[go: up one dir, main page]

TW201531744A - Image processing device - Google Patents

Image processing device Download PDF

Info

Publication number
TW201531744A
TW201531744A TW103104609A TW103104609A TW201531744A TW 201531744 A TW201531744 A TW 201531744A TW 103104609 A TW103104609 A TW 103104609A TW 103104609 A TW103104609 A TW 103104609A TW 201531744 A TW201531744 A TW 201531744A
Authority
TW
Taiwan
Prior art keywords
image
displacement
images
unit
processing device
Prior art date
Application number
TW103104609A
Other languages
Chinese (zh)
Other versions
TWI504936B (en
Inventor
Jing-Jo Bei
Heng-Chien Wu
Original Assignee
Htc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Htc Corp filed Critical Htc Corp
Priority to TW103104609A priority Critical patent/TWI504936B/en
Publication of TW201531744A publication Critical patent/TW201531744A/en
Application granted granted Critical
Publication of TWI504936B publication Critical patent/TWI504936B/en

Links

Landscapes

  • Studio Devices (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Image Processing (AREA)

Abstract

An image processing device including an image sensor array, an image pre-processing unit, a depth information generator, and a focusing unit is provided. The image sensor array is configured to take multiple images of two objects (e.g., a first object and a second object). The image pre-processing unit is configured to process the images to generate two shift images associated with the two objects. The depth information generator is configured to generate depth information according to the two shift images. The depth information includes distance information associated with the first object. The focusing unit is configured to generate a pair of focused images that have the first object focused thereon according to the depth information and the two shift images.

Description

影像處理裝置 Image processing device

本發明是有關於一種影像處理裝置,且特別是有關於可產生影像的深度資訊,而且可根據深度資訊產生大尺寸二維(2D)影像與適合人眼觀看的立體三維影像(stereoscopic 3D video)的一種影像處理裝置。 The present invention relates to an image processing apparatus, and particularly relates to depth information that can generate images, and can generate large-sized two-dimensional (2D) images and stereoscopic three-dimensional images (stereoscopic 3D video) suitable for human eyes according to depth information. An image processing device.

傳統攝影機使用單一鏡頭與單一影像感應器,並使用音圈馬達(VCM:voice coil motor)驅動鏡頭前後移動,以實現自動對焦和取得深度資訊(depth information),以為二維(2D)影像與三維(3D)影像的產生做準備。但是音圈馬達動作緩慢、耗電、而且會發出噪音。這些缺陷使得產生深度資訊的功能需要更多時間與電力來完成。而使用多個相機或影像矩陣的影像輸入則無法克服同時取得大尺寸二維影像、如何處理多張複雜的影像輸入、與如何即時產生適合人眼觀看的立體三維影像的問題。 Traditional cameras use a single lens and a single image sensor, and use a voice coil motor (VCM) to drive the lens back and forth to achieve autofocus and depth information for two-dimensional (2D) images and three-dimensional (3D) Prepare for the production of images. However, the voice coil motor is slow, consumes power, and emits noise. These flaws make the function of generating deep information more time and power to complete. Image input using multiple cameras or image matrices cannot overcome the problem of obtaining large-size 2D images, how to handle multiple complex image inputs, and how to instantly generate stereoscopic 3D images suitable for human eyes.

相機使用者多希望可以拍攝大尺寸二維影像,例如一千萬畫素(10 megapixels)的影像。來自多個相機或影像矩陣的影像雖然可以讓深度資訊的取得更容易,但是多個相機或影像矩陣的影 像輸出尺寸通常多是小尺寸,例如每一張都只有一百萬畫素,並且這些多張小尺寸影像需具有相同對焦平面。如何產生清楚的大尺寸二維影像將是一大挑戰。 Camera users want to be able to take large 2D images, such as 10 megapixels. Images from multiple cameras or image matrices can make depth information easier, but multiple cameras or image matrices Image output sizes are usually small, such as one million pixels per frame, and these multiple small images need to have the same focus plane. How to produce clear large-size 2D images will be a challenge.

當多張輸入影像有不同的成像平面並結合光學變焦(optical zoom)功能時,如何即時產生適合人眼觀看的立體三維影像的問題會引發更多複雜挑戰,尤其是當使用者感興趣的物件四處移動時,將使多個相機或影像矩陣的影像輸入攝影機更不易使用。 When multiple input images have different imaging planes combined with optical zoom, how to instantly generate stereoscopic 3D images suitable for human eyes can cause more complex challenges, especially when the user is interested in objects. When moving around, it will make it easier to use images from multiple cameras or image matrices into the camera.

本發明提供一種影像處理裝置,搭配多個影像感應器或影像矩陣輸入不同對焦平面的影像,並使用數位影像處理技術實現同時且即時產生大尺寸二維影像與產生適合人眼觀看的立體三維影像,具有快速與省電的功效。上述的影像處理裝置也包括多種深度資訊的應用功能。 The invention provides an image processing device, which combines multiple image sensors or image matrix to input images of different focus planes, and uses digital image processing technology to simultaneously and instantly generate large-sized two-dimensional images and generate stereoscopic three-dimensional images suitable for human eyes. It has the effect of fast and power saving. The above image processing apparatus also includes a plurality of application functions of depth information.

本發明的影像處理裝置包括影像感應陣列、影像前置處理單元、深度產生器、以及聚焦單元。影像感應陣列包括多個影像感應器,用以針對第一物件與第二物件擷取多個影像。影像前置處理單元耦接影像感應陣列,用以接收上述多個影像,並對上述多個影像進行處理,以產生相關於第一物件與第二物件的第一位移影像與第二位移影像。深度產生器耦接影像前置處理單元,用以根據第一位移影像與第二位移影像產生深度資訊。深度資訊 包括相關於第一物件的第一距離資訊。聚焦單元耦接影像前置處理單元與深度產生器,用以根據深度資訊、第一位移影像與第二位移影像產生第一對對焦影像,其中第一對對焦影像對焦於第一物件。 The image processing apparatus of the present invention includes an image sensing array, an image preprocessing unit, a depth generator, and a focusing unit. The image sensing array includes a plurality of image sensors for capturing a plurality of images for the first object and the second object. The image pre-processing unit is coupled to the image sensing array for receiving the plurality of images, and processing the plurality of images to generate a first displacement image and a second displacement image related to the first object and the second object. The depth generator is coupled to the image pre-processing unit for generating depth information according to the first displacement image and the second displacement image. In-depth information The first distance information related to the first object is included. The focus unit is coupled to the image pre-processing unit and the depth generator for generating a first pair of focus images according to the depth information, the first displacement image and the second displacement image, wherein the first pair of focus images are focused on the first object.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧影像處理裝置 100‧‧‧Image processing device

105‧‧‧影像感應陣列 105‧‧‧Image sensing array

110‧‧‧鏡頭陣列 110‧‧‧ lens array

120‧‧‧感應器陣列 120‧‧‧sensor array

125‧‧‧影像前置處理單元 125‧‧•Image pre-processing unit

130‧‧‧影像處理管線 130‧‧‧Image Processing Pipeline

140‧‧‧影像分析器 140‧‧‧Image Analyzer

150‧‧‧二維影像合成器 150‧‧‧Two-dimensional image synthesizer

160‧‧‧聚焦單元 160‧‧‧ Focus unit

170‧‧‧儲存單元 170‧‧‧ storage unit

180‧‧‧深度產生器 180‧‧‧Deep Generator

310‧‧‧鏡頭扭曲修正單元 310‧‧‧Lens distortion correction unit

320‧‧‧同步處理單元 320‧‧‧Synchronous processing unit

330‧‧‧去雜訊單元 330‧‧‧To the noise unit

340‧‧‧視差校正單元 340‧‧‧ Parallax Correction Unit

350‧‧‧影像校正單元 350‧‧‧Image Correction Unit

415、425‧‧‧裁切方框 415, 425‧‧‧ cut box

510‧‧‧色彩空間轉換器 510‧‧‧Color Space Converter

520‧‧‧背景模型單元 520‧‧‧Background model unit

530‧‧‧物件輪廓單元 530‧‧‧object outline unit

540‧‧‧偏移估算器 540‧‧‧Offset estimator

550‧‧‧後處理器 550‧‧‧post processor

560‧‧‧偏移深度轉換器 560‧‧‧Offset depth converter

570‧‧‧紅外線收發器 570‧‧‧Infrared transceiver

610~650‧‧‧深度資訊區域 610~650‧‧‧Deep information area

810‧‧‧影像背景 810‧‧‧Image background

815、825‧‧‧紅外線反射光點 815, 825‧‧‧Infrared reflected light spots

820‧‧‧影像前景 820‧‧‧Image prospects

910~930‧‧‧物件 910~930‧‧‧ objects

1000‧‧‧影像處理裝置 1000‧‧‧Image processing device

1020‧‧‧三維影像合成器 1020‧‧‧3D image synthesizer

1030‧‧‧遮蔽點偵測器 1030‧‧‧ Shadow Point Detector

1040‧‧‧顯示單元 1040‧‧‧Display unit

1130、1140‧‧‧物件 1130, 1140‧‧‧ objects

1135、1137、1145、1147‧‧‧遮蔽點 1135, 1137, 1145, 1147‧‧ ‧ shadow points

1200‧‧‧影像處理裝置 1200‧‧‧Image processing device

M1、M2‧‧‧遮蔽點位置資訊 M1, M2‧‧‧ Shadowing position information

R1、L1、R2、L2‧‧‧位移影像 R1, L1, R2, L2‧‧‧ displacement images

R3、L3‧‧‧對焦影像 R3, L3‧‧ ‧ focus image

圖1是依照本發明一實施例的一種影像處理裝置的示意圖。 FIG. 1 is a schematic diagram of an image processing apparatus according to an embodiment of the invention.

