TW201445624A - A method for forming a MESA structure on a semiconductor substrate - Google Patents
A method for forming a MESA structure on a semiconductor substrate Download PDFInfo
- Publication number
- TW201445624A TW201445624A TW102118924A TW102118924A TW201445624A TW 201445624 A TW201445624 A TW 201445624A TW 102118924 A TW102118924 A TW 102118924A TW 102118924 A TW102118924 A TW 102118924A TW 201445624 A TW201445624 A TW 201445624A
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor substrate
- predetermined
- semiconductor
- forming
- trench
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 149
- 239000000758 substrate Substances 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000005520 cutting process Methods 0.000 claims abstract description 57
- 235000012431 wafers Nutrition 0.000 claims description 37
- 238000005498 polishing Methods 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 9
- 229910003460 diamond Inorganic materials 0.000 claims description 6
- 239000010432 diamond Substances 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 13
- 239000002253 acid Substances 0.000 description 11
- 230000005684 electric field Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 230000005685 electric field effect Effects 0.000 description 5
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 238000012858 packaging process Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 230000005596 ionic collisions Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Dicing (AREA)
Abstract
Description
本發明是關於一種半導體結構,特別是關於一種半導體基板的高原結構成形方法。 The present invention relates to a semiconductor structure, and more particularly to a method for forming a plateau structure of a semiconductor substrate.
目前,功率半導體晶片的高原(MESA)結構多採用一道光罩製程搭配低溫混合酸蝕刻而形成。然而,此光罩製程需要特定設備與化學藥劑,將導致製造成本提高與藥劑回收的困擾。例如,光罩的開發與耗用、光阻液與顯影液與定影液的耗用、後續去光阻製程的成本及黃光設備投資等。 At present, the high-altitude (MESA) structure of power semiconductor wafers is formed by a photomask process combined with low-temperature mixed acid etching. However, this mask process requires specific equipment and chemicals, which will lead to increased manufacturing costs and drug recovery. For example, the development and consumption of reticle, the consumption of photoresist and developer and fixer, the cost of subsequent photoresist removal process, and investment in yellow light equipment.
採用混合酸做高原結構的深蝕刻時,由於混和酸等向蝕刻的特性必須考量其側向蝕刻的作用來規劃足夠的晶片面積。再者,由於混合酸蝕刻會釋放大量的熱,蝕刻反應激烈將導致蝕刻均勻性極差。 When a mixed acid is used for the deep etching of the plateau structure, a sufficient wafer area is planned due to the effect of the lateral etching of the mixed acid. Furthermore, since the mixed acid etching releases a large amount of heat, an intense etching reaction will result in extremely poor etching uniformity.
因此,晶片設計必須放寬製程寬度的要求來符合實際製程的狀況,造成晶片微型化的困難。 Therefore, the wafer design must relax the process width requirements to meet the actual process conditions, resulting in wafer miniaturization difficulties.
如第1A圖及第1B圖所示,以單溝槽式玻璃鈍化整流二極體晶片(Glass Passivation Pellet;GPP)設計為例,光罩寬度L1設計約為0.006英吋,即溝槽之開口寬度約為6 mil,相當於約為152.4微米(micrometer),而蝕刻深度要求約為120微米至130微米。 As shown in FIG. 1A and FIG. 1B, the single-groove glass passivated rectifier diode (GPP) design is taken as an example, and the mask width L1 is designed to be about 0.006 inches, that is, the opening of the trench. The width is about 6 mils, which is equivalent to about 152.4 micrometers, and the etch depth is about 120 microns to 130 microns.
然而,實際蝕刻之溝槽之開口寬度L2約為22mil(約為558.8微米),而溝槽深度約在118微米至141微米之間。扣除6mil(約152.4微米)的切割道外,保護層的寬度設計達到24mil(約為609.6微米)之多。若應用在50mil晶片上,切割道加上保護層就用去了30mil,相當於60%的比例,而導致實際工作的區域僅占整體晶片的40%。 However, the actually etched trench has an opening width L2 of about 22 mils (about 558.8 micrometers) and a trench depth of between about 118 micrometers and 141 micrometers. The width of the protective layer is designed to be as large as 24 mils (approximately 609.6 microns), excluding the 6 mil (about 152.4 micrometers) scribe line. If applied on a 50 mil wafer, the scribe line plus the protective layer is used for 30 mils, which is equivalent to 60%, and the actual working area is only 40% of the total wafer.
因此,如何於半導體製程中,有效地考量成本及品質,並使半導體具有良好的特性,係為本案之發明人以及從事此相關行業之技術領域者亟欲改善的課題。 Therefore, how to effectively consider the cost and quality in the semiconductor manufacturing process and to make the semiconductor have good characteristics is an issue that the inventors of the present invention and those skilled in the related art are eager to improve.
