200940954 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種影像光學定位系绩,P且 緣更具體來說,係種利用 偵測特定波長的光線加以定位的影像光學定位系统。 【先前技術】 e ❹ 以現今所齡的技誠言,若是想彻彡魅配光較位的方3 來細體繼,辦目作轉麵^。傳麟影像纖 位裝置除歧讀在完全絲、可蝴魏辆的贼下,才輯到心 化的技術要求,且贿椒上的输制。咖與人_生活繼 衝突,因為人触法在完全„_射正常作息,之所时有如此困招 的應用限制’起因独光敎位μ環縣谓,抗雜絲力極低所致。 然而傳統的影像光學定位裝置纽於上述的狀況下,使其使用範_ 限在封閉的㈣魏為主。若是能提高定位辆的抗雜減力,則應關 圍可场增加,杨機™、_、紙物,或繼在衣服袖口、 領口、腰帶、鞋__人貞的導_、嫩謂。因此如 何蝴-種新型的影像光學⑽統是她欲解決的問題。 【發明内容】 200940954 有鑑於此’本發明係提供—種結合電腦視覺與無線資料傳輸的影像光學 定位系統’彻-光學感應II(例如電雜合裝置CCD擷取影像來遠距该測 受測物體的狀態,例如座標位置、動作'姿態等等。 本發明之-目的係提供一種影像光學定位系統,其包含一光學發射器 以及-處理模組。該光學發射器包含—無線接收器,用來以無線的方式接 收一光源控制訊號,以及一光源,用來依據該光源控制訊號產生一光線。 該處理模組包含-光學感應H、—光學分析單元、—無線發㈣、一光源 偏移权準單元、一光源定位單元以及一功能執行單元。該光學感應器用來 感測周邊環境的光線強度。該光學分析單元係用來依據該光學感應器感測 的光線強度產生一光源控制訊號。該無線發射器係用來以無線的方式發送 S亥光源控制訊號。該光源偏移校準單元係用來過濾出符合一預設波長範圍 之光線。該光源定位單元係用來依據該預設波長範圍之光線所形成的形狀 產生一命令。該功能執行單元係用來依據該命令執行對應之功能。 依據本發明之一實施例,該光學感應器係一電荷耦合裝置(charge coupling device ’ CCD)或一 CMOS 光學感應器。 依據本發明之一實施例,該光源係一發光二極體。 依據本發明之一實施例,該預設波長範圍之光線係一不可見光,例如 紅外線。 依據本發明之一實施例,本發明之光源係以一預設頻率發出光線。 本發明之影像光學定位系統另包含一命令查詢單元,用來儲存複數個 命令’每一命令分別對應於該光源定位單元決定之該預設波長範圍之光線 6 200940954 所形成的形狀。 ' 依據本發明,該綠發射如及該無線触H係符合藍芽(bluetooth)傳 輸規範或是802.11系列無線網路傳輸規範。 本發明之另-目的倾供—種_—系統達成光學定位之方法,該系 統包含-主機_及—待測端,該制端包含—光源,該主機端包含一光 學感應器’财法包含魅機端之光學感魅依據周邊魏的光線強度產 生光源控制訊號;該主機成透過一無線網路以無線的方式發送該光源控 ⑮制。峨至-¾待測4之光源;該光源依據該光源控制訊號產生—預設波長範 圍之光線;該主機端過濾出符合該預設波長範圍之絲;該主機端依據該 預认波長feD之光線所形成的形狀產生__命令;以及社機端依據該命令 執行對應之功能。 ,據本發明上述之目的,該光學感應器係—電荷輕合裝置⑽卿 coup mg deVlce ’ CCD)或一 CM〇s光學感應器。該光源係—發光二極體。 依據本發明上述之目的,該預設波長範圍之光線係-不可見光,例如 紅外線。 依據本發明,本發明之統細—賊頻率發出光線。 依據本發明’雜象網祕符合藍芽(blue_h)傳輪規範、2丨麵傳輸 規範或是802.11系列無線網路傳輸規範。 【實施方式】 請參閱第1圖’第i圖係本發明之影像光學定位系統1〇之功能方塊 系、-先10包3其包含一光學發射器2〇以及一處理模组。光學發射器 20包含-無線接收器22錢—光源%,可視為一待測端,用來裝設於待 200940954 測物件上鱗接收⑤22用來以無線的方式接收—総控制峨,而光源 24用來依據該光源控制訊號產生—統。處理模組如可視為—主機端,其 匕3光子感應器42、—光學分析單元44、一無線發射器46、一光源偏移 校準單元48、一光源定位單元50、一命令查詢單元52以及-功能執行單 凡54。光學感應器42用來感測周邊環境的光線強度。光學分析單元44係 用來依據光學感應器42感測的光線強度產生一光源控制訊號。無線發射器 46係用來以無線的方式發送該光源控制訊號。心原偏移校準單元似係用來 ©過濾出符合-預設波長範圍之光線。光源定位單元%係用來依據該預設波 長細之光線所形成的形狀產生一命令。命令查詢單元52用來儲存複數個 命令,每一命令分別對應於光源定位單元%決定之該預設波長範圍之光線 所形成的形狀。功能執行單元54係用來依據該命令執行對應之功能。在實 施例中,處理模組40可為桌上型電腦、筆記型電腦、工業電腦或數位個人 助理等等,而光學發射器20可以是設於使用者身體上或是其它受測物體上 的裝置,以下將詳述其運作方式。 明一併參閱第1圖以及第2圖。第2圖係本發明之方法流程圖。在一 開始,光學感應器42會感測周邊環境的光線強度。在較佳實施例中,光學 感應器42可以疋電何耗合裝置(charge c〇Upiing dev|ce , CCD)或是互補式金 氧半導體(Complementary Metal Oxide Semiconductor,CMOS)光學感應器, 用來感測周邊環境的光線強度(步驟2〇2),以決定目前環境光源的波長分佈 或是亮度分佈。之後由光學分析單元44依據感測出來的波長分佈或是亮度 分佈選取一預設波長範圍光線,並據此產生一光源控制訊號(步驟204)。並 200940954 〜透過無線發射器46係用來以無線的方式(例如:藍芽傳輸規範、zigbee傳輸 ' 規範或是802.11系列無線網路傳輸規範)發送該光源控制訊號(步驟2〇6)。 而光學發射器2G的無線接收H 22在接㈣該光源控制減,即會控制光 源24依據該光源控制訊號的内容產生該預設波長範圍的光線(步驟2〇8)。 接下來,雜統24麟出的賊波長細鱗⑽卩定位統)會連同環 境责景-同出現在光學感應$ 42的影像晝面中,但是光源偏移校準單元48 會從光學祕H 42感應丨來的光射,碱麟驗波長棚光線以找出 0 光學發射器20的位置(步驟21〇)。 由於人類肉眼所能感測的光源範圍是有限的,人類肉眼所能感測之波 長範圍⑽光為可絲,無__波絲_林可見^自祕中的 光源分佈非常廣泛,其中包括各種波長的可見光與不可見光,因此光學分 析單元44和光源%的設計有幾種實施例。在第一實施例中,光學分析單 元44以光源波長做為依據,因為在室内環境中不可見光的雜訊較少,而且 不會對人眼視覺造賴擾,所財光學錢器42 _㈣魏巾不可見光 ®的波長分佈範圍後,會決定一預設波長範圍的不可見光做為光學發射器2〇 之光源24發射定位光源之波長值。所以該預設波長範圍的不可見光應選擇 遠離目前已存在的環境光波長分佈的光源波長為佳,例如紅外光。簡而言 之,就是要找出-組能夠有別於目前已存在的環境光波長。 在第二實施例中,光源24係—動態光源,且其射出—可見光。也就 是說,光源24在接收到光源控制訊號所設定的預設波長範圍後,會動態射 出不同波長的光線(舉例來說,該光源有複數個發光二極體,每隔5秒週期 9 200940954 性地依序射出藍光、紅光、綠光),或單位時間内的發出閃燦光源(舉例來說, 5秒内閃㈣竭梅源…嫩,由概辆朗雜訊都是 沒有規律的,即便是由其他_產生的人造觀,要存_規律的可 能性也是微乎其微。因此光源偏移校準單元糾仍然可以依據該光源^射 出光線的預設模式,侧出光學發射H2G的位置。