圖2與圖3是依照本發明一實施例的一種影像處理管線的示意圖。 2 and 3 are schematic diagrams of an image processing pipeline in accordance with an embodiment of the present invention.

圖4是依照本發明一實施例的視差校正的示意圖。 4 is a schematic diagram of parallax correction in accordance with an embodiment of the present invention.

圖5是依照本發明一實施例的一種深度產生器的示意圖。 Figure 5 is a schematic illustration of a depth generator in accordance with an embodiment of the present invention.

圖6A與圖6B是依照本發明一實施例的深度資訊的示意圖。 6A and 6B are schematic diagrams of depth information according to an embodiment of the invention.

圖7是依照本發明另一實施例的一種深度產生器的示意圖。 FIG. 7 is a schematic diagram of a depth generator in accordance with another embodiment of the present invention.

圖8是依照本發明一實施例的紅外線反射光點的示意圖。 Figure 8 is a schematic illustration of an infrared reflected spot in accordance with an embodiment of the present invention.

圖9A至圖9D是依照本發明一實施例的對焦影像的示意圖。 9A-9D are schematic diagrams of a focused image in accordance with an embodiment of the present invention.

圖10是依照本發明另一實施例的一種影像處理裝置的示意圖。 FIG. 10 is a schematic diagram of an image processing apparatus according to another embodiment of the present invention.

圖11是依照本發明一實施例的遮蔽點的示意圖。 Figure 11 is a schematic illustration of a shadow point in accordance with an embodiment of the present invention.

圖12是依照本發明另一實施例的一種影像處理裝置的示意 圖。 FIG. 12 is a schematic diagram of an image processing apparatus according to another embodiment of the present invention. Figure.

圖1是依照本發明一實施例的一種影像處理裝置100的示意圖。影像處理裝置100可以是數位相機、數位攝影機、或具有相機和/或攝影機功能的電子裝置,如個人數位助理(PDA)、智慧型手機或平板電腦。影像處理裝置100包括影像感應陣列105、影像前置處理單元125、多個影像處理管線130、影像分析器140、聚焦單元160、深度產生器180、二維(2D)影像合成器150、以及儲存單元170。其中影像感應陣列105包括鏡頭陣列110與感應器陣列120。感應器陣列120耦接鏡頭陣列110,影像前置處理單元125耦接感應器陣列120,影像處理管線130耦接前置處理單元125,影像分析器140、聚焦單元160和深度產生器180各自耦接影像處理管線130,二維影像合成器150耦接聚焦單元160,儲存單元170耦接二維影像合成器150。 FIG. 1 is a schematic diagram of an image processing apparatus 100 in accordance with an embodiment of the invention. The image processing device 100 can be a digital camera, a digital camera, or an electronic device having camera and/or camera functions, such as a personal digital assistant (PDA), a smart phone, or a tablet. The image processing apparatus 100 includes an image sensing array 105, an image preprocessing unit 125, a plurality of image processing pipelines 130, an image analyzer 140, a focusing unit 160, a depth generator 180, a two-dimensional (2D) image synthesizer 150, and storage. Unit 170. The image sensing array 105 includes a lens array 110 and a sensor array 120. The sensor array 120 is coupled to the lens array 110. The image pre-processing unit 125 is coupled to the sensor array 120. The image processing pipeline 130 is coupled to the pre-processing unit 125. The image analyzer 140, the focusing unit 160, and the depth generator 180 are coupled. The image processing pipeline 130 is coupled to the focusing unit 160. The storage unit 170 is coupled to the two-dimensional image synthesizer 150.

感應器陣列120可包括多個影像感應器(例如多個攝影機),用以針對同一場景中的一個或多個物件擷取多個影像,並將該多個影像輸出至影像前置處理單元125。在感應器陣列120之中,每一個影像感應器的焦點距離(focal length)可以是固定不變的或是可變的,而且每一個影像感應器可使用固定鏡頭(fixed lens)、液態鏡頭(liquid lens)、晶體鏡頭(crystal lens)、或微鏡頭陣列(rnicro-lens array)。感應器陣列120之中的影像感應器的焦點距離 可以相同也可以不同。換句話說,感應器陣列120所擷取的上述多個影像可具有同一對焦平面(focal plane)。或者,感應器陣列120所擷取的上述多個影像可具有多個不同的對焦平面。 The sensor array 120 can include a plurality of image sensors (eg, a plurality of cameras) for capturing a plurality of images for one or more objects in the same scene, and outputting the plurality of images to the image pre-processing unit 125 . In the sensor array 120, the focal length of each image sensor can be fixed or variable, and each image sensor can use a fixed lens or a liquid lens ( Liquid lens), crystal lens, or rnicro-lens array. Focus distance of the image sensor in the sensor array 120 Can be the same or different. In other words, the plurality of images captured by the sensor array 120 may have the same focal plane. Alternatively, the plurality of images captured by the sensor array 120 may have a plurality of different focus planes.

鏡頭陣列110可包括多個光學變焦鏡頭(optical zoom lens),這些光學變焦鏡頭和感應器陣列120的多個影像感應器一一對應。每一個光學變焦鏡頭配置於對應的感應器的前方。這些光學變焦鏡頭可在上述影像中拉近遠方的物件,提高遠方物件的層次感。 The lens array 110 may include a plurality of optical zoom lenses that are in one-to-one correspondence with a plurality of image sensors of the sensor array 120. Each optical zoom lens is disposed in front of the corresponding sensor. These optical zoom lenses can zoom in on distant objects in the above images to improve the layering of distant objects.

影像前置處理單元125可接收感應器陣列120擷取的多個影像,並對上述多個影像進行處理,以產生相關於上述一個或多個物件的兩個位移影像R1與L1。位移影像R1與L1可假設為分別對應使用者的右眼與左眼所看到的影像。 The image pre-processing unit 125 can receive the plurality of images captured by the sensor array 120 and process the plurality of images to generate two displacement images R1 and L1 associated with the one or more objects. The displacement images R1 and L1 can be assumed to correspond to images seen by the right and left eyes of the user, respectively.

更詳細的說,影像前置處理單元125可矯正感應器陣列120所擷取的上述多個影像的影像幾何平面,並根據上述多個影像的實體相對位置與對焦平面將上述多個影像分類為對應右眼與左眼的兩個影像群。然後影像前置處理單元125可根據第一個影像群中每一影像的光學特性將第一個影像群中的多個影像合成單一影像放大輸出(multi-frame super resolution),以產生對應右眼的位移影像R1。同理,影像前置處理單元125可根據第二個影像群中每一影像的光學特性將第二個影像群中的多個影像,合成單一影像放大輸出,以產生對應左眼的位移影像L1。 In more detail, the image pre-processing unit 125 can correct the image geometric plane of the plurality of images captured by the sensor array 120, and classify the plurality of images according to the physical relative positions of the plurality of images and the focus plane. Corresponding to the two image groups of the right eye and the left eye. The image pre-processing unit 125 can then combine multiple images in the first image group into a single image multi-frame super resolution according to the optical characteristics of each image in the first image group to generate a corresponding right eye. Displacement image R1. Similarly, the image pre-processing unit 125 can synthesize a plurality of images in the second image group into a single image according to the optical characteristics of each image in the second image group to generate a displacement image corresponding to the left eye. .