有鑑於此,本發明提出一種半導體基板的高原結構成形方法,包含:決定複數預定分裂線於半導體基板的表面上的佈局,此些預定分裂線係用以分裂半導體基板成複數個半導體晶片,並依據此些預定分裂線的佈局決定複數預定切割位置,接著,決定預定切割深度,使預定切割深度大於半導體基板的半導體接面與半導體基板的表面之間的距離,最後,根據此些預定切割位置及預定切割深 度,以刀具切割半導體基板的表面,而形成複數溝槽,及拋光此些溝槽之底部。 In view of the above, the present invention provides a method for forming a plateau structure of a semiconductor substrate, comprising: determining a layout of a plurality of predetermined split lines on a surface of a semiconductor substrate, wherein the predetermined split lines are used to split the semiconductor substrate into a plurality of semiconductor wafers, and Determining a plurality of predetermined cutting positions according to the layout of the predetermined splitting lines, and then determining a predetermined cutting depth such that the predetermined cutting depth is greater than a distance between the semiconductor junction of the semiconductor substrate and the surface of the semiconductor substrate, and finally, according to the predetermined cutting positions And scheduled cutting depth The cutter cuts the surface of the semiconductor substrate to form a plurality of grooves, and polishes the bottoms of the grooves.
本發明之半導體基板利用預定分裂半導體晶片之預定分裂線佈局溝槽的位置,再以切割刀重覆切劃半導體基板之表面而形成溝槽,因而溝槽得以產生較精準之開口寬度及深度。於此,相較於傳統製造溝槽之方法係得以減少一道黃光製程,並且,溝槽之開口及深度的精確度得以提升。其中,溝槽底部呈圓弧狀而可減緩電場尖端效應(又稱正角效應或集電場效應),以致使晶片得以承受較高的電壓,而由於耐壓的提升,進而可以省去半絕緣多晶矽(SIPOS)的製程。 The semiconductor substrate of the present invention utilizes a predetermined split line layout of the predetermined semiconductor wafer to lay the trenches, and then repeatedly cuts the surface of the semiconductor substrate by a dicing blade to form a trench, so that the trench can produce a more precise opening width and depth. Here, the method of fabricating the trench is reduced by a yellow light process, and the accuracy of the opening and depth of the trench is improved. Wherein, the bottom of the trench is arc-shaped to slow down the electric field tip effect (also known as the positive angle effect or the electric field effect), so that the wafer can withstand higher voltage, and the semi-insulation can be omitted due to the increase in withstand voltage. Process of polycrystalline germanium (SIPOS).
並且,於半導體基板產生溝槽後,以微蝕刻拋光溝槽底部,以致於無需使用大量或/及高強度之酸溶液,並溝槽底部拋光後可避免電場的尖端效應,因而可提升半導體之特性、得以降低成本,並減低處理酸溶液之化學物所帶來的汙染而同時保護環境。 Moreover, after the trench is formed on the semiconductor substrate, the bottom of the trench is microetched, so that a large amount of or/or high-strength acid solution is not required, and the tip effect of the electric field can be avoided after polishing the bottom of the trench, thereby improving the semiconductor. Features, reduced costs, and reduced contamination from chemicals handling acid solutions while protecting the environment.
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。 The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art.
L1‧‧‧寬度 L1‧‧‧Width
L2‧‧‧寬度 L2‧‧‧Width
10‧‧‧半導體基板 10‧‧‧Semiconductor substrate
101‧‧‧P+型層 101‧‧‧P + layer
102‧‧‧N型層 102‧‧‧N-type layer
103‧‧‧N+型層 103‧‧‧N + layer
11‧‧‧半導體晶片 11‧‧‧Semiconductor wafer
12‧‧‧溝槽 12‧‧‧ trench
13‧‧‧接面 13‧‧‧Connected
14‧‧‧接面 14‧‧‧Connected
15‧‧‧表面 15‧‧‧ surface
110‧‧‧局部 110‧‧‧Local
L‧‧‧預定分裂線 L‧‧‧Predetermined split line
D‧‧‧預定切割深度 D‧‧‧During cutting depth
W‧‧‧間距 W‧‧‧ spacing
A-A’‧‧‧剖面線 A-A’‧‧‧ hatching
θ1‧‧‧角度 Θ1‧‧‧ angle
θ2‧‧‧角度 Θ2‧‧‧ angle
S20‧‧‧決定複數預定分裂線於半導體基板的表面上的佈局,預定分裂線係用以分裂半導體基板成複數個半導體晶片 S20‧‧‧ determines the layout of the plurality of predetermined split lines on the surface of the semiconductor substrate, the predetermined split line for splitting the semiconductor substrate into a plurality of semiconductor wafers
S21‧‧‧依據預定分裂線的佈局決定複數預定切割位置 S21‧‧‧Determining the predetermined cut position according to the layout of the predetermined split line
S22‧‧‧決定一預定切割深度,使預定切割深度大於半導體基板的半導體接面與半導體基板的表面之間的距離 S22‧‧‧determines a predetermined depth of cut such that the predetermined depth of cut is greater than the distance between the semiconductor junction of the semiconductor substrate and the surface of the semiconductor substrate
S23‧‧‧根據預定切割位置及預定切割深度,以刀具切割半導體基板的表面,而形成複數溝槽 S23‧‧‧Cutting the surface of the semiconductor substrate with a cutter according to the predetermined cutting position and the predetermined cutting depth to form a plurality of grooves
S24‧‧‧拋光此些溝槽之底部 S24‧‧‧ polishing the bottom of these grooves
第1A圖係先前技術之高原結構之示意圖。 Figure 1A is a schematic representation of a prior art plateau structure.