200940954 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to an image optical positioning system, and more specifically, an image optical positioning system that utilizes detection of light of a particular wavelength for positioning. [Prior Art] e ❹ With the skill of today's age, if you want to thoroughly understand the side of the light distribution, you should follow the example. In addition to the thief under the complete silk and the Weiwei, the Chuanlin image fiber device only compiles the technical requirements of the heart and the transmission of the bribe. Coffee and people _ life following the conflict, because people touch the law in the complete „_shoot normal work, there are such restrictions on the application of the trap” caused by the single-light μ position, the ring count is said to be extremely low. The traditional image optical positioning device is in the above-mentioned situation, and its use is limited to the closed (four) Wei. If it can improve the anti-missing force of the positioning vehicle, it should be increased, YangjiTM, _, paper, or in the clothing cuffs, neckline, belt, shoes __ people's guide _, tenderness. So how to butterfly - a new type of image optics (10) is her problem to be solved. [Summary] 200940954 In view of the above, the present invention provides an optical optical positioning system that combines computer vision and wireless data transmission. - Optical sensing II (for example, an electrical hybrid device CCD captures images to remotely measure the state of the measured object, for example, Coordinate position, motion 'attitude, etc.. The present invention provides an image optical positioning system including an optical transmitter and a processing module. The optical transmitter includes a wireless receiver for wirelessly receive a light source control signal and a light source for generating a light according to the light source control signal. The processing module comprises: an optical sensing H, an optical analysis unit, a wireless transmitter (four), a light source offset weighting unit, and a light source positioning The unit and a function execution unit are configured to sense the light intensity of the surrounding environment. The optical analysis unit is configured to generate a light source control signal according to the light intensity sensed by the optical sensor. The wireless transmitter is used to Wirelessly transmitting a S-light source control signal. The source offset calibration unit is configured to filter out light that conforms to a predetermined wavelength range. The light source positioning unit is configured to form a shape according to the predetermined wavelength range of light. A function is generated. The function execution unit is configured to perform a corresponding function according to the command. According to an embodiment of the invention, the optical sensor is a charge coupling device (CCD) or a CMOS optical sensor. According to an embodiment of the invention, the light source is a light emitting diode. According to an embodiment of the invention, the The light source of the wavelength range is an invisible light, such as infrared light. According to an embodiment of the invention, the light source of the present invention emits light at a predetermined frequency. The image optical positioning system of the present invention further comprises a command query unit for Storing a plurality of commands 'each command corresponds to a shape formed by the light source 6 200940954 determined by the light source positioning unit. ' According to the present invention, the green emission and the wireless touch H system conform to the blue ( Bluetooth) transmission specification or 802.11 series wireless network transmission specification. The invention further provides a method for optical positioning, the system includes a host _ and a terminal to be tested, and the terminal includes - The light source, the host end comprises an optical sensor, and the optical method includes the optical sensation of the enchanting end to generate a light source