TR202015852A2 - Performing automatic analysis of heavy metals on the microfluid platform - Google Patents
Performing automatic analysis of heavy metals on the microfluid platformInfo
- Publication number
- TR202015852A2 TR202015852A2 TR2020/15852A TR202015852A TR202015852A2 TR 202015852 A2 TR202015852 A2 TR 202015852A2 TR 2020/15852 A TR2020/15852 A TR 2020/15852A TR 202015852 A TR202015852 A TR 202015852A TR 202015852 A2 TR202015852 A2 TR 202015852A2
- Authority
- TR
- Turkey
- Prior art keywords
- arsenic
- detection
- channel
- control channel
- pump
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title description 5
- 229910001385 heavy metal Inorganic materials 0.000 title description 3
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 60
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 44
- 238000001514 detection method Methods 0.000 claims abstract description 42
- 239000003651 drinking water Substances 0.000 claims abstract description 17
- 235000020188 drinking water Nutrition 0.000 claims abstract description 17
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 14
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 14
- 238000002835 absorbance Methods 0.000 claims description 31
- 239000002105 nanoparticle Substances 0.000 claims description 27
- 239000011521 glass Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 13
- 239000010931 gold Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000008447 perception Effects 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 4
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 claims 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims 2
- 238000002347 injection Methods 0.000 claims 2
- 239000007924 injection Substances 0.000 claims 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 2
- 235000013524 arak Nutrition 0.000 claims 1
- 235000020053 arrack Nutrition 0.000 claims 1
- -1 Polydimethylsiloxane Polymers 0.000 abstract description 4
- 238000002174 soft lithography Methods 0.000 abstract description 2
- 241000195493 Cryptophyta Species 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000011005 laboratory method Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical compound [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 2
- 241000446313 Lamella Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 229940000489 arsenate Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 235000019504 cigarettes Nutrition 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 235000017274 Diospyros sandwicensis Nutrition 0.000 description 1
- 241000282838 Lama Species 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 238000001391 atomic fluorescence spectroscopy Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002444 silanisation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- MNRILEROXIRVNJ-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=NC=N[C]21 MNRILEROXIRVNJ-UHFFFAOYSA-N 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7756—Sensor type
- G01N2021/7763—Sample through flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7769—Measurement method of reaction-produced change in sensor
- G01N2021/7783—Transmission, loss
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1813—Specific cations in water, e.g. heavy metals
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Buluş, yumuşak litografi yöntemi ile üretilen Polidimetilsiloksan (PDMS) bazlı mikroakışkan sistem ve şırınga pompasının verip-çekme yöntemi kullanılarak hızlı ve istenilen arsenik konsantrasyon aralığının altında (?10 ?g/L) içme suyundan arsenik tespiti ile ilgilidir.The invention relates to the detection of arsenic from drinking water quickly and below the desired arsenic concentration range (?10 ?g/L) using the Polydimethylsiloxane (PDMS) based microfluidic system and syringe pump produced by soft lithography method.
Description
TARIFNAME AGIR METALLERIN OTOMATIK ANALIZININ MIKROAKISKAN PLATFORM ÜSTÜNDE GERÇEKLESTIRILMESI Bulusun Ilgili Oldugu Teknik Alan Bulus, içme suyundaki arsenik miktarîFEIO ug/L “e kadar tespit edebilen bir mikroakTskan platform ile ilgilidir. DESCRIPTION MICROFLUIDIC PLATFORM FOR AUTOMATIC ANALYSIS OF HEAVY METALS REALIZATION ON Technical Field to which the Invention Relates The invention is a microfluidics that can detect the amount of arsenic in drinking water up to 100 ug/L. It's about the platform.
Bulusla Ilgili Teknigin Bilinen Durumu (Önceki Teknik) Içme sularEida bulunan agm metaller insan saglEgEiçin oldukça ciddi bir sorundur. Dünya Saglk Örgütü (WHOYne göre, bu metallerden birisi olan arsenigin içme suyundaki maksimum konsantrasyonu 10 ug /L olmas Egerekmektedir. Known Status of the Art Related to the Invention (Prior Art) Metals found in drinking water are a serious problem for human health. World According to the Health Organization (WHO), one of these metals, arsenic, is present in drinking water. The maximum concentration should be 10 ug /L.
Günümüzde arsenik algEiamasD için çesitli laboratuvar teknikleri (atomik absorbans spektroskopisi, atomik Ilüoresans spektroskopisi, kromatografi), arsenik kitleri, renk ölçümsel metotlar ve mikroak @kan cihazlar kullan Jhiaktad E. Nowadays, various laboratory techniques (atomic absorbance) are used for arsenic algaemasD. spectroscopy, atomic fluorescence spectroscopy, chromatography), arsenic kits, colorimetric Use methods and microflow devices Jhiaktad E.
Kullanilan laboratuvar teknikleri 1 tig/Uye kadar alglama yapabilmektedir. Literatürde bahsedilen laboratuvar teknikleri oldukça pahal iolup iyi egitimli teknisyenlere ihtiyaç duymaktad n. The laboratory techniques used can detect up to 1 tig/U. in literature The laboratory techniques mentioned are quite expensive and well-trained technicians are needed. you hear.
