кинетическая энергия продуктов реакции уменьшается, а число низкоэнергетичных молекул увеличивается. За счет этого форма кривой распределения по скоростям искажается в сторону низших температур. Таким образом, энергия хаотического движения молекул (тепловая энергия) переходит в «скрытую» энергию электромагнитного поля путем химического преобразования. Эта энергия дополнительно выделяется при сжигании водяного газа по сравнению с энергией, выделяющейся при сжигании только углерода. Водяной газ длительное время использовался как исходный продукт в технологическом процессе получения водорода.
Из патента ФРГ №3740865 известен способ и устройство для получения водорода путем водно-парового преобразования углеводородного сырья. В результате реакции, идущей при температуре 800-900°С с поглощением значительного количества тепла, получают водяной газ с повышенной концентрацией водорода. После отделения большей части водорода побочные продукты утилизировались путем сжигания совместно с топливом, используемым для обогрева реактора. Затем этот поток отработанного газа расширяли в газовой турбине, которая обеспечивала привод компрессора и электрического генератора для целей технологического процесса. Доля дополнительной механической энергии, полученной за счет сжигания отходов, составляла около 10%.
Из патента РФ №2085754 известна установка и способ непрерывного преобразования энергии в крупных энергетических ГТУ, использующий регенерацию тепла отработанных газов за счет проведения эндотермической реакции преобразования (реформинга) исходного углеводородного топлива с парами воды, в результате которой тоже получают водяной газ с большей концентрацией водорода, с абсолютной теплотворной способностью, превосходящей исходное топливо.
CH42О→СО+3Н2.
Из реакторов, нагреваемых отработанными газами ГТУ до 650-750°С, водяной газ подается по трубопроводам в две камеры сгорания. В первой камере сгорания к нему подмешивают исходное топливо, регулируя температуру факела. Использование данного способа позволяет поднять КПД установок с мощностью свыше 50 МВт до 60%.
К недостаткам данного способа (применительно к установкам малой мощности), на устранение которых ориентировано предлагаемое изобретение, можно отнести следующее:
1. Неполное использование возможностей процесса парового реформинга топлива для достижения целей способа, поскольку в результате данной реакции число молекул в единице объема удваивается, а продукты реакции имеют теплоемкость в полтора раза больше исходных. Другими словами, реакция может действовать не только как аккумулятор энергии теплового движения молекул, что используется в указанных установках, но и как термокомпрессор и холодильник одновременно. Это предоставляет благоприятную возможность для осуществления параллельного теплового рабочего цикла, приближенного к изотермическому, в котором нагревателем будет тело турбины, а холодильником реактор с протекающим химическим процессом.
2. Невысокая эффективность преобразования топлива (55% H2O и 12% СН4 проходили реактор без преобразования) при установленных температурах 650-750°С. Это говорит о том, что в используемом реакторе падает скорость восстановления кривой распределения молекул по скоростям при столкновительном механизме теплопередачи от нагреваемых стенок реактора в газовый объем.
3. Возможность потери водорода и высокая степень пожароопасности, возникающая при нарушении герметичности трубопровода, по которому водяной газ подается в камеры сгорания.
Задача изобретения состоит в том, чтобы доработать способ применительно к установкам небольшой мощности с радиальными турбинами, максимально используя возможности, обусловленные свойствами эндотермической реакции, с целью повышения КПД и безопасности эксплуатации.
Решение поставленной изобретательской задачи достигается тем, что преобразование тепловой энергии проводят как в основном тракте газотурбинной установки (ГТУ), так и в дополнительном, включающим реактор парового реформинга, совмещенный с реактивной газовой турбиной, которая находится в тепловом контакте с ротором основного тракта. Причем КПД дополнительного тракта будет превышать КПД основного тракта за счет того, что процесс химического преобразования сопровождается понижением температуры с увеличением теплоемкости и числа молекул продуктов реакции. Дополнительный вращающий момент возникает при выпуске через реактивные сопла в камеру сгорания преобразованного топлива, которое получают в ходе эндотермической реакции углеводородного топлива с парами воды, предварительно перегретыми теплом отработанных газов, протекающей в реакторе, расположенном в полости реактивной турбины. Реакция протекает и за счет охлаждения ротора ГТУ. Смесь исходного углеводородного топлива с парами воды поступает от парогазогенератора в реактор через полый вал. В таком способе отпадает необходимость во внешних трубопроводах для транспортировки водяного газа в камеры сгорания.
Повышения эффективности реакции при пониженных температурах можно добиться путем улучшения условий теплопередачи, что сводится к увеличению площади теплопередающих поверхностей с электронным механизмом теплопередачи, разделяющих реакционный газовый объем со столкновительным механизмом теплопередачи. Дополнительно желательно иметь в реакционном объеме некоторый избыток углерода в состоянии термодинамического равновесия твердой и газообразной фаз при температуре до 1000°С. Этим требованиям удовлетворяет, например, пористый графит.
Кроме этого, реакцию нужно проводить в некотором диапазоне температур, начиная с меньших на входе в реактор, увеличивая температуру по мере уменьшения концентрации исходных продуктов, так как уменьшается вероятность столкновения нужных молекул с энергиями выше пороговых.