control signal according to the light intensity of the surrounding Wei; the host transmits the light source control system wirelessly through a wireless network . a light source to be tested - 4; the light source generates a light of a predetermined wavelength range according to the light source control signal; the host end filters out a wire conforming to the preset wavelength range; the host end is based on the predetermined wavelength feD The shape formed by the light produces a __ command; and the social machine performs the corresponding function according to the command. According to the above object of the present invention, the optical sensor is a charge coupling device (10) or a CM〇s optical sensor. The light source is a light emitting diode. According to the above object of the present invention, the light of the predetermined wavelength range is invisible light, such as infrared light. In accordance with the present invention, the thinner-thief frequency of the present invention emits light. According to the present invention, the "hybrid network" conforms to the Bluetooth (blue_h) transmission specification, the 2-plane transmission specification, or the 802.11 series wireless network transmission specification. [Embodiment] Please refer to Fig. 1 'i' for the functional block of the image optical positioning system of the present invention. First, 10 packs 3 include an optical transmitter 2A and a processing module. The optical transmitter 20 includes a wireless receiver 22, which can be regarded as a terminal to be tested, and is used to be mounted on the object to be tested in 200940954. The scale receiving 522 is used to receive the wireless control device, and the light source 24 is provided. It is used to control the signal generation according to the light source. The processing module can be regarded as a host end, a 光3 photon sensor 42, an optical analysis unit 44, a wireless transmitter 46, a light source offset calibration unit 48, a light source positioning unit 50, a command query unit 52, and - Function execution single Van 54. The optical sensor 42 is used to sense the light intensity of the surrounding environment. The optical analysis unit 44 is operative to generate a light source control signal based on the intensity of the light sensed by the optical sensor 42. The wireless transmitter 46 is used to wirelessly transmit the light source control signal. The cardinal offset calibration unit is used to filter out the light that meets the preset wavelength range. The light source positioning unit % is used to generate a command according to the shape formed by the light of the predetermined wave length. The command query unit 52 is configured to store a plurality of commands, each of which corresponds to a shape formed by the light of the predetermined wavelength range determined by the light source positioning unit %. Function execution unit 54 is operative to perform the corresponding function in accordance with the command. In an embodiment, the processing module 40 can be a desktop computer, a notebook computer, an industrial computer, or a digital personal assistant, etc., and the optical transmitter 20 can be disposed on the user's body or other object to be measured. The device will be described in detail below. See Figure 1 and Figure 2 for details. Figure 2 is a flow chart of the method of the present invention. In the beginning, the optical sensor 42 senses the intensity of the ambient light. In a preferred embodiment, the optical sensor 42 can be used as a charging device (charge c〇Upiing dev|ce, CCD) or a complementary metal oxide semiconductor (CMOS) optical