第1B圖係第1A圖之高原結構之局部A放大圖。 Fig. 1B is an enlarged view of a portion A of the plateau structure of Fig. 1A.
第2圖係本發明一實施例之半導體基板之俯視圖。 Fig. 2 is a plan view showing a semiconductor substrate according to an embodiment of the present invention.
第2A圖係第2圖之半導體基板之局部110之放大圖。 Fig. 2A is an enlarged view of a portion 110 of the semiconductor substrate of Fig. 2.
第2B圖係第2A圖中沿AA’線之剖面圖。 Fig. 2B is a cross-sectional view taken along line AA' in Fig. 2A.
第3A圖係本發明第一實施例之半導體基板的高原結構之示意圖。 Fig. 3A is a schematic view showing the plateau structure of the semiconductor substrate of the first embodiment of the present invention.
第3B圖係第3A圖中沿AA’線之剖面圖。 Fig. 3B is a cross-sectional view taken along line AA' in Fig. 3A.
第4A圖係本發明第二實施例之半導體基板的高原結構之示意圖。 Fig. 4A is a schematic view showing the plateau structure of the semiconductor substrate of the second embodiment of the present invention.
第4B圖係第4A圖中沿AA’線之剖面圖。 Fig. 4B is a cross-sectional view taken along line AA' in Fig. 4A.
第5圖係第4B圖中局部B之放大圖。 Fig. 5 is an enlarged view of a portion B in Fig. 4B.
第6圖係本發明之半導體基板的高原結構成形方法之流程圖。 Fig. 6 is a flow chart showing a method of forming a plateau structure of the semiconductor substrate of the present invention.
第2圖係本發明一實施例之半導體基板之俯視圖;第2A圖係本發明之半導體基板之局部放大圖;第2B圖係第2A圖中沿AA’線之剖面圖;第6圖係本發明之半導體基板的高原結構成形方法之流程圖。 2 is a plan view of a semiconductor substrate according to an embodiment of the present invention; FIG. 2A is a partial enlarged view of the semiconductor substrate of the present invention; FIG. 2B is a cross-sectional view taken along line AA' of FIG. 2A; A flow chart of a method for forming a plateau structure of a semiconductor substrate of the invention.
請參閱第2圖、第2A圖及第6圖,首先,決定複數預定分裂線L於半導體基板10的表面上的佈局,複數預定分裂線L可彼此垂直交錯排列。預定分裂線L係預設為半導體基板10分裂的部位。因此,於半導體製程完成 後,沿著此些預定分裂線L分裂半導體基板10而可形成複數個半導體晶片11(步驟S20)。換言之,半導體晶片11可由半導體基板10依據預定分裂線L分裂後形成。 Referring to FIG. 2, FIG. 2A and FIG. 6, first, the layout of the plurality of predetermined splitting lines L on the surface of the semiconductor substrate 10 is determined, and the plurality of predetermined splitting lines L may be alternately arranged in a staggered manner with each other. The predetermined split line L is preset as a portion where the semiconductor substrate 10 is split. Therefore, the semiconductor process is completed Thereafter, the semiconductor substrate 10 is split along the predetermined split lines L to form a plurality of semiconductor wafers 11 (step S20). In other words, the semiconductor wafer 11 can be formed by the semiconductor substrate 10 being split according to a predetermined split line L.
於此,預定分裂線L並非以彼此垂直交織之佈局為限,二預定分裂線L交錯的角度亦可為以任一非為180度的角度。或者,預定分裂線L可以二種或多種延伸角度彼此交錯。藉此,可形成具有如正方形、菱形、三角形及六邊形等幾何形狀的半導體晶片11。 Here, the predetermined splitting line L is not limited to the layout in which the first splitting lines L are interlaced, and the angle at which the two predetermined splitting lines L are staggered may be any angle other than 180 degrees. Alternatively, the predetermined split line L may be staggered with respect to each other in two or more extension angles. Thereby, the semiconductor wafer 11 having a geometric shape such as a square, a diamond, a triangle, and a hexagon can be formed.
本發明實施例之高原結構成形方法係應用於尚未分裂成複數個半導體晶片11的半導體基板10。在一實施例中半導體基板10可為一矽晶圓。 The plateau structure forming method of the embodiment of the present invention is applied to the semiconductor substrate 10 that has not been split into a plurality of semiconductor wafers 11. In one embodiment, the semiconductor substrate 10 can be a germanium wafer.
請參閱第2B圖,在本實施例中,半導體基板10為一N型基板,其上下表面分別經擴散摻雜而形成一P+型層101及一N+型層103,而在P+型層101及N+型層103之間為一N型層102。於此,第一半導體接面13係為P+型層101與N型層103之異質接面,及第二半導體接面14係為N型層102與N+型層103之同質接面。但本發明實施例之半導體基板10不以同時具有異質接面與同質接面為限,半導體基板10之組成及其接面可依需求選用調整之。例如,半導體基板10可僅具有一異質接面(即PN接面)。 Referring to FIG. 2B, in the embodiment, the semiconductor substrate 10 is an N-type substrate, and the upper and lower surfaces thereof are respectively diffusion doped to form a P + -type layer 101 and an N + -type layer 103, and in the P + type. An N-type layer 102 is between the layer 101 and the N + -type layer 103. Here, the first semiconductor junction 13 is a heterojunction between the P + -type layer 101 and the N-type layer 103, and the second semiconductor junction 14 is a homojunction between the N-type layer 102 and the N + -type layer 103. However, the semiconductor substrate 10 of the embodiment of the present invention is not limited to have a heterojunction and a homojunction, and the composition of the semiconductor substrate 10 and its junction can be adjusted according to requirements. For example, the semiconductor substrate 10 may have only one heterojunction (ie, a PN junction).