NIPSOM, Merck, AAN, Hach EZ, Arsenator gibi arsenik test kitleri ise 20-50 tig/Uye kadar algîüama konsantrasyonuna sahip olabilmektedir. Ticari arsenik test kitleri ekonomik ve tasmabilir olmasEia karsß daha az güvenilirlige sahip olup Dünya Saglk Örgütü°nün belirttigi arsenik alg lama konsantrasyonuna inememektedir. Arsenic test kits such as NIPSOM, Merck, AAN, Hach EZ, Arsenator are up to 20-50 tig/U. It may have a detection concentration. Commercial arsenic testing kits are affordable and It is less reliable due to its portability and is not recommended by the World Health Organization. It cannot reach the arsenic detection concentration specified.
Renk ölçümsel metotlar ise arsenat ve fosfat konsantrasyon bazlüölçüm yapmaktadE. Renk ölçümsel analizler basit, hâlEve ucuz yöntemler olmas Eta karsîi içme suyunun içinde benzer kimyasal özelliklere sahip olan arsenat ve fosfat& beraber bulunmas Elgüama için dezavantaj olusturmaktad Ji miktar da kadar arsenik (As3+) miktarini tespit edebilen bir mikroaklslkan cihaz ile ilgilidir. Colorimetric methods, on the other hand, measure based on arsenate and phosphate concentration. Colour Measurement analyzes are simple, inexpensive methods, and similar results are obtained against Eta in drinking water. The presence of arsenate and phosphate, which have chemical properties, is a disadvantage for Elgüama. It constitutes It is about a microfluidics device that can detect the amount of arsenic (As3+).
Söz konusu mikroakßkan cihazda arsenik miktarFaltm nanosensör (Au-TA-TG) “deki TG ( Thioguanine) “nin yüzeyindeki serbest -SH gruplarjile As3+ etkilesimi ve böylece altEi nanoparçac Elarîiîi kümelenmesi ve böylece renk degisimi esas Ela göre tespit edilmektedir. The amount of arsenic in the microfluidic device in question is TG (TG) in the Faltm nanosensor (Au-TA-TG). As3+ interaction with free -SH groups on the surface of Thioguanine) and thus altEi The clustering of nanoparticles Elarîiîi and thus the color change is determined mainly according to Elaîi.
Bu çal @mada mikroakßkan sistem kâgî bazlDolup altEl nanoparçac Elar ekstra bir islem ile kimyasal konjugasyona maruz bßaküg ardEidan arsenik ile yfgßma olusturarak bir algühma yaplmsui Bulusun KEa Aç klamas Eve Amaçlarü Mevcut bulus, yukar da bahsedilen gereksinimleri kars Dayan, dezavantajlar brtadan kaldlran ve ilave baz îavantajlar getiren, mikroaklgkan platform üzerinde arsenik tespiti ile ilgilidir. In this study, the microfluidic system was filled with paper-based nanoparticle Elar with an extra process. It is exposed to chemical conjugation and then forms a chemical reaction with arsenic. madesui KEa Description and Purposes of the Invention The present invention meets the above-mentioned requirements, eliminating the disadvantages. and the detection of arsenic on a microfluidics platform, which brings some additional advantages.
Bulus mikroakls'kan sistem ile içme suyunda bulunan aglr metaller Dünya Sagl k Örgütü (WHO)”ne göre bulunmasîgereken maksimum arsenik konsantrasyonundan (10 tig/L) daha asag Beviyeye kadar (510 ug/ L) analiz imkân Esunmaktad E. Heavy metals found in drinking water with the invention microfluidics system World Health Organization More than the maximum arsenic concentration (10 tig/L) required according to (WHO) Analysis is possible down to five levels (510 ug/L).
Bu bulus ile analizler daha ekonomik ve daha hßlüyapülnaktadî Literatürdeki diger tekniklere göre kullaniiEdaha kolay bir yöntemdir. Diger yandan arsenik alg [Ianmas Jiçin kullanilan altEi (Au) nanoparçacüâlar algüamada yüksek hassaslk ve seçicilik sunmaktadm Ayrîia bulustaki yöntemde alti nanoparçaeüglara, ekstra bir kimyasal konjugasyon ve fonksiyonlama gibi ekstra bir islem uygulanmayg› SEEiga pompas :ile verip çekme yöntemi uygulanarak ak si saglanmaktad Lr. With this invention, analyzes are more economical and more convenient than other studies in the literature. It is an easier method to use compared to other techniques. On the other hand, arsenic algae [Ianmas Jiçin The used altei (Au) nanoparticles offer high sensitivity and selectivity in detection. Moreover, in the method of the invention, six nanoparticles are combined with an extra chemical conjugation and No extra process such as functionalization is applied. SEEiga pump: give and take method The opposite is ensured by applying Lr.
Bulus ile slnlnga pompasl ile verip çekme yöntemi kullanllmasl sayesinde az örnek hacmi kullan lmas lve az Örnek miktar ile de belirtilen arsenik konsantrasyon degerinin alt na (510 ug/ L) ulas Habilmektedir. Less sample volume thanks to the invention and the use of the inhalation pump method. The sample amount must be used below the specified arsenic concentration value (510 ug/L) can be reached.