上述的單一影像放大輸出是將多個較小的影像合成一個 較大的影像,例如將兩個五百萬畫素(pixel)的影像合成一個一千萬畫素的影像。感應器陣列120的多個影像感應器可在同一時間(即同步)拍攝多個影像,然後影像前置處理單元125可使用單一影像放大輸出技術和上述多個影像產生具有更高解析度的位移影像R1和L1。 The single image magnification output described above is to combine multiple smaller images into one Larger images, such as the image of two five million pixels, are combined into a single image of ten million pixels. The plurality of image sensors of the sensor array 120 can capture a plurality of images at the same time (ie, synchronous), and then the image pre-processing unit 125 can generate a higher resolution displacement using the single image magnification output technology and the plurality of images. Images R1 and L1.

此外,影像前置處理單元125還可以支援高動態範圍(HDR:high dynamic range)技術。傳統的高動態範圍技術是對同一場景,在不同時間,使用不同曝光值拍攝多個影像,然後合成一個影像,其目的是在單一影像中呈現更廣的明暗範圍。感應器陣列120的多個影像感應器可在同一時間各使用不同曝光值擷取多個影像,然後影像前置處理單元125可使用高動態範圍技術,根據上述多個影像產生明暗範圍更廣的位移影像R1和L1。上述的多個影像是在同一時間拍攝,不僅效率更高,效果也更佳,例如可將使用者的手震的影響最小化。 In addition, the image pre-processing unit 125 can also support a high dynamic range (HDR) technology. The traditional high dynamic range technique is to capture multiple images at different times using different exposure values at different times, and then combine an image to achieve a wider range of light and dark in a single image. The plurality of image sensors of the sensor array 120 can capture a plurality of images using different exposure values at the same time, and then the image pre-processing unit 125 can use a high dynamic range technology to generate a wider range of light and dark according to the plurality of images. Displace images R1 and L1. The above multiple images are taken at the same time, which is not only more efficient, but also better in effect, for example, the influence of the user's hand shake can be minimized.

影像處理管線130如圖2所示。於此實施例中,影像處理裝置100可包括至少兩個影像處理管線130,其中一影像處理管線130可由影像前置處理單元125接收位移影像R1,而另一影像處理管線130可由影像前置處理單元125接收位移影像L1。每一個影像處理管線130包括呈串列耦接的多個影像處理單元,可依序對其所接收的位移影像R1(或L1)進行多階段影像處理,並輸出對應於位移影像R1(或L1)的位移影像R2(或L2)。進一步而言,每一個影像處理管線130中的第一個影像處理單元接收位移影像 R1(或L1)做為輸入,其餘每一個影像處理單元接收上一個影像處理單元的輸出做為輸入。這些影像處理單元對位移影像R1(和L1)進行一連串影像處理。在以下說明中,兩個影像處理管線130個別接收的兩個位移影像以R1和L1表示,兩個影像處理管線130個別輸出的兩個位移影像則以R2和L2表示。上述兩個影像處理管線130輸出位移影像R2和L2至影像分析器140、聚焦單元160、以及深度產生器180。 Image processing pipeline 130 is shown in FIG. In this embodiment, the image processing apparatus 100 can include at least two image processing pipelines 130. One image processing pipeline 130 can receive the displacement image R1 by the image pre-processing unit 125, and the other image processing pipeline 130 can be processed by the image pre-processing. Unit 125 receives the displacement image L1. Each image processing pipeline 130 includes a plurality of image processing units coupled in series, and sequentially performs multi-stage image processing on the received displacement image R1 (or L1), and outputs corresponding to the displacement image R1 (or L1). The displacement image R2 (or L2). Further, the first image processing unit in each image processing pipeline 130 receives the displacement image. R1 (or L1) is used as an input, and each of the remaining image processing units receives the output of the previous image processing unit as an input. These image processing units perform a series of image processing on the shifted images R1 (and L1). In the following description, two displacement images respectively received by the two image processing pipelines 130 are represented by R1 and L1, and two displacement images respectively output by the two image processing pipelines 130 are represented by R2 and L2. The two image processing pipelines 130 output the displacement images R2 and L2 to the image analyzer 140, the focusing unit 160, and the depth generator 180.

舉例而言,每一個影像處理管線130可以如圖3所示,其中的影像處理單元可包括呈串列耦接的鏡頭扭曲修正單元(lens distortion correction unit)310、同步處理單元(synchronization processing unit)320、去雜訊單元(de-noise unit)330、視差校正單元(parallax calibration unit)340、以及影像校正單元(image rectification unit)350。以下說明以圖2上方的影像處理管線130為範例。對於圖2下方的影像處理管線130的說明,只需將位移影像R1與R2分別置換為位移影像L1與L2。 For example, each image processing pipeline 130 may be as shown in FIG. 3 , wherein the image processing unit may include a lens distortion correction unit 310 coupled in series, and a synchronization processing unit. 320. A de-noise unit 330, a parallax calibration unit 340, and an image rectification unit 350. The following description takes the image processing pipeline 130 above the FIG. 2 as an example. For the description of the image processing pipeline 130 in the lower part of FIG. 2, it is only necessary to replace the displacement images R1 and R2 with the displacement images L1 and L2, respectively.

鏡頭扭曲修正單元310修正位移影像R1中的魚眼現象,也就是直線經過拍攝後會略微彎曲的現象。 The lens distortion correcting unit 310 corrects the fisheye phenomenon in the displacement image R1, that is, a phenomenon in which the straight line is slightly bent after being photographed.

同步處理單元320修正並縮減位移影像R1和L1之間的差異,上述差異可包括感應器陣列120其中的影像感應器的拍攝時間、曝光(exposure)、色彩、白平衡(white balance)、以及對焦平面其中的一項或多項差異。 The synchronization processing unit 320 corrects and reduces the difference between the displaced images R1 and L1, which may include the shooting time, exposure, color, white balance, and focus of the image sensor of the sensor array 120. One or more differences in the plane.

去雜訊單元330可濾除位移影像R1中的雜訊,包括亮度 雜訊與色彩雜訊。 The noise removing unit 330 can filter out noise in the displacement image R1, including brightness. Noise and color noise.

對應於位移影像R1的視差校正單元340會在位移影像R1中決定一個裁切方框(cropping frame)及其位置,並在位移影像R1上裁去裁切方框以外的部分及保留裁切方框以內的部分。同樣地,對應於位移影像L1的視差校正單元340會在位移影像L1中決定另一個裁切方框(cropping frame)及其位置,並在位移影像L1上裁去裁切方框以外的部分及保留裁切方框以內的部分。為了營造兩個位移影像L1與R1間所需的視差(parallax)效果,視差校正單元340會將裁切方框安排在位移影像R1與位移影像L1中的不同位置,使每個位移影像的視界(view)有少許差別。 The parallax correcting unit 340 corresponding to the displacement image R1 determines a cropping frame and its position in the displacement image R1, and cuts out the portion other than the cutting frame and retains the cutting side on the displacement image R1. The part within the box. Similarly, the parallax correction unit 340 corresponding to the displacement image L1 determines another cropping frame and its position in the displacement image L1, and cuts out the portion other than the cropping frame on the displacement image L1 and Keep the parts within the crop box. In order to create the parallax effect required between the two displacement images L1 and R1, the parallax correction unit 340 arranges the cropping frame at different positions in the displacement image R1 and the displacement image L1 so that the horizon of each displacement image There is a slight difference in (view).

例如圖4所示,在此範例中,兩個影像處理管線130其中的兩個視差校正單元340分別在位移影像L1與R1上決定裁切方框415與425以及這兩個裁切方框的位置。兩個裁切方框415、425的位置不同,如果放在同一個影像中,兩個裁切方框415、425之間會有一小段距離,這個間距是根據感應器陣列120的多個影像感應器的多個鏡頭之間的距離而決定。因此,每一個視差校正單元340會根據上述的多個鏡頭之間的距離,在位移影像中決定其裁切方框及裁切方框的位置,以營造視差效果。 For example, as shown in FIG. 4, in this example, two of the two image processing pipelines 130 determine the cropping blocks 415 and 425 and the two cropping boxes on the displacement images L1 and R1, respectively. position. The positions of the two cropping blocks 415, 425 are different. If placed in the same image, there will be a small distance between the two cropping blocks 415, 425, which is based on multiple image sensing of the sensor array 120. The distance between the multiple lenses of the device is determined. Therefore, each parallax correcting unit 340 determines the position of the cutting frame and the cutting frame in the displacement image according to the distance between the plurality of lenses described above to create a parallax effect.