Для реализации этих требований предлагается использовать реактор, содержащий заменяемый пористый металлоуглеродный контейнер, в котором температура увеличивается от входа к выходу в диапазоне 400-1000°С, составляя в среднем 700°С. Такие температурные условия реализуются в роторах ГТУ, которые нуждаются в охлаждении. В камерах сгорания газотурбинных установок имеются большие потоки лучистой энергии, которые тоже можно использовать для нагрева реактора. При расположении реактора реформинга внутри ротора турбины (преимущественно радиальной), появляется возможность использовать для охлаждения турбины дополнительный тепловой цикл, совмещенный с процессом преобразования топлива, и продукты реакции, обладающие повышенной теплоемкостью по сравнению с исходными. Для этого необходимо нагретую смесь водяного пара и топлива подать через полый вал ГТУ во внутреннюю полость реактивной турбины, где расположен реакционный объем, заполненный пористым металлоуглеродным контейнером, находящейся в тепловом контакте с ротором активной турбины. Посредством теплопроводящего контакта с ротором силовой турбины реакционный объем будет восполнять энергию на реакцию реформинга, охлаждая силовую турбину. За счет выбрасывания продуктов реакции через реактивные сопла турбина получит дополнительный вращающий момент.
В результате реакции происходит удвоение числа молекул в единице объема. Из основного уравнения молекулярно-кинетической теории Р=n k Т следует, что давление газа Р не зависит от его природы, а определяется только концентрацией молекул n и температурой Т. Следовательно, локальный процесс увеличения концентрации неразрывно связан с локальным изменением температуры в ходе реакции. Поэтому для оценки термического КПД такого цикла в качестве температуры холодильника следует принимать не температуру компонентов, вступающих в реакцию, а температуру продуктов реакции после столкновения, которая существенно ниже. За счет поглощения тепла продуктами реакции и выравнивания температуры будет происходить увеличение давления. Кроме того, давление такого гетерогенного рабочего тела будет увеличиваться за счет сжатия центробежными силами с затратой механической энергии вращения турбины. Таким образом, в отличие от теплового цикла, где рабочим телом является идеальный газ, затраты механической энергии на сжатие рабочего тела, реагирующего с поглощением энергии, будут почти вдвое меньше. Как известно, полезная работа теплового цикла, равная разнице между затраченной и полученной при совершении цикла работы, определяется балансом теплоты, полученной от нагревателя и переданной холодильнику. Следовательно, при одинаковом тепловом балансе КПД цикла с идеальным газом будет ниже. Кроме того, процесс сжатия химически реагирующего с поглощением тепла рабочего тела приближенно можно рассматривать как изотермический, что тоже ведет к увеличению КПД цикла. Часть тепловой энергии, полученной в процессах регенерации тепла отработанных газов и охлаждения турбины, будет преобразовано в механическую за счет выпуска водяного газа через реактивные сопла. При дожигании водяного газа за турбиной будет высвобождаться скрытая теплота химического преобразования, которая будет увеличивать температуру и энергетический потенциал основного рабочего тела. При расположении реактора внутри ротора отпадает необходимость во внешних трубопроводах для подачи водяного газа в камеры сгорания. Для многоступенчатых установок, где первые-вторые ступени сопряжены с такими химическими охладителями, естественным образом может быть реализована более равномерная тепловая нагрузка на различные ступени ГТУ, позволяя поднять начальную температуру рабочего тела основного тракта и термический КПД цикла в целом.
Динамика преобразования тепловой энергии выглядит следующим образом. Воздух, являющийся рабочим телом основного тракта ГТУ, засасывается и сжимается компрессором для подачи в камеру сгорания. Одновременно в камеру сгорания подают и воспламеняют газообразное топливо. За счет этого возрастает потенциальная энергия рабочего тела, которая преобразуется в кинетическую энергию газового потока при расширении в направляющих сопловых решетках. Кинетическая энергия потока частично преобразуется в механическую за счет передачи импульса лопаткам рабочего колеса. Кроме того, рабочему колесу передается и энергия торможения в виде тепловой, идущей на нагрев. Часть механической энергии, полученной в этом процессе, затрачивается для привода в действие компрессора. Полезная механическая энергия определяется энергетическим балансом рабочего тела до расширения и после расширения на рабочей турбине, с учетом теплоотдачи на детали корпуса. Для возврата части энергии в основной рабочий тракт используется дополнительный тракт и процесс регенерации, включающий химическую реакцию, идущую с поглощением энергии теплового движения молекул. В этом процессе нагнетают воду в полости, охватывающие корпус установки, и нагревают через промежуточный теплоноситель до парообразного состояния. Полученный пар смешивают с углеводородным топливом и нагревают в газовом потоке, покидающем установку. Затем перегретые компоненты через полый вал установки подают в реактор, расположенный на роторе ГТУ. Реактор выполнен во внутренней полости турбины, имеющей реактивные сопла. Эта турбина либо находится в тепловом контакте с рабочей турбиной, либо является ее частью. Полость реактора частично заполнена пористым металлоуглеродным контейнером, предназначенным для повышения эффективности химического преобразования. Процесс увеличения потенциальной энергии дополнительного рабочего тела (парогазовой смеси), включающий работу водяного насоса, нагрев за счет теплоотдачи корпуса и отработанных газов, продолжается сжатием в ходе эндотермической реакции во внутренней полости реактивной турбины. Причем увеличение концентрации молекул в единице объема частично происходит за счет затрат механической энергии, а частично за счет энергии теплового движения молекул в ходе химического преобразования. Эта энергия восстанавливается путем передачи энергии торможения газового потока основного тракта от корпуса турбины, тем самым охлаждая ее, в реакционный объем. Потенциальная энергия такого гетерогенного рабочего тела, изменяющего свой состав в ходе теплового цикла, будет увеличиваться и после выхода за пределы металлоуглеродного контейнера. В полости перед реактивными соплами продукты реакции могут частично расширяться и дополнительно нагреваться от корпуса турбины. При расширении в реактивных соплах потенциальная энергия рабочего тела дополнительного тракта преобразуется в кинетическую энергию газовой струи. За счет реактивной отдачи ротор получает дополнительный вращающий момент.