Bulusta bahsedilen yöntemde PDMS tabanlümikroakßkan platform kanallarßda, sîßga pompas :Sayesinde bir akg olusturulmustur. Smmga pompas Jyardîhgila mikroakßkan kanal içerisine verilen arsenik örnegi ve altîl nanoparçac Eklar, cam lamel yüzeyinde bulunan SH- baglar na baglanmaktad i; bir y g Ema/çökme/kümelesme olusmamaktad E. In the method mentioned in the invention, PDMS-based microfluidic platform channels are used. Pump: Thanks to it, a flow has been created. Smmga pump Jyardîhgila microfluidic channel The arsenic sample and subsub-nanoparticle inserts into the glass coverslip showed that the SH- It was tied to its ties; Ema/collapse/clustering does not occur.
Bulus ile algEama islemi, spektrometre Cihaz Dkullanlarak algûama kanal jve kontrol kanal: aras Eldaki belli bir dalga boyunda absorbans fark îla bak Iarak gerçeklestirilmektedir. Detection process with the invention, detection channel and control channel using spectrometer device: It is carried out by looking at the absorbance difference at a certain wavelength in the hand.
Bulusu Aç Rlayan Sekillerin Tan Iîilar D Sekil 1: Mikroak slkan platformun sematik gösterimi. Diagnostics of the Figures Revealing the Invention Figure 1: Schematic representation of the microfluidic platform.
Sekil 2: Fark]Tkonsantrasyonlardaki; sitasHile a) 1 ug/L, b) 10 ug/L, c) 100 ug/L ve d) 1 ing/L arsenik örneklerinin iki kanal arasEidaki absorbans farkllklar] Grafik, absorbans farkl 31111arjle arsenik konsantrasyon farklEÜEIîlarEaras îidaki iliskiyi göstermektedir. Figure 2: Difference]T in concentrations; sitasHile a) 1 ug/L, b) 10 ug/L, c) 100 ug/L and d) 1 ing/L absorbance differences between two channels of arsenic samples] Graph, absorbance Differences in arsenic concentration with different charges show the following relationship.
Sekil 3: FarklEkonsantrasyonlardaki arsenik örneklerinin sEEiga pompas Ele akß kullan [[arak mikroak Ekart platformda analizi. Figure 3: Flow of arsenic samples at different concentrations through SEEiga pump [[as Analysis on mikroak Ekart platform.
Bulusii Olusturan Unsurlarln/K\S\mlar n/Parçalarln Tan mlar. \ Bu bulusla gelistirilen mikroakükan platformun daha iyi açEklanabilmesi için hazîlanan sekillerde yer alan parçalar/ktsbiilar/unsurlar asag Lda belirtilmektedir. Definitions of the Elements/Parts/Parts That Make Up the Invention. \ Prepared to better explain the microfluidic platform developed with this invention. The parts/components/elements in the figures are stated below.
Bulusun Ayi' îlt [IJDAç [klamas 1 Bu bulusta, yumusak litografi yöntemi ile üretilen Polidimetilsiloksan (PDMS) bazlE mikroakgkan yonga (3) ve sîmga pompasj kullantlarak hElD ve istenilen arsenik konsantrasyon aralfgmm altßda (510 tig/L) içme suyundan arsenik tespiti gerçeklestirilmektedir. Bulsun Ayi' îlt [IJDAç [klamas 1 In this invention, Polydimethylsiloxane (PDMS) based materials produced by soft lithography method. hElD and desired arsenic by using microfluidics chip (3) and sîmga pump. Detection of arsenic from drinking water below the concentration range (510 tig/L) is being carried out.
Bulus içme suyundaki arsenik miktarEiDtespit edebilen mikroakgkan platformu Sekil l”de gösterildigi gibi; alg [lama kanalîö) ve kontrol kanalEiE(5) içeren PDMS bazllnikroaküskan yonga (3), algJhma kanalj(6) ve kontrol kana13(5) arasidaki yüzeye baglanmß olan Au nanoparçac Jstlariin olusturdugu absorbans farkL degerinin ölçülmesini saglayan ve mikroak skan yonga (3) cya bag] \(3) Spektrometre cihaz) K7), bahsi geçen absorbans farkl degerinin ölçümü için mikroaklskan yongan n (3) ayd nlat llnasln baglayan dk kaynagl !(1), PDMS bazleikroaklêkan yongaya (3) tutturulan, As molekülü Au nanoparçaclklarüiîrl yüzeye -SH baglar Elsayesinde tutunmas için yüzeyi silanlama islemi ile fonksiyonlanmß cam yüzeyi (4) içermektedir. The invention is a microfluidics platform that can detect the amount of arsenic in drinking water. Figure 1 As shown; PDMS based microfluidics containing algae (lama channel) and control channel (5) Au bonded to the surface between the chip (3), detection channel (6) and control channel 13 (5). It enables the measurement of the absorbance difference value created by nanoparticle particles and microfluidics chip (3) cya bag] \(3) Spectrometer device) K7), the mentioned absorbance difference low source !(1), which connects the illumination of the microfluidics chip (3) to measure the value As molecule Au nanoparticles are attached to the PDMS-based microfluidics chip (3). -SH bonds to the surface. Glass surface is functionalized with silanation process for adhesion on its surface. It contains the surface (4).