感應器陣列120的多個影像感應器的多個鏡頭應該安裝在同一個平面上,而且上述多個鏡頭的安裝角度應該一致。例如每個鏡頭的視界中的上方必須指向同一方向,不應有旋轉角度上的偏差。但是在製造過程中,每個鏡頭的安裝位置不一定在同一 平面上,安裝角度的偏差也在所難免。影像校正單元350可校正上述的安裝位置和/或安裝角度的偏差對於位移影像R1所造成的扭曲(distortion)。例如可使用仿射轉換(affine transform)以校正上述扭曲。 The plurality of lenses of the plurality of image sensors of the sensor array 120 should be mounted on the same plane, and the mounting angles of the plurality of lenses should be the same. For example, the upper of the field of view of each lens must point in the same direction, and there should be no deviation in the angle of rotation. However, in the manufacturing process, the mounting position of each lens is not necessarily the same. On the plane, the deviation of the mounting angle is also inevitable. The image correcting unit 350 can correct the distortion caused by the deviation of the above-described mounting position and/or mounting angle from the displacement image R1. For example, an affine transform can be used to correct the above distortion.

圖5繪示深度產生器180的進一步細節。深度產生器180包括色彩空間轉換器510、背景模型單元(background modeling unit)520、物件輪廓單元530、偏移估算器540、後處理器550、以及偏移深度轉換器560。色彩空間轉換器510耦接每一個影像處理管線130,背景模型單元520和偏移估算器540各自耦接色彩空間轉換器510,物件輪廓單元530耦接背景模型單元520,後處理器550耦接物件輪廓單元530和偏移估算器540,偏移深度轉換器560耦接於後處理器550和聚焦單元160之間。 FIG. 5 illustrates further details of depth generator 180. The depth generator 180 includes a color space converter 510, a background modeling unit 520, an object contour unit 530, an offset estimator 540, a post processor 550, and an offset depth converter 560. The color space converter 510 is coupled to each of the image processing pipelines 130. The background model unit 520 and the offset estimator 540 are each coupled to a color space converter 510. The object contour unit 530 is coupled to the background model unit 520. The post processor 550 is coupled. The object contour unit 530 and the offset estimator 540 are coupled between the post processor 550 and the focusing unit 160.

深度產生器180根據位移影像R2和L2產生深度資訊(例如depth map)。此深度資訊包括相關於感應器陣列120所拍攝的每一個物件的距離資訊。例如,上述距離資訊可以是對應的物件和影像感應器的鏡頭之間的距離,此距離也可稱為深度或深度值。 The depth generator 180 generates depth information (e.g., a depth map) based on the displacement images R2 and L2. This depth information includes distance information relating to each object captured by the sensor array 120. For example, the distance information may be the distance between the corresponding object and the lens of the image sensor, and the distance may also be referred to as a depth or depth value.

圖6A與圖6B是依照本發明一實施例的深度資訊的示意圖。圖6A是感應器陣列120所拍攝的場景,其中有多個物件(例如多個玩偶),深度產生器180對應此場景產生的深度資訊如圖6B所示。深度資訊可以是由深度值構成的二維矩陣,其中每一個深度值是位移影像R2和L2之中同一位置的物件的深度值。圖6B的深度值已轉換為對應的灰階以方便顯示。圖6A的物件可分為五 個層次,分別對應圖6B的五個區域610~650,其中灰色越深的區域表示距離越遠。 6A and 6B are schematic diagrams of depth information according to an embodiment of the invention. FIG. 6A is a scene taken by the sensor array 120, in which there are a plurality of objects (for example, a plurality of dolls), and the depth information generated by the depth generator 180 corresponding to the scene is as shown in FIG. 6B. The depth information may be a two-dimensional matrix composed of depth values, wherein each depth value is a depth value of an object at the same position among the displacement images R2 and L2. The depth value of Figure 6B has been converted to a corresponding gray scale to facilitate display. The object of Figure 6A can be divided into five The levels correspond to the five regions 610-650 of Figure 6B, respectively, wherein the darker the gray area, the further the distance.

以下說明深度產生器180的每一單元。色彩空間轉換器510可將位移影像R2和L2自第一色彩空間轉換至第二色彩空間。上述的第一色彩空間不包括亮度分量,例如RGB或CMYK;而第二色彩空間包括亮度分量和至少一個色彩分量,例如YUV或YCbCr。本實施例的感應器陣列120使用RGB色彩空間拍攝影像,如果感應器陣列120可用YUV之類的包含亮度分量的色彩空間拍攝影像,則可省略色彩空間轉換器510。 Each unit of the depth generator 180 is explained below. The color space converter 510 can convert the displacement images R2 and L2 from the first color space to the second color space. The first color space described above does not include a luminance component, such as RGB or CMYK; and the second color space includes a luminance component and at least one color component, such as YUV or YCbCr. The sensor array 120 of the present embodiment captures images using the RGB color space, and the color space converter 510 can be omitted if the sensor array 120 can capture images using a color space containing luminance components such as YUV.

偏移估算器540可根據位移影像R2和L2的亮度分量(例如YUV色彩空間的Y分量)產生偏移資訊(例如disparity map),此偏移資訊包括每一個物件在位移影像R2和L2之間的偏移量。所謂偏移量是指同一個物件的同一點在不同影像中的不同位置之間的差距。越靠近鏡頭的物件會有越大的偏移量,因此用偏移量加上影像感應器的鏡頭的間距,可以推導出深度資訊。偏移估算器540可偵測並估算上述物件的偏移量,以產生偏移資訊。偏移資訊可以是類似圖6B的二維矩陣,只是其中的深度值換成偏移量。 The offset estimator 540 can generate offset information (eg, a disparity map) according to the luminance components of the displacement images R2 and L2 (eg, the Y component of the YUV color space), the offset information including each object between the displacement images R2 and L2. The offset. The offset refers to the difference between different positions in the different images of the same point of the same object. Objects that are closer to the lens will have a larger offset, so the depth information can be derived using the offset plus the spacing of the lens of the image sensor. The offset estimator 540 can detect and estimate the offset of the object to generate offset information. The offset information can be a two-dimensional matrix similar to that of Figure 6B, except that the depth values are replaced by offsets.

背景模型單元520可根據位移影像R2或L2的至少一個色彩分量(例如YUV色彩空間的U分量與V分量),區分該位移影像的前景與背景。上述前景是指使用者比較可能感興趣的部分,而背景是比較不重要的部分。因為感應器陣列120的每一個 影像感應器的視界相差不大,所以背景模型單元520可以只將位移影像R2和L2其中之一影像的前景或背景的資訊取出即可。 The background model unit 520 can distinguish the foreground and background of the displaced image from at least one color component of the displacement image R2 or L2 (eg, the U component and the V component of the YUV color space). The above prospects refer to the parts that the user is more likely to be interested in, while the background is the less important part. Because each of the sensor arrays 120 The field of view of the image sensor is not much different, so the background model unit 520 can extract only the foreground or background information of one of the images R2 and L2.

在圖5的實施例中,背景模型單元520亦耦接偏移估算器540。背景模型單元520可根據偏移估算器540產生的偏移資訊推算物件深度,然後根據深度來區分前景與背景。 In the embodiment of FIG. 5, the background model unit 520 is also coupled to the offset estimator 540. The background model unit 520 can estimate the object depth based on the offset information generated by the offset estimator 540, and then distinguish the foreground from the background based on the depth.

物件輪廓單元530可抽取上述前景之中的一物件輪廓(object contour),且後處理器550可根據上述物件輪廓修飾偏移資訊,特別是修飾偏移資訊中的物件輪廓資訊。 The object contour unit 530 can extract an object contour among the foreground, and the post processor 550 can modify the offset information according to the object contour, and particularly modify the object contour information in the offset information.

後處理器550負責修飾偏移估算器540所產生的偏移資訊。後處理器550可根據物件輪廓單元530在上述前景中抽取的物件輪廓,修飾偏移資訊中的前景物件輪廓,也就是修飾偏移資訊中的前景物件輪廓的突出與粗糙之處,讓偏移資訊中的前景物件輪廓平滑化。 Post processor 550 is responsible for modifying the offset information generated by offset estimator 540. The post-processor 550 can modify the foreground object contour in the offset information according to the object contour extracted by the object contour unit 530 in the foreground, that is, the protrusion and the roughness of the foreground object contour in the offset information, and the offset The foreground object outline in the information is smoothed.