sensor. Sensing the ambient light intensity (step 2〇2) to determine the wavelength distribution or brightness distribution of the current ambient light source. Then, the optical analysis unit 44 selects a predetermined wavelength range of light according to the sensed wavelength distribution or the brightness distribution, and generates a light source control signal accordingly (step 204). And 200940954 - through the wireless transmitter 46 is used to send the light source control signal in a wireless manner (for example: Bluetooth transmission specification, zigbee transmission 'specification or 802.11 series wireless network transmission specification) (step 2〇6). The wireless receiver H22 of the optical transmitter 2G is connected to (4) the light source control minus, that is, the light source 24 is controlled to generate light of the predetermined wavelength range according to the content of the light source control signal (step 2〇8). Next, the thief wavelength scale (10) 卩 ) ) 杂 杂 杂 杂 杂 会 会 会 会 会 会 连同 连同 连同 连同 连同 连同 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源 光源Inductively illuminating the light, the alkali illuminates the wavelength of the shed light to find the position of the 0 optical emitter 20 (step 21 〇). Since the range of light sources that can be sensed by the human eye is limited, the range of wavelengths that can be sensed by the human eye (10) is light, and there is no __boss_林 visible. The source of light in the secret is very wide, including various There are several embodiments of the design of optical analysis unit 44 and source % for wavelengths of visible and invisible light. In the first embodiment, the optical analysis unit 44 is based on the wavelength of the light source, because the noise of the invisible light is less in the indoor environment, and the human eye is not disturbed by the human eye, and the virtual optical instrument 42 _(four) Wei After the wavelength distribution range of the invisible light, the invisible light of a predetermined wavelength range is determined as the wavelength value of the light source 24 of the optical emitter 2 to emit the positioning light source. Therefore, the invisible light of the predetermined wavelength range should be selected to be away from the wavelength of the light source having the ambient light wavelength distribution already existing, such as infrared light. In short, it is to find out that the group can be different from the existing ambient light wavelength. In the second embodiment, the light source 24 is a dynamic light source and it emits visible light. That is to say, after receiving the preset wavelength range set by the light source control signal, the light source 24 dynamically emits light of different wavelengths (for example, the light source has a plurality of light emitting diodes, every 5 seconds period 9 200940954 Singly emit blue light, red light, green light, or emit a flash light source per unit time (for example, within 5 seconds of flashing (four) exhausting plum source... tender, all the noise is irregular Even if it is produced by other _, the possibility of storing _ regularity is negligible. Therefore, the source offset calibration unit can still illuminate the position of the optical emission H2G according to the preset mode in which the light source emits light.
、在第三實施例中,由於影像處理中常用的亮度定義為256階,所以光學 刀析單兀44還可W產生—預設波長範_光驗做驗綠發射器你In the third embodiment, since the brightness commonly used in image processing is defined as 256 steps, the optical knife unit 44 can also generate a preset wavelength _ photo test to verify the green emitter.