接著,於步驟S20之後,依據預定分裂線L的佈局決定複數預定切割位置(步驟S21)。也就是說,決定半導體基板10的預定分裂線L後,可規劃出每一半導體晶 片11的位置及尺寸,並據以決定每一半導體晶片11的高原結構位置。根據此些高原結構位置,可決定溝槽12的預定切割位置。於後將以第一及第二實施例分別說明二種高原結構位置。 Next, after step S20, a plurality of predetermined cutting positions are determined in accordance with the layout of the predetermined split line L (step S21). That is, after determining the predetermined split line L of the semiconductor substrate 10, each semiconductor crystal can be planned. The position and size of the sheet 11 and the position of the plateau structure of each semiconductor wafer 11 are determined accordingly. Based on the position of the plateau structure, the predetermined cutting position of the groove 12 can be determined. The positions of the two types of plateau structures will be described in the first and second embodiments, respectively.
於步驟S21之後,決定預定切割深度D,預定切割深度D大於半導體基板10的第一半導體接面13與半導體基板10的表面15(於此為P+型層101的表面)之間的距離(步驟S22)。藉此,可在半導體基板10的預定切割位置上根據預定切割深度D形成溝槽12(如第3B圖及第4B圖所示)。於此,預定切割深度D即為後續步驟形成之溝槽12之深度。 After step S21, a predetermined cutting depth D is determined, which is greater than a distance between the first semiconductor junction 13 of the semiconductor substrate 10 and the surface 15 of the semiconductor substrate 10 (here, the surface of the P + -type layer 101) ( Step S22). Thereby, the groove 12 can be formed at a predetermined cutting position of the semiconductor substrate 10 in accordance with the predetermined cutting depth D (as shown in FIGS. 3B and 4B). Here, the predetermined cutting depth D is the depth of the groove 12 formed in the subsequent step.
基此,半導體基板10根據預定切割位置及預定切割深度D,並以刀具切割半導體基板10的表面15,即形成複數溝槽12(步驟S23),而形成半導體基板10的高原結構。於此,所形成之溝槽12係穿越上層之P+型層101與第一半導體接面13,且溝槽12的底部位於N型層102。在一實施例中,溝槽12的底部可位於N+型層103。 Based on this, the semiconductor substrate 10 is formed by cutting the surface 15 of the semiconductor substrate 10 with a cutter according to a predetermined cutting position and a predetermined cutting depth D, that is, forming a plurality of grooves 12 (step S23), thereby forming a plateau structure of the semiconductor substrate 10. Here, the trench 12 is formed to pass through the upper P + -type layer 101 and the first semiconductor junction 13 , and the bottom of the trench 12 is located in the N-type layer 102 . In an embodiment, the bottom of the trench 12 can be located in the N + -type layer 103.
於步驟S23之後拋光溝槽12之底部,以致使溝槽12內壁均勻平滑且溝槽12底部呈圓弧狀(步驟S24)。呈圓弧形之溝槽12可減緩電場尖端效應(又稱正角效應或集電場效應),而可提升半導體晶片11之耐壓。 The bottom of the trench 12 is polished after step S23 so that the inner wall of the trench 12 is uniformly smooth and the bottom of the trench 12 is arcuate (step S24). The circular arc-shaped groove 12 can alleviate the electric field tip effect (also called the positive angle effect or the electric field effect), and can increase the withstand voltage of the semiconductor wafer 11.
在一些實施態樣中,刀具可為鑽石刀或輪刀。鑽石刀具有圓形本體,圓形本體之相對兩表面鄰近外周緣處與切削面設有複數個鑽石顆粒。輪刀具有圓形刀片,並 圓形刀片具有可滾動之軸心,圓形刀片之圓周即為銳利的切削部。由於,鑽石刀或/及輪刀係為本領域之技術人員所熟知,故於此不再贅述。 In some implementations, the tool can be a diamond knife or a wheel cutter. The diamond knife has a circular body, and the opposite surfaces of the circular body are provided with a plurality of diamond particles adjacent to the outer circumference and the cutting surface. The wheel cutter has a round blade and The circular blade has a rollable axis, and the circumference of the circular blade is a sharp cutting portion. Since diamond knives and/or wheel knives are well known to those skilled in the art, no further details are provided herein.
本發明實施例之刀具係指有小半徑之尖端。以刀具之尖端對應每一預定切割位置重覆切劃半導體基板10之表面15(即重覆研磨半導體基板10的特定區塊),而可形成上寬下窄的溝槽12(即溝槽12底部的寬度較溝槽12之開口寬度小)。 A tool according to an embodiment of the invention refers to a tip having a small radius. The surface 15 of the semiconductor substrate 10 (ie, the specific block of the semiconductor substrate 10 is repeatedly polished) is repeatedly cut at the tip of the tool corresponding to each predetermined cutting position, and the upper and lower narrow grooves 12 (ie, the trench 12) can be formed. The width of the bottom is smaller than the width of the opening of the trench 12).