此外,後處理器550可修補偏移資訊中的前景與背景的異常點。偏移資訊可以是類似二維影像的二維矩陣,例如其中矩陣邊緣的每一個點周圍有三或五個緊鄰的點,矩陣內部的每一個點周圍有八個緊鄰的點。若有某一個點和周圍任何一個緊鄰點的偏移量的差異值大於一個門檻值,該點就會被視為異常點,後處理器550會用該點全部的緊鄰點的偏移量平均值取代該點的偏移量。 In addition, the post processor 550 can patch the foreground and background anomalies in the offset information. The offset information can be a two-dimensional matrix similar to a two-dimensional image, for example, where there are three or five adjacent points around each point of the matrix edge, and eight points in the interior of the matrix are surrounded by adjacent points. If there is a difference between the offset of a point and any adjacent point that is greater than a threshold, the point is treated as an abnormal point, and the post-processor 550 averages the offset of all the immediate points of the point. The value replaces the offset of this point.

偏移深度轉換器560可將經過後處理器550修飾的偏移資訊轉換為深度資訊,以供聚焦單元160使用。 The offset depth converter 560 can convert the offset information modified by the post processor 550 into depth information for use by the focusing unit 160.

圖7繪示依照本發明另一實施例的深度產生器180的進一步細節。此實施例的深度產生器180更包括耦接背景模型單元520的紅外線收發器570。紅外線收發器570可發射紅外線,並感應該紅外線的反射光點。例如圖8所示,圖8繪示此實施例的紅外線收發器570感應到的紅外線影像,其中的背景810有多個反射光點815,前景820另有多個反射光點825。因為前景的距離比較近,所以前景820的反射光點825會比較大、比較明亮,而背景810的反射光點815會比較小、比較陰暗。背景模型單元520可根據反射光點的上述差異來區分上述的前景與背景。 FIG. 7 illustrates further details of depth generator 180 in accordance with another embodiment of the present invention. The depth generator 180 of this embodiment further includes an infrared transceiver 570 coupled to the background model unit 520. The infrared transceiver 570 can emit infrared rays and sense the reflected spots of the infrared rays. For example, FIG. 8 illustrates an infrared image sensed by the infrared transceiver 570 of the embodiment. The background 810 has a plurality of reflected spots 815, and the foreground 820 has a plurality of reflected spots 825. Because the distance of the foreground is relatively close, the reflected spot 825 of the foreground 820 will be relatively large and relatively bright, while the reflected spot 815 of the background 810 will be relatively small and relatively dark. The background model unit 520 can distinguish the foreground and background described above from the above differences in reflected light spots.

聚焦單元160可根據上述深度資訊、位移影像R2與L2、以及/或每一上述影像感應器的鏡頭參數產生兩個使用者所指定或所感興趣的物件之對焦影像R3與L3,上述的對焦影像R3與L3係同時對焦於同一個物件上。上述的鏡頭參數包括對應的該影像感應器的鏡頭的焦點距離(focal length)和點散函數(point spread function)。每一個影像感應器的鏡頭參數可以相同,也可以不相同。 The focusing unit 160 can generate the focused images R3 and L3 of the objects specified or interested by the two users according to the depth information, the displacement images R2 and L2, and/or the lens parameters of each of the image sensors. The R3 and L3 are simultaneously focused on the same object. The lens parameters described above include a focal length and a point spread function of the corresponding lens of the image sensor. The lens parameters of each image sensor can be the same or different.

圖9A至圖9D是上述的對焦影像的一個範例。圖9A是影像處理裝置100拍攝的場景,其中有三個物件910~930。在此範例中,聚焦單元160係根據深度產生器180所產生的深度資訊來產生三對對焦影像R3與L3,分別對焦於物件910~930。對焦於物件910的對焦影像R3與L3,就如圖9B所示,物件910最清晰,物件920、930比較模糊。對焦於物件920的對焦影像R3與L3,就如圖9C所示,物件920最清晰,物件910和930比較模糊。對 焦於物件930的對焦影像R3與L3,就如圖9D所示,物件930最清晰,物件910、920比較模糊。 9A to 9D are an example of the above-described focused image. FIG. 9A is a scene taken by the image processing apparatus 100, in which there are three objects 910-930. In this example, the focusing unit 160 generates three pairs of in-focus images R3 and L3 according to the depth information generated by the depth generator 180, and respectively focuses on the objects 910-930. Focusing on the focused images R3 and L3 of the object 910, as shown in FIG. 9B, the object 910 is the clearest, and the objects 920, 930 are relatively blurred. Focusing on the focused images R3 and L3 of the object 920, as shown in FIG. 9C, the object 920 is the clearest, and the objects 910 and 930 are relatively blurred. Correct Focusing on the focused images R3 and L3 of the object 930, as shown in FIG. 9D, the object 930 is the clearest, and the objects 910, 920 are relatively blurred.

聚焦單元160可產生對任意物件對焦的對焦影像的理論基礎是A.P.Pentland在IEEE Transactions on Pattern Analysis and Machine Intelligence,9(4):523-531,1987發表的論文"A New Sense for Depth of Field"。此論文闡述了影像的深度資訊、對焦平面深度、以及鏡頭參數之間的關係。對焦平面深度和鏡頭參數在影像處理裝置100的硬體設計時已經得知,深度資訊則來自深度產生器180。 The theoretical basis for the focus unit 160 to produce a focused image that focuses on any object is the paper "A New Sense for Depth of Field" by APPentland in IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4): 523-531, 1987. . This paper describes the relationship between image depth information, focus plane depth, and lens parameters. The focus plane depth and lens parameters are known at the hardware design of the image processing apparatus 100, and the depth information is from the depth generator 180.

影像分析器140可提供智慧型自動聚焦功能。更詳細的說,影像分析器140可在位移影像R2和/或L2中辨識一個或多個物件的位置,例如人臉,或具有特徵的區域,以產生相對於上述一個或多個物件的位置資訊,其中聚焦單元160係根據上述的位置資訊產生相對於上述一個或多個物件的一對或多對對焦影像。除了由影像分析器140自動辨識之外,上述的對焦物件也可以由使用者指定。 The image analyzer 140 provides a smart auto focus function. In more detail, image analyzer 140 may identify the location of one or more objects, such as a human face, or a region having features, in displacement images R2 and/or L2 to produce a position relative to one or more of the objects described above. Information, wherein the focusing unit 160 generates one or more pairs of in-focus images relative to the one or more objects based on the position information described above. In addition to being automatically recognized by image analyzer 140, the above-described focusing object can also be specified by the user.

例如在圖9A至圖9D的範例中,影像分析器140可在位移影像R2與L2中辨識物件910~930,並將物件910~930的位置資訊傳送給聚焦單元160。因此聚焦單元160可根據所接收到的位置資訊分別對焦於物件910~930,以產生如圖9B至圖9D所示的三對對焦影像R3與L3。 For example, in the example of FIGS. 9A-9D, the image analyzer 140 can identify the objects 910-930 in the displacement images R2 and L2, and transmit the position information of the objects 910-930 to the focusing unit 160. Therefore, the focusing unit 160 can respectively focus on the objects 910-930 according to the received position information to generate three pairs of focus images R3 and L3 as shown in FIGS. 9B to 9D.

影像處理裝置100可拍攝靜態影像或動態影片,其中動 態影片就是連續拍攝的靜態影像的組合。在本發明的一實施例中,影像感應陣列105可連續拍攝多個影像,影像分析器140可在位移影像R2與L2中連續追蹤一個或多個物件,例如人臉或正在移動的物件,並提供這些物件的位置資訊,以供聚焦單元160產生對焦影像。除了由影像分析器140自動辨識之外,上述的對焦物件也可以由使用者指定。舉例而言,如果有一個行人從拍攝場景的後方走到前方,使用者可以指定此行人做為對焦物件,聚焦單元160可以連續追蹤對焦,讓這個行人無論走到哪裡,焦點都隨之移動。 The image processing apparatus 100 can capture still images or dynamic movies, wherein A movie is a combination of still images that are continuously shot. In an embodiment of the invention, the image sensing array 105 can continuously capture a plurality of images, and the image analyzer 140 can continuously track one or more objects, such as a face or a moving object, in the displacement images R2 and L2, and Position information of these objects is provided for the focusing unit 160 to generate a focused image. In addition to being automatically recognized by image analyzer 140, the above-described focusing object can also be specified by the user. For example, if a pedestrian walks from the back of the shooting scene to the front, the user can designate the pedestrian as the focusing object, and the focusing unit 160 can continuously track the focus so that the pedestrian moves with the focus no matter where he goes.