以及無線接收器22送予光源24, H = 0.33 *R + 〇.56*G + 0.11 *B 而光源偏移校準單元48可依據亮度公式 過濾出該預設波長範圍波長的光線。 上述三種實補的定位絲設置可獨讀用,柯相互搭關時使用。 光源24所射出的預3又波長範圍光線(亦即定位光源)會連同環境背景一 同出現在光學感應器42的影像畫面中,但對本發明之系統而言,除了預設 波長範圍规0卜的資訊_於似、要_訊,因此光源偏移鮮單元仙 φ的目的就是會依據從光學感絲42感應出來的光譜中,猶出該預設波長 範圍光線以找出光學發射器20的位置。光源偏移校準單元48會以渡波方 式去除掉大。卩&不要的資訊,但是仍然不免會有殘餘的雜訊留下。因此源 偏移校準單7G 48還會增設去雜訊的條件,例如定位光源顯示在影像裡的面 積大小、數量、可能的相對距離範圍、動態定位光源的變化規律等等,依 不同的應用場合增列出各項去雜訊的條件。 如果%境的雜訊光源對定位光源、影響很大,使得定位光源的偏差值超 200940954 '過所蚊_差射範_致於無法定位,這表示㈣魏在短時間内出 現了非原本預期的光源變化,例如開⑻燈、開⑽)窗等,則光源偏 频準單元48會把此情膽生視為無效動作,再㈣分析職光源並且決 疋新的光源波長範圍,繼績偵測使用者的下—個動作。 光源定位單元5〇就是藉由體敍光源觀㈣蝴位置(或是形 狀)’利用光源間的相對位轉夠判斷使用者目前正在做何種動作姿勢。有 ❹關於絲定位單元5G計算絲間的姆㈣的方式已秘悉電腦視覺 (_嫩―)的賴麵了解,在此不另_。因絲毅位單元 5〇即利用電腦視覺的各種演算法計算出使用者目前的動作。在得知使用者 的動作姿勢後,可以依據命令查詢單元52查表得知已預先定義好的複數個 命令⑹mmand)(步驟加),每一命令分別對應於光源定位單元%決定 之顧設波長顧之絲所形成的形狀。該複數個命令是可關設,也可 以由使用者自由調整設定的。若是經計算得知使用者的動作,但卻無法經 ❹由查表得知該動作所對應到的命令,這有兩種可能,一是使用者做了無效、 不準確或未域_作;-是魏統雜訊干社強,使得定位光源發生 無法辨識的錯誤。上述的兩種可能不論是哪一種,都一律視為使用者的「動 作無效」而予以忽略。因為侧定位光源是自系統開機後就一直持續不斷 執仃的無窮迴圈,若這-次無法正確的侧到使用者的動作,使用者只需 要再重複一次輸入動作即可。 最後,功能執行單元54在接收到命令後就可以依據命令去執行各項程 式處理(步驟214)。 11 200940954 除此之外,本發明之光學感應器犯可包含—個以上的電荷麵合裝置或 是麵光學感應器。當光學感應器42僅包含單一電荷耗合裝置或是 CMOS光繼㈣織彳电心能酬咖㈣光線在二維 空間的位移。當學感應器42包含樣χ上的電触合裝置较c则光學 感應器,則光源定位單元50就能判斷出光源所發出光線在三維空間的位 移,如此-來’相較於在二維空間的變化,定位光驗此間的相對位置(或 是形狀)在三維空間的變化更多,連帶增加命令查詢單元η所儲存命令的設 計彈性。 相較於習知技術,本發明的影像光學定位系統可以提高定位光源的抗 雜訊能力,使得影像定位技術的應射懷限制降低,只要在—般室内環境 例如家庭、辦公室、倉庫、室内娛樂場所等等皆可應用,可增加影像光學 定位的商業價值。 綜合以上所述,雖然本發明已較佳實施例揭露如上,然其並非用以限 疋本發明’任何熟習此項技藝者,在不脫離本發明之精神和範圍内,當可 作各種更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 【圖式簡單說明】 第1圖係本發明之系統之功能方塊圖。 第2圖係本發明之方法流程圖。 【主要元件符號說明】 12 200940954 10 影像光學定位系統 20 光學發射器 22 無線接收器 24 光源 40 處理模組 42 光學感應器 44 光學分析單元 46 無線發射器 48 光源偏移校準單元 50 光源定位單元 52 命令查詢單元 54 功能執行單元And the wireless receiver 22 sends the light source 24, H = 0.33 * R + 〇.56*G + 0.11 *B and the light source offset calibration unit 48 filters the light of the predetermined wavelength range according to the brightness formula. The above three kinds of real-fixed positioning wire settings can be read by themselves, and they are used when they are used together. The pre-3 wavelength range ray (ie, the locating source) emitted by the light source 24 appears in the image frame of the optical sensor 42 along with the environmental background, but for the system of the present invention, except for the preset wavelength range The purpose of the light source shifting fresh unit φ is to determine the position of the optical emitter 20 according to the spectrum induced from the optical filament 42 in the predetermined wavelength range. . The source offset calibration unit 48 will be removed in a wave mode.卩& unwanted information, but still there will be residual noise left. Therefore, the source offset calibration sheet 7G 48 will also add noise removal conditions, such as the size, number, possible relative distance range of the positioning light source displayed in the image, the variation law of the dynamic positioning light source, etc., depending on the application. Add the conditions for each noise removal. If the noise source of the % environment has a great influence on the positioning light source, the deviation value of the positioning light source exceeds 200940954 'The mosquitoes _ poor shooting range _ can not be located, which means that (four) Wei appeared in the short time non-original expectations The change of the light source, such as the open (8) lamp, the open (10) window, etc., the light source bias frequency unit 48 will regard this situation as an invalid action, and then (4) analyze the occupational light source and decide the new light source wavelength range, the succession detection Measure the user's next action. The light source locating unit 5 is configured to determine the action