在一些實施態樣中,複數個半導體晶片11可為正六邊形晶片或正方形晶片,其中半導體基板10係依據預定分裂線L的佈局決定複數預定切割位置,而據以決定每一半導體晶片11的高原結構位置。 In some embodiments, the plurality of semiconductor wafers 11 may be a regular hexagonal wafer or a square wafer, wherein the semiconductor substrate 10 determines a plurality of predetermined cutting positions according to a layout of the predetermined splitting line L, and the semiconductor wafer 11 is determined accordingly. Plateau structure location.
第3A圖係本發明第一實施例之半導體基板的高原結構之示意圖。第3B圖係第3A圖中沿AA’線之剖面圖。 Fig. 3A is a schematic view showing the plateau structure of the semiconductor substrate of the first embodiment of the present invention. Fig. 3B is a cross-sectional view taken along line AA' in Fig. 3A.
請參閱第3A圖,係顯示雙溝槽式玻璃鈍化整流二極體晶片(Glass Passivation Pellet;GPP)之例。每一半導體晶片11具有二溝槽12,且溝槽12分別與二端之預定分裂線L之間具有間距W。預定切割深度D約為120微米至130微米(即GPP之溝槽所要求之深度)。 Please refer to FIG. 3A for an example of a double trench glass passivated rectifier diode (GPP). Each of the semiconductor wafers 11 has two trenches 12, and the trenches 12 have a spacing W between the predetermined splitting lines L of the two ends, respectively. The predetermined depth of cut D is about 120 microns to 130 microns (i.e., the depth required for the trenches of GPP).
因此,在前述步驟S21與步驟S22中,刀具之切割位置為相距預定分裂線L之距離為間距W之位置,刀具之切割深度約為120微米至130微米。 Therefore, in the foregoing steps S21 and S22, the cutting position of the cutter is a distance from the predetermined splitting line L to the distance W, and the cutting depth of the cutter is about 120 μm to 130 μm.
在一些實施態樣中,預定切割深度D可為120 微米至150微米。 In some implementations, the predetermined cutting depth D can be 120. Micron to 150 microns.
請參閱第3B圖,每一半導體晶片11具有兩個預定切割位置。於此,刀具根據預定切割位置於半導體基板10之表面15切劃出溝槽12之開口,及根據預定切割深度D,從半導體基板10之表面15向半導體基板10之底部之方向重覆切劃而研磨出溝槽12。 Referring to Figure 3B, each semiconductor wafer 11 has two predetermined cutting locations. Here, the tool cuts the opening of the trench 12 on the surface 15 of the semiconductor substrate 10 according to the predetermined cutting position, and repeats the cutting from the surface 15 of the semiconductor substrate 10 toward the bottom of the semiconductor substrate 10 according to the predetermined cutting depth D. The groove 12 is ground.
在一些實施態樣中,溝槽12之開口寬度可為0.005英吋至0.01英吋(5mil至10mil)。 In some embodiments, the opening width of the trench 12 can be from 0.005 inches to 0.01 inches (5 mils to 10 mils).
基此,半導體基板10得以刀具切割半導體基板10的表面15形成複數溝槽12,而成形半導體基板10的高原結構。其中,溝槽12呈圓弧形,並且可拋光溝槽12,以致使溝槽12內壁均勻平滑。 Accordingly, the semiconductor substrate 10 is formed by cutting the surface 15 of the semiconductor substrate 10 by the cutter to form the plurality of trenches 12, thereby forming the plateau structure of the semiconductor substrate 10. Among them, the groove 12 has a circular arc shape, and the groove 12 can be polished to make the inner wall of the groove 12 evenly smooth.
第4A圖係本發明第二實施例之半導體基板的高原結構之示意圖。第4B圖係第4A圖中沿AA’線之剖面圖。於此,第一實施例與第二實施例不同之處在於,單溝槽式GPP之半導體晶片11之溝槽12係位於預定分裂線L上。 Fig. 4A is a schematic view showing the plateau structure of the semiconductor substrate of the second embodiment of the present invention. Fig. 4B is a cross-sectional view taken along line AA' in Fig. 4A. Here, the first embodiment is different from the second embodiment in that the trench 12 of the semiconductor wafer 11 of the single-groove GPP is located on the predetermined split line L.
請參閱第4A圖,首先,於半導體基板10的表面決定預定分裂線L,並於每一半導體晶片11上決定預定切割位置。於此,預定切割深度D約為120微米至130微米(即GPP之溝槽所要求之深度)。 Referring to FIG. 4A, first, a predetermined split line L is determined on the surface of the semiconductor substrate 10, and a predetermined cutting position is determined on each semiconductor wafer 11. Here, the predetermined cutting depth D is about 120 micrometers to 130 micrometers (that is, the depth required for the trench of the GPP).
因此,可設定刀具之切割位置於預定分裂線L上,並且可設定刀具之切割深度約為120微米至130微米。 Therefore, the cutting position of the cutter can be set on the predetermined split line L, and the cutting depth of the cutter can be set to be about 120 to 130 μm.