PDMS bazljmikroakßkan yonga (3) cam yüzeye (4) 2 plastik tabaka ile sfkßtmllarak tutturulmaktadi Spektrometre cihaz: (7) mikroakgkan yonga (3)”ya fiber kablo ile baglanmaktad î!. The PDMS-based microfluidic chip (3) is compressed onto the glass surface (4) with 2 plastic layers. Spectrometer device: (7) microfluidics chip (3) via fiber cable It is being connected!
Bulus mikroak :Cikan platform üzerinde içme suyundaki arsenik miktarEiEtespit etme yöntemi; Algîllama kanalE(6) ve kontrol kanalßEÖ) içeren cam yüzeyin (4) silanlanmasüve yüzeyde -SH baglarii olusturulmasü Mikroakgkan yonga (3) ile birlestirilen cam yüzeyin (4) giris noktalarmdan tris(2- carboxyethyl)phosphine (TCEP) verilerek inkübasyonun saglanmas Tlve ardmdan her iki kanali distile su ile ykanmas] Alglama kanal ma (6) arsenik solüsyonunun ve kontrol kanal Tria (5) içme suyunun s rilnga pompasl lile verip-çekme veya sadece verme yöntemi kullanllarak enjekte edilmesi ve alg `Dama kanal _(6) yüzeyinde As-S baglarlîilîl olusturulmasî Alg lama (6) ve kontrol kanalnn (5) her ikisinin de distile su ile yLkanmasLJ Alg :Dama (6) ve kontrol kanalIiIi (5) her ikisine de smmga pompas :ile verip-çekme yöntemi kullan larak alti nanoparçac R solüsyonunun enjekte edilmesi, Alg Jlama (6) ve kontrol kanali] (5) her ikisinin de tekrar distile su ile ykanmasÇ Alglama (6) ve kontrol kanalT(5) arasildaki alti] nanoparçacgîî absorbe oldugu 500-600 nm dalga boyu band nda absorbans degeri fark n n spektrometre cihazl (7) ile tespit edilmesi Bulus mikroakßkan platformu ile arsenik tespitinde öncelikle kanallari yüzeyi silanlama islemi ile fonksiyonlanmaktadi. Algllama kanalia (6) arsenik solüsyonu enjekte edilmekte ve As-S bagjolusmasüsaglanmaktadm. Böylece algühma kanal Ilda (6) bulunan SH- baglar: azalmakta olup kontrol kanalEia (5) göre daha az miktarda altEi nanoparçaelk yüzeye baglanmaktad Ji Böylelikle kontrol kanaanLn absorbans degeri alnglama kanaana göre daha yüksek olmaktad E. Iki kanal aras Eidaki absorbans farkEarsenik miktarEiDbelirlemek için kullan linaktad Ji Cam lamel yüzeyinin fonksiyonlanmasl isleminde cam lamel sonikatörde oda 3 daki glnda ardIldan hElEa N; gazüile kurutulup 4 dk oksijen plazma islemine tabi tutularak yüzeyleri aktive edilmektedir. Aseton içerisinde hazmlanan 3-MPS, temizlenen cam lamelin üzerine aktarjînakta ve 2 saat oda sIlaklIgîlda karanlEkta inkübe edilmektedir. Bu sayede cam lam yüzeylerinde -SH baglarjolusmas Elsaglanmaktad IL Prosedürün ardidan camlar nitrojen gaz: ile kurutulmaktad n. Invention microfluidics: Method for detecting the amount of arsenic in drinking water on the emerging platform; Silanation of the glass surface (4) containing the detection channel E (6) and the control channel EÖ) Formation of -SH bonds on the surface Tris(2-) is obtained from the entry points of the glass surface (4) combined with the microfluidics chip (3). Incubation was ensured by administering carboxyethyl)phosphine (TCEP) Tl and then each washing two channels with distilled water] Detection channel MA (6) of arsenic solution and control channel Tria (5) of drinking water Inject using the injection-pull or delivery-only method with a syringe pump. and creation of As-S bonds on the surface of the algae channel _(6) Washing both the detection (6) and control channel (5) with distilled water. Perception: Checkers (6) and control channels (5) are supplied and withdrawn to both via the seal pump. Injecting six nanoparticle R solutions using the Detection (6) and control channel (5) should both be washed again with distilled water. The six nanoparticles between the detection (6) and control channels (5) are absorbed. The difference in absorbance value in the 500-600 nm wavelength band was measured with the spectrometer device (7). to be detected In the detection of arsenic with the invention microfluidic platform, firstly the surface of the channels is silanized. It functions with the process. Arsenic solution is injected into the detection channel (6). and As-S bonding is provided. Thus, SH- bonds located in the algühma channel Ilda (6): decreases and less amount of altEi nanoparticles reach the surface compared to the control channel (5). Thus, the absorbance value of the control channel is higher than that of the detection channel. E. The absorbance difference between the two channels is used to determine the amount of arsenic EiD. Use linactad Ji In the process of functionalizing the glass lamella surface, the glass lamella was heated in the sonicator in room 3. successor hElEa N; The surfaces were dried with gas and subjected to oxygen plasma treatment for 4 minutes. is activated. 3-MPS digested in acetone was applied to the cleaned glass coverslip. transfer and incubate for 2 hours in the dark at room humidity. In this way, the glass slide Formation of -SH bonds on the surfaces is provided. Following the procedure, the glasses are filled with nitrogen gas: It is dried with