posture of the user by using the relative position between the light sources by turning the relative position of the light source (4). There is a rumor about the way in which the wire positioning unit 5G calculates the wire (4) between the wires. It has been known that the computer vision (_ tender) is understood, and there is no other _. Because of the silk position unit, the computer's current actions are calculated using various algorithms of computer vision. After the user's action posture is known, the command query unit 52 can look up the table to find a plurality of predefined commands (6) mmand) (step plus), and each command corresponds to the light source positioning unit % determined by the wavelength setting. The shape formed by the silk. The plurality of commands can be set or can be freely adjusted by the user. If the user's action is calculated, but the command corresponding to the action cannot be found by the checklist, there are two possibilities. First, the user does invalid, inaccurate or un-domain; - It is Weitong's miscellaneous news, which makes the positioning light source unrecognizable. The above two possibilities, regardless of the type, are always considered as "invalid actions" of the user and are ignored. Because the side positioning light source is an infinite loop that has been continuously executed since the system is turned on. If this time cannot be correct to the user's action, the user only needs to repeat the input action again. Finally, the function execution unit 54 can execute the various process processes in accordance with the command upon receiving the command (step 214). 11 200940954 In addition, the optical sensor of the present invention may include more than one charge surface sealing device or a surface optical sensor. When the optical sensor 42 contains only a single charge-consuming device or a CMOS light, the displacement of the light in a two-dimensional space is carried out. When the learning sensor 42 includes an optical contact device on the sample, and the optical sensor is compared to the c, the light source positioning unit 50 can determine the displacement of the light emitted by the light source in a three-dimensional space, so that 'compared to in two dimensions The change of the space, the relative position (or shape) of the positioning light in this case changes more in the three-dimensional space, and the design flexibility of the command stored in the command query unit η is increased. Compared with the prior art, the image optical positioning system of the invention can improve the anti-noise ability of the positioning light source, and the image positioning technology can reduce the limit of shooting, as long as the indoor environment such as home, office, warehouse, indoor entertainment Locations and the like can be applied to increase the commercial value of optical positioning of images. In view of the above, the preferred embodiments of the present invention are disclosed above, and are not intended to limit the invention to those skilled in the art, and various modifications may be made without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a functional block diagram of the system of the present invention. Figure 2 is a flow chart of the method of the present invention. [Main component symbol description] 12 200940954 10 Image optical positioning system 20 Optical transmitter 22 Wireless receiver 24 Light source 40 Processing module 42 Optical sensor 44 Optical analysis unit 46 Wireless transmitter 48 Light source offset calibration unit 50 Light source positioning unit 52 Command query unit 54 function execution unit
1313