在一些實施態樣中,預定切割深度D可為120 微米至150微米。 In some implementations, the predetermined cutting depth D can be 120. Micron to 150 microns.
請參閱第4B圖,每一半導體晶片11具有兩個預定切割位置,且每一預定切割位置位於預定分裂線L上。 Referring to FIG. 4B, each semiconductor wafer 11 has two predetermined cutting positions, and each predetermined cutting position is located on a predetermined split line L.
於此,刀具從半導體基板10之表面15之預定分裂線L上向半導體基板10之底部之方向重覆切劃,並於預定分裂線L之兩側產生對等的溝槽12之開口之寬度,而研磨出溝槽12。 Here, the tool is repeatedly cut from the predetermined split line L of the surface 15 of the semiconductor substrate 10 toward the bottom of the semiconductor substrate 10, and the width of the opening of the equal groove 12 is generated on both sides of the predetermined split line L. And the groove 12 is ground.
其中,溝槽12係呈圓弧形,從半導體基板10之表面15至溝槽12之底部具有預定切割深度D,是以,溝槽12之底部位於預定分裂線L上。 The trench 12 has a circular arc shape, and has a predetermined cutting depth D from the surface 15 of the semiconductor substrate 10 to the bottom of the trench 12, so that the bottom of the trench 12 is located on the predetermined split line L.
在一些實施態樣中,溝槽12之開口寬度可為0.005英吋至0.01英吋(5mil至10mil)。其中,溝槽12之底部的寬度較其開口寬度小。 In some embodiments, the opening width of the trench 12 can be from 0.005 inches to 0.01 inches (5 mils to 10 mils). Wherein, the width of the bottom of the trench 12 is smaller than the width of the opening.
基此,半導體基板10得以刀具切割半導體基板10的表面15形成複數溝槽12,而成形半導體基板10的高原結構。其中,溝槽12呈圓弧形,並且可拋光溝槽12,以致使溝槽12內壁均勻平滑。 Accordingly, the semiconductor substrate 10 is formed by cutting the surface 15 of the semiconductor substrate 10 by the cutter to form the plurality of trenches 12, thereby forming the plateau structure of the semiconductor substrate 10. Among them, the groove 12 has a circular arc shape, and the groove 12 can be polished to make the inner wall of the groove 12 evenly smooth.
在一些實施態樣中,前述步驟S24之拋光步驟可以經由蝕刻步驟實現。並且,於拋光溝槽12後,還可具有清洗步驟。於此,拋光溝槽12使溝槽12之底部呈圓弧形,及使溝槽12之內壁均勻平滑,而得以降低電場尖端效應(又稱正角效應或集電場效應),進而可提升半導體晶片11之耐壓。 In some embodiments, the polishing step of the foregoing step S24 can be implemented via an etching step. Also, after polishing the trench 12, there may be a cleaning step. Here, the polishing trench 12 has a circular arc shape at the bottom of the trench 12, and the inner wall of the trench 12 is uniformly smoothed, thereby reducing the electric field tip effect (also referred to as a positive angle effect or an electric field effect), thereby improving The withstand voltage of the semiconductor wafer 11.
在一些實施態樣中,拋光溝槽12可以溼蝕刻 的方式實施,將具有切割溝槽12之半導體基板10置入酸溶液中,並藉由酸溶液短時間地(例如約2分鐘至3分鐘)浸泡半導體基板10,以致使酸溶液蝕刻溝槽12,而拋光溝槽12。 In some implementations, the polishing trench 12 can be wet etched By way of example, the semiconductor substrate 10 having the dicing trench 12 is placed in an acid solution, and the semiconductor substrate 10 is immersed by an acid solution for a short time (for example, about 2 minutes to 3 minutes) so that the acid solution etches the trenches 12 While polishing the groove 12.
在一些實施態樣中,拋光溝槽12可以乾蝕刻的方式實施,藉由離子衝撞而使得半導體基板10從溝槽12至表面15呈現高斯分佈。其中,乾蝕刻可以電漿或蒸氣釋放離子的方式實施。 In some implementations, the polishing trenches 12 can be implemented in a dry etch manner such that the semiconductor substrate 10 exhibits a Gaussian distribution from the trenches 12 to the surface 15 by ion collision. Among them, dry etching can be carried out by means of plasma or vapor releasing ions.
於此,由於溼蝕刻或/及乾蝕刻係為本領域之技術人員所熟知,故於此不再贅述。 Here, since wet etching or/and dry etching is well known to those skilled in the art, no further details are provided herein.
在一些實施態樣中,於半導體基板10形成溝槽12後,經過清洗半導體基板10,再於溝槽12中填入玻璃粉,及經過玻璃燒結,而在各半導體晶片11邊緣形成絕緣玻璃層。最後,再經表面電鍍形成金屬接點,及分裂半導體基板10成複數個半導體晶片11。而後,可再進行半導體晶片11之封裝製程。 In some embodiments, after the trench 12 is formed on the semiconductor substrate 10, the semiconductor substrate 10 is cleaned, the glass frit is filled in the trench 12, and the glass is sintered to form an insulating glass layer on the edge of each semiconductor wafer 11. . Finally, metal contacts are formed by surface plating, and the semiconductor substrate 10 is split into a plurality of semiconductor wafers 11. Then, the packaging process of the semiconductor wafer 11 can be performed.