Bulusun bir uygulamaslnda mikroak skan platform üzerinde içme suyundaki arsenik miktarlnl tespit etme yöntemi; 0 Cam yüzeyin (4) aseton içerisinde hazElanan 3-MPS ile ve 2 saat oda sßaklEgEida karanlkta inkübe edilerek silanlanmas Eve yüzeyde -SH baglarüiîl olusturulmasÇ o Siiga içerisindeki l mL arsenik solüsyonunun smßga pompasj ile verip-çekme yöntemi veya 100 mL arsenik solüsyonun siiga pompas Jile sadece verme yöntemi kullanilarak algElama kanal Ea (6) enjekte edilmesi ve sîßga içerisindeki l mL içme suyunun süßga pompas :ile verip-çekme yöntemi veya 100 mL içme suyunun sißga pompas ile sadece verme yöntemi kullan Iarak kontrol kanal Ela (5) enjekte edilmesi, o Algjlama (6) ve kontrol kanaliîi (5) her ikisine de smßga pompasEile verip-çekme yöntemi kullanührak 100 uL altß nanoparçack solüsyonunun kanal içerisine 75 kez verip-çekilerek enjekte edilmesi, o Alg :lama (6) ve kontrol kanal:(5) aras Eldaki altEi nanoparçactgîi absorbe oldugu 530 nm dalga boyu bandüda absorbans degeri farkEiEi spektrometre cihazD(7) ile tespit edilmesi Diger yandan mikroakßkan yonga üretimi için, Formlabs Form2 üç boyutlu (3D) yazEElan seffaf reçine ile elde edilen kalglara (mold), 10:1 oranmda hazElanan PDMS karEEnE dökülmekte ve 68°C” de etüvde sertlesmesi saglanmaktad n. Sertlesen PDMS çip, kallptan dikkatlice çlkartllmakta ve kanallara giris ve çlkls noktalarl aç lrnaktadln. Ardlndan, cam lamel üzerine birlestirilecek ksml 3.5 dakika oksijen plazmaya maruz blrakllmaktadlrt Yüzeyi 3-MPS ile karakterize edilen cam lamel ile PDMS çip üst üste birlestirilmekte ve seffaf reçine kullanüarak üretilen kalplar arasEa sandviç seklinde yerlestirilerek vidalanmaktad E. Kanallar& (kontrol kanal Dve alg Jhma kanal& her biri deiyonize (DI) su ile ylanmaktadi. Ardîldan, her kanala indirgeyici bir madde olan tris(2- carboxyethyl)phosphine (TCEP) verilmekte ve 10 dakika aydîllkta ve oda sßakltgßda inkübe edilmektedir. Islemin ardIidan PDMS bazlümikroakßkan yonga üstündeki 2 ayrE kanala, bir kanala arsenik içeren örnek (algtlama kanalû, diger kanala arsenik içermeyen örnek (kontrol kanal|)| slnlrlga pompasl ile verip-çekme yöntemi kullan larak 10 dakika boyunca verilmektedir. Kanallar DI su ile temizlendikten sonra, altEi nanoparçaeik solüsyonu simga pompasljle verip-çekme yöntemi ile her iki kanala 10 dakika boyunca verilmekte ve 2 saat boyunca karanltlstta oda sLdaklLgLnda inkübe edilmektedir. Islemin daha kLsa sürmesi için alt n nanoparçaclklar yüzeye pompa yard mlyla da verilebilmektedir. 40 nm çapll altin nanoparçac klar 529-533 nm aralarinda maksimum absorbans sinyali vermektedir; yapilan optiinizasyonda en yüksek piki 530 nm dalga boyunda göstermistir. Bu nedenle ölçümler için 530 nm dalga boyundaki absorbans degeri kullanîltnlSt'rt Bu dalga boyu farkli lboyutlarda alti nanoparçacüilar kullandeFgTzaman degismekte ve 500-600 nin dalga boyu bantmda olinaktad E. Islemin ard Ilda tekrar Dl su ile yEkanan kanallar, spektrometre eihaz Rullanîarak 530 nm” deki kanallar arasßdaki absorbans degerleri ölçülmektedir. Absorbans degerine kars]]]î gelen arsenik degeri kalibrasyon egrisinden hesaplanmaktadî Böylece absorbans farkidan arsenik miktarü tespit edilmektedir. Islem neticesine Arsenik, -SH grubuna baglanacagjiçin algllama kanalEida -SH grup miktarüazalmakta olup kontrol kanal îia göre daha az miktarda altîi nanoparçac& yüzeye baglanmaktadm. Böylelikle kontrol kanalEiEi absorbans degeri alg lama kanal Lua göre daha yüksek olmaktadir. Iki kanal aras Lndaki absorbans fark arsenik miktar n belirlemek için kullanilmaktadln. In one application of the invention, the amount of arsenic in drinking water is measured on a microfluidics platform. detection method; 0 Clean the glass surface (4) with 3-MPS prepared in acetone and keep it at room for 2 hours. Silanization by incubation in the dark and formation of -SH bonds on the surface. o Injecting and withdrawing 1 mL of arsenic solution in the siiga with a smßga pump method or simply administering 100 mL of arsenic solution through a cigarette pump Injecting the detection channel Ea (6) and drinking 1 mL in the cigarette water pump: pumping and withdrawing method or 100 mL of drinking water by pumping Injecting Ela (5) into the control channel using the delivery-only method with the pump, o Detection (6) and control channel (5) are supplied and withdrawn to both via a seal pump. Using the method, 100 uL of sub-nanoparticle solution was injected into the channel 75 times. injecting by giving and withdrawing, o Between detection (6) and control channel: (5) 530 The difference in