回到圖1,二維影像合成器150可由聚焦單元160接收對焦影像R3與L3,並根據對焦影像R3與L3做二維影像補點(image interpolation)以產生一個二維合成影像。上述合成影像之解析度可大於或等於對焦影像R3與L3的解析度。儲存單元170可接收並儲存上述的合成影像,亦可儲存上述的深度圖、聚焦深度、以及鏡頭參數其中的一項或多項資料。如果影像處理裝置100拍攝的是動態影片,儲存單元170可將連續的合成影像編碼為影片儲存。 Returning to FIG. 1, the two-dimensional image synthesizer 150 can receive the focused images R3 and L3 by the focusing unit 160, and perform two-dimensional image interpolation based on the focused images R3 and L3 to generate a two-dimensional synthetic image. The resolution of the synthesized image may be greater than or equal to the resolution of the focused images R3 and L3. The storage unit 170 can receive and store the synthesized image, and can also store one or more of the depth map, the depth of focus, and the lens parameters. If the image processing apparatus 100 captures a dynamic movie, the storage unit 170 may encode the continuous composite image as a movie storage.

圖10是依照本發明另一實施例的一種影像處理裝置1000的示意圖。影像處理裝置1000包括影像感應陣列105、影像前置處理單元125、多個影像處理管線130、影像分析器140、聚焦單元160、深度產生器180、三維(3D)影像合成器1020、遮蔽點(occlusion)偵測器1030、顯示單元1040、以及儲存單元170。其中影像感應陣列105、影像前置處理單元125、多個影像處理管線 130、影像分析器140、聚焦單元160、以及深度產生器180分別與圖1的對應元件相同,不再贅述。遮蔽點偵測器1030耦接影像分析器140、聚焦單元160與深度產生器180,三維影像合成器1020耦接遮蔽點偵測器1030與聚焦單元160,顯示單元1040與儲存單元170皆耦接三維影像合成器1020。 FIG. 10 is a schematic diagram of an image processing apparatus 1000 in accordance with another embodiment of the present invention. The image processing device 1000 includes an image sensing array 105, an image preprocessing unit 125, a plurality of image processing pipelines 130, a image analyzer 140, a focusing unit 160, a depth generator 180, a three-dimensional (3D) image synthesizer 1020, and a shadow point ( The occlusion detector 1030, the display unit 1040, and the storage unit 170. The image sensing array 105, the image pre-processing unit 125, and the plurality of image processing pipelines 130, the image analyzer 140, the focusing unit 160, and the depth generator 180 are respectively the same as the corresponding elements of FIG. 1, and will not be described again. The masking point detector 1030 is coupled to the image analyzer 140, the focusing unit 160 and the depth generator 180. The three-dimensional image synthesizer 1020 is coupled to the shadow point detector 1030 and the focusing unit 160. The display unit 1040 and the storage unit 170 are coupled. A three-dimensional image synthesizer 1020.

遮蔽點偵測器1030可自聚焦單元160接收對焦影像R3與L3,並接收由影像分析器140所輸出的相對於物件的位置資訊及由深度產生器180所輸出的深度資訊,並根據所接收的對焦影像R3與L3、位置資訊與深度資訊來產生對應於對焦影像R3與L3的遮蔽點位置資訊M1與M2。所謂遮蔽點就是立體三維影像中被物件遮蔽而只被人類的雙眼其中一眼看到的部分,也就是感應器陣列120所拍攝的場景中只被一部分影像感應器擷取的部分。例如圖11所示的範例,對焦影像R3和L3其中有兩個物件1130和1140。對焦影像L3包括遮蔽點1135和1145,對焦影像R3則包括遮蔽點1137和1147。因為感應器陣列120的影像感應器的安裝位置各不相同,所以遮蔽點也出現在不同位置。越靠近影像感應器鏡頭的遮蔽點會越明顯。 The shadow point detector 1030 can receive the focus images R3 and L3 from the focusing unit 160, and receive the position information relative to the object output by the image analyzer 140 and the depth information output by the depth generator 180, and according to the received The focus images R3 and L3, the position information and the depth information generate the mask point position information M1 and M2 corresponding to the focus images R3 and L3. The obscuration point is the part of the stereoscopic three-dimensional image that is obscured by the object and is only seen by one of the eyes of the human eye, that is, the part of the scene captured by the sensor array 120 that is only captured by a part of the image sensor. For example, in the example shown in FIG. 11, the focus images R3 and L3 have two objects 1130 and 1140 therein. The focus image L3 includes shadow points 1135 and 1145, and the focus image R3 includes mask points 1137 and 1147. Since the image sensors of the sensor array 120 are mounted at different positions, the shadow points also appear at different positions. The closer the shadow point is to the image sensor lens, the more obvious it will be.

修正遮蔽點可讓使用者看到更真實舒適的三維影像。三維影像合成器1020可根據遮蔽點位置資訊M1或M2將對焦影像R3或L3中的物件移動(shift)一距離,用以修飾物件之邊緣,以修正物件之遮蔽點。 Correcting the shadow point allows the user to see a more realistic and comfortable 3D image. The 3D image synthesizer 1020 can shift the object in the focus image R3 or L3 by a distance according to the shading point position information M1 or M2 to modify the edge of the object to correct the obscuration point of the object.

如上所述,三維影像合成器1020可以根據物件的遮敝點 位置資訊M1與M2修正對焦影像R3與L3中的遮蔽點,而且三維影像合成器1020可根據對焦影像R3與L3及至少一遮敝點位置資訊M1或M2來產生一個三維合成影像。透過影像分析器140的影像內容分析與物件追蹤,可減少遮蔽點偵測與處理的時間,可即時改變遮蔽點修正的運算量,以即時產生適合人眼觀看的立體三維影像。 As described above, the three-dimensional image synthesizer 1020 can be based on the concealing point of the object. The position information M1 and M2 correct the shadow points in the focus images R3 and L3, and the three-dimensional image synthesizer 1020 can generate a three-dimensional composite image according to the focus images R3 and L3 and the at least one conceal point position information M1 or M2. Through the image content analysis and object tracking of the image analyzer 140, the time for detecting and processing the shadow point can be reduced, and the calculation amount of the shadow point correction can be changed in time to instantly generate a stereoscopic three-dimensional image suitable for human eyes.

顯示單元1040由三維影像合成器1020接收三維合成影像,並以立體三維方式顯示上述三維合成影像。立體三維影像的立體感是指使用者看起來凸出螢幕或凹入螢幕的程度。影像處理裝置1000可提供設定選項以設定上述立體感的凸出或凹入程度,三維影像合成器1020可根據此設定選項,以及顯示單元1040的螢幕大小和解析度,調整顯示單元1040所呈現的立體感。儲存單元170可接收並儲存由三維影像合成器1020所輸出的三維合成影像。 The display unit 1040 receives the three-dimensional synthesized image from the three-dimensional image synthesizer 1020, and displays the three-dimensional synthesized image in a stereoscopic three-dimensional manner. The stereoscopic effect of a stereoscopic three-dimensional image refers to the extent to which the user appears to protrude from the screen or into the screen. The image processing device 1000 can provide a setting option to set the degree of convexity or indentation of the stereoscopic effect. The 3D image synthesizer 1020 can adjust the display unit 1040 according to the setting option and the screen size and resolution of the display unit 1040. Three-dimensional. The storage unit 170 can receive and store the three-dimensional composite image output by the three-dimensional image synthesizer 1020.

圖12是依照本發明另一實施例的一種影像處理裝置1200的示意圖。影像處理裝置1200就是圖1的影像處理裝置100與圖10的影像處理裝置1000的組合。因此,影像處理裝置1200具有影像處理裝置100與影像處理裝置1000的全部功能。再者,於影像處理裝置1200中,三維影像合成器1020與二維影像合成器150可同時由聚焦單元160接收對焦影像R3與L3,藉以分別對所拍攝的物件同時產生一個具有深度資訊與高解析度的二維合成影像與一個三維合成影像,儲存單元170可接收並儲存該二維 合成影像與該三維合成影像。 FIG. 12 is a schematic diagram of an image processing apparatus 1200 according to another embodiment of the present invention. The image processing device 1200 is a combination of the image processing device 100 of FIG. 1 and the image processing device 1000 of FIG. Therefore, the image processing device 1200 has all the functions of the image processing device 100 and the image processing device 1000. Furthermore, in the image processing device 1200, the 3D image synthesizer 1020 and the 2D image synthesizer 150 can simultaneously receive the in-focus images R3 and L3 by the focusing unit 160, thereby respectively generating a depth information and a high value for the captured object. a two-dimensional synthetic image of resolution and a three-dimensional synthetic image, and the storage unit 170 can receive and store the two-dimensional image Synthesize the image and the three-dimensional composite image.