於此,由於半導體晶片11之形成絕緣玻璃層、形成金屬接點、分裂,及封裝製程等係為本領域之技術人員所熟知,故於此不再贅述。 Herein, since the formation of the insulating glass layer, the formation of metal contacts, the splitting, and the packaging process of the semiconductor wafer 11 are well known to those skilled in the art, no further details are provided herein.
在一些實施態樣中,如第5圖所示,由於溝槽12具有合適的開口及深度(因藉由切割刀重覆切劃半導體基板之表面所產生之溝槽具有較精準之開口寬度及深度),並內壁均勻平滑且底部呈圓弧狀,因而可減緩電場尖端效應(又稱正角效應或集電場效應)。也就是說,相較於 傳統製造之溝槽的正角角度θ1(如第1B圖所示),本發明之溝槽12的正角角度θ2較小。因此,半導體晶片11得以承受較高的電壓,因而可以省去半絕緣多晶矽(SIPOS)的製程。 In some embodiments, as shown in FIG. 5, since the trench 12 has a suitable opening and depth (the trench created by repeatedly etching the surface of the semiconductor substrate by the dicing blade has a more precise opening width and Depth), and the inner wall is even and smooth and the bottom is arc-shaped, thus reducing the electric field tip effect (also known as the positive angle effect or the electric field effect). In other words, compared to The positive angle θ1 of the groove which is conventionally manufactured (as shown in Fig. 1B) has a small positive angle θ2 of the groove 12 of the present invention. Therefore, the semiconductor wafer 11 can withstand a relatively high voltage, so that a semi-insulating polysilicon (SIPOS) process can be omitted.
在一些實施態樣中,半導體基板10可以為鍺、矽或砷化鎵等;或者,半導體基板10可以為其他適合之基本半導體(elementary semiconductor)物質,如碳化矽、砷化銦、磷化銦,或適合之合金半導體物質等。 In some embodiments, the semiconductor substrate 10 may be germanium, germanium or gallium arsenide or the like; or the semiconductor substrate 10 may be other suitable elementary semiconductor materials such as tantalum carbide, indium arsenide, indium phosphide. , or suitable alloy semiconductor materials, etc.
在一些實施態樣中,半導體基板10相對於溝槽12之一側(即半導體基板的底部)可以具有藍寶石(Sapphire)、磷化鎵(GaP)、磷砷化鎵(GaAsP)、硒化鋅(ZnSe)、硫化鋅(ZnS)、硒硫化鋅(ZnSSe)或碳化矽(SiC)等,但本發明不以此為限,而可以依照產品規格與製程條件之需求選用合適的基板。 In some embodiments, the semiconductor substrate 10 may have sapphire, gallium phosphide (GaP), gallium arsenide (GaAsP), zinc selenide relative to one side of the trench 12 (ie, the bottom of the semiconductor substrate). (ZnSe), zinc sulfide (ZnS), zinc selenide sulfide (ZnSSe) or tantalum carbide (SiC), etc., but the invention is not limited thereto, and a suitable substrate can be selected according to the requirements of product specifications and process conditions.
本發明之半導體基板的高原結構應用於第一實施例及第二實施例為說明之用意,然本發明不以此為限,本發明之半導體基板的高原結構成形方法亦可實施於製造絕緣柵雙極電晶體(Insulated Gate Bipolar Transistor;IGBT)及瞬態抑制二極體(又稱箝位型二極體)(Transient-Voltage-Suppression;TVS)等半導體製程中。 The plateau structure of the semiconductor substrate of the present invention is applied to the first embodiment and the second embodiment for the purpose of description. However, the present invention is not limited thereto, and the method for forming the plateau structure of the semiconductor substrate of the present invention can also be implemented for manufacturing the insulated gate. Insulated Gate Bipolar Transistor (IGBT) and transient suppression diode (also known as clamp-type diode) (Transient-Voltage-Suppression (TVS)) and other semiconductor processes.
本發明之半導體基板利用預定分裂半導體晶片之預定分裂線佈局溝槽的位置,再以刀具重覆切劃半導體基板之表面而形成溝槽,因而溝槽得以產生較精準之深度及開口寬度。於此,相較於傳統製造溝槽之方法係得以 減少一道黃光製程,並且,溝槽之開口及深度的精確度得以提升。其中,溝槽底部呈圓弧狀而可減緩電場尖端效應(又稱正角效應或集電場效應),以致使晶片得以承受較高的電壓,並由於耐壓的提升,而可以省去半絕緣多晶矽(SIPOS)的製程。 The semiconductor substrate of the present invention utilizes a predetermined split line of a predetermined splitting semiconductor wafer to lay out the groove, and then the surface of the semiconductor substrate is repeatedly cut by the cutter to form a groove, so that the groove can produce a more precise depth and opening width. Here, compared to the traditional method of manufacturing the groove Reduces a yellow light process and increases the accuracy of the opening and depth of the trench. Wherein, the bottom of the trench is arc-shaped to slow down the electric field tip effect (also known as the positive angle effect or the electric field effect), so that the wafer can withstand higher voltage, and the semi-insulation can be omitted due to the increase in withstand voltage. Process of polycrystalline germanium (SIPOS).