absorbance value in nm wavelength band was determined by spectrometer device D (7). to be On the other hand, for microfluidic chip production, Formlabs Form2 is a three-dimensional (3D) printer. PDMS mixture prepared in a ratio of 10:1 was applied to molds obtained with transparent resin. It is poured and hardened in an oven at 68°C. Cured PDMS chip, from heart It is carefully removed and the channels are opened with entry and exit points. Then, glass The section to be assembled on the coverslip is exposed to oxygen plasma for 3.5 minutes. The glass coverslip, whose surface is characterized by 3-MPS, and the PDMS chip are combined on top of each other and By placing the hearts produced using transparent resin in the form of a sandwich E. Channels & (control channel D and perception Jhma channel & each with deionized (DI) water It was getting old. Subsequently, a reducing agent, tris(2-), is added to each channel. carboxyethyl)phosphine (TCEP) is given and kept in bright light and room temperature for 10 minutes. is incubated. After the process, 2 separate sections on the PDMS-based microfluidic chip arsenic-containing sample into one channel (detection channel, arsenic-free sample into the other channel). example (control channel|)| 10 minutes using the give-and-take method with the slnlrlga pump. is given throughout. After cleaning the channels with DI water, the lower nanoparticle solution was It is given to both channels for 10 minutes with the simga pump pump-withdrawal method and 2 It is incubated in the dark at room temperature for one hour. To make the process take less time Gold nanoparticles can also be delivered to the surface with the help of a pump. 40 nm diameter gold nanoparticles give maximum absorbance signal between 529-533 nm; done The highest peak in optimization was shown at 530 nm wavelength. Therefore for measurements The absorbance value at 530 nm wavelength was used. This wavelength is available in different dimensions. When sub-nanoparticles are used, the time changes and in the wavelength band of 500-600 olinactad E. After the process, the channels were washed again with fresh water, using spectrometer equipment. Absorbance values between channels at 530 nm are measured. Absorbance value The corresponding arsenic value is calculated from the calibration curve. Thus, the absorbance The amount of arsenic is determined from the difference. As a result of the process, Arsenic is transferred to the -SH group. As it will be connected, the amount of Eida-SH group in the detection channel decreases according to the control channel. A smaller amount of six nanoparticles binds to the surface. Thus, the control channelEiEi The absorbance value is higher than the detection channel Lua. Between two channels The absorbance difference is used to determine the amount of arsenic.
Bulusta 100 mL arsenik örnegi kullanilmlstln ve süt riga pompasl ile kanalln içerisine verilmis ve 2.2 ug/mL algllama limitine erisebilmistir. Ayröa l mL arsenik örnegi kanal içine sîmga pompas JyardEnßtla 50 kez verilip çekilmis, bu durumda 10 ug/mL algJJanabilmisti. Ak& olmadan, düsük hacimli arsenik örnegi ( içinse 1.3 mg/L alg Iama limitine ulasülnsti Bulusta örnek miktarîlîl artEüînasEve aksi uygulanmasEyüzeye daha iyi arsenik moleküllerinin yap @tîgîiîl gözlenmesine neden olmus, bu da alg [Lama limitini düsürmüstür. Arsenik baglandEktan sonra sîüga pompas jile 100 uL altEi nanoparçaeiklar kanal içine 75 kez verilip çekilmistir. Bu islem ise altEl parçac ElarEl yüzeye Çok kßa sürede, sadece 10 dakikada baglanmasLûLlsaglamLstLu. Söyle ki; verip çekme islemi yapmadan kanala verilen 100 uL altin nanoparçaclgln yüzeye baglanmasl gereken süre 2 saat olarak gözlenmistir. Böylelikle bu bulusla, arsenik algllama islemi yaklasik 30 dakikada yapTabilmektedir. Bulusta uygulanan verip-çekme islemi, arsenik inoleküllerinin ve altm nanoparçac Elarîi yüzeydeki -SH baglarîia daha hElEbir sekilde baglanmasîijsaglamßtî Arsenikli örnek kanal içerisine verildikten sonra kanal yüzeyinde bulunan -SH baglarEida azalma olmustur. Ard &dan kanala verilen altEi nanoparçac [klar ise yüzeyde geriye kalan -SH baglaria baglanmßtî Bu baglanma isleminde altm nanoparçac klarm yüzeyi herhangi bir islem ile modifikasyona ugrat JInamßtm Sonuç olarak, arsenik miktarE artkça yüzeye baglanan altEl nanoparçaçEk miktar: azalmg. Bu da arsenik içeren kanalm absorbans degerinin, arsenik içermeyen kanalEi absorbans degerine göre daha düsük olmasmE saglam st n. Kanal n absorbans degerindeki degisimlerden arsenik miktar alg lanabilmistir. In the invention, 100 mL of arsenic sample was used and the milk was introduced into the canal with a riga pump. and it could reach the detection limit of 2.2 ug/mL. Additionally, 1 mL of