綜上所述,上述實施例中的影像處理裝置100、1000、1200在拍攝影像時使用影像處理技術聚焦,而不使用音圈馬達,所以比使用音圈馬達的傳統方案更安靜、更快速而且更省電。影像處理裝置100、1000、1200在影像已經拍攝後可以藉由對焦影像對影像中的每一物件重新聚焦,可避免人為拍攝的聚焦或追蹤失誤。影像處理裝置100、1000、1200可用高動態範圍技術合成感應器陣列同時拍攝的多個影像,以延展影像的明暗範圍,並可用單一影像放大輸出技術合成感應器陣列同時拍攝的多個影像,以產生大尺寸的二維影像。影像處理裝置1000、1200可偵測並修正影像中的遮蔽點,可調整顯示單元所呈現的三維立體感。總之,本發明實施例中的影像處理裝置100、1000、1200可提供更適合人眼觀看的二維影像與立體三維影像。 In summary, the image processing apparatuses 100, 1000, and 1200 in the above embodiments use image processing technology to focus on images when shooting images without using a voice coil motor, so it is quieter and faster than the conventional scheme using a voice coil motor. More power saving. The image processing device 100, 1000, 1200 can refocus each object in the image by focusing the image after the image has been captured, thereby avoiding focus or tracking errors caused by human shooting. The image processing device 100, 1000, 1200 can synthesize a plurality of images simultaneously captured by the sensor array by using a high dynamic range technology to extend the brightness and darkness of the image, and can synthesize multiple images simultaneously captured by the sensor array by using a single image magnification output technology. Produces large-sized 2D images. The image processing device 1000, 1200 can detect and correct the shadow point in the image, and can adjust the three-dimensional sense displayed by the display unit. In summary, the image processing apparatuses 100, 1000, and 1200 in the embodiments of the present invention can provide two-dimensional images and stereoscopic three-dimensional images that are more suitable for human eyes to view.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

180‧‧‧深度產生器 180‧‧‧Deep Generator

510‧‧‧色彩空間轉換器 510‧‧‧Color Space Converter

520‧‧‧背景模型單元 520‧‧‧Background model unit

530‧‧‧物件輪廓單元 530‧‧‧object outline unit

540‧‧‧偏移估算器 540‧‧‧Offset estimator

550‧‧‧後處理器 550‧‧‧post processor

560‧‧‧偏移深度轉換器 560‧‧‧Offset depth converter

R2、L2‧‧‧位移影像 R2, L2‧‧‧ displacement image

Claims (17)

一種影像處理裝置,包括:一影像感應陣列,包括多個影像感應器,用以針對一第一物件與一第二物件擷取多個影像;一影像前置處理單元,耦接該影像感應陣列,用以接收上述多個影像,並對上述多個影像進行處理,以產生相關於該第一物件與該第二物件的一第一位移影像與一第二位移影像;一深度產生器,耦接該影像前置處理單元,用以根據該第一位移影像與該第二位移影像產生一深度資訊,其中該深度資訊包括相關於該第一物件的一第一距離資訊;以及一聚焦單元,耦接該影像前置處理單元與該深度產生器,用以根據該深度資訊、該第一位移影像與該第二位移影像產生一第一對對焦影像,其中該第一對對焦影像對焦於該第一物件。 An image processing device includes: an image sensing array, comprising: a plurality of image sensors for capturing a plurality of images for a first object and a second object; and an image pre-processing unit coupled to the image sensing array Receiving the plurality of images, and processing the plurality of images to generate a first displacement image and a second displacement image related to the first object and the second object; a depth generator coupled The image pre-processing unit is configured to generate a depth information according to the first displacement image and the second displacement image, wherein the depth information includes a first distance information related to the first object; and a focusing unit, The image processing unit and the depth generator are configured to generate a first pair of focus images according to the depth information, the first displacement image and the second displacement image, wherein the first pair of focus images are focused on the First object. 如申請專利範圍第1項所述的影像處理裝置,其中該深度資訊更包括相關於該第二物件的一第二距離資訊,且該聚焦單元更用以根據該深度資訊、該第一位移影像與該第二位移影像產生一第二對對焦影像,其中該第二對對焦影像對焦於該第二物件。 The image processing device of claim 1, wherein the depth information further includes a second distance information related to the second object, and the focusing unit is further configured to: according to the depth information, the first displacement image And generating, by the second displacement image, a second pair of focus images, wherein the second pair of focus images is focused on the second object. 如申請專利範圍第1項所述的影像處理裝置,其中該聚焦單元更根據每一上述影像感應器的鏡頭參數產生該第一對對焦影像,每一上述影像感應器的鏡頭參數包括該影像感應器的鏡頭的焦點距離和點散函數。 The image processing device of claim 1, wherein the focusing unit generates the first pair of focus images according to lens parameters of each of the image sensors, and the lens parameters of each of the image sensors include the image sensing The focal length of the lens and the point spread function. 如申請專利範圍第1項所述的影像處理裝置,其中該影像 感應陣列更包括:一鏡頭陣列,包括多個光學變焦鏡頭,上述多個光學變焦鏡頭配置於上述多個影像感應器的前方。 The image processing device of claim 1, wherein the image The sensing array further includes: a lens array including a plurality of optical zoom lenses, wherein the plurality of optical zoom lenses are disposed in front of the plurality of image sensors. 如申請專利範圍第1項所述的影像處理裝置,其中該深度產生器包括:一偏移估算器,耦接該影像前置處理單元,用以根據該第一位移影像與該第二位移影像產生一偏移資訊,該偏移資訊包括該第一物件與該第二物件在該第一位移影像與該第二位移影像之間的偏移量;以及一偏移深度轉換器,耦接該偏移估算器,用以將該偏移資訊轉換為該深度資訊。 The image processing device of claim 1, wherein the depth generator comprises: an offset estimator coupled to the image pre-processing unit for the first displacement image and the second displacement image Generating an offset information, where the offset information includes an offset between the first object and the second object between the first displacement image and the second displacement image; and an offset depth converter coupled to the An offset estimator for converting the offset information into the depth information. 如申請專利範圍第5項所述的影像處理裝置,其中該深度產生器更包括:一後處理器,耦接於該偏移估算器與該偏移深度轉換器之間,用以修補該偏移資訊中的異常點。 The image processing device of claim 5, wherein the depth generator further comprises: a post processor coupled between the offset estimator and the offset depth converter for repairing the bias Move the anomaly in the message. 如申請專利範圍第5項所述的影像處理裝置,其中該深度產生器更包括:一背景模型單元,耦接該影像前置處理單元,用以區分該第一位移影像或該第二位移影像的一前景與一背景;以及一物件輪廓單元,耦接該背景模型單元,用以抽取該前景中的一物件輪廓。 The image processing device of claim 5, wherein the depth generator further comprises: a background model unit coupled to the image pre-processing unit for distinguishing the first displacement image or the second displacement image a foreground and a background; and an object contour unit coupled to the background model unit for extracting an object contour in the foreground. 如申請專利範圍第7項所述的影像處理裝置,其中該背景 模型單元亦耦接該偏移估算器,並根據該偏移資訊區分該前景與該背景。 The image processing device of claim 7, wherein the background The model unit is also coupled to the offset estimator and distinguishes the foreground from the background based on the offset information. 如申請專利範圍第7項所述的影像處理裝置,其中該深度產生器更包括:一紅外線收發器,耦接該背景模型單元,用以發射一紅外線,感應該紅外線的反射光點,其中該背景模型單元根據上述反射光點區分該前景與該背景。 The image processing device of claim 7, wherein the depth generator further comprises: an infrared transceiver coupled to the background model unit for emitting an infrared ray to sense a reflected spot of the infrared ray, wherein The background model unit distinguishes the foreground from the background based on the reflected light spots described above. 如申請專利範圍第7項所述的影像處理裝置,其中該深度產生器更包括:一色彩空間轉換器,耦接該影像前置處理單元、該偏移估算器、以及該背景模型單元,用以將該第一位移影像與該第二位移影像自一第一色彩空間轉換至一第二色彩空間,其中該第一色彩空間不包括亮度分量,而該第二色彩空間包括一亮度分量和至少一色彩分量,該偏移估算器根據該第一位移影像與該第二位移影像的該亮度分量產生該偏移資訊,該背景模型單元根據該第一位移影像或該第二位移影像的該至少一色彩分量區分該前景與該背景。 The image processing device of claim 7, wherein the depth generator further comprises: a color space converter coupled to the image pre-processing unit, the offset estimator, and the background model unit, Converting the first displacement image and the second displacement image from a first color space to a second color space, wherein the first color space does not include a brightness component, and the second color space includes a brightness component and at least a color component, the offset estimator generates the offset information according to the brightness component of the first displacement image and the second displacement image, the background model unit according to the at least the first displacement image or the second displacement image A color component distinguishes the foreground from the background. 如申請專利範圍第1項所述的影像處理裝置,其中該影像前置處理單元係用以將上述多個影像分類為一第一影像群與一第二影像群,並根據該第一影像群中每一影像的光學特性集合該第一影像群中的多個影像以產生該第一位移影像,及根據該第二影像群中每一影像的光學特性集合該第二影像群中的多個影像以 產生該第二位移影像。 The image processing device of claim 1, wherein the image pre-processing unit is configured to classify the plurality of images into a first image group and a second image group, and according to the first image group The optical characteristics of each of the images are collected by the plurality of images in the first image group to generate the first displacement image, and the plurality of second image groups are assembled according to optical characteristics of each image in the second image group Image The second displacement image is generated. 如申請專利範圍第1項所述的影像處理裝置,其中該影像感應陣列所擷取的上述多個影像是由上述多個影像感應器在同一時間各使用不同曝光值而擷取,而且該影像前置處理單元使用高動態範圍技術根據上述多個影像產生該第一位移影像與該第二位移影像。 The image processing device of claim 1, wherein the plurality of images captured by the image sensing array are captured by the plurality of image sensors at different times at the same time, and the image is captured. The pre-processing unit generates the first displacement image and the second displacement image according to the plurality of images by using a high dynamic range technique. 如申請專利範圍第1項所述的影像處理裝置,更包括:一影像分析器,耦接該影像前置處理單元和該聚焦單元,用以在該第一位移影像或該第二位移影像中辨識該第一物件的位置,以產生相對於該第一物件的位置資訊,其中該聚焦單元更根據該位置資訊產生該第一對對焦影像。 The image processing device of claim 1, further comprising: an image analyzer coupled to the image pre-processing unit and the focusing unit for use in the first displacement image or the second displacement image Identifying a position of the first object to generate position information relative to the first object, wherein the focusing unit further generates the first pair of in-focus images according to the position information. 如申請專利範圍第1項所述的影像處理裝置,更包括:至少兩個影像處理管線,耦接於該影像前置處理單元、該聚焦單元、以及該深度產生器之間,用以分別接收該第一位移影像與該第二位移影像,其中每一上述影像處理管線包括:一同步處理單元,修正該第一位移影像與該第二位移影像之間的差異,上述差異至少包括拍攝時間、曝光、色彩、白平衡、以及對焦平面的差異其中之一。 The image processing device of claim 1, further comprising: at least two image processing pipelines coupled between the image pre-processing unit, the focusing unit, and the depth generator for respectively receiving The first displacement image and the second displacement image, wherein each of the image processing pipelines includes: a synchronization processing unit that corrects a difference between the first displacement image and the second displacement image, wherein the difference includes at least a shooting time, One of the differences in exposure, color, white balance, and focus plane. 如申請專利範圍第1項所述的影像處理裝置,更包括:一影像合成器,耦接該聚焦單元,用以根據該第一對對焦影像產生一合成影像。 The image processing device of claim 1, further comprising: an image synthesizer coupled to the focusing unit for generating a composite image according to the first pair of in-focus images. 如申請專利範圍第15項所述的影像處理裝置,其中該合 成影像為二維影像,該影像合成器根據該第一對對焦影像做二維影像補點以產生該合成影像,而且該合成影像之解析度大於該第一對對焦影像之解析度。 The image processing device of claim 15, wherein the image processing device The image is a two-dimensional image, and the image synthesizer performs a two-dimensional image complementing point according to the first pair of focused images to generate the synthesized image, and the resolution of the synthesized image is greater than the resolution of the first pair of focused images. 如申請專利範圍第15項所述的影像處理裝置,其中該合成影像為三維影像,而且該影像處理裝置更包括:一遮蔽點偵測器,耦接該深度產生器、該聚焦單元與該影像合成器,用以根據該深度資訊與該第一對對焦影像來產生對應於該第一對對焦影像的遮蔽點位置資訊,其中該影像合成器係根據該第一對對焦影像與該遮蔽點位置資訊來產生該三維影像;以及一顯示單元,耦接該影像合成器,以立體三維方式顯示該三維影像。 The image processing device of claim 15, wherein the composite image is a three-dimensional image, and the image processing device further comprises: a shadow point detector coupled to the depth generator, the focusing unit and the image a synthesizer configured to generate, according to the depth information and the first pair of in-focus images, shading point position information corresponding to the first pair of in-focus images, wherein the image synthesizer is based on the first pair of in-focus images and the shading point position Information to generate the three-dimensional image; and a display unit coupled to the image synthesizer to display the three-dimensional image in a stereoscopic three-dimensional manner.
TW103104609A 2014-02-12 2014-02-12 Image processing device TWI504936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103104609A TWI504936B (en) 2014-02-12 2014-02-12 Image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103104609A TWI504936B (en) 2014-02-12 2014-02-12 Image processing device