並且,於半導體基板產生溝槽後,以微蝕刻拋光溝槽底部,以致於無需使用大量或/及高強度之酸溶液,並溝槽底部拋光後可避免電場的尖端效應,因而可提升半導體之特性、得以降低成本,並減低處理酸溶液之化學物所帶來的汙染而同時保護環境。 Moreover, after the trench is formed on the semiconductor substrate, the bottom of the trench is microetched, so that a large amount of or/or high-strength acid solution is not required, and the tip effect of the electric field can be avoided after polishing the bottom of the trench, thereby improving the semiconductor. Features, reduced costs, and reduced contamination from chemicals handling acid solutions while protecting the environment.
雖然本發明的技術內容已經以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神所作些許之更動與潤飾,皆應涵蓋於本發明的範疇內,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the technical content of the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and any modifications and refinements made by those skilled in the art without departing from the spirit of the present invention are encompassed by the present invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.
S20‧‧‧決定複數預定分裂線於半導體基板的表面上的佈局,預定分裂線係用以分裂半導體基板成複數個半導體晶片 S20‧‧‧ determines the layout of the plurality of predetermined split lines on the surface of the semiconductor substrate, the predetermined split line for splitting the semiconductor substrate into a plurality of semiconductor wafers
S21‧‧‧依據預定分裂線的佈局決定複數預定切割位置 S21‧‧‧Determining the predetermined cut position according to the layout of the predetermined split line
S22‧‧‧決定一預定切割深度,使預定切割深度大於半導體基板的半導體接面與半導體基板的表面之間的距離 S22‧‧‧determines a predetermined depth of cut such that the predetermined depth of cut is greater than the distance between the semiconductor junction of the semiconductor substrate and the surface of the semiconductor substrate
S23‧‧‧根據預定切割位置及預定切割深度,以刀具切割半導體基板的表面,而形成複數溝槽 S23‧‧‧Cutting the surface of the semiconductor substrate with a cutter according to the predetermined cutting position and the predetermined cutting depth to form a plurality of grooves
S24‧‧‧拋光此些溝槽之底部 S24‧‧‧ polishing the bottom of these grooves
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW102118924A TW201445624A (en) | 2013-05-29 | 2013-05-29 | A method for forming a MESA structure on a semiconductor substrate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW102118924A TW201445624A (en) | 2013-05-29 | 2013-05-29 | A method for forming a MESA structure on a semiconductor substrate |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TW201445624A true TW201445624A (en) | 2014-12-01 |
Family
ID=52707164
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW102118924A TW201445624A (en) | 2013-05-29 | 2013-05-29 | A method for forming a MESA structure on a semiconductor substrate |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TW201445624A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI777592B (en) * | 2021-06-03 | 2022-09-11 | 國立中山大學 | Electronic component |
-
2013
- 2013-05-29 TW TW102118924A patent/TW201445624A/en unknown
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI777592B (en) * | 2021-06-03 | 2022-09-11 | 國立中山大學 | Electronic component |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8563334B2 (en) | Method to remove sapphire substrate | |
| TWI655684B (en) | Wafer dicing from wafer backside and front side | |
| EP3370253B1 (en) | Semiconductor wafer dicing crack prevention using chip peripheral trenches | |
| JP5740820B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
| KR20120036896A (en) | Front end scribing of light emitting diode (led) wafers and resulting devices | |
| US8716067B2 (en) | Power device manufacture on the recessed side of a thinned wafer | |
| US20140273402A1 (en) | Method for cutting wafer | |
| CN105359256A (en) | Laser scribing and plasma etching for high die burst strength and smooth sidewalls | |
| US9515136B2 (en) | Edge termination structure for a power integrated device and corresponding manufacturing process | |
| CN107017158A (en) | Semiconductor device and its manufacture method | |
| JP5493275B2 (en) | Manufacturing method of semiconductor device | |
| CN104838504B (en) | Manufacturing method of semiconductor device | |
| JP2014229843A (en) | Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device | |
| CN106098791A (en) | U-shaped etching right angle table top silicon diode and silicon core thereof and preparation method | |
| TW201445624A (en) | A method for forming a MESA structure on a semiconductor substrate | |
| US20140151841A1 (en) | Semiconductor devices having a positive-bevel termination or a negative-bevel termination and their manufacture | |
| CN103560143A (en) | Automobile rectification chip and method for manufacturing rectification base material thereof | |
| CN104217996A (en) | Plateau structure forming method of semiconductor substrate | |
| US20150108424A1 (en) | Method to Remove Sapphire Substrate | |
| TWI529972B (en) | Semiconductor diode chip with protective body and manufacturing method thereof | |
| CN111092051A (en) | Semiconductor package and method of making semiconductor package | |
| KR101192526B1 (en) | Method for producing semiconductor chips from a wafer and a semiconductor component | |
| CN107403844A (en) | A kind of rectifier diode chip structure and preparation method thereof | |
| TW201838036A (en) | Semiconductor device and method for manufacturing the same | |
| JP6190740B2 (en) | Semiconductor device and manufacturing method of semiconductor device |