arsenic sample was injected into the canal. The pump was administered and withdrawn 50 times, and in this case 10 ug/mL could be detected. White& without, for a low volume arsenic sample (with a detection limit of 1.3 mg/L ulasulnsti In the invention, the sample amount is applied to the surface better. The structure of arsenic molecules was observed, which exceeded the algae limit. he dropped it. After binding the arsenic, 100 µL of six nanoparticles were added to the syringe pump. It was administered and withdrawn into the canal 75 times. In this process, the lower hand particle reaches the surface in a very short time. It can be connected in just 10 minutes. Namely; to the channel without giving and withdrawing The time required for the given 100 uL gold nanoparticles to bind to the surface is 2 hours. has been observed. Thus, with this invention, the arsenic detection process takes approximately 30 minutes. can do it. The transfer-extraction process applied in the invention allows arsenic molecules and gold to be removed. The nanoparticle was able to bind more easily to the particles via -SH bonds on the surface. After the arsenic sample is introduced into the channel, -SH bonds on the channel surface There has been a decrease. Then, the six nanoparticles given to the channel are the remaining -SH on the surface. In this bonding process, the surface of the gold nanoparticles was attached to any As a result, as the amount of arsenic increases, it reaches the surface. attached lowerEl nanoparticleAdditional amount: decreasemg. This is the absorbance of the channel containing arsenic. value should be lower than the absorbance value of the arsenic-free channel. solid st n. The amount of arsenic could be detected from the changes in the absorbance value of the channel.
Sekil 2”de absorbans farklEEIîlarE ile arsenik konsantrasyon farklülüîlarüarasmdaki iliski gösterilmektedir. Arsenik konsantrasyonu arttikça algll'ama kanallndaki arsenik absorbans degeri ile kontrol kanallndaki distile su absorbans degeri aras ndaki farkln arttlgl görülmektedir. Algllama kanallndaki arsenik konsantrasyonunun artinas' lyüzeye daha çok arsenik tutuninasrlî saglar. Böylece alglama kanalîiçerisindeki serbest -SH baglarîlül sayJhrJazalmß olacaktîl ve altît nanoparçacEklarÜ daha az sayEla tutunacaktî Bu da alg :Dama kanal mda ölçülen absorbans degerinin, kontrol kanal @daki degere göre daha düsük olmas It :Baglamaktad E. In Figure 2, the relationship between absorbance differences and arsenic concentration differences is shown. As the arsenic concentration increases, the arsenic absorbance in the detection channel decreases. The difference between the value and the distilled water absorbance value in the control channel increases. can be seen. The increase in arsenic concentration in the detection channel causes more arsenic to reach the surface. It provides rapid retention of arsenic. Thus, free -SH bonds within the sensing channel are eliminated. The number would have decreased and the six nanoparticles would have been held in fewer numbers. perception: The absorbance value measured in the checker channel is lower than the value in the control channel. to be It :Bağlaştad E.
Sekil 3”te Farklj konsantrasyonlardaki arsenik örneklerinin siiga pompasE ile akß kullan Iarak mikroakßkan platformda analizi gösterilmektedir. AlgEiama limiti (LOD) tespiti için; LOD = (3 X arka plan sinyalinin standart sapmasi) + arka plan sinyalinin ortlamasi formülü kullanllmlstlr. Arka plan absorbans degeri 0 ug/mL As kullanllarak ölçülmüstür. Figure 3 shows the flow of arsenic samples at different concentrations through the gas pump. Analysis on a microfluidic platform using Limit of detection (LOD) detection for; LOD = (3 X standard deviation of background signal) + average of background signal formula is used. Background absorbance value was measured using 0 ug/mL As.
Diger As konsantrasyonlarl ve bu konsantrasyonlara karslllk gelen absorbans degerleri için dogrusal regresyon yaplltnls, bu dogrusal regresyon egrisinin LOD absorbans degeri kestigi As konsantrasyonu LOD As konsantrasyon degeri olarak bulunmustur. SEMga pompasrile akISl verilerek platform üzerinde yapEian testlerde, alg [lama limiti 2.22 tig/L olarak bulunmustur. Bu deger WHO”nun belirttigi standart aralgîkars Iamaktad E.For other As concentrations and absorbance values corresponding to these concentrations linear regression is performed, this linear regression curve cuts the LOD absorbance value As concentration was found as LOD As concentration value. with SEMga pump In the tests performed on the platform by giving the flow rate, the detection limit was 2.22 tig/L. has been found. This value does not comply with the standard range specified by WHO.