Claims (1)

  1. Способ охлаждения ротора газотурбинной установки, осуществляемый путем непрерывного преобразования энергии за счет эндотермической реакции, заключающийся в том, что сжимают воздух в компрессоре, затем подают его в камеру сгорания для сжигания топлива, а полученный при сжигании горячий газ подают для расширения на активную газовую силовую турбину, при вращении которой получают ту часть полезной механической энергии, которую используют для привода компрессора, при этом осуществляют дополнительное увеличение потенциальной энергии рабочего тела путем дожигания преобразованного топлива с повышенной абсолютной теплотворной способностью, которое получают за счет эндотермической реакции исходного топлива в реакторе парового реформинга, обогрев реакционного объема которого осуществляют за счет отработанного тепла газа силовой турбины, отличающийся тем, что проводят параллельный тепловой цикл, в котором нагретую в парогенераторе смесь паров воды с углеводородным топливом подают через полый вал газотурбинной установки в реакционный объем, содержащий пористый металлоуглеродный контейнер, расположенный во внутренней полости реактивной газовой турбины, которая находится в тепловом контакте с силовой или является ее частью, приводят его во вращательное движение, за счет чего частично сжимают смесь в ходе эндотермической реакции, нагревают частично за счет охлаждения силовой турбины, а затем выпускают через реактивные сопла, создавая дополнительный вращающий момент.
RU2009131397/06A 2009-08-18 2009-08-18 Способ охлаждения ротора газотурбинной установки, осуществляемый путем непрерывного преобразования энергии за счет эндотермической реакции RU2430251C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009131397/06A RU2430251C2 (ru) 2009-08-18 2009-08-18 Способ охлаждения ротора газотурбинной установки, осуществляемый путем непрерывного преобразования энергии за счет эндотермической реакции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009131397/06A RU2430251C2 (ru) 2009-08-18 2009-08-18 Способ охлаждения ротора газотурбинной установки, осуществляемый путем непрерывного преобразования энергии за счет эндотермической реакции

Publications (2)

Publication Number Publication Date
RU2009131397A RU2009131397A (ru) 2011-02-27
RU2430251C2 true RU2430251C2 (ru) 2011-09-27

Family

ID=44804296

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009131397/06A RU2430251C2 (ru) 2009-08-18 2009-08-18 Способ охлаждения ротора газотурбинной установки, осуществляемый путем непрерывного преобразования энергии за счет эндотермической реакции

Country Status (1)