Publications (2)

Publication Number Publication Date
TW201531744A true TW201531744A (en) 2015-08-16
TWI504936B TWI504936B (en) 2015-10-21

Family

ID=54343103

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103104609A TWI504936B (en) 2014-02-12 2014-02-12 Image processing device

Country Status (1)

Country Link
TW (1) TWI504936B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290309A (en) * 2018-03-19 2019-09-27 宏达国际电子股份有限公司 Image processing method, electronic device and non-transitory computer-readable storage medium
CN110677558A (en) * 2018-07-02 2020-01-10 华晶科技股份有限公司 Image processing method and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583918B (en) * 2015-11-04 2017-05-21 澧達科技股份有限公司 Three dimensional characteristic information sensing system and sensing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI532009B (en) * 2010-10-14 2016-05-01 華晶科技股份有限公司 Method and apparatus for generating image with shallow depth of field
US8619148B1 (en) * 2012-01-04 2013-12-31 Audience, Inc. Image correction after combining images from multiple cameras
JP6019729B2 (en) * 2012-05-11 2016-11-02 ソニー株式会社 Image processing apparatus, image processing method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290309A (en) * 2018-03-19 2019-09-27 宏达国际电子股份有限公司 Image processing method, electronic device and non-transitory computer-readable storage medium
TWI698837B (en) * 2018-03-19 2020-07-11 宏達國際電子股份有限公司 Image processing method, electronic device, and non-transitory computer readable storage medium
CN110677558A (en) * 2018-07-02 2020-01-10 华晶科技股份有限公司 Image processing method and electronic device
TWI684165B (en) * 2018-07-02 2020-02-01 華晶科技股份有限公司 Image processing method and electronic device
US10972676B2 (en) 2018-07-02 2021-04-06 Altek Corporation Image processing method and electronic device capable of optimizing hdr image by using depth information
CN110677558B (en) * 2018-07-02 2021-11-02 华晶科技股份有限公司 Image processing method and electronic device

Also Published As

Publication number Publication date
TWI504936B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
US10477185B2 (en) Systems and methods for multiscopic noise reduction and high-dynamic range
CN113382168B (en) Apparatus and method for storing overlapping regions of imaging data to produce an optimized stitched image
US9807372B2 (en) Focused image generation single depth information from multiple images from multiple sensors
US10609282B2 (en) Wide-area image acquiring method and apparatus
US8928734B2 (en) Method and system for free-view relighting of dynamic scene based on photometric stereo
CN108055452B (en) Image processing method, device and equipment
US10511787B2 (en) Light-field camera
CN101884222B (en) The image procossing presented for supporting solid
US8274552B2 (en) Primary and auxiliary image capture devices for image processing and related methods
CN104853080B (en) Image processing apparatus
KR20200041981A (en) Image processing method, apparatus, and device
US20130162861A1 (en) Image processing device for generating reconstruction image, image generating method, and storage medium
KR20120068655A (en) Method and camera device for capturing iris or subject of good quality with one bandpass filter passing both visible ray and near infra red ray
KR20070121717A (en) Method of controlling an action, such as a sharpness modification, using a colour digital image
CN108154514A (en) Image processing method, device and equipment
JP2010041586A (en) Imaging device
CN105791793A (en) Image processing method and electronic device thereof
US11792511B2 (en) Camera system utilizing auxiliary image sensors
TWI504936B (en) Image processing device
CN106412421A (en) System and method for rapidly generating large-size multi-focused image
JP2015046019A (en) Image processing apparatus, imaging apparatus, imaging system, image processing method, program, and storage medium
US8908012B2 (en) Electronic device and method for creating three-dimensional image
JP2012182738A (en) Stereo image pickup apparatus
TWI382267B (en) Auto depth field capturing system and method thereof
JP2025060576A (en) Image processing device, imaging device, control method, and program