Claims (2)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TR2020/15852A TR202015852A2 (en) | 2020-10-06 | 2020-10-06 | Performing automatic analysis of heavy metals on the microfluid platform |
| PCT/TR2021/051010 WO2022075953A1 (en) | 2020-10-06 | 2021-10-04 | Performing automatic analysis of heavy metals on the microfluid platform |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TR2020/15852A TR202015852A2 (en) | 2020-10-06 | 2020-10-06 | Performing automatic analysis of heavy metals on the microfluid platform |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TR202015852A2 true TR202015852A2 (en) | 2022-03-21 |
Family
ID=81125650
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TR2020/15852A TR202015852A2 (en) | 2020-10-06 | 2020-10-06 | Performing automatic analysis of heavy metals on the microfluid platform |
Country Status (2)
| Country | Link |
|---|---|
| TR (1) | TR202015852A2 (en) |
| WO (1) | WO2022075953A1 (en) |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9057705B2 (en) * | 2003-07-28 | 2015-06-16 | The Regents Of The University Of California | Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater |
| CN101405595A (en) * | 2005-12-14 | 2009-04-08 | 德克萨斯理工大学 | Method and apparatus for analyzing arsenic concentrations using gas phase ozone chemiluminescence |
| CN105866449B (en) * | 2015-04-08 | 2017-06-30 | 三峡大学 | A kind of water quality heavy metal multi-parameter on-line monitoring method |
| CN111007038B (en) * | 2019-11-29 | 2022-07-05 | 太原理工大学 | Device and method for quantitatively detecting arsenic ions in water based on laser photo-thermal interference |
-
2020
- 2020-10-06 TR TR2020/15852A patent/TR202015852A2/en unknown
-
2021
- 2021-10-04 WO PCT/TR2021/051010 patent/WO2022075953A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| WO2022075953A1 (en) | 2022-04-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Riedel et al. | Hepatitis B plasmonic biosensor for the analysis of clinical serum samples | |
| Babu et al. | Conventional and nanotechnology based sensors for creatinine (A kidney biomarker) detection: A consolidated review | |
| Rowe-Taitt et al. | A ganglioside-based assay for cholera toxin using an array biosensor | |
| US8741658B2 (en) | Rapid method to measure cyanide in biological samples | |
| Lin et al. | The detection of Mercury (II) ions using fluorescent gold nanoclusters on a portable paper-based device | |
| US9547015B2 (en) | Kits and methods for cyanide detection | |
| US9897920B2 (en) | Sensor for detecting saccharide and manufacturing method thereof and detection method of glycated hemoglobin using the same | |
| EP2951580A1 (en) | Articles and methods for rapid thc detection | |
| Jornet-Martínez et al. | Colorimetric determination of alcohols in spirit drinks using a reversible solid sensor | |
| Zhang et al. | Rapid and ultrasensitive detection of ellagic acid by integrating boronate-affinity controllable-oriented imprinted magnetic nanoparticle and boronic acid-modified/polyethylene glycol-coated allochroic-graphene oxide | |
| CN107438767B (en) | Method for detecting markers of active tuberculosis | |
| Peungthum et al. | Surface plasmon resonance imaging for ABH antigen detection on red blood cells and in saliva: secretor status-related ABO subgroup identification | |
| Li et al. | High sensitivity gram-negative bacteria biosensor based on a small-molecule modified surface plasmon resonance chip studied using a laser scanning confocal imaging-surface plasmon resonance system | |
| CN109916891A (en) | A kind of dry chemistry reagent piece and preparation method thereof quantitative determining uric acid concentration | |
| Gardella et al. | Comparison of attenuated total reflectance and photoacoustic sampling for surface analysis of polymer mixtures by Fourier transform infrared spectroscopy | |
| TR202015852A2 (en) | Performing automatic analysis of heavy metals on the microfluid platform | |
| JP5822168B2 (en) | Optical inspection method and instrument | |
| BRPI0414784B1 (en) | METHOD AND DEVICE FOR DETECTION OF VERY SMALL PARTICULAR QUANTITIES | |
| KR20200109686A (en) | Immunoassay device and method based on light scattering | |
| Zhou et al. | Developing portable and controllable fluorescence capillary imprinted sensor for visual detection Crohn's disease biomarkers | |
| KR101600825B1 (en) | Method for quantitative analysis of glycated proteins using electrophoresis and kit using thereof | |
| CN101561438A (en) | Colloidal gold detection test paper for abrin, preparation method thereof and application thereof | |
| CN107102132A (en) | Quantum dot fluorescence probe and preparation method thereof, immune chromatography test paper | |
| Papaspyridakou et al. | Quantitative determination of alcohols in human biological fluids through Raman spectroscopy: An alternative alcohol test | |
| FI76216C (en) | Determination procedure for antigen |