Country Link
RU (1) RU2430251C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810244B (zh) * 2020-04-10 2024-12-13 哈尔滨工业大学(深圳) 利用蒸汽重整反应的燃气轮机涡轮叶片冷却系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125793A (en) * 1991-07-08 1992-06-30 The United States Of America As Represented By The Secretary Of The Air Force Turbine blade cooling with endothermic fuel
RU2085754C1 (ru) * 1990-02-01 1997-07-27 Маннесманн Аг Способ непрерывного преобразования энергии в газотурбинной установке и газотурбинная установка для его осуществления
WO1998048161A1 (de) * 1997-04-21 1998-10-29 Siemens Aktiengesellschaft Verfahren zum betreiben einer gasturbine und danach arbeitende gasturbine
US6357217B1 (en) * 1999-07-26 2002-03-19 Alstom (Switzerland) Ltd Endothermic cooling of guide vanes and/or moving blades in a gas turbine
JP2005002928A (ja) * 2003-06-12 2005-01-06 Central Res Inst Of Electric Power Ind ガスタービン高温部品の冷却方法及びそれを利用したガスタービン
RU43917U1 (ru) * 2004-08-09 2005-02-10 Открытое акционерное общество "Научно-исследовательское предприятие гиперзвуковых систем" (ОАО "НИПГС") Газотурбинная установка с термохимическим реактором и с впрыском пара

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2085754C1 (ru) * 1990-02-01 1997-07-27 Маннесманн Аг Способ непрерывного преобразования энергии в газотурбинной установке и газотурбинная установка для его осуществления
US5125793A (en) * 1991-07-08 1992-06-30 The United States Of America As Represented By The Secretary Of The Air Force Turbine blade cooling with endothermic fuel
WO1998048161A1 (de) * 1997-04-21 1998-10-29 Siemens Aktiengesellschaft Verfahren zum betreiben einer gasturbine und danach arbeitende gasturbine
US6357217B1 (en) * 1999-07-26 2002-03-19 Alstom (Switzerland) Ltd Endothermic cooling of guide vanes and/or moving blades in a gas turbine
JP2005002928A (ja) * 2003-06-12 2005-01-06 Central Res Inst Of Electric Power Ind ガスタービン高温部品の冷却方法及びそれを利用したガスタービン
RU43917U1 (ru) * 2004-08-09 2005-02-10 Открытое акционерное общество "Научно-исследовательское предприятие гиперзвуковых систем" (ОАО "НИПГС") Газотурбинная установка с термохимическим реактором и с впрыском пара

Also Published As

Publication number Publication date
RU2009131397A (ru) 2011-02-27

Similar Documents

Publication Publication Date Title
EP2203680B1 (en) Methods and systems for sulphur combustion
US20230115221A1 (en) Method and apparatus for thermal energy storage using rotary generated thermal energy
US7337612B2 (en) Method for the utilization of energy from cyclic thermochemical processes to produce mechanical energy and plant for this purpose
JP5956087B2 (ja) ガスタービン装置の操作方法及び様式
US3765167A (en) Power plant process
WO2000066887A9 (en) Thermodynamic process and system for generating work
WO1999043765A1 (en) Method for producing lower olefins, reactor for the pyrolysis of hydrocarbons and device for quenching pyrolysis gases
WO2012060739A1 (ru) Способ работы газотурбинной установки
RU2708957C1 (ru) Газотурбинная установка газоперекачивающего агрегата
RU2430251C2 (ru) Способ охлаждения ротора газотурбинной установки, осуществляемый путем непрерывного преобразования энергии за счет эндотермической реакции
RU2624690C1 (ru) Газотурбинная установка и способ функционирования газотурбинной установки
RU2004134298A (ru) Силовая установка с импульсной детонацией
RU2639397C1 (ru) Способ работы газотурбинной установки на метаносодержащей парогазовой смеси и устройство для его осуществления
RU2050443C1 (ru) Комбинированная парогазовая энергетическая установка
RU2009148393A (ru) Способ производства азотной кислоты (варианты) и агрегат для производства азотной кислоты
WO2018134720A1 (en) Supercritical water generator and reactor
AU2022253251A1 (en) On-demand hydrogen for power generation
US20240343562A1 (en) Method and facility for conversion of ammonia and methanol into hydrogen using rotary generated thermal energy
RU43917U1 (ru) Газотурбинная установка с термохимическим реактором и с впрыском пара
RU2626291C2 (ru) Способ преобразования энергии
Kalashnikova et al. Integration of liquid transportation fuel production into airless injection gas-steam cycle
RU2774007C1 (ru) Способ работы контактной газотурбинной установки на метановодородной парогазовой смеси
RU61797U1 (ru) Энергетическая газотурбинная установка комбинированного цикла
RU119860U1 (ru) Отопительный котел
RU2599407C1 (ru) Способ работы газотурбинной установки непрерывного действия

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120819